Definability problems regarding Campana points and Darmon points

Juan Pablo De Rasis (joint work with Hunter Handley)

Ohio State University

derasis.1@osu.edu

March 6th, 2025

• \mathcal{O}_K as the ring of integers of K.

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .
- Ω_K^{∞} as the set of infinite (i.e. archimedean) places of K, which we identify with real field embeddings $\sigma : K \to \mathbb{R}$ and pairs of complex conjugate embeddings $K \to \mathbb{C}$.

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .
- Ω_{K}^{∞} as the set of infinite (i.e. archimedean) places of K, which we identify with real field embeddings $\sigma : K \to \mathbb{R}$ and pairs of complex conjugate embeddings $K \to \mathbb{C}$.
- For each $v \in \Omega_K$ let K_v be the completion of K with respect to v.

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .
- Ω_K^{∞} as the set of infinite (i.e. archimedean) places of K, which we identify with real field embeddings $\sigma : K \to \mathbb{R}$ and pairs of complex conjugate embeddings $K \to \mathbb{C}$.
- For each $v \in \Omega_K$ let K_v be the completion of K with respect to v.
- For each $\mathfrak{p} \in \Omega_{K}^{<\infty}$ let $\mathcal{O}_{K,\mathfrak{p}}$ be the ring of integers of $K_{\mathfrak{p}}$,

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .
- Ω_K^{∞} as the set of infinite (i.e. archimedean) places of K, which we identify with real field embeddings $\sigma : K \to \mathbb{R}$ and pairs of complex conjugate embeddings $K \to \mathbb{C}$.
- For each $v \in \Omega_K$ let K_v be the completion of K with respect to v.
- For each p ∈ Ω^{<∞}_K let O_{K,p} be the ring of integers of K_p, so that K ∩ O_{K,p} = (O_K)_p is the localization of O_K at p; i.e., the set of integers of K which are p-integral.

Some notation

For each number field K, denote:

- \mathcal{O}_K as the ring of integers of K.
- Ω_K as the set of all places of K.
- $\Omega_{K}^{<\infty}$ as the set of finite (i.e. non-archimedean) places of K, which we identify with prime ideals of \mathcal{O}_{K} .
- Ω_K^{∞} as the set of infinite (i.e. archimedean) places of K, which we identify with real field embeddings $\sigma : K \to \mathbb{R}$ and pairs of complex conjugate embeddings $K \to \mathbb{C}$.
- For each $v \in \Omega_K$ let K_v be the completion of K with respect to v.
- For each p ∈ Ω^{<∞}_K let O_{K,p} be the ring of integers of K_p, so that K ∩ O_{K,p} = (O_K)_p is the localization of O_K at p; i.e., the set of integers of K which are p-integral.
- If S is a finite subset of Ω_K containing Ω_K^{∞} , denote

 $\mathcal{O}_{\mathcal{K},\mathcal{S}} \coloneqq \bigcap_{\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S}} (\mathcal{O}_{\mathcal{K}})_{\mathfrak{p}} \text{ the ring of } S\text{-integers of } \mathcal{K}; \text{ i.e., the elements}$

of K which are integral outside S.

Juan Pablo De Rasis (OSU)

In elementary arithmetics, given $m \in \mathbb{Z}_{\geq 1}$, a nonzero integer *a* is called *m*-full if $\nu_p(a) \geq m$ for all prime divisors *p* of *a*.

In elementary arithmetics, given $m \in \mathbb{Z}_{\geq 1}$, a nonzero integer *a* is called *m*-full if $\nu_p(a) \geq m$ for all prime divisors *p* of *a*. Campana points are a natural way to generalize these elements to more arbitrary smooth varieties over a number field *K*.

In elementary arithmetics, given $m \in \mathbb{Z}_{\geq 1}$, a nonzero integer *a* is called *m*-full if $\nu_p(a) \geq m$ for all prime divisors *p* of *a*. Campana points are a natural way to generalize these elements to more arbitrary smooth varieties over a number field *K*.

Similarly, **Darmon Points** generalize perfect *m*th powers.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil \mathbb{Q} -divisor D on X.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K.

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K. Fix a finite subset S of Ω_K containing Ω_K^{∞} .

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K. Fix a finite subset S of Ω_K containing Ω_K^{∞} .

A model of (X, D) over $\mathcal{O}_{K,S}$ is a pair $(\mathcal{X}, \mathcal{D})$,

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K. Fix a finite subset S of Ω_K containing Ω_K^{∞} .

A model of (X, D) over $\mathcal{O}_{K,S}$ is a pair (\mathcal{X}, D) , where \mathcal{X} is a flat proper scheme over $\mathcal{O}_{K,S}$ with $\mathcal{X}_{(0)} \cong X$

Campana Orbifolds

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K. Fix a finite subset S of Ω_K containing Ω_K^{∞} .

A model of (X, D) over $\mathcal{O}_{K,S}$ is a pair $(\mathcal{X}, \mathcal{D})$, where \mathcal{X} is a flat proper scheme over $\mathcal{O}_{K,S}$ with $\mathcal{X}_{(0)} \cong X$ and $\mathcal{D} := \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} \mathcal{D}_{\alpha}$, where for each $\alpha \in \mathcal{A}$ we denote \mathcal{D}_{α} the Zariski closure of D_{α} in \mathcal{X} Juan Pablo De Rasis (OSU) Campana & Darmon points March 6th, 2025

Definition

Let X be a smooth variety over a field K, and fix an effective Weil Q-divisor D on X. Moreover, assume $D = \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} D_{\alpha}$, where \mathcal{A} is a finite set and, for each $\alpha \in \mathcal{A}$, D_{α} is a prime divisor, and $\varepsilon_{\alpha} = 1 - \frac{1}{n_{\alpha}}$ with $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{\infty\}$. Also assume $D_{\text{red}} := \sum_{\alpha \in \mathcal{A}} D_{\alpha}$ is a divisor with strict normal crossings on X. We then say that the pair (X, D) is a *Campana orbifold*.

