Distributive ℓ -pregroups: decidability and generation

Isis A. Gallardo (join work with Nick Galatos)

University of Colorado Boulder

March 13, 2025

$\ell\text{-groups:}\ \mathbf{Aut}(\mathbb{Q})$

$\ell\text{-groups:}\ \mathbf{Aut}(\mathbb{Q})$

The collection of the order preserving permutations of $\mathbb Q$ i.e. strictly increasing invertible functions from $\mathbb Q$ to itself forms an algebra under composition, meet, join and inverse, and we

An $\ell\text{-group}$ is an algebra $(A, \cdot, {}^{-1}\,, 1,\, \vee,\, \wedge)$ such that:

- $(A, \cdot, \overset{-1}{,}, 1)$ is a group,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

An $\ell\text{-group}$ is an algebra $(A,\cdot,^{-1},1,\vee,\wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group,
- (A, \lor, \land) is a lattice.

• multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of ℓ -groups forms an equational class that we denote by LG.

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of $\ell\text{-}\mathsf{groups}$ forms an equational class that we denote by LG.

Examples:

- $(\mathbb{Z}, \min, \max, +, -, 0)$, $(\mathbb{Q}, \min, \max, +, -, 0)$, $(\mathbb{R}, \min, \max, +, -, 0)$.
- The order-preserving permutations (aka automorphisms) $\operatorname{Aut}(C, \leq)$ on a totally-ordered set (C, \leq) , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{Z})$, $\operatorname{Aut}(\mathbb{R})$.

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of $\ell\text{-}\mathsf{groups}$ forms an equational class that we denote by LG.

Examples:

- $(\mathbb{Z}, min, max, +, -, 0)$, $(\mathbb{Q}, min, max, +, -, 0)$, $(\mathbb{R}, min, max, +, -, 0)$.
- The order-preserving permutations (aka automorphisms) $\operatorname{Aut}(C, \leq)$ on a totally-ordered set (C, \leq) , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{Z})$, $\operatorname{Aut}(\mathbb{R})$.

Fact: The lattice reduct of an ℓ -group is distributive, meaning join distributes over meet.

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of $\ell\text{-}\mathsf{groups}$ forms an equational class that we denote by LG.

Examples:

- $(\mathbb{Z}, \min, \max, +, -, 0)$, $(\mathbb{Q}, \min, \max, +, -, 0)$, $(\mathbb{R}, \min, \max, +, -, 0)$.
- The order-preserving permutations (aka automorphisms) $\operatorname{Aut}(C, \leq)$ on a totally-ordered set (C, \leq) , under functional composition and pointwise order. For example, the symmetric ℓ -groups: $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{Z})$, $\operatorname{Aut}(\mathbb{R})$.

Fact: The lattice reduct of an ℓ -group is distributive, meaning join distributes over meet.

Theorem (Cayley's Theorem)

Every group can be embedded in a group of permutations.

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order. (eqv: it distributes over join/over meet.)

The class of $\ell\text{-}\mathsf{groups}$ forms an equational class that we denote by LG.

Examples:

- $(\mathbb{Z}, min, max, +, -, 0)$, $(\mathbb{Q}, min, max, +, -, 0)$, $(\mathbb{R}, min, max, +, -, 0)$.
- The order-preserving permutations (aka automorphisms) $\operatorname{Aut}(C, \leq)$ on a totally-ordered set (C, \leq) , under functional composition and pointwise order. For example, the *symmetric* ℓ -groups: $\operatorname{Aut}(\mathbf{n})$, $\operatorname{Aut}(\mathbb{Z})$, $\operatorname{Aut}(\mathbb{R})$.

Fact: The lattice reduct of an ℓ -group is distributive, meaning join distributes over meet.

Theorem (Cayley's Theorem)

Every group can be embedded in a group of permutations.

Theorem (Holland's embedding theorem)

Every ℓ -group can be embedded $Aut(\Omega)$, for some chain Ω .

