IOWA STATE UNIVERSITY

Formalizing Time: Temporal Logics and the Challenge of Visualizing MLTL

Laura Gamboa Guzman May 1, 2025

Temporal logic

• From the Stanford Encyclopedia of Philosophy¹:

"Temporal Logic covers all formal approaches to representing and reasoning about time and temporal information."

• These formalisms rely on instant-based models of time, instead of interval-based, and follow a modal-style approach.

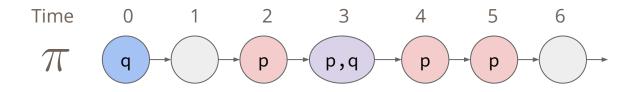
1. Goranko, Valentin and Antje Rumberg, "Temporal Logic", *The Stanford Encyclopedia of Philosophy* (Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/archives/sum2024/entries/logic-temporal/.

LTL - Linear Temporal Logic

• The syntax is given by the following grammar, where p is any atomic proposition.

 $\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid G\phi \mid F\phi \mid \phi U\psi \mid \phi R\psi \mid X\phi$

• These formulas are interpreted over infinite time lines called traces, which are maps $\pi: \omega \to 2^{\mathcal{AP}}$.


Time 0 1 2 3 4 5 6

$$q \rightarrow p \rightarrow p, q \rightarrow p \rightarrow p \rightarrow \cdots$$

3

LTL - Linear Temporal Logic

 $\begin{aligned} \pi, i &\models p \text{ iff } p \in \pi(i) \\ \pi, i &\models X\phi \text{ iff } \pi, i+1 \models \phi \\ \pi, i &\models G\phi \text{ iff } \forall j \geq i \ (\pi, j \models \phi) \\ \pi, i &\models \phi U\psi \text{ iff } \exists j \geq i \ (\pi, j \models \psi \& \forall i \leq k < j \ (\pi, k \models \phi)) \\ \pi, i &\models \phi R\psi \text{ iff } \forall j \geq i \ (\pi, j \nvDash \psi \implies \exists k \ (i \leq k < j \& \pi, k \models \phi)) \end{aligned}$

LTL - Linear Temporal Logic

Operator	Syntax	0	1	2	3	4	5	6	7	
Next	Хp									• • •
G lobally	$\mathbf{G}p$									• • •
in the F uture	$\mathbf{F}p$									• • •
U ntil	$p \mathbf{U} q$							-		
Release	$p \mathbf{R} q$						-	-		

IOWA STATE UNIVERSITY

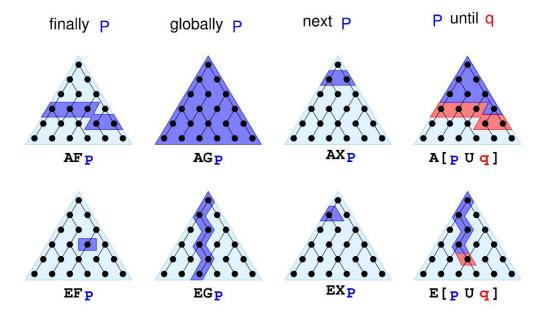
1

LTL expressiveness

- "Something bad (p) never happens"
- "It is always the case that something good (p) eventually happens"
- "At some point p will hold forever"

LTL expressiveness

- "Something bad (p) never happens" $\neg Fp$
- "It is always the case that something *GFp* good (p) eventually happens"
- "At some point p will hold forever" FGp


<u>Fact</u>: Propositional LTL over the naturals has exactly the expressive power of FO[<]. (Cabbay, Pnueli, Shelah, Stavi, 1980)

7

CTL - Computation Tree Logic

- Reasons about branching paths. The temporal connectives are always preceded by path quantifiers:
 - A for all paths,
 - E there exists a path.

