
Nominal Techniques
for the Specification of Languages with Binders

Maribel Fernández

King’s College London

Online Logic Seminar
2nd February 2023

Maribel Fernández Nominal Techniques

Nominal Logic and Nominal Rewriting

Overview:

• Specifying binders: α-equivalence and meta-variables

• Nominal Logic

• Nominal terms: unification and matching modulo α

• Nominal rewriting

• Examples

Maribel Fernández Nominal Techniques

References

1 A. Pitts. Nominal Logic. Information and Computation 183,
165–193, 2003.

2 C. Urban, A. Pitts, M.J. Gabbay. Nominal Unification. Theoretical
Computer Science 323, pages 473-497, 2004.

3 M. Fernández, M.J. Gabbay. Nominal Rewriting. Information and
Computation 205, pages 917-965, 2007.

4 C. Calvès, M. Fernández. Matching and Alpha-Equivalence Check
for Nominal Terms. J. Computer and System Sciences, 2010.

5 E. Fairweather, M. Fernández. Typed Nominal Rewriting. ACM
Transactions on Computational Logic, 2018.

6 M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, D.
Nantes-Sobrinho, A. Rocha Oliveira. A Formalisation of Nominal
Alpha-Equivalence with A, C and AC Function Symbols. Theoretical
Computer Science, 2019.

Maribel Fernández Nominal Techniques

Binding operators: some informal examples

• Operational semantics:

let a = N in M −→ (fun a.M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• Logic equivalences:

P ∧ (∀x .Q) ⇔ ∀x .(P ∧ Q) (x 6∈ fv(P))

Maribel Fernández Nominal Techniques

Binding operators - α-equivalence and Metavariables

Terms are defined modulo renaming of bound variables, i.e.,
α-equivalence.

Example:

∀x .P =α ∀y .P{x 7→ y}

for any fresh variable y

How can we formally specify and reason with binding operators?
There are several alternatives.

Maribel Fernández Nominal Techniques

First-order frameworks

Encode α-equivalence:

• Example: λ-calculus using De Bruijn’s indices with “lift” and
“shift” operators to encode non-capturing substitution

• We need to ’implement’ α-equivalence from scratch (-)

• Simple (first-order) (+)

• Efficient matching and unification algorithms (+)

• No metavariables (-)

Maribel Fernández Nominal Techniques

Higher-order frameworks

• Logical frameworks based on Higher-Order Abstract Syntax
work modulo α-equivalence (λ-calculus as metalanguage).

∀(λx .P(x))

let a = N in M(a) −→ (fun a→ M(a))N

using (a restriction of) higher-order matching.

Maribel Fernández Nominal Techniques

Higher-order frameworks

• The syntax includes binders (+)

• Implicit α-equivalence (+)

• We targeted α but now we have to deal with β too (-)

• Unification is undecidable in general (-)

Maribel Fernández Nominal Techniques

Nominal Approach

Nominal Logic [Pitts 2003]: a sorted first-order logic theory

Key ideas: Names (which can be swapped), abstraction, freshness.

Semantics given by nominal sets.

Maribel Fernández Nominal Techniques

Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)

(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)
b # x ⇒ (a a′)b # (a a′)x (E 2)

(a a′)f (~x) = f ((a a′)~x) (E 3)
p(~x)⇒ p((a a′)~x) (E 4)

(b b′)[a]x = [(b b′)a](b b′)x (E 5)
a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)

a # a′ ⇐⇒ a 6= a′ (F 2)
∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)

∀~x .∃a. a # ~x (F 4)
[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)

∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)
∀~x .(Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV (Na.φ) ⊆ ~x) (Q)

Maribel Fernández Nominal Techniques

Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)
(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)

b # x ⇒ (a a′)b # (a a′)x (E 2)
(a a′)f (~x) = f ((a a′)~x) (E 3)

p(~x)⇒ p((a a′)~x) (E 4)
(b b′)[a]x = [(b b′)a](b b′)x (E 5)

a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)
a # a′ ⇐⇒ a 6= a′ (F 2)

∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)
∀~x .∃a. a # ~x (F 4)

[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)
∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)

∀~x .(Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV (Na.φ) ⊆ ~x) (Q)

