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Background: Classical higher-order
logic



Type system

We will use the following type system to keep track of the syntactic categories of the
language.
Simple relational types
The set of (simple relational) types R is the smallest set that contains e and t, and
such that whenever σ ∈ R and τ ∈ R and τ 6= σ, σ → τ ∈ R.

▶ Shorthands: ρ → σ → τ for ρ → (σ → τ); σ⃗ → τ for σ1 → · · · → σn → τ .
▶ In this system e is a ‘non-terminal’ type. We leave out types like e → e for

convenience (their treatment in the logic raises some not-so-important choice
points). Also, some might wish to add more basic types besides e and t.

▶ A typed collection is a set together with a function from the set to R. When C
is a typed collection, we write x :C σ for C(x) = σ, and Cσfor{x : x :C σ}. When C
and D are typed collections, DC is the set of all type-preserving functions from C’s
carrier set to D’s. 2



Terms

We fix a typed collection Var of variables with infinitely many variables with each type,
indicated with superscripts when necessary. Then we define
The language L
L is the smallest R-typed collection such that:

v :L σ whenever v :Var σ

(AB) :L τ whenever A :L σ → τ and B :L σ

(λv.A) :L σ → τ whenever A :L τ and v :Var σ and τ 6= e
→ :L t → t → t
∀σ :L (σ → t) → t for all σ ∈ R

▶ A sentence is a term P with P :L t.
▶ We can also add a signature Σ of nonlogical constants to define a language LΣ,

but my focus will be on the pure language. 3



Some shorthands

▶ A1 . . .An for (((· · · (A1A2) · · · )An−1)An).
▶ λv1 . . . vn.A for (λv1.(· · · (λvn.A) · · · )).
▶ ARB for ((RA)B) (when R : σ → σ → τ is a constant or abbreviation).
▶ ∀σv.P for ∀σ(λv.P).
▶ ⊥ for ∀tq.q
▶ > for ⊥ → ⊥
▶ ¬ for λp.p → ⊥
▶ ∧ for λpq.∀tr.(p → q → r) → r
▶ ∨ for λpq.∀tr.(p → r) → (q → r) → r
▶ ∃σ for λXσ→t.∀tp.(∀σy.Xy → p) → p
▶ =σ for λxy.∀σ→tZ.Zx → Zy.
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Syntactic definitions

We define in the standard way a syntactic operation of capture-free substitution
that takes a term A, a variable v, and a term B of the same type as v to a term A[B/v]
in which each free occurrences of v is replaced by B, with relettering of bound variables
in A when necessary.

In terms of this we define a relationship of immediate β-equivalence: A and B are
immediately β equivalent iff for some v,C,D, A is (λv.C)D and B is C[D/v], or vice
versa.

Also, A and B are immediately η equivalent iff for some v, A is λv.Bv, or vice versa.
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Classical higher-order logic

H-theories
A H-theory is a set T of L-sentences closed under the following two rules:

MP Q ∈ T whenever P → Q ∈ T and P ∈ T
Gen ∀v.P ∈ T whenever P ∈ T.

and containing all instances of the following schemas

Luk (P → Q → R) → (R → P) → S → P (where P,Q,R, S : t)
UI ∀σF → FA (where F : σ → t and A : σ)
βη Φ[A] → Φ[B] whenever A and B are immediately β- or η-equivalent, and Φ[B]

comes from Φ[A] by replacing one occurrence of B with one of A.

The logic H
H is the smallest H-theory. 6



Extensionalism

Since the work of Henkin (1950), the best-known systems of classical higher-order logic
(often used for formalizing mathematics) include the following two principles, neither
of which is in H:

Fregean Axiom (p ↔ q) → (p =t q) (‘Propositional Extensionality’).
Functionality (∀σx.Fx =τ Gx) → F =σ→τ G (‘Functional Extensionality’).

Bearing in mind that all our complex types end in t, the combination of these two is
equivalent to

Extensionality (∀⃗x.(F⃗x ↔ Gx⃗)) → F =σ⃗→t G
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Against Extensionalism

The Fregean Axiom is prima facie obviously false!

Counterexample: it’s raining iff it’s both raining and not raining. But it’s not the case
that for it to be raining is for it to be both raining and not raining.

Argument: the former but not the latter is possible.