Fix K, X, D, and A as above. Moreover, assume further that K is a number field and that X is proper over K. Fix a finite subset S of Ω_K containing Ω_K^{∞} .

A model of (X, D) over $\mathcal{O}_{K, S}$ is a pair $(\mathcal{X}, \mathcal{D})$, where \mathcal{X} is a flat proper scheme over $\mathcal{O}_{K, S}$ with $\mathcal{X}_{(0)} \cong X$ and $\mathcal{D} := \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} \mathcal{D}_{\alpha}$, where for each

 $\alpha \in \mathcal{A}$ we denote \mathcal{D}_{α} the Zariski closure of D_{α} in $\mathcal{X} \leftarrow \mathcal{X}_{(0)} \cong X \supseteq D_{\alpha}$.

$$\operatorname{Spec}(K) \xrightarrow{P} X$$

$$Spec(K) \xrightarrow{P} X$$

$$\downarrow$$

$$Spec(\mathcal{O}_{K,S})$$

$${
m Spec}\,({\cal K}) \stackrel{P}{\longrightarrow} {\cal X} \cong {\cal X}_{(0)}$$
 ${
ightarrow}$
 ${
m Spec}\,({\cal O}_{{\cal K},{\cal S}})$

$$\begin{array}{c} \operatorname{Spec}\left(\mathcal{K}\right) \xrightarrow{P} X \cong \mathcal{X}_{(0)} \longleftrightarrow \mathcal{X} \\ \downarrow \\ \\ \operatorname{Spec}\left(\mathcal{O}_{\mathcal{K},S}\right) \end{array}$$

$$\begin{array}{cccc} \operatorname{Spec}\left(\mathcal{K}\right) & \stackrel{P}{\longrightarrow} \mathcal{X} \cong \mathcal{X}_{(0)} & \longrightarrow & \mathcal{X} \\ & & & & \downarrow \\ & & & & \downarrow \\ \operatorname{Spec}\left(\mathcal{O}_{\mathcal{K},\mathcal{S}}\right) & & \operatorname{Spec}\left(\mathcal{O}_{\mathcal{K},\mathcal{S}}\right) \end{array}$$

Given $P \in X(K) = \operatorname{Hom}_{\mathsf{Sch}}(\operatorname{Spec}(K), X)$, we get the following diagram:

Therefore we can write $X(K) = \mathcal{X}(\mathcal{O}_{K,S})$.

Campana Orbifolds

A model of (X, D) over $\mathcal{O}_{K,S}$ is a pair $(\mathcal{X}, \mathcal{D})$, where \mathcal{X} is a flat proper scheme over $\mathcal{O}_{K,S}$ with $\mathcal{X}_{(0)} \cong X$ and $\mathcal{D} \coloneqq \sum_{\alpha \in \mathcal{A}} \varepsilon_{\alpha} \mathcal{D}_{\alpha}$, where for each $\alpha \in \mathcal{A}$ we denote \mathcal{D}_{α} the Zariski closure of D_{α} in $\mathcal{X} \hookleftarrow \mathcal{X}_{(0)} \cong X \supseteq D_{\alpha}$.

Given $P \in X(K) = \operatorname{Hom}_{Sch}(\operatorname{Spec}(K), X)$, we get the following diagram:

Therefore we can write $X(K) = \mathcal{X}(\mathcal{O}_{K,S})$. For each $v \in \Omega_K \setminus S$ we have $\mathcal{O}_{K,S} \subseteq \mathcal{O}_{K,v}$, so we get a point $\mathcal{P}_v \in \mathcal{X}(\mathcal{O}_{K,v})$:
Therefore we can write $X(\mathcal{K}) = \mathcal{X}(\mathcal{O}_{\mathcal{K},S})$. For each $v \in \Omega_{\mathcal{K}} \setminus S$ we have $\mathcal{O}_{\mathcal{K},S} \subseteq \mathcal{O}_{\mathcal{K},v}$, so we get a point $\mathcal{P}_v \in \mathcal{X}(\mathcal{O}_{\mathcal{K},v})$:

Therefore we can write $X(K) = \mathcal{X}(\mathcal{O}_{K,S})$. For each $v \in \Omega_K \setminus S$ we have $\mathcal{O}_{K,S} \subseteq \mathcal{O}_{K,v}$, so we get a point $\mathcal{P}_v \in \mathcal{X}(\mathcal{O}_{K,v})$:

Campana Orbifolds

Therefore we can write $X(K) = \mathcal{X}(\mathcal{O}_{K,S})$. For each $v \in \Omega_K \setminus S$ we have $\mathcal{O}_{K,S} \subseteq \mathcal{O}_{K,v}$, so we get a point $\mathcal{P}_v \in \mathcal{X}(\mathcal{O}_{K,v})$:

For each $\alpha \in \mathcal{A}$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$${\it n}_{\it v}\left(\mathcal{D}_{lpha}, {\it P}
ight) \coloneqq egin{cases} +\infty, & {\it P}\in {\it D}_{lpha}, \ {
m colength of the ideal of } \mathcal{O}_{{\it K},{\it S}} \ {
m corresponding to } \mathcal{D}_{lpha} imes_{\cal X} \, {
m Spec}\left(\mathcal{O}_{{\it K},{\it v}}
ight), & {\cal P}_{\it v}
ot \subseteq \mathcal{D}_{lpha}. \end{cases}$$

For each $\alpha \in A$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$$n_{v}\left(\mathcal{D}_{\alpha}, P\right) \coloneqq \begin{cases} +\infty, & P \in D_{\alpha}, \\ \text{colength of the ideal of } \mathcal{O}_{K,S} \\ \text{corresponding to } \mathcal{D}_{\alpha} \times_{\mathcal{X}} \operatorname{Spec}\left(\mathcal{O}_{K,v}\right), & \mathcal{P}_{v} \not\subseteq \mathcal{D}_{\alpha}. \end{cases}$$