ABORATORY FOR TEMPORAL LOGIC

CTL expressiveness

- "Something bad (p) never happens"
- "It is always the case that something good (p) eventually happens"
- "At some point p will hold forever"

CTL expressiveness

- "Something bad (p) never happens" $AG(\neg p)$
- "It is always the case that something good (p) eventually happens"

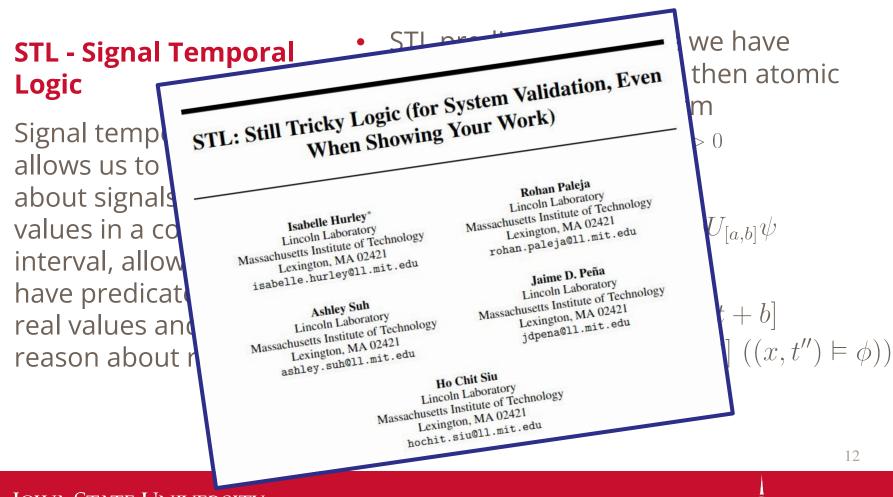
 $AG\left(AFp\right)$

• "At some point p will hold forever" Can't be done!

<u>Fact</u>: Although CTL is not less expressive than LTL, an example would be the formula AG(EF(p)), common CTL formulas have LTL equivalents. (M.Y. Vardi, Branching vs. linear time: Final showdown, in: TACAS, LNCS vol. 2031, Springer, 2001, pp. 122)

IOWA STATE UNIVERSITY

10


STL - Signal Temporal Logic

Signal temporal logic allows us to reason about signals with values in a continuous interval, allowing us to have predicates over real values and also reason about real time.

- <u>STL predicates</u>: Assume we have signals $x_1[t], x_2[t], \dots, x_n[t]$, then atomic predicates are of the form $\mu = f(x_1[t], \dots, x_n[t]) > 0$
- <u>STL formulas</u>: $\phi ::= \top |\mu| \neg \phi |\phi \land \psi | \phi U_{[a,b]} \psi$
- <u>Semantics</u>:

 $\begin{aligned} (x,t) &\vDash \phi U \psi \text{ iff } \exists t' \in [t+a,t+b] \\ ((x,t') &\vDash \psi \,\& \,\forall t'' \in [t,t'] \, ((x,t'') \vDash \phi)) \end{aligned}$

IOWA STATE UNIVERSITY

LABORATORY FOR TEMPORAL LOGIC

MLTL - Mission-time Linear Temporal Logic

• <u>In short</u>: Finite version of LTL with (finite) interval bounds.

Operator	Syntax	0	1	2	3	4	5	6	7
Globally	G_[2,5] p			- p	- p	- p	- p	-	
in the F uture	F_[0,4] р			-	-	- p	-	-	
U ntil	р U_[1,6] q		- p	- p	- p	- p	q	-	
R elease	р R_[2,7] q			q	q	q	q	q	p ,q

MLTL - Mission-time Linear Temporal Logic

• <u>In short</u>: Finite version of LTL with (finite) interval bounds.

