Nominal Techniques for the Specification of Languages with Binders

Maribel Fernández

King's College London

Online Logic Seminar 2nd February 2023 Overview:

- Specifying binders: α -equivalence and meta-variables
- Nominal Logic
- Nominal terms: unification and matching modulo lpha
- Nominal rewriting
- Examples

向 ト イヨ ト イヨト

- A. Pitts. Nominal Logic. Information and Computation 183, 165–193, 2003.
- C. Urban, A. Pitts, M.J. Gabbay. Nominal Unification. Theoretical Computer Science 323, pages 473-497, 2004.
- M. Fernández, M.J. Gabbay. Nominal Rewriting. Information and Computation 205, pages 917-965, 2007.
- C. Calvès, M. Fernández. Matching and Alpha-Equivalence Check for Nominal Terms. J. Computer and System Sciences, 2010.
- E. Fairweather, M. Fernández. Typed Nominal Rewriting. ACM Transactions on Computational Logic, 2018.
- M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, D. Nantes-Sobrinho, A. Rocha Oliveira. A Formalisation of Nominal Alpha-Equivalence with A, C and AC Function Symbols. Theoretical Computer Science, 2019.

ヘロア 人間 アメヨア 人間 アー

크

Binding operators: some informal examples

• Operational semantics:

let
$$a = N$$
 in $M \longrightarrow (fun a.M)N$

• β and η -reductions in the λ -calculus:

$$(\lambda x.M)N \rightarrow M[x/N]$$

 $(\lambda x.Mx) \rightarrow M \quad (x \notin fv(M))$

π-calculus:

$$P \mid \nu a.Q \rightarrow \nu a.(P \mid Q) \qquad (a \notin \mathsf{fv}(P))$$

• Logic equivalences:

$$P \land (\forall x.Q) \Leftrightarrow \forall x.(P \land Q) \quad (x \notin \mathsf{fv}(P))$$

Terms are defined modulo renaming of bound variables, i.e., α -equivalence.

Example:

 $\forall x.P =_{\alpha} \forall y.P\{x \mapsto y\}$ for any fresh variable y

How can we formally specify and reason with binding operators? There are several alternatives.

伺 ト イヨト イヨト

Encode α -equivalence:

- Example: λ -calculus using De Bruijn's indices with "lift" and "shift" operators to encode non-capturing substitution
- We need to 'implement' α -equivalence from scratch (-)
- Simple (first-order) (+)
- Efficient matching and unification algorithms (+)
- No metavariables (-)

• Logical frameworks based on Higher-Order Abstract Syntax work modulo α -equivalence (λ -calculus as metalanguage).

 $\forall (\lambda x. P(x))$

let a = N in $M(a) \longrightarrow$ (fun $a \rightarrow M(a)$)Nusing (a restriction of) higher-order matching.

< 回 > < 三 > < 三 >

- The syntax includes binders (+)
- Implicit α -equivalence (+)
- We targeted α but now we have to deal with β too (-)
- Unification is undecidable in general (-)

Nominal Logic [Pitts 2003]: a sorted first-order logic theory

Key ideas: Names (which can be swapped), abstraction, freshness.

Semantics given by nominal sets.

$$(a \ a)x = x$$

 $(a \ a')(a \ a')x = x$
 $(a \ a')a = a'$

æ

・ロト ・四ト ・ヨト ・ヨト

$$\begin{array}{cccc} (a \ a)x = x & (S1) \\ (a \ a')(a \ a')x = x & (S2) \\ (a \ a')a = a' & (S3) \\ (a \ a')(b \ b')x = ((a \ a')b \ (a \ a')b')(a \ a')x & (E1) \\ b \ \# \ x \Rightarrow (a \ a')b \ \# \ (a \ a')x & (E2) \\ (a \ a')f(\vec{x}) = f((a \ a')\vec{x}) & (E3) \\ p(\vec{x}) \Rightarrow p((a \ a')\vec{x}) & (E4) \\ (b \ b')[a]x = [(b \ b')a](b \ b')x & (E5) \end{array}$$