Definition

We say that P is a **Campana** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P) = 0$ for all $v \in \Omega_{K} \setminus S$, For each $\alpha \in \mathcal{A}$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$$n_{v}\left(\mathcal{D}_{lpha},P
ight)\coloneqq egin{cases} +\infty, & P\in D_{lpha},\ ext{colength of the ideal of }\mathcal{O}_{K,S}\ ext{corresponding to }\mathcal{D}_{lpha} imes_{\chi}\operatorname{Spec}\left(\mathcal{O}_{K,v}
ight), & \mathcal{P}_{v}\nsubseteq\mathcal{D}_{lpha}. \end{cases}$$

Definition

We say that *P* is a **Campana** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P) = 0$ for all $\nu \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P)^{2} \geq \frac{1}{1-\varepsilon_{\alpha}}n_{\nu}(\mathcal{D}_{\alpha}, P)$. For each $\alpha \in A$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$$n_{v}\left(\mathcal{D}_{\alpha}, P\right) \coloneqq \begin{cases} +\infty, & P \in D_{\alpha}, \\ \text{colength of the ideal of } \mathcal{O}_{\mathcal{K}, \mathcal{S}} \\ \text{corresponding to } \mathcal{D}_{\alpha} \times_{\mathcal{X}} \operatorname{Spec}\left(\mathcal{O}_{\mathcal{K}, v}\right), & \mathcal{P}_{v} \not\subseteq \mathcal{D}_{\alpha}. \end{cases}$$

Definition

We say that P is a **Campana** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P) = 0$ for all $\nu \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P)^{2} \geq \frac{1}{1-\varepsilon_{\alpha}}n_{\nu}(\mathcal{D}_{\alpha}, P)$.

We say that P is a **Darmon** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P) = 0$ for all $v \in \Omega_{K} \setminus S$,

Campana Orbifolds

For each $\alpha \in A$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$$n_{\nu}\left(\mathcal{D}_{\alpha},P\right) \coloneqq \begin{cases} +\infty, & P \in D_{\alpha}, \\ \text{colength of the ideal of } \mathcal{O}_{\mathcal{K},\mathcal{S}} \\ \text{corresponding to } \mathcal{D}_{\alpha} \times_{\mathcal{X}} \operatorname{Spec}\left(\mathcal{O}_{\mathcal{K},\nu}\right), & \mathcal{P}_{\nu} \not\subseteq \mathcal{D}_{\alpha}. \end{cases}$$

Definition

We say that P is a **Campana** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P) = 0$ for all $\nu \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $n_{\nu}(\mathcal{D}_{\alpha}, P)^{2} \geq \frac{1}{1-\varepsilon_{\alpha}}n_{\nu}(\mathcal{D}_{\alpha}, P)$.

We say that P is a **Darmon** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P) = 0$ for all $v \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $\frac{1}{1-\varepsilon_{\alpha}} \mid n_{v}(\mathcal{D}_{\alpha}, P)$.

Campana Orbifolds

For each $\alpha \in A$, define the intersection multiplicity of P and \mathcal{D}_{α} as

$$n_{v}\left(\mathcal{D}_{\alpha}, P\right) \coloneqq \begin{cases} +\infty, & P \in D_{\alpha}, \\ \text{colength of the ideal of } \mathcal{O}_{K,S} \\ \text{corresponding to } \mathcal{D}_{\alpha} \times_{\mathcal{X}} \operatorname{Spec}\left(\mathcal{O}_{K,v}\right), & \mathcal{P}_{v} \not\subseteq \mathcal{D}_{\alpha}. \end{cases}$$

Definition

We say that P is a **Campana** $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P) = 0$ for all $v \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P)^{2} \ge \underbrace{\left(\frac{1}{1-\varepsilon_{\alpha}}\right)}_{n_{\alpha}} n_{v}(\mathcal{D}_{\alpha}, P).$

We say that P is a Darmon $\mathcal{O}_{K,S}$ -point if for all $\alpha \in \mathcal{A}$ such that $\varepsilon_{\alpha} = 1$ we have $n_{v}(\mathcal{D}_{\alpha}, P) = 0$ for all $v \in \Omega_{K} \setminus S$, and for all $\alpha \in \mathcal{A}$ with $\varepsilon_{\alpha} < 1$ we have $\underbrace{\left(\frac{1}{1-\varepsilon_{\alpha}}\right)}_{n_{\alpha}} \mid n_{v}(\mathcal{D}_{\alpha}, P)$.

EXAMPLES.

Juan Pablo De Rasis (OSU)

Juan Pablo De Rasis (OSU)

• If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 - \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.

- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Z}$.

- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Z}$.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + (1 \frac{1}{n}) \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Q}$.

- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Z}$.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + (1 \frac{1}{n}) \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Q}$.

All these examples are analogous to the case we will workout in detail right now:

- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.
- If X = P¹_Q, S = Ω[∞]_Q, and D = (1 ¹/_n) {x₀ = 0} + {x₁ = 0}, we get that Darmon points are those having the form (aⁿ : ±1), where a ∈ Z.
 If X = P¹_Q, S = Ω[∞]_Q, and D = (1 ¹/_n) {x₀ = 0} + (1 ¹/_n) {x₁ = 0},
- If $X = \mathbb{P}_{\mathbb{Q}}$, $S = \Omega_{\mathbb{Q}}^{-}$, and $D = (1 \frac{-}{n}) \{x_0 = 0\} + (1 \frac{-}{n}) \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Q}$.

All these examples are analogous to the case we will workout in detail right now: we will consider a number field K, $X = \mathbb{P}^1_K$, an arbitrary finite subset S of Ω_K containing Ω_K^{∞} , and we will take $D = (1 - \frac{1}{n}) \{x_1 = 0\}$,

- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Campana points are those having the form (m : 1), where *m* is an *n*-full integer.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Z}$.
- If $X = \mathbb{P}^1_{\mathbb{Q}}$, $S = \Omega^{\infty}_{\mathbb{Q}}$, and $D = (1 \frac{1}{n}) \{x_0 = 0\} + (1 \frac{1}{n}) \{x_1 = 0\}$, we get that Darmon points are those having the form $(a^n : \pm 1)$, where $a \in \mathbb{Q}$.