Failure in $\mathbf{Aut}(\Omega)$

 $\begin{array}{l} \text{Suppose } \varepsilon \text{ is an equation in the} \\ \text{language of } \ell \text{-groups that fails in} \\ \text{some } \ell \text{-group.} \end{array}$

Failure in $\mathbf{Aut}(\Omega)$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group. We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words.

Failure in $\mathbf{Aut}(\Omega)$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group. We can transform ε to an equation of the form $1 \leq w_1 \lor \ldots \lor w_n$ where the w's are group words. Then, by Holland's embedding theorem ε fails in $\operatorname{Aut}(\Omega)$ for some chain Ω

Failure in $\mathbf{Aut}(\mathbf{\Omega})$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group. We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words. Then, by Holland's embedding theorem ε fails in $Aut(\Omega)$ for some chain Ω For example consider commutativity xy = yx, we can re formulate it as two inequalities $1 \leq x^{-1}y^{-1}xy$ and $1 \leqslant y^{-1}x^{-1}yx.$

Failure in $\mathbf{Aut}(\mathbf{\Omega})$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group. We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words. Then, by Holland's embedding theorem ε fails in $Aut(\Omega)$ for some chain Ω For example consider commutativity xy = yx, we can re formulate it as two inequalities $1 \leq x^{-1}y^{-1}xy$ and $1 \leqslant y^{-1}x^{-1}yx.$ Let us focus on $1 \leq y^{-1}x^{-1}yx$. Suppose $f, q \in Aut(\Omega)$ and $1 \leq q^{-1} f^{-1} q f$

Failure in $Aut(\Omega)$

 $\Delta = \{g^{-1}f^{-1}gf(p)$

Suppose ε is an equation in the language of ℓ -groups that fails in some ℓ -group. We can transform ε to an equation of the form $1 \leq w_1 \vee \ldots \vee w_n$ where the w's are group words. Then, by Holland's embedding theorem ε fails in $Aut(\Omega)$ for some chain Ω For example consider commutativity xy = yx, we can re formulate it as two inequalities $1 \leq x^{-1}y^{-1}xy$ and $1 \leqslant y^{-1}x^{-1}yx.$ Let us focus on $1 \leq y^{-1}x^{-1}yx$. Suppose $f, g \in Aut(\Omega)$ and $1 \leq q^{-1} f^{-1} q f$

Given the expression $g^{-1}f^{-1}gf(p),$ we can form the set of the final subwords

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

Given the expression $g^{-1}f^{-1}gf(p),$ we can form the set of the final subwords

$$\begin{split} gf(p) \bullet \\ f^{-1}gf(p) \bullet \\ p = f(p) \bullet \\ g^{-1}f^{-1}gf(p) \bullet \end{split}$$

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

we have an order for $|\Delta|,$

Given the expression $g^{-1}f^{-1}gf(p),$ we can form the set of the final subwords

 $\begin{array}{cccc} gf(p) \bullet & \bullet & gf(p) \\ f^{-1}gf(p) \bullet & \bullet & f^{-1}gf(p) \\ p = f(p) \bullet & \bullet & p = f(p) \\ g^{-1}f^{-1}gf(p) \bullet & \bullet & g^{-1}f^{-1}gf(p) \end{array}$

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

we have an order for $|\Delta|,$ and given the labels we can form two relations (magenta and blue)

Given the expression $g^{-1}f^{-1}gf(p),$ we can form the set of the final subwords

 $\begin{array}{cccc} gf(p) \bullet & \bullet & gf(p) & \Delta = \{g^{-1}f^{-1}g(p) \bullet & f^{-1}gf(p) & \bullet & f^{-1}gf$

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

we have an order for $|\Delta|,$ and given the labels we can form two relations (magenta and blue)

Given the expression $g^{-1}f^{-1}gf(p),$ we can form the set of the final subwords

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

we have an order for $|\Delta|,$ and given the labels we can form two relations (magenta and blue)

Given the expression $g^{-1}f^{-1}gf(p)$, we can form the set of the final subwords

$$\begin{array}{cccc} gf(p) \bullet & \bullet & gf(p) \\ f^{-1}gf(p) \bullet & \bullet & f^{-1}gf(p) \\ p = f(p) \bullet & \bullet & p = f(p) \\ g^{-1}f^{-1}gf(p) \bullet & \bullet & g^{-1}f^{-1}gf(p) \end{array}$$

 $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$

we have an order for $|\Delta|$, and given the labels we can form two relations (magenta and blue) such that:

- they are order-preserving partial functions and,
- they are injective.

