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Nominal Logic and Nominal Rewriting

Overview:

• Specifying binders: α-equivalence and meta-variables

• Nominal Logic

• Nominal terms: unification and matching modulo α

• Nominal rewriting

• Examples
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Binding operators: some informal examples

• Operational semantics:

let a = N in M −→ (fun a.M)N

• β and η-reductions in the λ-calculus:

(λx .M)N → M[x/N]
(λx .Mx) → M (x 6∈ fv(M))

• π-calculus:

P | νa.Q → νa.(P | Q) (a 6∈ fv(P))

• Logic equivalences:

P ∧ (∀x .Q) ⇔ ∀x .(P ∧ Q) (x 6∈ fv(P))
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Binding operators - α-equivalence and Metavariables

Terms are defined modulo renaming of bound variables, i.e.,
α-equivalence.

Example:

∀x .P =α ∀y .P{x 7→ y}

for any fresh variable y

How can we formally specify and reason with binding operators?
There are several alternatives.
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First-order frameworks

Encode α-equivalence:

• Example: λ-calculus using De Bruijn’s indices with “lift” and
“shift” operators to encode non-capturing substitution

• We need to ’implement’ α-equivalence from scratch (-)

• Simple (first-order) (+)

• Efficient matching and unification algorithms (+)

• No metavariables (-)
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Higher-order frameworks

• Logical frameworks based on Higher-Order Abstract Syntax
work modulo α-equivalence (λ-calculus as metalanguage).

∀(λx .P(x))

let a = N in M(a) −→ (fun a→ M(a))N

using (a restriction of) higher-order matching.
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Higher-order frameworks

• The syntax includes binders (+)

• Implicit α-equivalence (+)

• We targeted α but now we have to deal with β too (-)

• Unification is undecidable in general (-)
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Nominal Approach

Nominal Logic [Pitts 2003]: a sorted first-order logic theory

Key ideas: Names (which can be swapped), abstraction, freshness.

Semantics given by nominal sets.

Maribel Fernández Nominal Techniques



Nominal Logic Axioms

(a a)x = x (S1)
(a a′)(a a′)x = x (S2)

(a a′)a = a′ (S3)

(a a′)(b b′)x = ((a a′)b (a a′)b′)(a a′)x (E 1)
b # x ⇒ (a a′)b # (a a′)x (E 2)

(a a′)f (~x) = f ((a a′)~x) (E 3)
p(~x)⇒ p((a a′)~x) (E 4)

(b b′)[a]x = [(b b′)a](b b′)x (E 5)
a # x ∧ a′ # x ⇒ (a a′)x = x (F 1)

a # a′ ⇐⇒ a 6= a′ (F 2)
∀a : ns, a′ : ns ′. a # a′ (ns 6= ns ′) (F 3)

∀~x .∃a. a # ~x (F 4)
[a]x = [a′]x ′ ⇐⇒ (a = a′ ∧ x = x ′) ∨ (a # x ′ ∧ (a a′)x = x ′) (A1)

∀x : [ns]s.∃a : ns, y : s. x = [a]y (A2)
∀~x .( Na.φ ⇐⇒ ∃a.a # ~x ∧ φ) (FV ( Na.φ) ⊆ ~x) (Q)
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Nominal Languages

Freshness conditions a#t, name swapping (a b) · t, abstraction [a]t

• Terms with binders

• Built-in α-equivalence

• Simple notion of substitution (first order)

• Efficient matching and unification algorithms

• Dependencies of terms on names are implicit
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

• Variables: M,N,X ,Y , . . .
Names: a, b, . . .
Function symbols (term formers): f , g . . .

• Nominal Terms:

s, t ::= a | π · X | [a]t | f t | (t1, . . . , tn)

π is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
π · t: π acts on t, permutes names, suspends on variables.
(a b) · a = b, (a b) · b = a, (a b) · c = c
Id · X written as X .

