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Nominal Logic and Nominal Rewriting

Overview:

® Specifying binders: a-equivalence and meta-variables
® Nominal Logic

® Nominal terms: unification and matching modulo «
® Nominal rewriting

® Examples
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Binding operators: some informal examples

® QOperational semantics:
leta=Nin M — (fun a.M)N

® /3 and n-reductions in the A-calculus:

(AM.M)N  —  M][x/N]
(Mx.Mx) — M (x¢fv(M))

e m-calculus:
Plva.Q —va(P|Q) (a & fv(P))

® | ogic equivalences:

PA(Vx.Q) & Vx(PAQ) (x¢&fv(P))
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Binding operators - a-equivalence and Metavariables

Terms are defined modulo renaming of bound variables, i.e.,
a-equivalence.

Example:

Vx.P =, Vy.P{x — y}

for any fresh variable y

How can we formally specify and reason with binding operators?
There are several alternatives.
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First-order frameworks

Encode a-equivalence:
® Example: A-calculus using De Bruijn’s indices with “lift" and
“shift” operators to encode non-capturing substitution
® We need to 'implement’ a-equivalence from scratch (-)
e Simple (first-order) (+)
e Efficient matching and unification algorithms (+)
® No metavariables (-)
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Higher-order frameworks

® | ogical frameworks based on Higher-Order Abstract Syntax
work modulo a-equivalence (\-calculus as metalanguage).

V(Ax.P(x))

let a= Nin M(a) — (fun a — M(a))N

using (a restriction of) higher-order matching.
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Higher-order frameworks

The syntax includes binders (+)

Implicit a-equivalence (+)

We targeted « but now we have to deal with 5 too (-)

Unification is undecidable in general (-)
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Nominal Approach

Nominal Logic [Pitts 2003]: a sorted first-order logic theory
Key ideas: Names (which can be swapped), abstraction, freshness.

Semantics given by nominal sets.
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Nominal Logic Axioms

(a a)x =x (51)
(ad')(aad)x=x (52)
(ad)a=2 (S3)
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Nominal Logic Axioms

(a a)x =x (51)
(ad')(aad)x=x (52)
(ad)a=2 (S3)
(ad)bb)x=((ad)b(ad)b)(aad)x (E1)
b# x=(aad)b# (aad)x (E2)

(a )f(X)=f((a &)X (E3)

p(X) = p((a a')x) (E4)

(b b')[a]x = [(b b')a](b b')x (E5)
a#xNad #x=(aad)x=x (F1)
a#ad — a#£d (F2)

Va: ns,a':ns'. a# d (ns # ns') (F3)
VX.3a. a# X (F4)




Nominal Logic Axioms

[alx =[d]X <= (a=ad Ax=x)V(a# x' N(ad)x=xX)
Vx: [ns]s.3a: ns,y:s. x = [a]y

(a a)x =x (51)
(ad')(aad)x=x (52)
(ad)a=2 (S3)
(ad)bb)x=((ad)b(ad)b)(aad)x (E1)
b# x=(aad)b# (aad)x (E2)

(a 2)F(%) = F((a )% (E3)

p(X) = p((a a')x) (E4)

(b b)[alx = [(b b')a](b b')x (E5)
a#xNad #x=(ad)x=x (F1)
a#a = a#d (F2)
Va:ns,a':ns'. a# a (ns # ns’) (F3)
VX.3da. a# X (F4)

(A1)

(A2)




Nominal Logic Axioms

[alx =[d]X <= (a=ad Ax=x)V(a# x' N(ad)x=xX)

Vx: [ns]s.3a: ns,y:s. x = [a]y
VX.(Na.¢p <= FJa.a# XN o) (FV(Na.9) C X)

(a a)x =x (51)
(ad')(aad)x=x (52)
(ad)a=2 (S3)
(ad)bb)x=((ad)b(ad)b)(aad)x (E1)
b# x=(aad)b# (aad)x (E2)
(a 2)F(%) = F((a )% (E3)
p(X) = p((a a')x) (E4)
(b b')[a]x = [(b b')a](b b')x (E5)
a#xNad #x=(aad)x=x (F1)
a#ad — a#£d (F2)
Va: ns,a':ns'. a# d (ns # ns') (F3)
VX.3a. a# X (F4)
(A1)
(A2)
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Nominal Languages

Freshness conditions a#t, name swapping (a b) - t, abstraction [a]t

® Terms with binders
® Built-in a-equivalence
e Simple notion of substitution (first order)

e Efficient matching and unification algorithms

Dependencies of terms on names are implicit
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

® Variables: M, N. X, Y, ...
Names: a, b, ...
Function symbols (term formers): f, g...
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

® Variables: M, N, X, Y, ...
Names: a, b, ...
Function symbols (term formers): f,g...