Building a diagram

Given an equation $1 \leq y^{-1}x^{-1}yx$,

- $1 = x \bullet$
- $y^{-1}x^{-1}yx$ •

D

Building a diagram

ℓ-pregroups 000000000000000

Building a diagram

Given an equation $1 \leq y^{-1}x^{-1}yx$, $\Delta = \{g^{-1}f^{-1}gf(p), p, f(p), f^{-1}gf(p), gf(p)\}$ Consider $\Delta_{\varepsilon} = \{1, x, yx, x^{-1}yx, y^{-1}x^{-1}yx\}$ given that $|\Delta_{\varepsilon}| \leq |\varepsilon|$ we know that $|\Delta_{\varepsilon}| < \infty$

More formally $|\Delta_{\varepsilon}|$ with the order on the graphic, $|\Delta_{\varepsilon}|$ controlled, satisfying that g_x , g_y order preserving, injective, partial functions, satisfies

$$y^{-1}x^{-1}yx < 1$$

so ε fails.

Theorem (Holland)

If an equation ε fails in an ℓ -group, it fails in a diagram of size at most $|\varepsilon|$.

Theorem (Holland)

If an equation ε fails in a diagram, it fails in $Aut(\mathbb{Q})$.

Theorem (Holland - McCleary)

The equational class LG is decidable

Theorem (Holland)

The equational class LG can be generated by $\mathbf{Aut}(\mathbb{Q})$.

$\ell\text{-}groups$ and $\ell\text{-}pregroups$

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An $\ell\text{-group}$ is an algebra $(A,\cdot,^{-1},1,\,\vee,\,\wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An $\ell\text{-pregroup}$ is an algebra $(A,\cdot,^\ell,^r,1,\vee,\wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

$\ell\text{-}groups$ and $\ell\text{-}pregroups$

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, \stackrel{\ell}{,}, r, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

Introduced by Lambek in mathematical linguistics.

$\ell\text{-}groups$ and $\ell\text{-}pregroups$

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, {}^{\ell}, {}^{r}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

Introduced by Lambek in mathematical linguistics.

We denote the equational class of $\ell\text{-pregroups}$ by LP.

An ℓ -group is an algebra $(A, \cdot, {}^{-1}, 1, \vee, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, {}^{\ell}, {}^{r}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

Introduced by Lambek in mathematical linguistics.

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all *l*-pregroups distributive (join distributes over meet)?

An $\ell\text{-group}$ is an algebra $(A, \cdot, {}^{-1}\,, 1,\, \vee,\, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, {}^{\ell}, {}^{r}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

Introduced by Lambek in mathematical linguistics.

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all ℓ -pregroups distributive (join distributes over meet)? **Conjecture:** No.

An $\ell\text{-group}$ is an algebra $(A, \cdot, {}^{-1}\,, 1,\, \vee,\, \wedge)$ such that:

- $(A, \cdot, {}^{-1}, 1)$ is a group $(x^{-1}x = 1 = xx^{-1})$,
- (A, \lor, \land) is a lattice.
- multiplication preserves the order.

An ℓ -pregroup is an algebra $(A, \cdot, {}^{\ell}, {}^{r}, 1, \vee, \wedge)$ such that:

- $\bullet \ (A,\cdot,1) \text{ is a monoid,} \\$
- (A, \lor, \land) is a lattice.
- multiplication preserves the order and

 $x^\ell x \leqslant 1 \leqslant x x^\ell \text{ and } x x^r \leqslant 1 \leqslant x^r x$

Introduced by Lambek in mathematical linguistics.