• Example (ML): var(a), app(t, t ′), lam([a]t), let(t, [a]t ′),
letrec[f ]([a]t, t ′), subst([a]t, t ′)
Syntactic sugar:
a, (tt ′), λa.t, let a = t in t ′, letrec f a = t in t ′, t[a 7→ t ′]
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α-equivalence

We use freshness to avoid name capture:
a#X means a 6∈ fv(X ) when X is instantiated.

a ≈α a

ds(π, π′)#X

π · X ≈α π′ · X

s1 ≈α t1 · · · sn ≈α tn

(s1, . . . , sn) ≈α (t1, . . . , tn)

s ≈α t

f s ≈α f t

s ≈α t

[a]s ≈α [a]t

a#t s ≈α (a b) · t

[a]s ≈α [b]t

where
ds(π, π′) = {n|π(n) 6= π′(n)}

• a#X , b#X ` (a b) · X ≈α X

• b#X ` λ[a]X ≈α λ[b](a b) · X
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Freshness

Also defined by induction:

a#b a#[a]s

π−1(a)#X

a#π · X

a#s1 · · · a#sn

a#(s1, . . . , sn)

a#s

a#f s

a#s

a#[b]s
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Nominal Rewriting

Nominal Rewriting Rules:

∆ ` l → r V (r) ∪ V (∆) ⊆ V (l)

Example

Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])

Rewriting steps: (λ[c]c)Z → c[c 7→Z ]→ Z
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Nominal Rewriting

Rewriting relation generated by R = ∇ ` l → r : ∆ ` s
R→ t

s rewrites with R to t in the context ∆ when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.
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Example: Prenex Normal Forms

a#P ` P ∧ ∀[a]Q → ∀[a](P ∧ Q)
a#P ` (∀[a]Q) ∧ P → ∀[a](Q ∧ P)
a#P ` P ∨ ∀[a]Q → ∀[a](P ∨ Q)
a#P ` (∀[a]Q) ∨ P → ∀[a](Q ∨ P)
a#P ` P ∧ ∃[a]Q → ∃[a](P ∧ Q)
a#P ` (∃[a]Q) ∧ P → ∃[a](Q ∧ P)
a#P ` P ∨ ∃[a]Q → ∃[a](P ∨ Q)
a#P ` (∃[a]Q) ∨ P → ∃[a](Q ∨ P)

` ¬(∃[a]Q)→ ∀[a]¬Q
` ¬(∀[a]Q)→ ∃[a]¬Q
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Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a
matching/unification algorithm.
Recall:

• efficient algorithms (linear time) for first-order terms

• We need more powerful algorithms: α-equivalence

• Higher-order unification is undecidable

Nominal terms have good computational properties:

• Unification is decidable and unitary

• Efficient algorithms: α-equivalence, matching, unification

=⇒ Programming languages (Alpha-Prolog, FreshML)
=⇒ Nominal Rewriting
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Checking α-equivalence

Idea: The α-equivalence derivation rules become simplification
rules

a#b,Pr =⇒ Pr
a#fs,Pr =⇒ a#s,Pr

a#(s1, . . . , sn),Pr =⇒ a#s1, . . . , a#sn,Pr
a#[b]s,Pr =⇒ a#s,Pr
a#[a]s,Pr =⇒ Pr

a#π · X ,Pr =⇒ π-1 · a#X ,Pr π 6≡ Id

a ≈α a,Pr =⇒ Pr
(l1, . . . , ln) ≈α (s1, . . . , sn),Pr =⇒ l1 ≈α s1, . . . , ln ≈α sn,Pr

fl ≈α fs,Pr =⇒ l ≈α s,Pr
[a]l ≈α [a]s,Pr =⇒ l ≈α s,Pr
[b]l ≈α [a]s,Pr =⇒ (a b) · l ≈α s, a#l ,Pr

π · X ≈α π′ · X ,Pr =⇒ ds(π, π′)#X ,Pr
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Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: l ?≈? t has solution (∆, θ) if

∆ ` lθ ≈α tθ

Nominal Matching: s = t has solution (∆, θ) if

∆ ` sθ ≈α t

(t ground or variables disjoint from s)

• Examples:
λ([a]X ) = λ([b]b) ??
λ([a]X ) = λ([b]X ) ??

• Solutions: (∅, [X 7→ a]) and ({a#X , b#X}, Id) resp.
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Nominal Matching

• Nominal matching is decidable [Urban, Pitts, Gabbay 2003]
A solvable problem Pr has a unique most general solution:
(Γ, θ) such that Γ ` Prθ.

• Nominal matching algorithm: add an instantiation rule:

π · X ≈α u,Pr =⇒X 7→π-1·u Pr [X 7→π-1 · u]

No occur-checks needed (left-hand side variables distinct from
right-hand side variables).
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Complexity

Alpha-equivalence check: linear if right-hand sides of constraints
are ground. Otherwise, log-linear.

Matching: quadratic in the non-ground case

Maribel Fernández Nominal Techniques



Complexity - Summary

Case Alpha-equivalence Matching

Ground linear linear
Non-ground and linear log-linear log-linear

Non-ground and non-linear log-linear quadratic

Remark:
The representation using higher-order abstract syntax does
saturate the variables (they have to be applied to the set of atoms
they can capture).
Conjecture: the algorithms are linear wrt HOAS also in the
non-ground case.