® Nominal Terms:
s,¢te=a | - X | [a]t | ft | (tr,...,tn)

7 is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).

- t: m acts on t, permutes names, suspends on variables.
(ab)-a=b,(ab)-b=a, (ab)-c=c

Id - X written as X.
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Nominal Syntax [Urban, Pitts, Gabbay 2004]

® Variables: M, N, X, Y, ...
Names: a, b, ...
Function symbols (term formers): f,g...

® Nominal Terms:
s,to=a | - X | [alt | ft] (tr,.-.,tn)

7 is a permutation: finite bijection on names, represented as a
list of swappings, e.g., (a b)(c d), Id (empty list).
m - t: 7 acts on t, permutes names, suspends on variables.
(ab)-a=b,(ab)-b=a, (ab)-c=c
Id - X written as X.

e Example (ML): var(a), app(t, t'), lam([a]t), let(t,[a]t),
letrec[f]([a]t, t"), subst([a]t, )
Syntactic sugar:
a, (tt'), Aa.t, leta=tint/ letrec f a=tin t/, tla— 1]
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a-equivalence

We use freshness to avoid name capture:
a#X means a ¢ fv(X) when X is instantiated.

ds(m, 7' )#X

a~, a W'X%aﬂ'/'x

S1 Rq t1 v+ Sp Rty SRyt

(S1y--y5n) ~a (t1,.. ., tn) fsm,ft
S N t a#t s~y (ab)-t

[a]s ~a [a]t [a]s ~q [b]t

where

ds(m, ") = {n|m(n) # '(n)}

o a# X, b#X F (a b)- X ~a X
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a-equivalence

We use freshness to avoid name capture:
a#X means a ¢ fv(X) when X is instantiated.

ds(m, 7' )#X

a~, a W'X%aﬂ'/'x

S1 Rq t1 v+ Sp Rty SRyt

(S1y--y5n) ~a (t1,.. ., tn) fsm,ft
S N t a#t s~y (ab)-t

[a]s ~a [a]t [a]s ~q [b]t

where

ds(m, ") = {n|m(n) # '(n)}

o a#X,b#X F (a b) - X ~g X
o b#X - A[a]X ~2 A[b](a b) - X
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Freshness

Also defined by induction:

7 a)#X
a#b a#tla]s a#m - X

atsy - - a#sn a#s afs
a#t(s1,...,Sn) a#f s a#[b]s
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Nominal Rewriting

Nominal Rewriting Rules:

AFl=r V(U V()C V()

Beta-reduction in the Lambda-calculus:

Beta (Ala]X)Y — X[a—Y]

Oa ala—Y] - Y
G (XXN[a—Y] — X[a=Y]X'[a—Y]
oe  a#YFE Y[a—X] - Y

on  b#YE (ABIX)[a—Y] — Ab](X[a—Y])

Rewriting steps: (A[¢c]c)Z — c[e—Z] — Z
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Nominal Rewriting

Rewriting relation generated by R=V F [ —r: A F s L

s rewrites with R to t in the context A when:
@ s = C[s'] such that 0 solves (V F )= (A + &)
Q@ A Clrf] =4 t.
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Example: Prenex Normal Forms

a#P +  PAV[aQ — V[a](PAQ)
a#P F  (V[a]Q) AP — V[a](Q A P)
a#P +  PvVvV[aQ — V[a](PV Q)
a#P F  (V[a]Q)V P — V[a](Q V P)
a#P +F  PATE]Q — J[a](P A Q)
a#P +  (Ja]Q) AP — Fa](Q A P)
a#P +F  PVv3aQ — Ja(PV Q)
a#P F  (3[a]Q)V P — Jal(QV P)

Fo =38 Q) — V][a]-Q

F o =(V[a]Q) — Fa]-Q




Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a
matching/unification algorithm.
Recall:

e efficient algorithms (linear time) for first-order terms
® \We need more powerful algorithms: a-equivalence

® Higher-order unification is undecidable
Nominal terms have good computational properties:

® Unification is decidable and unitary

e Efficient algorithms: a-equivalence, matching, unification

—> Programming languages (Alpha-Prolog, FreshML)
= Nominal Rewriting
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Checking a-equivalence