We denote the equational class of ℓ -pregroups by LP.

Open problem: Are all ℓ -pregroups distributive (join distributes over meet)? **Conjecture:** No.

We will focus for now on distributive $\ell\mbox{-pregroups},$ the equational class they form is denoted by DLP.

ℓ -pregroups

$$\label{eq:F} \begin{split} \mathbf{F}(\mathbb{Z}) \text{ denotes the } \ell\text{-pregroup of the finite-to-one order} \\ \text{preserving functions from } \mathbb{Z} \text{ to itself together with composition,} \\ \text{meet and join and the operations } ^\ell \text{ and } ^r\text{given by:} \end{split}$$

ℓ -pregroups

ℓ-pregroups

 $f^{\ell}(a) = \min\{x \mid a \leqslant f(x)\}$

ℓ-pregroups

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^{\ell}$ and r given by:

$$f^{\ell}(a) = \min\{x \mid a \leq f(x)\}$$

$$f^{r}(a) = \max\{x \mid f(x) \leq a\}$$

ℓ -pregroups

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^{\ell}$ and r given by:

> $f^{\ell}(a) = \min\{x \mid a \leq f(x)\}$ $f^{r}(a) = \max\{x \mid f(x) \leq a\}$

In general, given a chain Ω , we denote by $\mathbf{F}(\Omega)$, the collection of all orderpreserving functions f from Ω to itself such that $f^{\ell}, f^{\ell\ell}, f^{\ell\ell\ell}, \ldots$ and $f^{r}, f^{rr}, f^{rrr}, \ldots$ exist.

Notation: $f^{\ell} = f^{(1)}, f^{\ell \ell} = f^{(2)}, f^{\ell \ell \ell} = f^{(3)} \dots$ and $f^r = f^{(-1)}, f^{rr} = f^{(-2)}, f^{rrr} = f^{(-3)} \dots$

ℓ -pregroups

 $\mathbf{F}(\mathbb{Z})$ denotes the ℓ -pregroup of the finite-to-one order preserving functions from \mathbb{Z} to itself together with composition, meet and join and the operations $^{\ell}$ and r given by:

> $f^{\ell}(a) = \min\{x \mid a \leq f(x)\}$ $f^{r}(a) = \max\{x \mid f(x) \leq a\}$

In general, given a chain Ω , we denote by $\mathbf{F}(\Omega)$, the collection of all orderpreserving functions f from Ω to itself such that $f^{\ell}, f^{\ell\ell}, f^{\ell\ell\ell}, \ldots$ and $f^{r}, f^{rr}, f^{rrr}, \ldots$ exist.

Notation: $f^{\ell} = f^{(1)}, f^{\ell \ell} = f^{(2)}, f^{\ell \ell \ell} = f^{(3)} \dots$ and $f^r = f^{(-1)}, f^{rr} = f^{(-2)}, f^{rrr} = f^{(-3)} \dots$

Theorem (Representation: Galatos-Horcik)

Every distributive $\ell\text{-pregroup}$ can be embedded in $F(\Omega)$ for some chain $\Omega.$

The equation $1 \leq x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

The equation $1 \leq x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$. We restrict f and f^{ℓ} to partial functions

We restrict f and f^{*} to partial functions g and $g^{[\ell]}$ on the chain 7, f(7) = 5, $f^{\ell}f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

The equation $1 \leq x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^{ℓ} to partial functions g and $g^{[\ell]}$ on the chain $7, f(7) = 5, f^{\ell}f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

To translate $g^{[\ell]}(5) = 4$ into information about g, we need a *formal definition* of $g^{[\ell]}$ for a partial function g on a finite chain.

The equation $1 \leq x^{\ell}x$ fails in $\mathbf{F}(\mathbb{Z})$, because $f^{\ell}f(7) = 4 < 7 = id_{\mathbb{Z}}(7)$.

We restrict f and f^{ℓ} to partial functions g and $g^{[\ell]}$ on the chain $7, f(7) = 5, f^{\ell}f(7) = 4$ by g(7) = 5 and $g^{[\ell]}(5) = 4$.