<ロ> <同> <同> < 同> < 同>

ヘロト 人間 とくほど 人間とう

$$\begin{array}{cccc} (a \ a)x = x & (S1) \\ (a \ a')(a \ a')x = x & (S2) \\ (a \ a')a = a' & (S3) \\ (a \ a')(b \ b')x = ((a \ a')b \ (a \ a')b')(a \ a')x & (E1) \\ b \ \# \ x \Rightarrow (a \ a')b \ \# (a \ a')x & (E2) \\ (a \ a')f(\vec{x}) = f((a \ a')\vec{x}) & (E3) \\ p(\vec{x}) \Rightarrow p((a \ a')\vec{x}) & (E4) \\ (b \ b')[a]x = [(b \ b')a](b \ b')x & (E5) \\ a \ \# \ x \land a' \ \# \ x \Rightarrow (a \ a')x = x & (F1) \\ a \ \# \ a' \iff a \neq a' & (F2) \\ \forall a: \ ns, a': \ ns'. \ a \ \# \ a' & (ns \neq ns') & (F3) \\ \forall \vec{x}. \exists a. \ a \ \# \ \vec{x} & (a \ a')x = x' & (A1) \\ \forall x: \ [ns]s. \exists a: \ ns, y: \ s. \ x = [a]y & (A2) \end{array}$$

ヘロア 人間 アメヨア 人間アー

$$\begin{array}{cccc} (a \ a)x = x & (51) \\ (a \ a')(a \ a')x = x & (52) \\ (a \ a')a = a' & (53) \\ (a \ a')(b \ b')x = ((a \ a')b \ (a \ a')b')(a \ a')x & (E1) \\ b \ \# \ x \Rightarrow (a \ a')b \ \# (a \ a')x & (E2) \\ (a \ a')f(\vec{x}) = f((a \ a')\vec{x}) & (E3) \\ p(\vec{x}) \Rightarrow p((a \ a')\vec{x}) & (E4) \\ (b \ b')[a]x = [(b \ b')a](b \ b')x & (E5) \\ a \ \# \ x \land a' \ \# \ x \Rightarrow (a \ a')x = x & (F1) \\ a \ \# \ a' \iff a \neq a' & (F2) \\ \forall a: \ ns, a': \ ns'. \ a \ \# \ a' & (ns \neq ns') & (F3) \\ \forall \vec{x}. \exists a. \ a \ \# \ \vec{x} \land \phi) & (FV(Ma.\phi) \subseteq \vec{x}) & (Q) \end{array}$$

ヘロア 人間 アメヨア 人間アー

Freshness conditions a#t, name swapping $(a \ b) \cdot t$, abstraction [a]t

- Terms with binders
- Built-in α -equivalence
- Simple notion of substitution (first order)
- Efficient matching and unification algorithms
- Dependencies of terms on names are implicit

Nominal Syntax [Urban, Pitts, Gabbay 2004]

Variables: M, N, X, Y, ...
 Names: a, b, ...
 Function symbols (term formers): f, g ...

イロト イヨト イヨト イヨト

Nominal Syntax [Urban, Pitts, Gabbay 2004]

- Variables: M, N, X, Y, ...
 Names: a, b, ...
 Function symbols (term formers): f, g...
- Nominal Terms:

 $s,t ::= a \mid \pi \cdot X \mid [a]t \mid ft \mid (t_1,\ldots,t_n)$

 π is a **permutation**: finite bijection on names, represented as a list of **swappings**, e.g., $(a \ b)(c \ d)$, Id (empty list). $\pi \cdot t$: π acts on t, permutes names, suspends on variables. $(a \ b) \cdot a = b$, $(a \ b) \cdot b = a$, $(a \ b) \cdot c = c$ $Id \cdot X$ written as X.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Nominal Syntax [Urban, Pitts, Gabbay 2004]