Idea: The a-equivalence derivation rules become simplification

rules
a#b,Pr — Pr
a#tfs,Pr — a#ts, Pr
a#(si,...,sn), Pr = a#s1,...,a#sn, Pr
a#|bls,Pr = a#s, Pr
a#tlals,Pr = Pr
aptm - X,Pr = wl.a#X,Pr w £ Id
arya,Pr = Pr
(hyoooyln) =a (S15--.550),Pr = h=qs1,...,Ih ~q Sn, Pr
fl o fs,Pr — [|=,s,Pr
[a]l =4 [a]s,Pr = [|=~q4s,Pr
[b]] =4 [a]s,Pr = (a b)-I=4s,a#l, Pr
- Xrgm - X,Pr = ds(m, 7 )#X, Pr
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Solving Equations [Urban, Pitts, Gabbay 2003]

® Nominal Unification: / 7/ t has solution (A, ) if
A 10 ~, to
Nominal Matching: s = t has solution (A, #) if
AFsO=,t

(t ground or variables disjoint from s)
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Solving Equations [Urban, Pitts, Gabbay 2003]

¢ Nominal Unification: / 727 t has solution (A, 0) if
AF 10 =, to
Nominal Matching: s = t has solution (A, ) if
AFsf~=,t

(t ground or variables disjoint from s)

® Examples:
A([a]X) = A([b]b) 72
A([a]X) = A([p]X) 77
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Solving Equations [Urban, Pitts, Gabbay 2003]

¢ Nominal Unification: / 727 t has solution (A, 0) if
AF 10 =, to
Nominal Matching: s = t has solution (A, ) if
AFsf~=,t

(t ground or variables disjoint from s)

® Examples:
A[a]X) = A([b]b) ??
A([a]X) = A([b] X) 77
e Solutions: (0, [X — a]) and ({a#X, b#X}, Id) resp.
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Nominal Matching

¢ Nominal matching is decidable [Urban, Pitts, Gabbay 2003]
A solvable problem Pr has a unique most general solution:
(I, 0) such that ' + Pro.

® Nominal matching algorithm: add an instantiation rule:
m- X~ u,Pr =Xy Pr[Xrsmt . ]

No occur-checks needed (left-hand side variables distinct from
right-hand side variables).
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Complexity

Alpha-equivalence check: linear if right-hand sides of constraints
are ground. Otherwise, log-linear.

Matching: quadratic in the non-ground case
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Complexity - Summary

] Case \ Alpha-equivalence \ Matching ‘
Ground linear linear
Non-ground and linear log-linear log-linear
Non-ground and non-linear log-linear quadratic

Remark:

The representation using higher-order abstract syntax does
saturate the variables (they have to be applied to the set of atoms
they can capture).

Conjecture: the algorithms are linear wrt HOAS also in the
non-ground case.

For more details on the implementation see [4],
see [6] for formalisations in Coq and PVS
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Back to Nominal Rewriting

Let R=V bt | — rwhere V(I)N V(s) =10

s rewrites with R to t in the context A, written A F s £> t,
when:

@ s = C[s] such that # solves (V F /)= (A + &)
Q@ A F C[rf] =, t.

® To define the reduction relation generated by nominal
rewriting rules we use nominal matching.
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Back to Nominal Rewriting

Let R=V F | — rwhere V()N V(s) =0
s rewrites with R to t in the context A, written A + s R t,
when:

@ s = C[s] such that # solves (V F /)= (A + &)

Q@ A F C[rf] =, t.

® To define the reduction relation generated by nominal
rewriting rules we use nominal matching.

o (VE Nw=(AFS&)if
V.l =, s’ has solution (A’,0), that is, A’ - V6,10 ~,, s’
and
A A
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Back to Nominal Rewriting

Equivariance: Rules defined modulo permutative renamings of
atoms.

Beta-reduction in the Lambda-calculus:

Beta (Ala]X)Y — X[a—Y]

Oa ala—Y] - Y
Tapp (XXN[a—Y] —= X[a=Y]X'[a—Y]
o a#YFE Y[a—X] — Y

oxn b#Y E (AB)X)[a—Y] — Abl(X[a—Y])
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Nominal Matching vs. Equivariant Matching

® Nominal matching is efficient.

Maribel Fernandez Nominal Techniques



Nominal Matching vs. Equivariant Matching

® Nominal matching is efficient.

