
Formalizing Time: Temporal Logics and the 
Challenge of Visualizing MLTL

Laura Gamboa Guzman
May 1, 2025



Temporal logic
• From the Stanford Encyclopedia of Philosophy1:

“Temporal Logic covers all formal approaches to representing and 
reasoning about time and temporal information.”

• These formalisms rely on instant-based models of time, 
instead of interval-based, and follow a modal-style 
approach. 

2
1. Goranko, Valentin and Antje Rumberg, "Temporal Logic", The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), 
Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/archives/sum2024/entries/logic-temporal/. 



LTL - Linear Temporal Logic

3

• The syntax is given by the following grammar, where p is 
any atomic proposition.

• These formulas are interpreted over infinite time lines 
called traces, which are maps         .

q p p pp,q

Time          0    1         2     3 4      5          6

…



LTL - Linear Temporal Logic

4

q p p pp,q

Time          0    1         2     3 4      5          6



LTL - Linear Temporal Logic

5

Operator Syntax 0 1 2 3 4 5 6 7

Next Xp

Globally Gp

in the Future Fp

Until p Uq

Release p Rq

…

…

…

…

…



LTL expressiveness
• “Something bad (p) never happens”

• “It is always the case that something 
good (p) eventually happens”

• “At some point p will hold forever”

6



LTL expressiveness
• “Something bad (p) never happens”

• “It is always the case that something 
good (p) eventually happens”

• “At some point p will hold forever”

7

Fact: Propositional LTL over the naturals has exactly the expressive 
power of FO[<]. (Cabbay, Pnueli, Shelah, Stavi, 1980)



CTL - Computation Tree Logic

8

• Reasons about 
branching paths. The 
temporal connectives 
are always preceded 
by path quantifiers: 
A – for all paths, 
E – there exists a path.



CTL expressiveness
• “Something bad (p) never happens”

• “It is always the case that something 
good (p) eventually happens”

• “At some point p will hold forever”

9



CTL expressiveness
• “Something bad (p) never happens”

• “It is always the case that something 
good (p) eventually happens”

• “At some point p will hold forever”

10

Fact: Although CTL is not less expressive than LTL, an example would be 
the formula                  , common CTL formulas have LTL equivalents. (M.Y. 
Vardi, Branching vs. linear time: Final showdown, in: TACAS, LNCS vol. 
2031, Springer, 2001, pp. 122)

Can’t be done!



• STL predicates: Assume we have 
signals , then atomic 
predicates are of the form

• STL formulas:

• Semantics:

Signal temporal logic 
allows us to reason 
about signals with 
values in a continuous 
interval, allowing us to 
have predicates over 
real values and also 
reason about real time.

STL - Signal Temporal 
Logic

11

 



• STL predicates: Assume we have 
signals , then atomic 
predicates are of the form

• STL formulas:

• Semantics:

Signal temporal logic 
allows us to reason 
about signals with 
values in a continuous 
interval, allowing us to 
have predicates over 
real values and also 
reason about real time.

STL - Signal Temporal 
Logic

12

 



MLTL - Mission-time Linear Temporal Logic
• In short: Finite version of LTL with (finite) interval bounds.

13

Operator Syntax 0 1 2 3 4 5 6 7

Globally G[2,5] p

in the Future F[0,4] p

Until p U[1,6] q

Release p R[2,7] q

p p p p

p

p p p p q

q q q q q p,q



MLTL - Mission-time Linear Temporal Logic
• In short: Finite version of LTL with (finite) interval bounds.

14



MLTL - expressiveness
• Technically speaking, MLTL is only as expressive as 

classical propositional logic!
• Computation length of a formula: it is the minimum length 

required for a trace to ensure that none of the intervals in 
are out of bounds.

15



MLTL - expressiveness
• From now on, assume that 
• An MLTL formula     over         with computation length    

can be encoded as a propositional formula over  
propositional variables. 

• It can also be seen as a fragment of LTLf via the following 
map:

16



Visualizing Temporal Logics

17

• In order to apply a formal 
technique to a system, 
designers need to 
validate the formula 
specifications.

• LTL: many algorithms 
have been developed to 
translate LTL formulas 
into Büchi Automata with 
similar size to the original 
formula.

https://spot.lre.epita.fr/index.html



Visualizing Temporal Logics

18

• In order to apply a formal 
technique to a system, 
designers need to 
validate the formula 
specifications.

• LTL: many algorithms 
have been developed to 
translate LTL formulas 
into Büchi Automata with 
similar size to the original 
formula.

https://spot.lre.epita.fr/index.html



Visualizing MLTL
Goal 1: Visualize MLTL formulas, much like truth tables for 
boolean formulas.

19

Goal: Visualize 
MLTL formulas, 
much like truth 

tables for 
propositional 

logic formulas.

p q ~p ~q p ∧ q ~(p ∧ q) ~p ∨ ~q

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0



WEST: MLTL Regular Expressions
• We use Regular Expressions represent sets of traces. 
• 1 = True, 0 = False,
• S = (0 | 1),
• Commas separate time steps.

20



WEST: MLTL Regular Expressions

21

• From now on, assume 
all formulas are in 
NNF using the usual 
equivalences.

• Given a formula with 
computation length     
we compute a set of 
MLTL Regular 
Expressions that 
capture all satisfying 
traces of length      .



WEST: MLTL Regular Expressions

22

Completeness and Correctness: For any well-formed MLTL 
formula φ in NNF, a trace π of length cplen(φ) satisfies φ if 
and only if π belongs to the regular language described by 
reg(φ).



WEST: MLTL Regular Expressions

23



What about MLTL to Automata?

24

• Encoding MLTL into LTL/LTLf and 
then into an automata hiddens the 
succinctness of the language. 

• Example: The formula              can 
be encoded in LTLf as



• Encoding MLTL into 
LTL/LTLf and then into 
an automata hiddens 
the succinctness of the 
language. 

• However, looking at the 
automata for the LTLf 
formula         , this 
suggests an approach 
using PDAs.

Future work: MLTL to Automata!

25



26

 

1 = True, 0 = False,
S = (0 | 1),
Commas separate time 
steps.



27

Operator Syntax 0 1 2 3 4 5 6 7

Globally Gp

in the Future Fp

Until p Uq

Release p Rq

p p p p

p

p p p p q

q q q q q p,q



28

…