To translate $g^{[\ell]}(5) = 4$ into information about g, we need a *formal definition* of $g^{[\ell]}$ for a partial function g on a finite chain.

- Also, to make sure that $g^{[\ell]}(5) = 4$ is computed correctly, we need to
- include more elements in the chain
- ${\ensuremath{\, \bullet }}$ define g on some of these elements

• mark some covers: $3 \prec 4$.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation $3 \prec 4$.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation $3 \prec 4$.

So, in terms of the original point 7, g needs to be defined on $4 = f^{\ell}f(7)$ and on $3 = -f^{\ell}f(7)$, and it yields the values $5 = ff^{\ell}f(7)$ and $2 = f - f^{\ell}f(7)$.

Notation: if a has a lower cover, we denote it by(-1)a; 1a denotes the upper cover of a, when it exists. Also, we write 0a for a.

To ensure g(7) = 5 we include the elements

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

To ensure $g^{[\ell]}(5) = 4$ we need to include g(4) = f(4) = 5 and g(3) = f(3) = 2, together with the covering relation $3 \prec 4$.

So, in terms of the original point 7, g needs to be defined on $4 = f^{\ell}f(7)$ and on $3 = -f^{\ell}f(7)$, and it yields the values $5 = ff^{\ell}f(7)$ and $2 = f - f^{\ell}f(7)$.

 $\Delta_{f,1}^{f(7)} := \{ f(7), f^{\ell} f(7), -f^{\ell} f(7), f f^{\ell} f(7), f f^{\ell} f(7), f f^{\ell} f(7), f f^{\ell} f(7) \} = \{ 5, 4, 3, 5, 2 \}$

Notation: if a has a lower cover, we denote it by(-1)a; 1a denotes the upper cover of a, when it exists. Also, we write 0a for a.

Isis A. Gallardo

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, g_1, \ldots, g_n)$, consists of a finite c-chain Δ and order-preserving partial functions g_1, \ldots, g_n on Δ , where $n \in \mathbb{N}$.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, g_1, \ldots, g_n)$, consists of a finite c-chain Δ and order-preserving partial functions g_1, \ldots, g_n on Δ , where $n \in \mathbb{N}$. Given a partial function g over a c-chain Δ , $g^{[\ell]}(b) = a$ iff $g(c) < a \leq g(b)$ and $c \prec b$. $g^{[r]}$ is defined dually.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, g_1, \ldots, g_n)$, consists of a finite c-chain Δ and order-preserving partial functions g_1, \ldots, g_n on Δ , where $n \in \mathbb{N}$. Given a partial function g over a c-chain Δ , $g^{[\ell]}(b) = a$ iff $g(c) < a \leq g(b)$ and $c \prec b$. $g^{[r]}$ is defined dually.

Given an integral chain Ω , $f \in F(\Omega)$, $a \in \Omega$ and $m \in \mathbb{N}$, we define the sets:

$$\Delta_{f,m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j}f^{(j)} \dots \sigma_{m}f^{(m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{-1, 0\}, \sigma_{0} = 0\}$$

$$\Lambda^{a}_{f,m} := \{ \sigma_1 f^{(1)} \dots \sigma_m f^{(m)}(a) : \sigma_1, \dots, \sigma_m \in \{-1, 0\} \}$$

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, g_1, \ldots, g_n)$, consists of a finite c-chain Δ and order-preserving partial functions g_1, \ldots, g_n on Δ , where $n \in \mathbb{N}$. Given a partial function g over a c-chain Δ , $g^{[\ell]}(b) = a$ iff $g(c) < a \leq g(b)$ and $c \prec b$. $g^{[r]}$ is defined dually.