All these examples are analogous to the case we will workout in detail right now: we will consider a number field K, $X = \mathbb{P}^1_K$, an arbitrary finite subset S of Ω_K containing Ω_K^{∞} , and we will take $D = (1 - \frac{1}{n}) \{x_1 = 0\}$, allowing the possibility $n = \infty$.

Of course we will take $\mathbb{P}^1_{\mathcal{O}_{K,S}}$ as our model.

Assume first $n < \infty$.

Assume first $n < \infty$. Since $D = \left(1 - \frac{1}{n}\right) \{x_1 = 0\}$, then P is:

Assume first $n < \infty$. Since $D = (1 - \frac{1}{n}) \{x_1 = 0\}$, then P is:

• Campana, iff
$$\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$,

Assume first $n < \infty$. Since $D = \left(1 - \frac{1}{n}\right) \{x_1 = 0\}$, then P is:

- Campana, iff $\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, and
- Darmon, iff $n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Assume first $n < \infty$. Since $D = \left(1 - \frac{1}{n}\right) \{x_1 = 0\}$, then P is:

- Campana, iff $\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, and
- Darmon, iff $n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Therefore, intersecting with the affine line, we get:

Of course we will take $\mathbb{P}^{1}_{\mathcal{O}_{K,S}}$ as our model. Given $P \in \mathbb{P}^{1}_{K}(K)$, we may write P = (a : b) with $a, b \in \mathcal{O}_{K,S}$. Assume $b \neq 0$.

Assume first $n < \infty$. Since $D = \left(1 - \frac{1}{n}\right) \{x_1 = 0\}$, then P is:

- Campana, iff $\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$ for all $\mathfrak{p} \in \Omega_K \setminus S$, and
- Darmon, iff $n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Therefore, intersecting with the affine line, we get:

Affine Campana points

$$\widetilde{\mathcal{C}_{\mathcal{K},\mathcal{S},n}} \quad = \big\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \big\} \cup \{0\} \,,$$

Of course we will take $\mathbb{P}^{1}_{\mathcal{O}_{K,S}}$ as our model. Given $P \in \mathbb{P}^{1}_{K}(K)$, we may write P = (a : b) with $a, b \in \mathcal{O}_{K,S}$. Assume $b \neq 0$.

Assume first $n < \infty$. Since $D = (1 - \frac{1}{n}) \{x_1 = 0\}$, then P is:

• Campana, iff
$$\nu_{\mathfrak{p}}\left(b\left(a,b\right)^{-1}\right)^{2} \geq n \cdot \nu_{\mathfrak{p}}\left(b\left(a,b\right)^{-1}\right)^{2}$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, and

• Darmon, iff
$$n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Therefore, intersecting with the affine line, we get:

$$\overbrace{\mathcal{C}_{\mathcal{K},S,n}}^{\mathcal{C}} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S \right\} \cup \{0\},$$

$$\underbrace{\mathcal{D}_{\mathcal{K},S,n}}_{\text{Affine}} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S \right\} \cup \{0\}.$$
Darmon points

Juan Pablo De Rasis (OSU)

• Campana, iff
$$\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, and

• Darmon, iff
$$n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Therefore, intersecting with the affine line, we get:

$$\begin{array}{l} \underset{\mathsf{Campana points}}{\overset{\mathsf{Affine}}{\overbrace{\mathsf{C}_{\mathsf{K},\mathsf{S},n}}}} = \left\{ \lambda \in \mathsf{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathsf{K}} \setminus S \right\} \cup \{0\}, \\ \underbrace{\mathsf{D}_{\mathsf{K},\mathsf{S},n}}_{\overset{\mathsf{Affine}}{\underset{\mathsf{Darmon points}}}} = \left\{ \lambda \in \mathsf{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{\mathsf{K}} \setminus S \right\} \cup \{0\}. \end{array}$$

If $n = \infty$ then in both cases we need $\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right) = 0$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$,

• Campana, iff
$$\nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2 \ge n \cdot \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)^2$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, and

• Darmon, iff
$$n \mid \nu_{\mathfrak{p}}\left(b(a,b)^{-1}\right)$$
 for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$.

Therefore, intersecting with the affine line, we get:

$$\begin{array}{l} \underset{\mathsf{Campana points}}{\overset{\mathsf{Affine}}{\overbrace{\mathsf{C}_{\mathsf{K},\mathsf{S},n}}}} = \left\{ \lambda \in \mathsf{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathsf{K}} \setminus S \right\} \cup \{0\} \,, \\ \underset{\mathsf{Affine}}{\overset{\mathsf{D}_{\mathsf{K},\mathsf{S},n}}{\underset{\mathsf{Darmon points}}}} = \left\{ \lambda \in \mathsf{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{\mathsf{K}} \setminus S \right\} \cup \{0\} \,. \end{array}$$

If $n = \infty$ then in both cases we need $\nu_{\mathfrak{p}}\left(b(a, b)^{-1}\right) = 0$ for all $\mathfrak{p} \in \Omega_{\mathcal{K}} \setminus S$, hence in both cases we get $\mathcal{O}_{\mathcal{K},S}$, the set of S-integers.

$$\begin{array}{l} \underset{C_{\mathrm{Affine}}}{\overset{\text{Affine}}{\bigcap}} \\ \overbrace{\mathcal{C}_{K,S,n}}^{\mathrm{Affine}} &= \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{K} \setminus S \right\} \cup \{0\} \,, \\ \underbrace{\mathcal{D}_{K,S,n}}_{\underset{\text{Affine}}{\operatorname{Darmon points}}} &= \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{K} \setminus S \right\} \cup \{0\} \,. \end{array}$$

These are the sets we will try to characterize with first-order language.