- Variables: M, N, X, Y, ...
 Names: a, b, ...
 Function symbols (term formers): f, g ...
- Nominal Terms:

$$s, t ::= a \mid \pi \cdot X \mid [a]t \mid f t \mid (t_1, \ldots, t_n)$$

 π is a **permutation**: finite bijection on names, represented as a list of swappings, e.g., $(a \ b)(c \ d)$, Id (empty list). $\pi \cdot t$: π acts on t, permutes names, suspends on variables. $(a \ b) \cdot a = b$, $(a \ b) \cdot b = a$, $(a \ b) \cdot c = c$ $Id \cdot X$ written as X.

Example (ML): var(a), app(t, t'), lam([a]t), let(t, [a]t'), letrec[f]([a]t, t'), subst([a]t, t')
 Syntactic sugar:

 a, (tt'), λa.t, let a = t in t', letrec f a = t in t', t[a ↦ t']

▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

α -equivalence

We use freshness to avoid name capture: a # X means $a \notin fv(X)$ when X is instantiated.

	$\textit{ds}(\pi,\pi') \# \textit{X}$			
а $pprox_{lpha}$ а	$\overline{\pi\cdot X}$	$\approx_{lpha} \pi' \cdot X$		
$s_1 pprox_lpha t_1 \cdots s_n$	$m \approx_{\alpha} t_n$	$spprox_lpha t$		
$(s_1,\ldots,s_n)\approx_{\alpha} (s_1,\ldots,s_n)$	t_1,\ldots,t_r	(n) $\overline{f \ s \approx_{\alpha} f \ t}$		
$spprox_lpha t$	a#t	$m{s}pprox_lpha$ (a b) \cdot t		
$\boxed{[a]s\approx_{\alpha}[a]t}$	[a	$b]s pprox_{lpha} [b]t$		

where

$$ds(\pi,\pi') = \{n|\pi(n) \neq \pi'(n)\}$$

•
$$a # X, b # X \vdash (a b) \cdot X \approx_{\alpha} X$$

回 とう モン・ モン

α -equivalence

We use freshness to avoid name capture: a # X means $a \notin fv(X)$ when X is instantiated.

	$ds(\pi,\pi')\#X$			
а $pprox_{lpha}$ а	$\overline{\pi\cdot X}\approx_{c}$	$_{\alpha} \pi' \cdot X$		
$s_1 pprox_lpha t_1 \cdots s_n$	$n \approx_{\alpha} t_n$	$spprox_lpha t$		
$(s_1,\ldots,s_n)\approx_{\alpha} ($	t_1,\ldots,t_n)	$f \ s \approx_{\alpha} f \ t$		
$spprox_lpha t$	a#t s	$spprox_lpha$ (a b) \cdot t		
$\boxed{[a]s\approx_{\alpha}[a]t}$	[<i>a</i>] <i>s</i>	$pprox_{lpha} \ [b]t$		

where

$$ds(\pi,\pi') = \{n|\pi(n) \neq \pi'(n)\}$$

•
$$a \# X, b \# X \vdash (a \ b) \cdot X \approx_{\alpha} X$$

• $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a \ b) \cdot X$

Also defined by induction:

		π^{-1}	(a)#X	
a#b	a#[a]s	$a\#\pi\cdot X$		
$a\#s_1\cdots a$	a#s _n	a#s	a#s	
$a\#(s_1,\ldots)$, <i>s</i> _n)	a#f s	a#[b]s	

Nominal Rewriting

Nominal Rewriting Rules:

$$\Delta \vdash I \rightarrow r$$
 $V(r) \cup V(\Delta) \subseteq V(I)$

Example

Beta-reduction in the Lambda-calculus:

Rewriting steps: $(\lambda[c]c)Z \rightarrow c[c \mapsto Z] \rightarrow Z$

A (1) < A (1)</p>

Rewriting relation generated by $R = \nabla \vdash I \rightarrow r$: $\Delta \vdash s \xrightarrow{R} t$

s rewrites with R to t in the context Δ when:

• $s \equiv C[s']$ such that θ solves $(\nabla \vdash I) \ge (\Delta \vdash s')$ • $\Delta \vdash C[r\theta] \ge_{\alpha} t$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ →

臣

Example: Prenex Normal Forms

$$\begin{array}{rcl} a\#P & \vdash & P \land \forall [a]Q \rightarrow \forall [a](P \land Q) \\ a\#P & \vdash & (\forall [a]Q) \land P \rightarrow \forall [a](Q \land P) \\ a\#P & \vdash & P \lor \forall [a]Q \rightarrow \forall [a](P \lor Q) \\ a\#P & \vdash & (\forall [a]Q) \lor P \rightarrow \forall [a](Q \lor P) \\ a\#P & \vdash & P \land \exists [a]Q \rightarrow \exists [a](P \land Q) \\ a\#P & \vdash & (\exists [a]Q) \land P \rightarrow \exists [a](Q \land P) \\ a\#P & \vdash & P \lor \exists [a]Q \rightarrow \exists [a](P \lor Q) \\ a\#P & \vdash & P \lor \exists [a]Q \rightarrow \exists [a](P \lor Q) \\ a\#P & \vdash & (\exists [a]Q) \lor P \rightarrow \exists [a](Q \lor P) \\ \vdash & \neg (\exists [a]Q) \rightarrow \forall [a] \neg Q \\ \vdash & \neg (\forall [a]Q) \rightarrow \exists [a] \neg Q \end{array}$$

ヘロト 人間 とくほど 人間とう

To implement rewriting (functional/logic programming) we need a matching/unification algorithm. Recall:

- efficient algorithms (linear time) for first-order terms
- We need more powerful algorithms: α -equivalence
- Higher-order unification is undecidable

Nominal terms have good computational properties:

- Unification is decidable and unitary
- Efficient algorithms: α -equivalence, matching, unification
- \implies Programming languages (Alpha-Prolog, FreshML)
- \implies Nominal Rewriting

< 回 > < 三 > < 三 >

Checking α -equivalence

Idea: The α -equivalence derivation rules become simplification rules

$$\begin{array}{rcl} a\#b, Pr \implies Pr \\ a\#fs, Pr \implies a\#s, Pr \\ a\#(s_1, \dots, s_n), Pr \implies a\#s_1, \dots, a\#s_n, Pr \\ a\#[b]s, Pr \implies a\#s_1, \dots, a\#s_n, Pr \\ a\#[a]s, Pr \implies a\#s, Pr \\ a\#[a]s, Pr \implies Pr \\ a\#\pi \cdot X, Pr \implies \pi^{-1} \cdot a\#X, Pr \quad \pi \neq Id \\ a \approx_{\alpha} a, Pr \implies Pr \\ l_1, \dots, l_n) \approx_{\alpha} (s_1, \dots, s_n), Pr \implies l_1 \approx_{\alpha} s_1, \dots, l_n \approx_{\alpha} s_n, Pr \\ fl \approx_{\alpha} fs, Pr \implies l \approx_{\alpha} s, Pr \\ [a]l \approx_{\alpha} [a]s, Pr \implies l \approx_{\alpha} s, Pr \\ [b]l \approx_{\alpha} [a]s, Pr \implies (a \ b) \cdot l \approx_{\alpha} s, a\#l, Pr \\ \pi \cdot X \approx_{\alpha} \pi' \cdot X, Pr \implies ds(\pi, \pi') \#X, Pr \end{array}$$

御下 くヨト

臣

∢ ≣⇒

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I_{?} \approx_{?} t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: s = t has solution (Δ, θ) if

 $\Delta \vdash s\theta \approx_{\alpha} t$

(t ground or variables disjoint from s)