Given an integral chain Ω , $f \in F(\Omega)$, $a \in \Omega$ and $m \in \mathbb{N}$, we define the sets:

$$\Delta_{f,m}^{a} := \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j}f^{(j)} \dots \sigma_{m}f^{(m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{-1, 0\}, \sigma_{0} = 0\}$$

$$\Lambda^{a}_{f,m} := \{ \sigma_1 f^{(1)} \dots \sigma_m f^{(m)}(a) : \sigma_1, \dots, \sigma_m \in \{-1, 0\} \}$$

Lemma: If Ω is an integral chain, $f \in F(\Omega)$, $a \in \Omega$, $m \in \mathbb{Z}$, Δ is a sub c-chain of (Ω, \prec) containing $\Delta^a_{f,m}$, and g is an order-preserving partial function over Δ such that $g|_{\Lambda^a_{f,m}} = f|_{\Lambda^a_{f,m}}$, then $g^{[m]}(a) = f^{(m)}(a)$.

A *c-chain* is a triple (Δ, \leq, \prec) , consisting of a finite chain (Δ, \leq) and a subset $\prec \subseteq \prec$ of the covering relation, i.e. if $a \prec b$, then a is covered by b.

A diagram $(\Delta, g_1, \ldots, g_n)$, consists of a finite c-chain Δ and order-preserving partial functions g_1, \ldots, g_n on Δ , where $n \in \mathbb{N}$. Given a partial function g over a c-chain Δ , $g^{[\ell]}(b) = a$ iff $g(c) < a \leq g(b)$ and $c \prec b$. $g^{[r]}$ is defined dually.

Given an integral chain Ω , $f \in F(\Omega)$, $a \in \Omega$ and $m \in \mathbb{N}$, we define the sets:

$$\begin{split} \Delta_{f,m}^{a} &:= \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j}f^{(j)} \dots \sigma_{m}f^{(m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{-1, 0\}, \sigma_{0} = 0\} \\ \Delta_{f,-m}^{a} &:= \{a\} \cup \bigcup_{j=0}^{m} \{\sigma_{j}f^{(-j)} \dots \sigma_{m}f^{(-m)}(a) : \sigma_{j}, \dots, \sigma_{m} \in \{1, 0\}, \sigma_{0} = 0\} \\ \Lambda_{f,m}^{a} &:= \{\sigma_{1}f^{(1)} \dots \sigma_{m}f^{(m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{-1, 0\}\} \\ \Lambda_{f,-m}^{a} &:= \{\sigma_{1}f^{(-1)} \dots \sigma_{m}f^{(-m)}(a) : \sigma_{1}, \dots, \sigma_{m} \in \{1, 0\}\} \end{split}$$

Lemma: If Ω is an integral chain, $f \in F(\Omega)$, $a \in \Omega$, $m \in \mathbb{Z}$, Δ is a sub c-chain of (Ω, \prec) containing $\Delta^a_{f,m}$, and g is an order-preserving partial function over Δ such that $g|_{\Lambda^a_{f,m}} = f|_{\Lambda^a_{f,m}}$, then $g^{[m]}(a) = f^{(m)}(a)$.

Given the equation $1\leqslant x^\ell x$

Given the equation $1 \leq x^{\ell} x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

Given the equation $1\leqslant x^\ell x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

$$\begin{split} \Delta^{f(7)}_{f,1} &= \{5,4,3,5,2\} = \\ \{f(7), f^\ell f(7), -f^\ell f(7), ff^\ell f(7), f-f^\ell f(7)\} \end{split}$$

Given the equation $1 \leq x^{\ell} x$

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

$$\Delta_{f,1}^{f(7)} = \{5, 4, 3, 5, 2\} = \{f(7), f^{\ell}f(7), -f^{\ell}f(7), ff^{\ell}f(7), f-f^{\ell}f(7)\}$$

More formally we get the diagram with set Δ_{ε} :

$$\Delta_{x,0}^1 = \{1, x\}$$
$$\Delta_{x,1}^x = \{x, x^\ell x, -x^\ell x, xx^\ell x, x - x^\ell x\}$$
$$\Delta_{\varepsilon} = \Delta_{x,0}^1 \cup \Delta_{x,1}^x$$

$$\Delta_{f,0}^7 := \{7, f(7)\} = \{7, 5\}$$

$$\Delta_{f,1}^{f(7)} = \{5, 4, 3, 5, 2\} = \{f(7), f^{\ell}f(7), -f^{\ell}f(7), ff^{\ell}f(7), f-f^{\ell}f(7)\}$$