Given a field K, define $(-,-)_{K}:K^{\times}\times K^{\times}\to \{\pm 1\}$ as

Given a field K, define $(-,-)_{K}: K^{\times} \times K^{\times} \to \{\pm 1\}$ as

$$(a,b)_{K} \coloneqq \begin{cases} 1, & ax^{2} + by^{2} = z^{2} \text{ has a nontrivial solution in } K, \\ -1, & \text{otherwise.} \end{cases}$$

Given a field K, define $(-,-)_{K}: K^{\times} \times K^{\times} \to \{\pm 1\}$ as

$$(a,b)_{K} \coloneqq \begin{cases} 1, & ax^{2} + by^{2} = z^{2} \text{ has a nontrivial solution in } K, \\ -1, & \text{otherwise.} \end{cases}$$

If K is a number field and $v \in \Omega_K$, denote $(-,-)_v \coloneqq (-,-)_{K_v}$.

Given a field K, define $(-,-)_{\mathcal{K}}:\mathcal{K}^{\times}\times\mathcal{K}^{\times}\to\{\pm1\}$ as

$$(a,b)_{K} := \begin{cases} 1, & ax^{2} + by^{2} = z^{2} \text{ has a nontrivial solution in } K, \\ -1, & \text{otherwise.} \end{cases}$$

If K is a number field and $v \in \Omega_K$, denote $(-, -)_v \coloneqq (-, -)_{K_v}$. In that case, for $a, b \in K^{\times}$ denote

$$\Delta_{a,b,K} \coloneqq \{ v \in \Omega_K : (a,b)_v = -1 \}.$$

Juan Pablo De Rasis (OSU)

Given a field K, define $(-,-)_{K}:K^{\times}\times K^{\times}\to \{\pm 1\}$ as

$$(a,b)_{K} := \begin{cases} 1, & ax^{2} + by^{2} = z^{2} \text{ has a nontrivial solution in } K, \\ -1, & \text{otherwise.} \end{cases}$$

If K is a number field and $v \in \Omega_K$, denote $(-, -)_v \coloneqq (-, -)_{K_v}$. In that case, for $a, b \in K^{\times}$ denote

$$\Delta_{a,b,K} \coloneqq \{ v \in \Omega_K : (a,b)_v = -1 \} \,.$$

If $\lambda \in K^{ imes}$, $\mathbb{P}_K(\lambda) \coloneqq \{ \mathfrak{p} \in \Omega_K^{<\infty} : 2 \nmid \nu_\mathfrak{p}(\lambda) \},$

Given a field K, define $(-,-)_{K}:K^{\times}\times K^{\times}\to \{\pm 1\}$ as

$$(a,b)_{K} := \begin{cases} 1, & ax^{2} + by^{2} = z^{2} \text{ has a nontrivial solution in } K, \\ -1, & \text{otherwise.} \end{cases}$$

If K is a number field and $v \in \Omega_K$, denote $(-, -)_v \coloneqq (-, -)_{K_v}$. In that case, for $a, b \in K^{\times}$ denote

$$egin{aligned} &\Delta_{a,b,K}\coloneqq \left\{ \mathbf{v}\in\Omega_{K}:\left(a,b
ight)_{\mathbf{v}}=-1
ight\} . \end{aligned}$$
 If $\lambda\in K^{ imes}, \ \mathbb{P}_{K}\left(\lambda
ight)\coloneqq \left\{ \mathfrak{p}\in\Omega_{K}^{<\infty}:2
otin
u_{\mathfrak{p}}\left(\lambda
ight)
ight\}, \ &\Delta^{a,b,K}\coloneqq\Delta_{a,b,K}\cap\left(\mathbb{P}_{K}\left(a
ight)\cup\mathbb{P}_{K}\left(b
ight)
ight). \end{aligned}$

Quadratic Hilbert Symbol

Given a field K, define
$$(-,-)_{K}: K^{ imes} imes K^{ imes} o \{\pm 1\}$$
 as

 $(a,b)_{K} := egin{cases} 1, & ax^{2}+by^{2}=z^{2} \mbox{ has a nontrivial solution in } K, \ -1, & \mbox{ otherwise.} \end{cases}$

If K is a number field and $v \in \Omega_K$, denote $(-, -)_v \coloneqq (-, -)_{K_v}$. In that case, for $a, b \in K^{\times}$ denote

$$egin{aligned} &\Delta_{a,b,K}\coloneqq \left\{ \mathbf{v}\in\Omega_{K}:\left(a,b
ight)_{\mathbf{v}}=-1
ight\} . \end{aligned} \ & ext{If }\lambda\in K^{ imes},\ \mathbb{P}_{K}\left(\lambda
ight)\coloneqq \left\{ \mathfrak{p}\in\Omega_{K}^{<\infty}:2
otin
u_{\mathfrak{p}}\left(\lambda
ight)
ight\} , \ & \Delta^{a,b,K}\coloneqq\Delta_{a,b,K}\cap\left(\mathbb{P}_{K}\left(a
ight)\cup\mathbb{P}_{K}\left(b
ight)
ight) . \end{aligned}$$

Finally, given $a, b, c, d \in K^{\times}$, denote

$$\Omega_{a,b,c,d,K} \coloneqq \Delta^{a,b,K} \cap \Delta^{c,d,K}.$$

Juan Pablo De Rasis (OSU)
For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

•
$$S_{a,b,K} \coloneqq \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$$

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

- $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 ax_2^2 bx_3^2 + abx_4^2 = 1\}.$
- $T_{a,b,K} \coloneqq S_{a,b,K} + S_{a,b,K}$.

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

•
$$S_{a,b,K} := \{ 2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1 \}.$$

•
$$T_{a,b,K} \coloneqq S_{a,b,K} + S_{a,b,K}$$
.

•
$$T_{a,b,K}^{\times} \coloneqq \{ u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1) \}.$$

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

Given $a, b, c, d \in K^{\times}$, define:

•
$$S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$$

•
$$T_{a,b,K} \coloneqq S_{a,b,K} + S_{a,b,K}$$
.

•
$$T_{a,b,K}^{\times} \coloneqq \{ u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1) \}.$$

•
$$I_{a,b,K}^c \coloneqq c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap \left(1 - K^2 \cdot T_{a,b,K}^{\times}\right).$$

Juan Pablo De Rasis (OSU)

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

•
$$S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$$

• $T_{a,b,K} := S_{a,b,K} + S_{a,b,K}.$
• $T_{a,b,K}^{\times} := \{u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1)\}.$
• $I_{a,b,K}^c := c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap (1 - K^2 \cdot T_{a,b,K}^{\times}).$
• $J_{a,b,K} := (I_{a,b,K}^a + I_{a,b,K}^a) \cap (I_{a,b,K}^b + I_{a,b,K}^b).$

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

Given $a, b, c, d \in K^{\times}$, define:

• $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$

•
$$T_{a,b,K} \coloneqq S_{a,b,K} + S_{a,b,K}$$
.