▲御▶ ▲理▶ ▲理▶

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I \ge r \ge r$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: s = t has solution (Δ, θ) if

 $\Delta \vdash s\theta \approx_{\alpha} t$

(t ground or variables disjoint from s)

Examples:

 $\lambda([a]X) = \lambda([b]b) ??$ $\lambda([a]X) = \lambda([b]X) ??$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I \ge r \approx t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: s = t has solution (Δ, θ) if

 $\Delta \vdash s\theta \approx_{\alpha} t$

(t ground or variables disjoint from s)

• Examples:

 $\lambda([a]X) = \lambda([b]b) ??$ $\lambda([a]X) = \lambda([b]X) ??$

• Solutions: $(\emptyset, [X \mapsto a])$ and $(\{a \# X, b \# X\}, Id)$ resp.

▲御▶ ▲注▶ ▲注▶

- Nominal matching is decidable [Urban, Pitts, Gabbay 2003] A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash Pr\theta$.
- Nominal matching algorithm: add an instantiation rule:

$$\pi \cdot X \approx_{\alpha} u, Pr \implies^{X \mapsto \pi^{-1} \cdot u} Pr[X \mapsto \pi^{-1} \cdot u]$$

No occur-checks needed (left-hand side variables distinct from right-hand side variables).

Alpha-equivalence check: linear if right-hand sides of constraints are ground. Otherwise, log-linear.

Matching: quadratic in the non-ground case

Case	Alpha-equivalence	Matching
Ground	linear	linear
Non-ground and linear	log-linear	log-linear
Non-ground and non-linear	log-linear	quadratic

Remark:

The representation using higher-order abstract syntax does saturate the variables (they have to be applied to the set of atoms they can capture).

Conjecture: the algorithms are linear wrt HOAS also in the non-ground case.

For more details on the implementation see [4], see [6] for formalisations in Coq and PVS

Let $R = \nabla \vdash I \rightarrow r$ where $V(I) \cap V(s) = \emptyset$

s rewrites with *R* to *t* in the context Δ , written $\Delta \vdash s \xrightarrow{R} t$, when:

- $s \equiv C[s']$ such that θ solves $(\nabla \vdash I) \ge (\Delta \vdash s')$
- $\Delta \vdash C[r\theta] \approx_{\alpha} t.$
 - To define the reduction relation generated by nominal rewriting rules we use nominal matching.

<回と < 回と < 回と

Let $R = \nabla \vdash I \rightarrow r$ where $V(I) \cap V(s) = \emptyset$

s rewrites with *R* to *t* in the context Δ , written $\Delta \vdash s \xrightarrow{R} t$, when:

- $s \equiv C[s']$ such that θ solves $(\nabla \vdash I) \ge (\Delta \vdash s')$ • $\Delta \vdash C[r\theta] \ge_{\alpha} t$.
 - To define the reduction relation generated by nominal rewriting rules we use nominal matching.
 - $(\nabla \vdash I)_{?} \approx (\Delta \vdash s')$ if $\nabla, I \approx_{\alpha} s'$ has solution (Δ', θ) , that is, $\Delta' \vdash \nabla \theta, I\theta \approx_{\alpha} s'$ and $\Delta \vdash \Delta'$

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivariance: Rules defined modulo permutative renamings of atoms.

Beta-reduction in the Lambda-calculus:

同 とう モン うちょう

臣

Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

臣

Nominal Matching vs. Equivariant Matching

- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT

伺 ト イヨト イヨト

Nominal Matching vs. Equivariant Matching

- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT
- if rules are CLOSED then nominal matching is sufficient. Intuitively, closed means no free atoms. The rules in the examples above are closed.

 $R \equiv \nabla \vdash I \rightarrow r$ is **closed** when

$$(\nabla' \vdash (l', r')) \ge (\nabla, A(R') \# V(R) \vdash (l, r))$$

has a solution σ (where R' is freshened with respect to R).

