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Prologue - ultrafilters and ultrapowers

A collection F C P(w) is a filter if
eweF, 0¢F,
o If Ac F and AC B then B € F,
o If A,Be Fthen ANB e F

M. Hrusak Model theory and topological groups



Prologue - ultrafilters and ultrapowers

A collection F C P(w) is a filter if
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Prologue - ultrafilters and ultrapowers

A collection F C P(w) is a filter if
eweF begF,
o If A€ Fand AC B then B F,
o If A,Be Fthen ANB e F
@ w\ne F forevery n € w.
A filter F is an ultrafilter if it is maximal or, equivalently,
o ifw=AUBthen Ac Forbe F.
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Prologue - ultrafilters and ultrapowers

A collection F C P(w) is a filter if
eweF begF,
o If A€ Fand AC B then B F,
o If A,Be Fthen ANB e F
@ w\ne F forevery n € w.
A filter F is an ultrafilter if it is maximal or, equivalently,
o ifw=AUBthen Ac Forbe F.

(We shall denote ultrafilters by p or g, possibly with indices.)
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Prologue - Fubini products and Frolik sums

Given ultrafilters p and g let
pRg={ACwxw:{n:{m:(n,m) e A} € p} € q}

moreover, given a sequence {p, : n € w} of ultrafilters let

q_an:{Agwxw:{n:{m:(n,m)eA}Epn}EQ}

new

and, recursively,

p0+1 — pa ®p and p(v, =p _Zpan

ncw

for some/any a, / a for oo < wy limit ordinal.
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Prologue - Special ultrafilters

Let p be an ultrafilter on w. Then p is

o selective (Choquet '68)
Vf ew® 3U € p (f | U is constant or one-to-one),

o Hausdorff (Daguenet-Teissier ‘79, R. A. Pitt ‘71, Choquet '68)
Vi,gew U ep(fFlU=g| Uor flUNg[U]=0).

M. Hrusak Model theory and topological groups



Prologue - Special ultrafilters

Let p be an ultrafilter on w. Then p is

o selective (Choquet '68)
Vf ew® 3U € p (f | U is constant or one-to-one),

o Hausdorff (Daguenet-Teissier ‘79, R. A. Pitt ‘71, Choquet '68)
Vi,gew U ep(fFlU=g| Uor flUNg[U]=0).

Facts:
o (Kunen '76) Consistently, selective ultrafilters do not exist.
@ (Cancino ‘22) Consistently, Hausdorff ultrafilters do not exist.
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Prologue - Ultrapowers of algebraic structures (Hewitt ‘48,

Los '55)

Given a group (G, o) and an ultrafilter p € w*
ulty(G) = (G¥/ =p) where f =, g iff {n: f(n) = g(n)} € p.
e endowed with the pointwise operation(s),

@ having (a copy of) G as a subgroup (via constant functions), and

@ to0$’s Theorem

ulty(G) = @([fo], .-, [fa)]) iff {j - G |= o(R()), - - fa))) € p-
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Prologue - Ultrapowers of topological spaces

Given a topological space (X, 7) with a fixed basis B, and an ultrafilter
p € w* let

ult,(X) = (X¥/ =p) where f =, g iff {n: f(n) = g(n)} € p

endowed it with the topology which has as a basis the collection
{U* : U € B}, where

U ={[f] € ulty(X) : {n: f(n) € U} € p}.
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Prologue - Ultrapowers of topological spaces

Given a topological space (X, 7) with a fixed basis B, and an ultrafilter
p € w* let

ult,(X) = (X¥/ =p) where f =, g iff {n: f(n) = g(n)} € p

endowed it with the topology which has as a basis the collection
{U* : U € B}, where
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The ultrapower with this topology is usually not Hausdorff. In fact,
e p is Hausdorff iff ult,(N, P(N)) is Hausdorff, and
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Prologue - Ultrapowers of topological spaces

Given a topological space (X, 7) with a fixed basis B, and an ultrafilter
p € w* let

ult,(X) = (X¥/ =p) where f =, g iff {n: f(n) = g(n)} € p

endowed it with the topology which has as a basis the collection
{U* : U € B}, where

U ={[f] € ulty(X) : {n: f(n) € U} € p}.