▶ Church (1940) accepts Functionality but not the Fregean Axiom. But in later
work, (Church, 1951) he does adopt the Fregean Axiom, along with a version of
Frege’s (Frege, 1892) ingenious but unconvincing technique for “explaining away”
apparent counterexamples like the one above.
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Open questions

But without Extensionalism, H is pretty weak. Even in the language without nonlogical
constants, it leaves open a wide range of questions, notably including questions about
“fineness of grain”, such as:

∀tp.(p = ¬¬p)?
∀tp.(p 6= ¬¬p)?

∀tpq.(p = (p ∧ (q ∨ ¬q)))?
∀e→tF.∀tp.(F = (λx.Fx ∧ (p ∨ ¬p)))?

Our attitude: these are interesting questions at the intersection of logic and
metaphysics. The fact that the answers aren’t obvious does not show that the
questions aren’t intelligible, or that they are to be resolved by stipulation. Rather, we
should be exploring different theories that answer them systematically, and assessing
the credibility of these theories by the same “abductive” standards used in science. 9



Classicism



The rule of substitution

A theory extending classical propositional logic is closed under the rule of
substitution iff logically equivalent formulae can be freely substituted in theorems:
Rule of substitution
T is closed under substitution iff T ` Φ[Q] whenever T ` P ↔ Q and T ` Φ[P].

H is not closed under substitution: for example, H ` p ↔ ¬¬p and H ` p =t p, but
H ⊬ p =t ¬¬p.

Let Classicism, C, be the smallest H-theory closed under substitution.
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The rule of equivalence

C can also be characterized as the smallest H-theory closed under either of the
following rules:
Equivalence
If ` P ↔ Q then ` (λ⃗v.P) = (λ⃗v.Q).

ζ-Equivalence
If ` F⃗v ↔ Gv⃗ then ` F = G (where none of v⃗ is free in F or G).
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Axiomatizing Classicism

Surprisingly, C can also be characterized as the smallest H-theory containing all
instances of either of the following axiom-schemas:

Logical Substitution Φ[P] → Φ[Q], whenever H ` P ↔ Q.
Logical Equivalence (λ⃗v.P) = (λ⃗v.Q), whenever H ` P ↔ Q.
Logical ζ-Equivalence F = G, whenever H ` F⃗v ↔ Gv⃗ and none of v⃗ is free in F or G.
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Axiomatizing Classicism, more simply

We can also axiomatise C using a much smaller collection of identities.
The Boolean identites

(λpq.p ∧ q) = (λpq.q ∧ p)Commutativity-∧
(λpq.p ∨ q) = (λpq.q ∨ p)Commutativity-∨

(λpqr.p ∧ (q ∨ r)) = (λpqr.(p ∧ q) ∨ (p ∧ r))Distribution-∧∨
(λpqr.p ∨ (q ∧ r)) = (λpqr.(p ∨ q) ∧ (p ∨ r))Distribution-∨∧
(λpq.p ∧ (q ∨ ¬q)) = (λpq.p)Dissolution-∧∨
(λpq.p ∨ (q ∧ ¬q)) = (λpq.p)Dissolution-∨∧

The Quantifier Identities

(λXy.∀σX) = (λXy.∀σX ∧ Xy)Absorption-∧∀
(λXp.p ∨ ∀σX) = (λXp.∀y.p ∨ Xy)Distribution-∨∀ 13



The modal logic in Classicism

Let □ := λp.(p =t >). Then we have:
▶ C ` □P whenever C ` P (Necessitation)
▶ C ` □(P → Q) → (□P → □Q) (K axiom)
▶ C ` □P → P (T axiom)
▶ C ` □P → □□Q (4 axiom)

Thus, C includes all substitution instances of theorems of modal logic S4. Moreover:
▶ C ` □(∀⃗x.(Rx⃗ ↔ S⃗x)) → R = S (Intensionalism)
▶ C ` ∀σx.□(Fx =τ Gx) → F =σ→τ G (Modalized Functionality)
▶ C ` □(∀σx.P) → ∀σx.□P (CBF)
▶ C ` N(p → p) → ∀q(□q → Nq) (Broadness)

C is the smallest H-theory closed under Necessitation and containing K, 4, and
Intensionalism. 14



Between Classicism and
Extensionalism



Functionality

Classicism is a lot stronger than H but a lot weaker than Extensionalism. One obvious
avenue of exploration is to look at theories intermediate between Classicism and
Extensionalism. The most obvious thing to consider is to add one but not the other of
the two axioms that together give Extensionlism:

Fregean Axiom (p ↔ q) → (p =t q)
Functionality (∀σx.Fx =τ Gx) → F =σ→τ G

In fact, the Fregean Axiom just gives Extensionalism again: it implies P → □P and
thus lets us strengthen Modalized Functionality to Functionality.