More formally we get the diagram with set $\Delta_{\varepsilon} :$

$$\Delta_{x,0}^1 = \{1, x\}$$
$$\Delta_{x,1}^x = \{x, x^\ell x, -x^\ell x, xx^\ell x, x - x^\ell x\}$$
$$\Delta_{\varepsilon} = \Delta_{x,0}^1 \cup \Delta_{x,1}^x$$

with the ordering on the left, $|\Delta_{\varepsilon}|$ controlled, satisfying a set of compatibility conditions $x^{\ell}x < 1$, so the equation fails.

- .
- *c* •
- b •
- *a*
 - .

- .
- α
 - .
- γ
 - •
 - •
- β•.
- Ω

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Corollary

Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(J \overrightarrow{\times} \mathbb{Z})$, for some chain J.

Observe that $\overline{\Omega}$ is locally isomorphic to \mathbb{Z} so, there exists a chain J such that $\Omega \cong J \overrightarrow{\times} \mathbb{Z}$.

Lemma

If Ω is a chain and $f \in F(\Omega)$, then $\overline{f} \in F(\overline{\Omega})$.

Theorem (Galatos - G.)

For every chain Ω , the assignment $\overline{\cdot} : F(\Omega) \to F(\overline{\Omega})$ is an ℓ -pregroup embedding.

The proof that $\overline{\cdot}: F(\Omega) \to F(\overline{\Omega})$ is a lattice homomorphism complicated and requires a good understanding of the behavior of functions at limit points.

Corollary

Every distributive ℓ -pregroup can be embedded in $\mathbf{F}(J \overrightarrow{\times} \mathbb{Z})$, for some chain J.

Corollary

If an equation fails in DLP, then it fails in $\mathbf{F}(\mathbb{Z})$.

From a failure to $\mathbf{F}(\mathbb{Z})$

From a failure to $\mathbf{F}(\mathbb{Z})$

From a failure to $\mathbf{F}(\mathbb{Z})$

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|}|\varepsilon|^4$.

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|}|\varepsilon|^4$.

Theorem (Galatos - G.)

If an equation ε fails in a diagram, it fails in $\mathbf{F}(\mathbb{Z})$, in $\mathbf{F}_{fs}(\mathbb{Z})$, and in $\mathbf{F}_n(\mathbb{Z})$ for some $n \in \mathbb{Z}$.

If an equation ε fails in an ℓ -pregroup, it fails in a diagram of size at most $2^{|\varepsilon|} |\varepsilon|^4$.

Theorem (Galatos - G.)

If an equation ε fails in a diagram, it fails in $\mathbf{F}(\mathbb{Z})$, in $\mathbf{F}_{fs}(\mathbb{Z})$, and in $\mathbf{F}_n(\mathbb{Z})$ for some $n \in \mathbb{Z}$.

The equational class DLP is decidable.

The equational class DLP is decidable.

Theorem (Galatos - G.)

The equational class DLP can be generated by $\mathbf{F}(\mathbb{Z})$, $\mathbf{F}_{fs}(\mathbb{Z})$, or $\{\mathbf{F}_n(\mathbb{Z}) \mid n \in \mathbb{N}\}$.

An $n\text{-periodic}\ \ell\text{-pregroup}$ is an $\ell\text{-pregroup}$ that satisfies the equation $x^{\ell^{2n}}=x.$

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$. The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_n.

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$. The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_n.

Set of all *n*-perdiodic fuctions of $\mathbf{F}(\mathbf{\Omega})$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$. The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_n.

Set of all *n*-perdiodic fuctions of $\mathbf{F}(\mathbf{\Omega})$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$.

The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_{*n*}.

Set of all *n*-perdiodic fuctions of $\mathbf{F}(\Omega)$ forms a subalgebra that we denote by $\mathbf{F}_n(\Omega)$.