Maribel Fernández Nominal Techniques

Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)
(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)

b # x ⇒ (a a′)b # (a a′)x (E 2)
(a a′)f (~x) = f ((a a′)~x) (E 3)

p(~x)⇒ p((a a′)~x) (E 4)
(b b′)[a]x = [(b b′)a](b b′)x (E 5)

a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)
a # a′ ⇐⇒ a 6= a′ (F 2)

∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)
∀~x .∃a. a # ~x (F 4)

[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)
∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)

∀~x .(Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV (Na.φ) ⊆ ~x) (Q)

Maribel Fernández Nominal Techniques

Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)
(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)

b # x ⇒ (a a′)b # (a a′)x (E 2)
(a a′)f (~x) = f ((a a′)~x) (E 3)

p(~x)⇒ p((a a′)~x) (E 4)
(b b′)[a]x = [(b b′)a](b b′)x (E 5)

a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)
a # a′ ⇐⇒ a 6= a′ (F 2)

∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)
∀~x .∃a. a # ~x (F 4)

[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)
∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)

∀~x .(Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV (Na.φ) ⊆ ~x) (Q)

Maribel Fernández Nominal Techniques

Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)
(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)

b # x ⇒ (a a′)b # (a a′)x (E 2)
(a a′)f (~x) = f ((a a′)~x) (E 3)

p(~x)⇒ p((a a′)~x) (E 4)
(b b′)[a]x = [(b b′)a](b b′)x (E 5)

a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)
a # a′ ⇐⇒ a 6= a′ (F 2)

∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)
∀~x .∃a. a # ~x (F 4)

[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)
∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)

∀~x .(Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV (Na.φ) ⊆ ~x) (Q)

Maribel Fernández Nominal Techniques

Nominal Languages

Freshness conditions a#t, name swapping (a b) · t, abstraction [a]t

• Terms with binders

• Built-in α-equivalence

• Simple notion of substitution (first order)

• Efficient matching and unification algorithms

• Dependencies of terms on names are implicit

Maribel Fernández Nominal Techniques

Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Names: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec f a = t in t ′, t[a 7→ t ′]

Maribel Fernández Nominal Techniques

Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Names: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec f a = t in t ′, t[a 7→ t ′]

Maribel Fernández Nominal Techniques

Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Names: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec f a = t in t ′, t[a 7→ t ′]

Maribel Fernández Nominal Techniques

α-equivalence

We use freshness to avoid name capture:
a#X means a 6∈ fv(X) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

f s ≈α f t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X

Maribel Fernández Nominal Techniques

α-equivalence

We use freshness to avoid name capture:
a#X means a 6∈ fv(X) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

f s ≈α f t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X

Maribel Fernández Nominal Techniques

Freshness

Also defined by induction:

a#b a#[a]s

π−1(a)#X

a#π · X

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#f s

a#s

a#[b]s

Maribel Fernández Nominal Techniques

Nominal Rewriting

Nominal Rewriting Rules:

∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Example

Beta-reduction in the Lambda-calculus:

Beta (λ[a]X)Y → X [a 7→Y]
σa a[a 7→Y] → Y
σapp (XX ′)[a 7→Y] → X [a 7→Y]X ′[a 7→Y]
σε a#Y ` Y [a 7→X] → Y
σλ b#Y ` (λ[b]X)[a 7→Y] → λ[b](X [a 7→Y])

Rewriting steps: (λ[c]c)Z → c[c 7→Z]→ Z

Maribel Fernández Nominal Techniques

Nominal Rewriting

Rewriting relation generated by R = ∇ ` l → r : ∆ ` s
R→ t

s rewrites with R to t in the context ∆ when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.

Maribel Fernández Nominal Techniques

Example: Prenex Normal Forms

a#P ` P ∧ ∀[a]Q → ∀[a](P ∧ Q)
a#P ` (∀[a]Q) ∧ P → ∀[a](Q ∧ P)
a#P ` P ∨ ∀[a]Q → ∀[a](P ∨ Q)
a#P ` (∀[a]Q) ∨ P → ∀[a](Q ∨ P)
a#P ` P ∧ ∃[a]Q → ∃[a](P ∧ Q)
a#P ` (∃[a]Q) ∧ P → ∃[a](Q ∧ P)
a#P ` P ∨ ∃[a]Q → ∃[a](P ∨ Q)
a#P ` (∃[a]Q) ∨ P → ∃[a](Q ∨ P)