The ultrapower with this topology is usually not Hausdorff. In fact,
e p is Hausdorff iff ult,(N, P(N)) is Hausdorff, and
o If ulty(X) is Hausdorff then p is Hausdorff.
o (Di Nasso-Forti) p? is never Hausdorff.
We identify the inseparable classes and denote by Ult,(X) this quotient.
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End of the prologue ...
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End of the prologue ...
... beginning of the introduction.
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Versions of topological compactness

Given an ultrafilter p on w, a sequence {x, : n € w} and a point x
contained in a topological space X we say that

x = p-limx,
if {n€w:x, € U} € p for every neighbourhood U of x.

Definition

Let X be a topological space and let p be a free ultrafilter p on w.

e X is compact (Alexandroff-Urysohn ‘29) if every open cover of X
has a finite subcover, eqiv. every ultrafilter on X converges.

@ X is p-compact (Bernstein ‘70) if for every sequence
{xn : n € w} C X there is a point x € X such that x = p-lim x,,.

@ X is countably compact (Fréchet ‘28) if every countable open cover
of X has a finite subcover, eqiv. every sequence has a p-limit for
some p € w*,

@ X is pseudo-compact (Hewitt ‘48) if every continuous function
f: X — R is bounded.

v
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Versions of compactness and products

o (Tychonoff '30/'35) Any product of compact spaces is compact.
@ (Bernstein '70) Any product of p-compact spaces is p-compact.

@ (Teresaka ‘52, Novak '53) There are countably compact spaces
whose square is not even pseudo-compact.
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Versions of compactness and products

o (Tychonoff '30/'35) Any product of compact spaces is compact.

@ (Bernstein '70) Any product of p-compact spaces is p-compact.

@ (Teresaka ‘52, Novak '53) There are countably compact spaces
whose square is not even pseudo-compact.

@ (Comfort-Ross ‘66) Any product of pseudo-compact topological
groups is pseudocompact.
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Versions of compactness and products

o (Tychonoff '30/'35) Any product of compact spaces is compact.

@ (Bernstein '70) Any product of p-compact spaces is p-compact.

@ (Teresaka ‘52, Novak '53) There are countably compact spaces
whose square is not even pseudo-compact.

@ (Comfort-Ross ‘66) Any product of pseudo-compact topological
groups is pseudocompact.

Problem (Comfort ‘66)
Are there countably compact groups G, H such that G x H is not

countably compact?
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Comfort’s problem - consistent solutions

Problem (Comfort ‘66)

Are there countably compact groups G, H such that G x H is not
countably compact?
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Comfort’s problem - consistent solutions

Problem (Comfort ‘66)

Are there countably compact groups G, H such that G x H is not
countably compact?

@ (van Douwen ‘80) Every countably compact group without
(non-trivial) convergent sequences contains two countably compact
subgroups whose product is not countably compact.

e (Hajnal-Juhdsz ‘76) (CH) There is a boolean countably compact
group without convergent sequences.
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van Douwen’s problem - consistent solutions

Problem (van Douwen ‘80)

Is there countably compact group without convergent sequences?

o (Kuz'minov ‘58) Every compact topological group contains a
convergent sequence.

e (Hajnal-Juhdsz ‘76) Yes assuming CH.

@ (van Douwen ‘80) Yes assuming MA.

@ (Tomita ) Yes assuming MA pje-

° ...

All of these describe consistent inverse limit constructions of subgroups
of 2¢.

M. Hrusak Model theory and topological groups



van Douwen’s problem - solution

Theorem (H.—van Mill-Ramos-Garcia—Shelah 2021)

There is a countably compact subgroup of 2¢ without convergent
sequences in ZFC.
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Iterated ultrapowers of topological spaces

X is dense in Ult,(X) and
every sequence in X has a p-limit in Ult,(X): [f] = p-lim f(n).
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Iterated ultrapowers of topological spaces

X is dense in Ult,(X) and
every sequence in X has a p-limit in Ult,(X): [f] = p-lim f(n).
The process can, of course be iterated:

Given a space X, ultrafilter p € w* and o < wy let
Ul (X) = Ulty(| ) URS (X))
B<a

and finally
Ul (X) = | urf(x).
B<w
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Iterated ultrapowers of topological spaces

X is dense in Ult,(X) and
every sequence in X has a p-limit in Ult,(X): [f] = p-lim f(n).
The process can, of course be iterated:

Given a space X, ultrafilter p € w* and o < wy let
Ul (X) = Ulty(| ) URS (X))
B<a

and finally
Ul (X) = | urf(x).
B<w

o Ulty(X) = Ultpa(X) for v < wy,
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Iterated ultrapowers of topological spaces

X is dense in Ult,(X) and
every sequence in X has a p-limit in Ult,(X): [f] = p-lim f(n).
The process can, of course be iterated:

Given a space X, ultrafilter p € w* and o < wy let
Ul (X) = Ulty(| ) URS (X))
B<a

and finally
Ul (X) = | urf(x).
B<w

o Ulty(X) = Ultpa(X) for v < wy,
o Ultgr(X) is p-compact
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Iterated ultrapowers of topological spaces

X is dense in Ult,(X) and
every sequence in X has a p-limit in Ult,(X): [f] = p-lim f(n).
The process can, of course be iterated:

Given a space X, ultrafilter p € w* and o < wy let

Ul (X) = Ulty(| ) URS (X))
B<a

and finally
Ul (X) = | urf(x).
B<w
° U/t,‘j‘(X) = Ultpe (X) for a < wy,
o Ultgr(X) is p-compact, and
e If X is p-compact then X = Ult,(X).

(in particular, iterations beyond w; do not produce new spaces).

M. Hrusak Model theory and topological groups



The plan

There is a countably compact boolean group without convergent
sequences.

Find a suitable topological group G without convergent sequences and
consider Ult;*(G).

Then Ult;*(G) is a p-compact space and a group.
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The plan

There is a countably compact boolean group without convergent

sequences.

Find a suitable topological group G without convergent sequences and
consider Ult;*(G).

Then Ult;*(G) is a p-compact space and a group.

There are two problems to solve:
o ls Ult‘F;“(G) with the ultraproduct topology a topological group?

o Does Ult;*(G) have convergent sequences?
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Harald August Bohr (1887-1951) - wikipedia

Harald August Bohr (22 April 1887 — 22 January 1951) was a Danish
mathematician and footballer. After receiving his doctorate in 1910,
Bohr became an eminent mathematician, founding the field of almost
periodic functions on which he published a comprehensive survey in the
period from 1954 to 1974 with the help of his son-in-law, mathematician
Erling Fglner. His brother was the Nobel Prize-winning physicist Niels
Bohr. He was a member of the Danish national football team for the
1908 Summer Olympics, where he won a silver medal.
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Bohr topology on [w]<¥

Let
Hom([w]=*) = {® : ® is a group homomorphism from [w]<“ to 2}

and let 74om be the Bohr topology, i.e. the weakest topology making all
® € Hom([w]<*) continuous.

o ([w]<¥, THom) is homeomorphic to a countable dense subgroup of 2¢
without convergent sequences.
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Extensions of homomorphisms to ultrapowers

Uty ([w] <) is a p-compact topological group for every p in w*.

Every & € Hom([w]<*) naturally extends to a homomorphism
® € Hom(Ult,([w]<“)) by letting

B([f],) = i iff {k: d(F(k)) = i} € p.

The ultrapower topology is the topology induced by
{®: P e Hom([w]<¥)} on Ulty([w]<*).

Similarly, the utrapower topology on Ulty* ([w]<*) is the topology T i
induced by the homomorphisms in Hom([w]<*) extended recursively all
the way to Ulty"([w]<*) by the same formula as before:

®([f]) = i if and only if {k : ®(f(k)) = i} € p.
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The plan works ... for selective ultrafilters

Proposition (H.—van Mill-Ramos-Garcia—Shelah 2021)

p is selective iff for every {f, : n € w} of functions f, : w — [w]<¥ which
are not constant or equal on an element of p, there is a sequence
{U, : n € w} C p such that the sequence

{fa(m):n€wand me U,}

is linearly independent.

Corollary (H.—van Mill-Ramos-Garcia-Shelah 2021)

If p is selective then Ulty"([w]<*) is a p-compact topological group
without convergent sequences.

.
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The plan works ... for selective ultrafilters

Proposition (H.—van Mill-Ramos-Garcia—Shelah 2021)

p is selective iff for every {f, : n € w} of functions f, : w — [w]<¥ which
are not constant or equal on an element of p, there is a sequence
{U, : n € w} C p such that the sequence

{fa(m):n€wand me U,}

is linearly independent.