Theorem (Galatos - Jipsen)

All periodic *l*-pregroups are distributive.

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$.

The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_{*n*}.

Set of all *n*-perdiodic fuctions of $\mathbf{F}(\mathbf{\Omega})$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

Theorem (Galatos - Jipsen)

All periodic *l*-pregroups are distributive.

Theorem (Galatos - G.)

Every *n*-periodic ℓ -pregroup embeds in $\mathbf{F}_n(\mathbf{\Omega})$, for $\Omega = \mathbf{J} \overrightarrow{\times} \mathbb{Z}$, for some chain \mathbf{J} .

An *n*-periodic ℓ -pregroup is an ℓ -pregroup that satisfies the equation $x^{\ell^{2n}} = x$.

The equational class of *n*-periodic ℓ -pregroups will be denoted by LP_{*n*}.

Set of all *n*-perdiodic fuctions of $\mathbf{F}(\mathbf{\Omega})$ forms a subalgebra that we denote by $\mathbf{F}_n(\mathbf{\Omega})$.

Theorem (Galatos - Jipsen)

All periodic ℓ -pregroups are distributive.

Theorem (Galatos - G.)

Every *n*-periodic ℓ -pregroup embeds in $\mathbf{F}_n(\mathbf{\Omega})$, for $\Omega = \mathbf{J} \overrightarrow{\times} \mathbb{Z}$, for some chain \mathbf{J} .

Theorem (Galatos - G.)

For any $n \in \mathbb{Z}$, the equational class LP_n is not generated by $\mathbf{F}_n(\mathbb{Z})$.

Theorem (Galatos - G.)

For every chain **J** and $n \in \mathbb{Z}^+$, $\mathbf{F}_n(\mathbf{J} \times \mathbb{Z}) \cong \mathbf{Aut}(\mathbf{J}) \wr \mathbf{F}_n(\mathbb{Z})$. Therefore, every *n*-periodic ℓ -pregroup can be embedded in a wreath product of an ℓ -group and the simple *n*-periodic ℓ -pregroup $\mathbf{F}_n(\mathbb{Z})$.

If an equation ε fails in an *n*-periodic ℓ -pregroup, it fails in a *n*-short *n*-periodic partition diagram.

Theorem (Galatos - G.)

If an equation ε fails in a n-short n-periodic partition diagram, it fails in $\mathbf{F}_n(\mathbb{Q} \times \mathbb{Z})$.

The equational class LP_n is decidable.

Theorem (Galatos - G.)

The equational class LP_n is generated by $\mathbf{F}_n(\mathbb{Q} \times \mathbb{Z})$.

Biliography

- N. Galatos and R. Horcik. Cayley's and Holland's theorems for idempotent semirings and their applications to residuated lattices. Semigroup Forum 87 (2013), no. 3, 569–589.
- N. Galatos, P. Jipsen, Periodic lattice-ordered pregroups are distributive. Algebra Universalis 68 (2012), no. 1-2, 145–150.
- N. Galatos, P. Jipsen, M. Kinyon, and A. Prenosil. Lattice-ordered pregroups are semi-distributive. Algebra Universalis 82 (2021), no. 1, Paper No. 16, 6 pp.
- $\bullet\,$ N. Galatos, I. Gallardo. Decidability of distributive $\ell\mbox{-}pregroups.$ Journal of Algebra, Volume 648, Pages 9-35, 2024.
- N. Galatos, I. Gallardo. Generation and decidability for periodic *l*-pregroups, Journal of Algebra, Volume 669, Pages 301-340, 2025.
- W. C. Holland. The lattice-ordered groups of automorphisms of an ordered set. Michigan Mathematical Journal, 10 (4), 399–408, 1963.
- W. C. Holland. The largest proper variety of lattice-ordered groups. Proc. Amer. Math. Soc., 57:25–28, 1976.
- W. C. Holland and S. H. McCleary. Solvability of the word problem in free lattice-ordered groups. Houston J. Math., 5(1):99–105, 1979.

Thank you for your attention !!