` ¬(∃[a]Q)→ ∀[a]¬Q
` ¬(∀[a]Q)→ ∃[a]¬Q

Maribel Fernández Nominal Techniques

Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a
matching/unification algorithm.
Recall:

• efficient algorithms (linear time) for first-order terms

• We need more powerful algorithms: α-equivalence

• Higher-order unification is undecidable

Nominal terms have good computational properties:

• Unification is decidable and unitary

• Efficient algorithms: α-equivalence, matching, unification

=⇒ Programming languages (Alpha-Prolog, FreshML)
=⇒ Nominal Rewriting

Maribel Fernández Nominal Techniques

Checking α-equivalence

Idea: The α-equivalence derivation rules become simplification
rules

a#b,Pr =⇒ Pr
a#fs,Pr =⇒ a#s,Pr

a#(s1, . . . , sn),Pr =⇒ a#s1, . . . , a#sn,Pr
a#[b]s,Pr =⇒ a#s,Pr
a#[a]s,Pr =⇒ Pr

a#π · X ,Pr =⇒ π-1 · a#X ,Pr π 6≡ Id

a ≈α a,Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn),Pr =⇒ l1 ≈α s1, . . . , ln ≈α sn,Pr

fl ≈α fs,Pr =⇒ l ≈α s,Pr
[a]l ≈α [a]s,Pr =⇒ l ≈α s,Pr
[b]l ≈α [a]s,Pr =⇒ (a b) · l ≈α s, a#l ,Pr

π · X ≈α π′ · X ,Pr =⇒ ds(π, π′)#X ,Pr

Maribel Fernández Nominal Techniques

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

(t ground or variables disjoint from s)

• Examples:
λ([a]X) = λ([b]b) ??
λ([a]X) = λ([b]X) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.

Maribel Fernández Nominal Techniques

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

(t ground or variables disjoint from s)

• Examples:
λ([a]X) = λ([b]b) ??
λ([a]X) = λ([b]X) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.

Maribel Fernández Nominal Techniques

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

(t ground or variables disjoint from s)

• Examples:
λ([a]X) = λ([b]b) ??
λ([a]X) = λ([b]X) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.

Maribel Fernández Nominal Techniques

Nominal Matching

• Nominal matching is decidable [Urban, Pitts, Gabbay 2003]
A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ.

• Nominal matching algorithm: add an instantiation rule:

π · X ≈α u,Pr =⇒X 7→π-1·u Pr [X 7→π-1 · u]

No occur-checks needed (left-hand side variables distinct from
right-hand side variables).

Maribel Fernández Nominal Techniques

Complexity

Alpha-equivalence check: linear if right-hand sides of constraints
are ground. Otherwise, log-linear.

Matching: quadratic in the non-ground case

Maribel Fernández Nominal Techniques

Complexity - Summary

Case Alpha-equivalence Matching

Ground linear linear
Non-ground and linear log-linear log-linear

Non-ground and non-linear log-linear quadratic

Remark:
The representation using higher-order abstract syntax does
saturate the variables (they have to be applied to the set of atoms
they can capture).
Conjecture: the algorithms are linear wrt HOAS also in the
non-ground case.

For more details on the implementation see [4],
see [6] for formalisations in Coq and PVS

Maribel Fernández Nominal Techniques

Back to Nominal Rewriting

Let R = ∇ ` l → r where V (l) ∩ V (s) = ∅
s rewrites with R to t in the context ∆, written ∆ ` s

R→ t,
when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.

• To define the reduction relation generated by nominal
rewriting rules we use nominal matching.

• (∇ ` l) ?≈ (∆ ` s ′) if
∇, l ≈α s ′ has solution (∆′, θ), that is, ∆′ ` ∇θ, lθ ≈α s ′

and
∆ ` ∆′

Maribel Fernández Nominal Techniques

Back to Nominal Rewriting

Let R = ∇ ` l → r where V (l) ∩ V (s) = ∅
s rewrites with R to t in the context ∆, written ∆ ` s

R→ t,
when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.

• To define the reduction relation generated by nominal
rewriting rules we use nominal matching.