Corollary (H.—van Mill-Ramos-Garcia-Shelah 2021)

If p is selective then Ulty"([w]<*) is a p-compact topological group
without convergent sequences.

Proposition (H.—van Mill-Ramos-Garcia—Shelah 2021)

There is an ultrafilter p € w* such that Ulty*([w] <) contains a
convergent sequence.
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The same ... yet different

Theorem (H.—van Mill-Ramos-Garcia—Shelah 2021)

There is a countably compact subgroup of 2° without convergent
sequences in ZFC.

Lemma (H.—van Mill-Ramos-Garcia—Shelah 2019)

There is a familly {p, : @ < ¢} C w* such that for every D € [¢c]* and
every sequence {f, : o € D} C (Jw]<“)% of one-to-one enumerations of
linearly independent sets there are {U,, : @ € D} such that

Q@ VaeD U, € p,, and

Q@ {fu(n):a e D & ne U,} is a linearly independent subset of [w]<“.
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Fraissé classes

Teorema (Fraissé 1953)
A countable structure M in a countable language £ is ultra-homogeneous
if and only if the Age(M) - the class of finitely generated structures
embeddable in M satisfies
o JEP -VA,B € Age(M) 3C € Age(M) A— C and B — C,
and
@ AP -VA,B,Cc AgeM),f:A—~Bandg: A= C
D € AgeM), f':B<— D and g’ : C < Dsothatf'of =g'og.
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Fraissé classes

Teorema (Fraissé 1953)

A countable structure M in a countable language £ is ultra-homogeneous
if and only if the Age(M) - the class of finitely generated structures
embeddable in M satisfies

e JEP -VA, B e Age(M) 3C € Age(M) A~ C and B — C,
and

@ AP -VA,B,Cc AgeM),f:A—~Bandg: A= C
D € AgeM), f':B<— D and g’ : C < Dsothatf'of =g'og.

Morover, given a class /C of finitely generated structures in the same
language which is esentially countable numerable closed under
embeddings which satisfies JEP and AP, there is (up to isomorphism) a
unique countable ultra-homogeneous structure K called the Fraissé limit
of K such that K = Age(K).
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Automatic continuity

e The grups (R, +) y (R?, +) are isomorphic, but there is no
continuous (or Borel, or Lebesgue measurable) such isomorphisms.

o (Banach-Pettis 1950) Every Baire-measurable homomorphism
between Polish groups is continuous.

@ A Polish group G has the automatic continuity property if for every
Polish group H, every homomorphism ¢ : G — H is continuous.
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Automatic continuity of automorphism groups of countable

ultrahomogeneous structures

Often, automorphism groups of ultra-homogeneous structures have the
automatic continuity property.

@ (Hodges-Hodkinson-Lascar-Shelah 1993) S,

o (Hrushovski 1992) Aut(R)

o (Solecki 2005) Aut(Ug)

@ (Rosendal-Solecki 2007) Aut(Q, <)

o (Kechris-Rosendal 2007) ample generics = AC,
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Automatic continuity of groups of homeomorphisms

The following homeomorphism groups have automatic continuity:
o (Rosendal-Solecki 2007) Homeo(2") , Homeo(IR)
o (Rosendal 2008) Homeo(X) for every compact surface X.
e (Mann 2016) Homeo(K) for every compact manifold.
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Mapping class groups

Let X be an infinite type surface with E its space of ends .Then:

Homeo(¥X) — MCG(X) — Homeo(E)

where

MCG(X) = Homeo(X)/homotopy ~ Aut(Curve graph of X )

e (Mann 2027)) MCG(S?\ Cantor) has the automatic continuity
property.

@ (Mann 2027) There is a surface X such that MCG(X) does not
have the automatic continuity property.

o (Herndndez-H.-Morales-Randecker-Sedano-Valdez 2022,
Lanier-Vlamis 2022)
No MCG(X) has "ample generics ".
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Groups of homeomorphisms of countable ordinals

o (Herndndez-H.-Rosendal-Valdez 2023) Homeo(K) has the automatic
continuity property for every countable compact metric space K
(a-k.a countable successor ordinal).

o (Hernandez-H.-Rosendal-Valdez 2023) Homeo(a + 1) has ample
generics if and only if « is an indecomposable ordinal.
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Thank you for your attention!
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