For more details on the implementation see [4],
see [6] for formalisations in Coq and PVS
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Back to Nominal Rewriting

Let R = ∇ ` l → r where V (l) ∩ V (s) = ∅
s rewrites with R to t in the context ∆, written ∆ ` s

R→ t,
when:

1 s ≡ C [s ′] such that θ solves (∇ ` l) ?≈ (∆ ` s ′)

2 ∆ ` C [rθ] ≈α t.

• To define the reduction relation generated by nominal
rewriting rules we use nominal matching.

• (∇ ` l) ?≈ (∆ ` s ′) if
∇, l ≈α s ′ has solution (∆′, θ), that is, ∆′ ` ∇θ, lθ ≈α s ′

and
∆ ` ∆′
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Back to Nominal Rewriting

Equivariance: Rules defined modulo permutative renamings of
atoms.
Beta-reduction in the Lambda-calculus:

Beta (λ[a]X )Y → X [a 7→Y ]
σa a[a 7→Y ] → Y
σapp (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
σε a#Y ` Y [a 7→X ] → Y
σλ b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

• Equivariant nominal matching is exponential... BUT

• if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.
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Closed Rules

R ≡ ∇ ` l → r is closed when

(∇′ ` (l ′, r ′)) ?≈ (∇,A(R ′)#V (R) ` (l , r))

has a solution σ (where R ′ is freshened with respect to R).

Given R ≡ ∇ ` l → r and ∆ ` s a term-in-context we write

∆ ` s
R→c t when ∆,A(R ′)#V (∆, s) ` s

R′
→ t

and call this closed rewriting.
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Examples

The following rules are not closed:

g(a)→ a

[a]X → X

Why?
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Examples

The following rule is closed:

a#X ` [a]X → X

Why?
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Examples

Closed rules that define capture-avoiding substitution in the
lambda calculus:
(explicit) substitutions, subst([x ]M,N) abbreviated M[x 7→N].

(Beta) (λ[a]X )X ′ → X [a 7→X ′]
(σapp) (XX ′)[a 7→Y ] → X [a 7→Y ]X ′[a 7→Y ]
(σa) a[a 7→X ] → X
(σε) a#Y ` Y [a 7→X ] → Y
(σλ) b#Y ` (λ[b]X )[a 7→Y ] → λ[b](X [a 7→Y ])
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Properties of Closed Rewriting

Closed Nominal Rewriting:

• works uniformly in α equivalence classes of terms.

• is expressive: can encode Combinatory Reduction Systems.

• is efficient: linear matching.

• inherits confluence conditions from first order rewriting.
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Types

So far, we have discussed untyped nominal terms.

There are also typed versions

• many-sorted

• Simply typed — Church-style and Curry-style

• Polymorphic Curry-style systems

• Intersection type assignment systems

• Dependently typed systems
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Nominal E-Unification

Given two nominal terms s and t and an equational theory E .
Question: is there a substitution σ and a freshness context ∇
such that ∇ ` sσ ≈α,E tσ?

Interference: Commutative Symbols, e.g., OR, +

(c d) · X ≈?
α,C X has infinite principal solutions:

X 7→ c + d ,X 7→ f (c + d),X 7→ [e]c + [e]d , . . .
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Nominal C-Unification Procedure [Ayala-Rincón et al.]:

1 Simplification phase:
Build a derivation tree (branching for C symbols)

2 Solve fixed point constraints X ≈α,C π · X

First-order C-unification and nominal unification are finitary.
Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
π f x ⇔ π · x = x

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.
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Conclusion

• NRSs are first-order systems with built-in α-equivalence.

• Closed NRSs ⇔ higher-order rewriting systems
Capture-avoiding atom substitution easy to define. If included
as primitive unification becomes undecidable
See Jesus Dominguez’s PhD thesis.

• Hindley-Milner style types [4]: principal types, α-equivalence
preserves types. Sufficient conditions for Subject Reduction.

• Nominal unification is quadratic (unknown lower bound)
[Levy&Villaret, Calvès & F.]

• Nominal matching is linear, equivariant matching is linear with
closed rules.
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Conclusions

• Applications: functional and logic programming languages,
theorem provers, model checkers

• Implementations/formalisations:
by Elliot Fairweather
Nominal Datatypes Package for Haskell (Jamie Gabbay):
https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia:
http://nominal.cic.unb.br

alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/

aprolog/

Nominal Isabelle (Christian Urban)
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