•
$$T_{a,b,K}^{\times} \coloneqq \{ u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1) \}.$$

•
$$I_{a,b,K}^c \coloneqq c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap \left(1 - K^2 \cdot T_{a,b,K}^{\times}\right).$$

•
$$J_{a,b,K} \coloneqq \left(I_{a,b,K}^a + I_{a,b,K}^a\right) \cap \left(I_{a,b,K}^b + I_{a,b,K}^b\right).$$

• $J_{a,b,c,d,K} \coloneqq J_{a,b,K} + J_{c,d,K}$.

Given $a, b, c, d \in K^{\times}$, define: • $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}$. • $T_{a,b,K} := S_{a,b,K} + S_{a,b,K}$. • $T_{a,b,K}^{\times} := \{u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1)\}$. • $I_{a,b,K}^c := c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap (1 - K^2 \cdot T_{a,b,K}^{\times})$. • $J_{a,b,K} := (I_{a,b,K}^a + I_{a,b,K}^a) \cap (I_{a,b,K}^b + I_{a,b,K}^b)$. • $J_{a,b,c,d,K} := J_{a,b,K} + J_{c,d,K}$.

Theorem (Park, 2012)

If
$$a, b \in K^{\times}$$
 then $J_{a,b,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K}} \mathfrak{p}\mathcal{O}_{K}.$

Given $a, b, c, d \in K^{\times}$, define: • $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}$. • $T_{a,b,K} := S_{a,b,K} + S_{a,b,K}$. • $T_{a,b,K}^{\times} := \{u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1)\}$. • $I_{a,b,K}^c := c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap (1 - K^2 \cdot T_{a,b,K}^{\times})$. • $J_{a,b,K} := (I_{a,b,K}^a + I_{a,b,K}^a) \cap (I_{a,b,K}^b + I_{a,b,K}^b)$. • $J_{a,b,c,d,K} := J_{a,b,K} + J_{c,d,K}$.

Theorem (Park, 2012)

If
$$a, b \in K^{\times}$$
 then $J_{a,b,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K}} \mathfrak{p}\mathcal{O}_{K}.$

$$J_{a,b,c,d,K} = J_{a,b,K} + J_{c,d,K} =$$

Juan Pablo De Rasis (OSU)

Given $a, b, c, d \in K^{\times}$, define: • $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$ • $T_{a,b,K} := S_{a,b,K} + S_{a,b,K}.$ • $T_{a,b,K}^{\times} := \{u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1)\}.$ • $I_{a,b,K}^c := c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap (1 - K^2 \cdot T_{a,b,K}^{\times}).$ • $J_{a,b,K} := (I_{a,b,K}^a + I_{a,b,K}^a) \cap (I_{a,b,K}^b + I_{a,b,K}^b).$ • $J_{a,b,c,d,K} := J_{a,b,K} + J_{c,d,K}.$

Theorem (Park, 2012)

If
$$a, b \in K^{\times}$$
 then $J_{a,b,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K}} \mathfrak{p}\mathcal{O}_{K}.$

$$J_{a,b,c,d,K} = J_{a,b,K} + J_{c,d,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K} \cap \Delta^{c,d,K}} \mathfrak{p}\mathcal{O}_K$$

1

Given
$$a, b, c, d \in K^{\times}$$
, define:
• $S_{a,b,K} := \{2x_1 : (x_1, x_2, x_3, x_4) \in K^4 \land x_1^2 - ax_2^2 - bx_3^2 + abx_4^2 = 1\}.$
• $T_{a,b,K} := S_{a,b,K} + S_{a,b,K}.$
• $T_{a,b,K}^{\times} := \{u \in T_{a,b,K} : \exists v \in T_{a,b,K} (uv = 1)\}.$
• $I_{a,b,K}^c := c \cdot K^2 \cdot T_{a,b,K}^{\times} \cap (1 - K^2 \cdot T_{a,b,K}^{\times}).$
• $J_{a,b,K} := (I_{a,b,K}^a + I_{a,b,K}^a) \cap (I_{a,b,K}^b + I_{a,b,K}^b).$
• $J_{a,b,c,d,K} := J_{a,b,K} + J_{c,d,K}.$

Theorem (Park, 2012)

If
$$a, b \in K^{\times}$$
 then $J_{a,b,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K}} \mathfrak{p}\mathcal{O}_{K}.$

$$J_{a,b,c,d,K} = J_{a,b,K} + J_{c,d,K} = \bigcap_{\mathfrak{p} \in \Delta^{a,b,K} \cap \Delta^{c,d,K}} \mathfrak{p}\mathcal{O}_K = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

Given
$$n \in \mathbb{Z}_{\geq 1}$$
,
 $J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} =$

Juan Pablo De Rasis (OSU)

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p} \mathcal{O}_K.$$

Given $n \in \mathbb{Z}_{\geq 1}$,

$$J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}^n \mathcal{O}_K.$$

Juan Pablo De Rasis (OSU)

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

Given $n \in \mathbb{Z}_{\geq 1}$,

$$J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}^n \mathcal{O}_K.$$

Lemma

Given $a, b, c, d, a', b', c', d' \in K^{\times}$, the statement $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ is existential.

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

Given $n \in \mathbb{Z}_{\geq 1}$,

$$J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}^n \mathcal{O}_K.$$

Lemma

Given $a, b, c, d, a', b', c', d' \in K^{\times}$, the statement $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ is existential.

Proof. $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ if and only if

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

Given $n \in \mathbb{Z}_{\geq 1}$,

$$J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}^n \mathcal{O}_K.$$

Lemma

Given $a, b, c, d, a', b', c', d' \in K^{\times}$, the statement $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ is existential.