 $\pi \models \mathcal{F}_{[a,b]} \alpha \text{ iff } |\pi| > a \text{ and } \exists i \in [a,b] \text{ such that } \pi_i \models \alpha$ $\pi \models \mathcal{G}_{[a,b]} \alpha \text{ iff } |\pi| \le a \text{ or } \forall i \in [a,b] \pi_i \models \alpha$ $\pi \models \alpha \ \mathcal{U}_{[a,b]} \beta \text{ iff } |\pi| > a \text{ and } \exists i \in [a,b] \text{ such that } \pi_i \models \beta \text{ and}$ $\forall j \in [a,i-1] \ \pi_j \models \alpha$ $\pi \models \alpha \ \mathcal{R}_{[a,b]} \beta \text{ iff } |\pi| \le a \text{ or } \forall i \in [a,b] \ \pi_i \models \beta \text{ or}$ $\exists j \in [a,b-1] \text{ such that } \pi_j \models \alpha \text{ and } \forall a \le k \le j \ \pi_k \models \beta$

MLTL - expressiveness

- Technically speaking, MLTL is only as expressive as classical propositional logic!
- <u>Computation length of a formula</u>: it is the minimum length required for a trace to ensure that none of the intervals in are out of bounds.

 $\begin{aligned} \operatorname{complen}(p_k) &= \operatorname{complen}(\neg p_k) = 1\\ \operatorname{complen}(\alpha \land \beta) &= \operatorname{complen}(\alpha \lor \beta) = \max(\operatorname{complen}(\alpha), \operatorname{complen}(\beta))\\ \operatorname{complen}(\mathcal{G}_{[a,b]}\alpha) &= \operatorname{complen}(\mathcal{F}_{[a,b]}\alpha) = b + \operatorname{complen}(\alpha)\\ \operatorname{complen}(\alpha \mathcal{U}_{[a,b]}\beta) &= \operatorname{complen}(\alpha \mathcal{R}_{[a,b]}\beta) = b + \max(\operatorname{complen}(\alpha) - 1, \operatorname{complen}(\beta)) \end{aligned}$

MLTL - expressiveness

- From now on, assume that $\mathcal{AP} = \{p_0, p_1, \dots, p_{n-1}\}.$
- An MLTL formula ϕ over \mathcal{AP} with computation length m can be encoded as a propositional formula over nm propositional variables.
- It can also be seen as a fragment of LTLf via the following map:

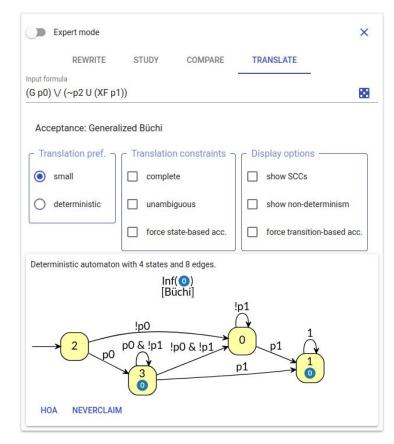
$$\phi U_{[a,b]}\psi\mapsto\bigvee_{i\in[a,b]}\left(X^{i}\psi\wedge\bigwedge_{j\in[a,i-1]}X^{j}\phi\right)$$

Visualizing Temporal Logics

- In order to apply a formal technique to a system, designers need to
 validate the formula specifications.
- <u>LTL</u>: many algorithms have been developed to translate LTL formulas into Büchi Automata with similar size to the original formula.

IOWA STATE UNIVERSITY

Expert mode		B 0
REWRITE	STUDY COMPARE	TRANSLATE
Input formula		
p0 U p1		
Acceptance: Genera	lized Büchi	
C Translation pref.	┌ Translation constraints -	Display options
small	C complete	show SCCs
O deterministic	unambiguous	show non-determinism
	force state-based acc.	force transition-based acc.
Deterministic automator	n with 2 states and 3 edges.	
Inf(0) [Büchi]		
p0 & !p1	1	
HOA NEVERCLAI	м	


https://spot.lre.epita.fr/index.html

ABORATORY FOR TEMPORAL LOGIC

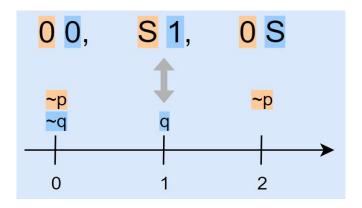
Visualizing Temporal Logics

- In order to apply a formal technique to a system, designers need to
 validate the formula specifications.
- <u>LTL</u>: many algorithms have been developed to translate LTL formulas into Büchi Automata with similar size to the original formula.