® Equivariant nominal matching is exponential... BUT
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Nominal Matching vs. Equivariant Matching

® Nominal matching is efficient.
® Equivariant nominal matching is exponential... BUT

® if rules are CLOSED then nominal matching is sufficient.
Intuitively, closed means no free atoms.
The rules in the examples above are closed.
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Closed Rules

R=V F | = ris closed when
(V' B (1) = (VL ARR)#V(R) F (1,r))
has a solution o (where R’ is freshened with respect to R).

Given R=V F [ —rand A + s a term-in-context we write
A s Bt when AAR)EV(AS) F sBt

and call this closed rewriting.
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The following rules are not closed:

g(a) = a
[a] X — X
Why?
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The following rule is closed:
a#X F [aX — X

Why?
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Closed rules that define capture-avoiding substitution in the
lambda calculus:
(explicit) substitutions, subst([x]M, N) abbreviated M[x— N].

(Beta) (Ala] X)X’ - X[a—X']

(0app) (XXNa—Y] — X[a—=Y]X'[a—Y]
(02) ala—X] — X
(0e) a#Y F  Y][a—X] - Y

(or) b#Y F  (A[b]X)[a—Y] — A[b](X[a—Y])
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Properties of Closed Rewriting

Closed Nominal Rewriting:
® works uniformly in « equivalence classes of terms.
® is expressive: can encode Combinatory Reduction Systems.
® s efficient: linear matching.

® inherits confluence conditions from first order rewriting.
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So far, we have discussed untyped nominal terms.

There are also typed versions

® many-sorted

Simply typed — Church-style and Curry-style

Polymorphic Curry-style systems

Intersection type assignment systems

Dependently typed systems
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Nominal E-Unification

Given two nominal terms s and t and an equational theory E.
Question: is there a substitution o and a freshness context V
such that V - so ~, g to?
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Nominal E-Unification

Given two nominal terms s and t and an equational theory E.
Question: is there a substitution o and a freshness context V
such that V - so ~, g to?

Interference: Commutative Symbols, e.g., OR, +

(cd)-X %ZY’C X has infinite principal solutions:
X—=c+d, X fc+d),X — [e]c+ [e]d,...
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Nominal C-Unification Procedure [Ayala-Rincén et al.]:

@ Simplification phase:
Build a derivation tree (branching for C symbols)

@ Solve fixed point constraints X ~, ¢ 7 X
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Nominal C-Unification Procedure [Ayala-Rincén et al.]:

@ Simplification phase:
Build a derivation tree (branching for C symbols)

@ Solve fixed point constraints X ~, ¢ 7 X

First-order C-unification and nominal unification are finitary.
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Nominal C-Unification Procedure [Ayala-Rincén et al.]:

@ Simplification phase:
Build a derivation tree (branching for C symbols)
@ Solve fixed point constraints X ~, ¢ 7 X
First-order C-unification and nominal unification are finitary.

Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.
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Nominal C-Unification Procedure [Ayala-Rincén et al.]:
@ Simplification phase:
Build a derivation tree (branching for C symbols)
@ Solve fixed point constraints X ~, ¢ 7 X
First-order C-unification and nominal unification are finitary.

Nominal C-unification is NOT, if we represent solutions using
substitutions and freshness contexts.

Alternative representation: fixed-point constraints instead of
freshness constraints:
TAXES T - X=X

Using fixed-point constraints instead of freshness constraints,
nominal C-unification is finitary.
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Conclusion

® NRSs are first-order systems with built-in a-equivalence.

® Closed NRSs < higher-order rewriting systems
Capture-avoiding atom substitution easy to define. If included
as primitive unification becomes undecidable
See Jesus Dominguez’'s PhD thesis.

¢ Hindley-Milner style types [4]: principal types, a-equivalence
preserves types. Sufficient conditions for Subject Reduction.

¢ Nominal unification is quadratic (unknown lower bound)
[Levy&Villaret, Calves & F.]

® Nominal matching is linear, equivariant matching is linear with
closed rules.

Maribel Fernandez Nominal Techniques



Conclusions

® Applications: functional and logic programming languages,
theorem provers, model checkers

¢ Implementations/formalisations:
by Elliot Fairweather
Nominal Datatypes Package for Haskell (Jamie Gabbay):
https://github.com/bellissimogiorno/nominal
Nominal Project, University of Brasilia:
http://nominal.cic.unb.br
alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/
aprolog/
Nominal Isabelle (Christian Urban)
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