Proof. $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ if and only if

$$1\in \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}\cap\Omega_{a',b',c',d',K}}\mathfrak{p}\mathcal{O}_{K}$$

$$J_{a,b,c,d,K} = \bigcap_{\mathfrak{p}\in\Omega_{a,b,c,d,K}} \mathfrak{p}\mathcal{O}_K.$$

Given $n \in \mathbb{Z}_{\geq 1}$,

$$J_{a,b,c,d,n,K} \coloneqq \prod_{n \text{ times}} J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p}^n \mathcal{O}_K.$$

Lemma

Given $a, b, c, d, a', b', c', d' \in K^{\times}$, the statement $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ is existential.

Proof. $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ if and only if

$$1 \in \bigcap_{\mathfrak{p} \in \Omega_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{K}} \cap \Omega_{\mathbf{a}', \mathbf{b}', \mathbf{c}', \mathbf{d}', \mathbf{K}}} \mathfrak{p} \mathcal{O}_{\mathbf{K}} = J_{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{K}} + J_{\mathbf{a}', \mathbf{b}', \mathbf{c}', \mathbf{d}', \mathbf{K}} \blacksquare$$

Let us summarize what we have.

Let us summarize what we have.

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

Let us summarize what we have.

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

Theorem (Park, 2012)

For every
$$a, b, c, d \in K^{\times}$$
, $J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p} \mathcal{O}_K$.

Summary

Let us summarize what we have.

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_{K}^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

Theorem (Park, 2012)

For every
$$a, b, c, d \in K^{\times}$$
, $J_{a,b,c,d,K} = \bigcap_{\mathfrak{p} \in \Omega_{a,b,c,d,K}} \mathfrak{p} \mathcal{O}_{K}$.

Lemma

Given $a, b, c, d, a', b', c', d' \in K^{\times}$, the statement $\Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset$ is existential.

Juan Pablo De Rasis (OSU)

$$\mathcal{C}_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ 0 \right\}.$$

$$C_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ 0 \right\}.$$

 $\mathsf{Pick}\ \textit{a},\textit{b},\textit{c},\textit{d} \in \textit{K}^{\times} \text{ such that } \textit{S} \cap \Omega_{\textit{K}}^{<\infty} = \Omega_{\textit{a},\textit{b},\textit{c},\textit{d},\textit{K}}.$

$$\mathcal{C}_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{0\right\}.$$

Pick $a, b, c, d \in K^{\times}$ such that $S \cap \Omega_{K}^{<\infty} = \Omega_{a,b,c,d,K}$. Then given $r \in K$, we have $r \in C_{K,S,n}$ if and only if

$$\mathcal{C}_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ \mathsf{0} \right\}.$$

Pick $a, b, c, d \in K^{\times}$ such that $S \cap \Omega_{K}^{<\infty} = \Omega_{a,b,c,d,K}$. Then given $r \in K$, we have $r \in C_{K,S,n}$ if and only if

$$\forall a' \forall b' \forall c' \forall d' \left[\begin{pmatrix} abcda'b'c'd' \neq 0\\ \Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset\\ r \in (J_{a',b',c',d',K} \setminus \{0\})^{-1} \end{pmatrix} \right]$$

$$\mathcal{C}_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ 0 \right\}.$$

Pick $a, b, c, d \in K^{\times}$ such that $S \cap \Omega_{K}^{<\infty} = \Omega_{a,b,c,d,K}$. Then given $r \in K$, we have $r \in C_{K,S,n}$ if and only if

$$\forall a' \forall b' \forall c' \forall d' \left[\begin{pmatrix} abcda'b'c'd' \neq 0\\ \Omega_{a,b,c,d,K} \cap \Omega_{a',b',c',d',K} = \emptyset\\ r \in (J_{a',b',c',d',K} \setminus \{0\})^{-1} \end{pmatrix} \\ \Rightarrow r \in (J_{a',b',c',d',n,K} \setminus \{0\})^{-1} \right].$$

Juan Pablo De Rasis (OSU)

$$\mathcal{D}_{\mathcal{K},\mathcal{S},n} = \left\{\lambda \in \mathcal{K}^{ imes} :
u_{\mathfrak{p}}\left(\lambda
ight) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} ext{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S}
ight\} \cup \left\{0
ight\}.$$

$$\mathcal{D}_{\mathcal{K},\mathcal{S},n} = \left\{\lambda \in \mathcal{K}^{ imes} :
u_{\mathfrak{p}}\left(\lambda
ight) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} ext{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S}
ight\} \cup \left\{0
ight\}.$$

In this case we need a stronger version of:

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

 $D_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ 0 \right\}.$

In this case we need a stronger version of:

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

For each $a, b \in K^{\times}$ define the set

$$\mathcal{K}^{\mathsf{sf}}_{\mathsf{a},\mathsf{b}} := \{ r \in \mathcal{K} : \forall \mathfrak{p} \in \Delta^{\mathsf{a},\mathsf{b},\mathcal{K}} \left(|
u_{\mathfrak{p}}\left(r
ight)| \leq 1
ight) \}.$$

 $D_{\mathcal{K},\mathcal{S},n} = \left\{ \lambda \in \mathcal{K}^{\times} : \nu_{\mathfrak{p}}\left(\lambda\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \text{ for all } \mathfrak{p} \in \Omega_{\mathcal{K}} \setminus \mathcal{S} \right\} \cup \left\{ 0 \right\}.$

In this case we need a stronger version of:

Theorem

For every $a, b, c, d \in K^{\times}$, the set $\Omega_{a,b,c,d,K}$ is a finite set of non-archimedean places of K. Conversely, if $S \subseteq \Omega_K^{<\infty}$ is finite, then there exist $a, b, c, d \in K^{\times}$ such that $S = \Omega_{a,b,c,d,K}$.