IOWA STATE UNIVERSITY

https://spot.lre.epita.fr/index.html

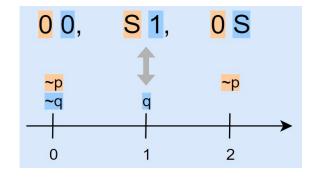
LABORATORY FOR TEMPORAL LOGIC

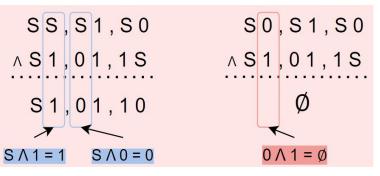

Visualizing MLTL

Goal 1: Visualize MLTL formulas, much like truth tables for boolean formulas.

р	q	~p	~q	p ∧ q	~(p \land q)	~p V ~q
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

- We use Regular Expressions represent sets of traces.
- 1 = True, 0 = False,
- S = (0 | 1),
- Commas separate time steps.





20

- From now on, assume all formulas are in NNF using the usual equivalences.
- Given a formula with computation length *m* we compute a set of MLTL Regular Expressions that capture all satisfying traces of length *m*.

ABORATORY FOR TEMPORAL LOGIC

$$\begin{split} reg(\top) &= S^n & reg(\bot) = \emptyset \\ reg(p_k) &= S^k 1 S^{n-k-1} & reg(\neg p_k) = S^k 0 S^{n-k-1} \\ reg(\varphi \lor \psi) &= reg(\varphi) \lor reg(\psi) & reg(\varphi \land \psi) = reg(\varphi) \land reg(\psi) \\ reg(\mathcal{G}_{[a,b]}\varphi) &= \bigwedge_{i=a}^{b} (S^n,)^i reg(\varphi) & reg(\mathcal{F}_{[a,b]}\varphi) = \bigvee_{i=a}^{b} (S^n,)^i reg(\varphi) \end{split}$$

Completeness and Correctness: For any well-formed MLTL formula φ in NNF, a trace π of length cplen(φ) satisfies φ if and only if π belongs to the regular language described by reg(φ).

22

WEST MLTL Formula Validation To	loc		
((p0 & !(F[0,3] !p1))	1 -> p2)	Run	Grammar
Optimize Bits 2		oly RES	ТЗ
Formula: ((p0 & G[0	,3] p1) -:	> p2) <mark>4</mark>	
Unexpected Formula	?		
Please select a subfo	ormula to	explor	e:
((p0 & G	[0,3] p1)	-> p2)	5
(p0 8	k <mark>G[0,3]</mark> (51)	
G	[0,3] p1		
	p2		
	p0		

		9			
MLTL Formula	a: ((p0 & G	[0,3] p1)	-> p2	2)	
trace: 010,00	0,011,010	H	lelp		
Import trace	010,000,01	1,010	11		
Export trace	trace.csv		12		
14 Rand S	AT	15 Rand	UNSA	T	
13 reset 0	1	2	3		

0	1	2	3				
List	Backbone	e Analysis					
0ss,sss,sss,sss 16							
	s0s,sss,	sss,sss					
	sss,s0s,	sss,sss					
sss,sss,s0s,sss							
	SSS,SSS,	sss,s0s					
	ss1,sss,	sss,sss					
		List Backbond Oss,sss, S0s,sss, sss,s0s, sss,sss, sss,sss, sss,sss,	Image: Constraint of the sector of the se				

		- 0	
		10	
MLTL Formula	a: ((p0 & G	[0,3] p1) -> p2)	
trace: 110,01	0,011,010	Help	
Import trace	110,010,0	11,010	
Export trace	trace.csv		

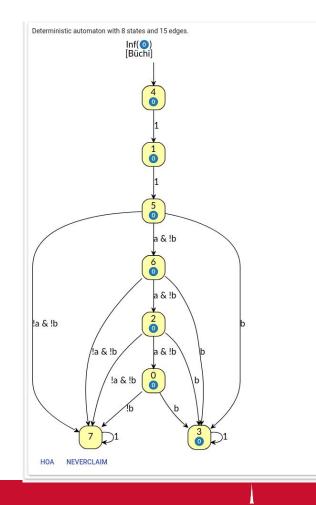
R	and S	AT	UNSAT		
reset	0	1	2	3	
p0					
p1					
p2					
Regexp	List	Backbone Analysis 17			
		CAT 4 .			