• (∇ ` l) ?≈ (∆ ` s ′) if
∇, l ≈α s ′ has solution (∆′, θ), that is, ∆′ ` ∇θ, lθ ≈α s ′

and
∆ ` ∆′

Maribel Fernández Nominal Techniques

Back to Nominal Rewriting

Equivariance: Rules defined modulo permutative renamings of
atoms.
Beta-reduction in the Lambda-calculus:

Beta (λ[a]X)Y → X [a 7→Y]
σa a[a 7→Y] → Y
σapp (XX ′)[a 7→Y] → X [a 7→Y]X ′[a 7→Y]
σε a#Y ` Y [a 7→X] → Y
σλ b#Y ` (λ[b]X)[a 7→Y] → λ[b](X [a 7→Y])

Maribel Fernández Nominal Techniques

Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Techniques

Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Techniques

Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.

Maribel Fernández Nominal Techniques

Closed Rules

R ≡ ∇ ` l → r is closed when

(∇′ ` (l ′, r ′)) ?≈ (∇,A(R ′)#V (R) ` (l , r))

has a solution σ (where R ′ is freshened with respect to R).

Given R ≡ ∇ ` l → r and ∆ ` s a term-in-context we write

∆ ` s
R→c t when ∆,A(R ′)#V (∆, s) ` s

R′
→ t

and call this closed rewriting.

Maribel Fernández Nominal Techniques

Examples

The following rules are not closed:

g(a)→ a

[a]X → X

Why?

Maribel Fernández Nominal Techniques

Examples

The following rule is closed:

a#X ` [a]X → X

Why?

Maribel Fernández Nominal Techniques

Examples

Closed rules that define capture-avoiding substitution in the
lambda calculus:
(explicit) substitutions, subst([x]M,N) abbreviated M[x 7→N].

(Beta) (λ[a]X)X ′ → X [a 7→X ′]
(σapp) (XX ′)[a 7→Y] → X [a 7→Y]X ′[a 7→Y]
(σa) a[a 7→X] → X
(σε) a#Y ` Y [a 7→X] → Y
(σλ) b#Y ` (λ[b]X)[a 7→Y] → λ[b](X [a 7→Y])

Maribel Fernández Nominal Techniques

Properties of Closed Rewriting

Closed Nominal Rewriting:

• works uniformly in α equivalence classes of terms.

• is expressive: can encode Combinatory Reduction Systems.

• is efficient: linear matching.

• inherits confluence conditions from first order rewriting.

Maribel Fernández Nominal Techniques

Types

So far, we have discussed untyped nominal terms.

There are also typed versions

• many-sorted

• Simply typed — Church-style and Curry-style

• Polymorphic Curry-style systems

• Intersection type assignment systems

• Dependently typed systems

Maribel Fernández Nominal Techniques

Nominal E-Unification

Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Interference: Commutative Symbols, e.g., OR, +

(c d) · X ≈?
α,C X has infinite principal solutions:

X 7→ c + d ,X 7→ f (c + d),X 7→ [e]c + [e]d , . . .

Maribel Fernández Nominal Techniques

Nominal E-Unification

Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Interference: Commutative Symbols, e.g., OR, +

(c d) · X ≈?
α,C X has infinite principal solutions:

X 7→ c + d ,X 7→ f (c + d),X 7→ [e]c + [e]d , . . .

Maribel Fernández Nominal Techniques

Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.
Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.

Maribel Fernández Nominal Techniques

Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.

Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.

Maribel Fernández Nominal Techniques

Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.
Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.

Maribel Fernández Nominal Techniques

Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.
Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.

Maribel Fernández Nominal Techniques

Conclusion

• NRSs are first-order systems with built-in α-equivalence.

• Closed NRSs ⇔ higher-order rewriting systems
Capture-avoiding atom substitution easy to define. If included
as primitive unification becomes undecidable
See Jesus Dominguez’s PhD thesis.

• Hindley-Milner style types [4]: principal types, α-equivalence
preserves types. Sufficient conditions for Subject Reduction.

• Nominal unification is quadratic (unknown lower bound)
[Levy&Villaret, Calvès & F.]

• Nominal matching is linear, equivariant matching is linear with
closed rules.

Maribel Fernández Nominal Techniques

Conclusions

• Applications: functional and logic programming languages,
theorem provers, model checkers

• Implementations/formalisations:
by Elliot Fairweather
Nominal Datatypes Package for Haskell (Jamie Gabbay):
https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia:
http://nominal.cic.unb.br

alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/

aprolog/

Nominal Isabelle (Christian Urban)

Maribel Fernández Nominal Techniques

https://github.com/bellissimogiorno/nominal
http://nominal.cic.unb.br
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

	Nominal E Unfication