Given
$$R \equiv \nabla \vdash I \rightarrow r$$
 and $\Delta \vdash s$ a term-in-context we write
 $\Delta \vdash s \stackrel{R}{\rightarrow_c} t$ when $\Delta, A(R') \# V(\Delta, s) \vdash s \stackrel{R'}{\rightarrow} t$

and call this closed rewriting.

▲御▶ ▲ 臣▶ ▲ 臣▶

臣

The following rules are not closed:

$$g(a)
ightarrow a$$
 $[a]X
ightarrow X$

Why?

<ロ> <同> <同> < 同> < 同>

The following rule is closed:

 $a \# X \vdash [a] X \rightarrow X$

Why?

ヘロト 人間 とくほど 人間とう

Closed rules that define **capture-avoiding substitution** in the lambda calculus:

(explicit) substitutions, subst([x]M, N) abbreviated $M[x \mapsto N]$.

回 とう モン・ モン

臣

Closed Nominal Rewriting:

- works uniformly in α equivalence classes of terms.
- is expressive: can encode Combinatory Reduction Systems.
- is efficient: linear matching.
- inherits confluence conditions from first order rewriting.

So far, we have discussed untyped nominal terms.

There are also typed versions

- many-sorted
- Simply typed Church-style and Curry-style
- Polymorphic Curry-style systems
- Intersection type assignment systems
- Dependently typed systems

Given two nominal terms s and t and an equational theory E. **Question:** is there a substitution σ and a freshness context ∇ such that $\nabla \vdash s\sigma \approx_{\alpha,E} t\sigma$?

Given two nominal terms s and t and an equational theory E. **Question:** is there a substitution σ and a freshness context ∇ such that $\nabla \vdash s\sigma \approx_{\alpha,E} t\sigma$?

Interference: Commutative Symbols, e.g., OR, +

 $(c \ d) \cdot X \approx^{?}_{\alpha, C} X$ has infinite principal solutions: $X \mapsto c + d, X \mapsto f(c + d), X \mapsto [e]c + [e]d, \dots$

- Simplification phase: Build a derivation tree (branching for C symbols)
- **2** Solve fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

< 回 > < 三 > < 三 >

臣

- Simplification phase: Build a derivation tree (branching for C symbols)
- **2** Solve fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

First-order C-unification and nominal unification are finitary.

向下 イヨト イヨト

3

Simplification phase:

Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

First-order C-unification and nominal unification are finitary. Nominal C-unification is NOT, if we represent solutions using substitutions and freshness contexts.

Simplification phase:

Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

First-order C-unification and nominal unification are finitary. Nominal C-unification is NOT, if we represent solutions using substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of freshness constraints:

 $\pi \downarrow x \Leftrightarrow \pi \cdot x = x$

Using fixed-point constraints instead of freshness constraints, nominal C-unification is finitary.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusion

- NRSs are first-order systems with built-in α -equivalence.
- Closed NRSs ⇔ higher-order rewriting systems Capture-avoiding atom substitution easy to define. If included as primitive unification becomes undecidable See Jesus Dominguez's PhD thesis.
- Hindley-Milner style types [4]: principal types, α -equivalence preserves types. Sufficient conditions for Subject Reduction.
- Nominal unification is quadratic (unknown lower bound) [Levy&Villaret, Calvès & F.]
- Nominal matching is linear, equivariant matching is linear with closed rules.

<回と < 回と < 回と

• Applications: functional and logic programming languages, theorem provers, model checkers

Implementations/formalisations: by Elliot Fairweather Nominal Datatypes Package for Haskell (Jamie Gabbay): https://github.com/bellissimogiorno/nominal Nominal Project, University of Brasilia: http://nominal.cic.unb.br alpha-Prolog (James Cheney, Christian Urban): https://homepages.inf.ed.ac.uk/jcheney/programs/ aprolog/ Nominal Isabelle (Christian Urban)

・ 同 ト ・ ヨ ト ・ ヨ ト