Backbone for SAT Assignments: t = 0:

t = 1:

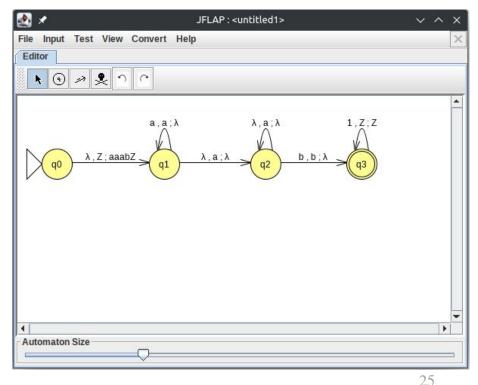
t = 2:

t = 3:


Backbone for UNSAT Assignments: t = 0: p0, p1, ~p2 t = 1: p1 t = 2: p1 t = 3: p1

What about MLTL to Automata?

- Encoding MLTL into LTL/LTLf and then into an automata hiddens the succinctness of the language.
- <u>Example</u>: The formula $aU_{[2,5]}b$ can be encoded in LTLf as $X(X(b \lor (a \land X(b \lor (a \land X(b \lor (a \land Xb)))))))$


IOWA STATE UNIVERSITY

24

Future work: MLTL to Automata!

- Encoding MLTL into LTL/LTLf and then into an automata hiddens the succinctness of the language.
- However, looking at the automata for the LTLf formula *aUb*, this suggests an approach using PDAs.

 $(\mathbf{x},t) \models \varphi \ \mathcal{U}_{[a,b]} \ \psi \ \Leftrightarrow \ \exists t' \in [t+a,t+b] \text{ such that } (x,t') \models \psi \land$ $\forall t'' \in [t, t'], \ (x, t'') \models \varphi \}$ $(x,t) \vDash \phi U \psi$ iff $\exists t' \in [t+a,t+b]$ $((x,t') \vDash \psi \& \forall t'' \in [t,t'] \ ((x,t'') \vDash \phi))$ $\phi U_{[a,b]}\psi \mapsto \bigvee_{i\in[a,b]} \left(X^{i}\psi \wedge \bigwedge_{j\in[a,i-1]} X^{j}\phi \right) \qquad \begin{array}{l} 1 = \text{True, 0 = False,} \\ S = (0 \mid 1), \end{array}$ Commas separate time

steps.

26

Operator	Syntax	0	1	2	3	4	5	6	7
Globally	Gp		-	p -	p	• p	p		
in the F uture	Fp			-		- p	-	-	
U ntil	$p \mathbf{U} q$		- p	- p	p	- p	- q	-	
Release	$p \mathbf{R} q$		-	q	q	q	q	q	p ,q

 $\pi, i \vDash \phi R \psi \text{ iff } \forall j \ge i \ (\pi, j \nvDash \psi \implies \exists k \ (i \le k < j \& \pi, k \vDash \phi))$

 $\pi, i \vDash X\phi \text{ iff } \pi, i+1 \vDash \phi$ $\pi, i \vDash G\phi \text{ iff } \forall j > i \ (\pi, j \vDash \phi)$

 $\pi, i \vDash F\phi \text{ iff } \exists j \ge i \ (\pi, j \vDash \phi)$

. . . $\phi ::= \top \mid \mu \mid \neg \phi \mid \phi \land \psi \mid \phi U_{[a,b]} \psi$