But adding Functionality or its necessitation gives an interesting intermediate system.
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Classicism+Functionality

Functionality is equivalent in Classicism to each of:

∀σx.□P → □∀σx.PBF
(∀x.P ≤ Fx) → P ≤ ∀x.Fx.Tractarianism

where P ≤ Q := Q = (P ∨ Q), or equivalently, □(P → Q).

▶ From Functionality to Tractarianism: suppose ∀x.P ≤ Fx; then F = λx.Fx ∨ p by
Functionality, so (∀x.Fx) = (∀x.Fx∨ p) (by β) = (∀x.Fx)∨ p (by Distribution-∨∀).

▶ From Tractarianism to BF: plug in > for p.
▶ From BF to Functionality: ∀z(Xz = Yz) implies ∀z□(Xz ↔ Yz) by LL, which

implies □∀z(Xz ↔ Yz) by BF, which implies X = Y by Intensionalism.
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Another non-theorem

ND x 6=σ y → □(x 6=σ y)

This is not a theorem of Classicism, unlike

NI x =σ y → □(x =σ y)

ND is equivalent in Classicism to each of:

♢p → □♢p5
p → □♢pB

We call the result of adding □ND (or □5 or □B) to Classicism ‘C5’.
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Logical relationships among these principles

Extensionalism

C5

C+□BF
C + ND

C + BF

C

How do we know about non-inclusion facts like those reported here? We use a
model-theory I’ll explain later.
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Three more claims that follow from Extensionalism but not Classicism (or C5)

Atomicity ∀x(x 6=τ λ⃗x.⊥ → ∃y(Atomτ y ∧ y ≤τ x))

≤τ := λX.λY.(Y =τ λ⃗v.Xv⃗ ∨ Yv⃗)where
Atomτ := λy.∀z((z ≤τ y ∧ z 6= y) ↔ z ≤τ ¬τz)

Actuality ∃tp(p ∧ ∀tq(q → p ≤t q))

Boolean Completeness ∀Xτ→t∃yτ (GLBτ yX)

LBτ := λzτXτ→t.∀τy(Xy → y ≤τ z)where
GLBτ := λyτXτ→t.∀τz(LBτ zX ↔ z ≤τ y) 19



Three more claims that follow from Extensionalism but not Classicism (or C5)

Surprisingly, these three are independent in Classicism.

But we do have:

▶ C5 ` Actuality ↔ Boolean Completeness
▶ C5 ` Atomicity ↔ □Actuality
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Extensionalism

C5 + Atomicity

C5 + Actuality

C5

C+□BF
C + ND

C + BF

C
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A better-motivated principle

Persistentτ Y := Y ≤τ (λ⃗z.□Y⃗z)
Inextensibleτ Y := □∀X(∀⃗z(Y⃗z → □X⃗z) → Y ≤τ X)

Rigidτ Y := Persistentτ Y ∧ Inextensibleτ Y

Any property X with only finitely many instances x1 . . . xn is coextensive with a rigid
property λy.y = x1 ∨ · · · ∨ y = xn. It’s natural to think that this is true for all
properties/relations:

Rigid Comprehension ∀τX.∃τY(Rigidτ (Y) ∧ ∀⃗z(X⃗z ↔ Y⃗z))

One philosophical motivatation for this principle involves considering the behaviour of
plurals in natural language. If there is an X thing, then there are the X things; the
property of being one of them is coextensive with X and (arguably) rigid.
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Implications involving Rigid Comprehension

In Classicism:

▶ RC implies Actuality. (Consider ∀tp(Rp → p), where R is a rigid property of
propositions coextensive with truth).

▶ RC implies Boolean Completeness. (Consider λ⃗x.∀τY(RY → Yx⃗), where R is a
rigid property coextensive with the X for which we want a GLB.)

▶ In C5, RC is equivalent to both Actuality and Boolean Completeness.
▶ □Atomicity, Boolean Completeness, and Functionality imply RC.
▶ RC and Functionality imply □Functionality.
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A principle that one could easily assume for bad reasons

The system of Church (1940) includes:

Axiom of Descriptions Functionalσ⃗,τ R → ∃Xσ⃗→τ .∀⃗y.Ry⃗(Xy⃗)

where
Functionalσ⃗,τ R := ∀⃗x.∃y.Rx⃗y ∧ ∀z.Rx⃗z → y =σ z

Like all the principles considered in this section, this follows from Extensionalism. If
you are used to pronouncing quantification into types of the form σ → τ using the
word ‘function’ and quantification into types of the form σ → τ → t using the word
‘relation’, and have in the back of your mind the standard set-theoretic equation of
functions with functional relations, you might find yourself assuming this by mistake,
as I once did. But really it’s very strong, and I don’t see a strong philosophical
motivation for it.
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Implications involving the Axiom of Descriptions

In Classicism:

▶ The Axiom of Descriptions implies both ND and Actuality.
▶ In C5, Plenitude is equivalent to Actuality/Boolean Completeness/Rigid

Comprehension.
▶ Rigid Comprehension and ND imply Plenitude.
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Some combinations we know to be consistent

The following are consistent in Classicism + ¬ND:

▶ ¬Functionality, ¬RC, ¬Actuality, ¬Atomicity.
▶ ¬Functionality, ¬RC, ¬Actuality, Atomicity.
▶ ¬Functionality, RC, Actuality, ¬Atomicity.
▶ ¬Functionality, RC, Actuality, Atomicity.
▶ Functionality, ¬RC, ¬Actuality, ¬Atomicity.
▶ Functionality, ¬RC, ¬Actuality, Atomicity.
▶ Functionality, ¬RC, Actuality, Atomicity.
▶ Functionality, ¬RC, Actuality, ¬Atomicity.

Also, in each combination, we can consistently add a □ to everything.
26



Fine-grained strengthenings of
Classicism



Fine-grained strengthenings

As well as strengthenings that bring us closer to Extensionalism—intuitively, a
maximally coarse-grained theory of higher-order reality—we can also explore extensions
that settle identity questions left open by Classicism negatively.

One way to generate such theories is to use the following operation:
Maximalization
For any H-theory T, let MaxT be the smallest H-theory that includes T and contains
A 6= B whenever A = B is a closed identity that is not in T.

▶ Note that if T includes Classicism, Max(T) can also be axiomatized the result of
adding ♢P to T whenever P is closed and ¬P is not in T.

▶ Except in edge cases, Max(T) is not closed under substitution.
▶ Except in edge cases, Max(T) is not recursively enumerable.
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Which theories can consistently maximalized?

Using our model-theory, we can show that Max(C) is consistent. More generally, we
can consistently maximalize the result of extending Classicism with any combination of
Atomicity, Atomicity, and Functionality, or their necessitations.

Fritz, Lederman and Uzquiano (2021) show that Max(H) is consistent.

Max(Extensionalism) is obviously inconsistent, since Extensionalism isn’t
negation-complete and implies ♢P → P for all P.

Max(C5) is also inconsistent, since C5 is not negation-complete and implies ♢P → P
for all closed P.

Goodsell [p.c.] shows that Max(Classicism+Rigid Comprehension) and
Max(Classicism+□Rigid Comprehension) are inconsistent.
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Philosophical plausibility of Maximalist Classicism

If we had arbitrary non-logical constants floating around (e.g.,
bachelor,married,man), the maximalization of any of the logics we have considered
would be obviously unsound.

But in the language without nonlogical constants, Max(C) embodies a philosophically
attractive, though controversial, vision—that there is nothing more to the “nature” of
the logical constants than is captured by the standard logical rules.

Even if we add nonlogical constants, so long as they only denote distinct “fundamental”
properties/relations/individuals, the maximalized theories still have some intuitive
plausibility—they answer to a widespread aversion to “brute” or “arbitrary” necessities.
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Model theory for Classicism



Henkin models

Henkin premodel
A Henkin premodel is a typed collection H such that Ht = {0, 1},
Hσ→τ ⊆ (Hτ )(H

σ), and Hσ is nonempty for all σ.

H is full iff Hσ→τ = (Hτ )(H
σ) for all σ, τ .

Interpretation function of a Henkin premodel
Given a Henkin premodel H, J·K· is a function defined on L × HVar, such that:JvKg = g(v)JABKg = JAKg(JBKg)Jλvσ.Aτ Kg = [x ∈ Hσ 7→ JAKg[v7→x]]J→K = [n ∈ {0, 1} 7→ [m ∈ {0, 1} 7→ 1 − m(1 − n)]]J∀σK = [f ∈ Hσ→t 7→ max{fx : x ∈ Hσ}]
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Henkin models

Henkin model
A Henkin model is a Henkin premodel such that JAKg ∈ Hσ for all A :L σ and
g ∈ HVar.

Every full Henkin premodel is a Henkin model, but not vice versa.

A formula P holds in H on g iff JPKg = 1.

P is a consequence of Γ relative to a class C of Henkin models iff wheever H ∈ C,
g ∈ HVar, and every member of Γ holds in H on g, P holds in H on g.
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Henkin’s theorem

Soundness and completeness of Henkin models for Extensionalism
Theorem (Henkin, 1950): P is a consequence of Γ relative to the class of all Henkin
models iff there exist Q1, . . . ,Qn ∈ Γ such that Q1 → · · · → Qn → P is a theorem of
Extensionalism.
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From Henkin models to action models: strategy

Choose an arbitrary small category C, the “base category”, and an object W0 of C.
Objects of C will play a role like that of “worlds” in Kripke models; W0 will be the
“actual world”.

We’ll call a functor from C to Set an ‘action’ of C. F is a subaction of G iff
F(W) ⊆ G(W) for every object W and F(h)(d) = G(h)(d) for all h : W → V and
d ∈ F(W). Where Henkin models have sets, our more general “action models” will
have actions of the base category.

Given two actions F,G of C there is an “exponential action” GF:
▶ For an object W, GF(W) is the set of all natural transformations from

Hom(W,−)× F to G—i.e., of functions α that take an ordered pair {h, d} where
h is an arrow from W to some V and d ∈ F(V) and yield an element of G(V) in
such a way that for any i : V → U, G(i)(α〈h, d〉) = α(i ◦ h,F(i)(d)).

▶ For any arrow h : W → V, GF(h)(α)〈i, d〉 = α〈i ◦ h, d〉. 33



From Henkin models to action models: strategy

For a category C, let the powerset action of C be the functor PC such that for any
object W of C, PC(W) is the powerset of the set of all C-arrows with source W, and for
any h : W → V and X ∈ PC(W), PC(h)(X) = {i : iCh ∈ X}.
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Action models

Action premodel
An action premodel A is a tuple 〈C,W0,A·〉 such that C is any small category, W0
is any object of C, and for each type σ, Aσ is an action of C, such that:

1. At is a subaction of PC .
2. Aσ→τ is a subaction of (Aσ)(A

τ ).
3. Aσ(W) is nonempty for every object W.

A is propositionally full iff At = PC , functionally full iff Aσ→τ = (Aσ)(A
τ ) for all

σ, τ , full iff both propositionally and functionally full.
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Action models

Interpretation function of an action model
Given an action model A, J·K·· is the function that takes a triple comprising a term A,
an arrow h : W0 → V for some V, and an assignment function g ∈ A(V)Var, such that:JvKg

h = g(v)JABKg
h = JAKg

h〈1trg h, JBKg
h〉Jλv.AKg

h = [〈i, a〉 7→ JAK(i◦g)[v 7→a]
i◦h ]J→Kg

h = [〈i,p〉 7→ [〈j,q〉 7→ (PC(trg j)− jtp) ∪ q]]J∀σKg
h = 〈i, α〉 7→

∪
V
{j : trg i → V | 1V ∈ α〈j, a〉 for every a ∈ Vσ}
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Action models

Action model
Action premodel A is an action model iff for every term B : σ, object V, h : W → V,
and g ∈ A(V)Var, JBKg

h ∈ Aσ(V).

Every full action premodel is an action model, but not vice versa.

When g is an assignment function for A(W0), formula P holds in A iff 1W0 ∈ JPKg
1W0

.

P is a consequence of Γ relative to a class C of action models iff whenever A ∈ C,
g ∈ A(W0)Var, and every member of Γ holds in A on g, P holds in A on g.
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Soundness and completeness

Theorem: soundness and completeness of action models for Classicism
P is a consequence of Γ relative to the class of all action models iff there exist
Q1, . . . ,Qn ∈ Γ such that Q1 → · · · → Qn → P is a theorem of Classicism.

38



An example
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