For each $a, b \in K^{\times}$ define the set

$$\mathcal{K}^{\mathsf{sf}}_{\mathsf{a},\mathsf{b}} := \{ r \in \mathcal{K} : \forall \mathfrak{p} \in \Delta^{\mathsf{a},\mathsf{b},\mathcal{K}} \left(|
u_{\mathfrak{p}}\left(r
ight)| \leq 1
ight) \}.$$

Recall that $\Delta_{a,b,K}$ was the set of places v for which $(a, b)_v = -1$, and $\Delta^{a,b,K}$ was the set of places of $\Delta_{a,b,K}$ having odd valuation at a or b.

For each $a, b \in K^{\times}$ define the set

$${\mathcal K}_{{\mathsf{a}},{\mathsf{b}}}^{{\operatorname{sf}}} := \{r \in {\mathcal K}: orall \mathfrak{p} \in \Delta^{{\mathsf{a}},{\mathsf{b}},{\mathcal K}}\left(|
u_\mathfrak{p}\left(r
ight)| \leq 1
ight)\}.$$

Recall that $\Delta_{a,b,K}$ was the set of places v for which $(a,b)_v = -1$, and $\Delta^{a,b,K}$ was the set of places of $\Delta_{a,b,K}$ having odd valuation at a or b.

Theorem

If $S \subseteq \Omega_K^{<\infty}$ is finite and of even cardinality, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K} = \Delta^{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

For each $a, b \in K^{\times}$ define the set

$${\mathcal K}_{{\mathsf{a}},{\mathsf{b}}}^{\operatorname{sf}}:=\{r\in{\mathcal K}: orall{\mathfrak p}\in\Delta^{{\mathsf{a}},{\mathsf{b}},{\mathcal K}}\left(|
u_{\mathfrak p}\left(r
ight)|\leq1
ight)\}.$$

Recall that $\Delta_{a,b,K}$ was the set of places v for which $(a,b)_v = -1$, and $\Delta^{a,b,K}$ was the set of places of $\Delta_{a,b,K}$ having odd valuation at a or b.

Theorem

If $S \subseteq \Omega_K^{<\infty}$ is finite and of even cardinality, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K} = \Delta^{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

If $S \subseteq \Omega_K$ is finite, of even cardinality, and does not contain any complex infinite place, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

If $S \subseteq \Omega_K^{<\infty}$ is finite and of even cardinality, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K} = \Delta^{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

If $S \subseteq \Omega_K$ is finite, of even cardinality, and does not contain any complex infinite place, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

The set $\mathcal{K}_{a,b}^{sf} := \{r \in \mathcal{K} : \forall \mathfrak{p} \in \Delta^{a,b,\mathcal{K}} (|\nu_{\mathfrak{p}}(r)| \leq 1)\}$ is uniformly $\forall \exists$ -definable,

If $S \subseteq \Omega_K^{<\infty}$ is finite and of even cardinality, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K} = \Delta^{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

If $S \subseteq \Omega_K$ is finite, of even cardinality, and does not contain any complex infinite place, there exist $a, b \in K^{\times}$ such that $S = \Delta_{a,b,K}$ and $a, b \in K_{a,b}^{sf}$.

The set $K_{a,b}^{sf} := \{r \in K : \forall \mathfrak{p} \in \Delta^{a,b,K} (|\nu_{\mathfrak{p}}(r)| \leq 1)\}$ is uniformly $\forall \exists$ -definable, by the formula

$$\forall \mathbf{a}' \forall \mathbf{b}' \forall \mathbf{c} \forall \mathbf{d} \left[\begin{pmatrix} \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{a}' \mathbf{b}' \neq \mathbf{0} \\ \Delta^{\mathbf{a}, \mathbf{b}, \mathbf{K}} \cap \Omega_{\mathbf{a}', \mathbf{b}', \mathbf{c}, \mathbf{d}} \neq \emptyset \end{pmatrix} \implies \\ r \notin \left(J_{\mathbf{a}', \mathbf{b}', \mathbf{c}, \mathbf{d}, 2, \mathbf{K}} \cup \left(J_{\mathbf{a}', \mathbf{b}', \mathbf{c}, \mathbf{d}, 2, \mathbf{K}} \setminus \{ \mathbf{0} \} \right)^{-1} \right) \right]$$

The set $K_{a,b}^{sf} := \{r \in K : \forall \mathfrak{p} \in \Delta^{a,b,K} (|\nu_{\mathfrak{p}}(r)| \leq 1)\}$ is uniformly $\forall \exists$ -definable, by the formula

$$\forall \mathbf{a}' \forall \mathbf{b}' \forall \mathbf{c} \forall \mathbf{d} \left[\begin{pmatrix} abcda'b' \neq 0 \\ \Delta^{\mathbf{a},b,\kappa} \cap \Omega_{\mathbf{a}',b',c,d} \neq \emptyset \end{pmatrix} \implies \\ \mathbf{r} \notin \left(J_{\mathbf{a}',b',c,d,2,\kappa} \cup \left(J_{\mathbf{a}',b',c,d,2,\kappa} \setminus \{\mathbf{0}\} \right)^{-1} \right) \right].$$

If for each real $\sigma \in \Omega^{\infty}_{K}$ we define

$$(\mathcal{O}_{\mathcal{K}})_{\sigma} \coloneqq \sigma^{-1}\left([-4,4]\right),$$

we get:
Darmon points

The set $K_{a,b}^{sf} := \{r \in K : \forall \mathfrak{p} \in \Delta^{a,b,K} (|\nu_{\mathfrak{p}}(r)| \leq 1)\}$ is uniformly $\forall \exists$ -definable, by the formula

$$\forall \mathbf{a}' \forall \mathbf{b}' \forall \mathbf{c} \forall \mathbf{d} \left[\begin{pmatrix} abcda'b' \neq 0 \\ \Delta^{\mathbf{a}, b, K} \cap \Omega_{\mathbf{a}', b', c, d} \neq \emptyset \end{pmatrix} \implies \\ r \notin \left(J_{\mathbf{a}', b', c, d, 2, K} \cup \left(J_{\mathbf{a}', b', c, d, 2, K} \setminus \{0\} \right)^{-1} \right) \right]$$

If for each real $\sigma \in \Omega^{\infty}_{K}$ we define

$$(\mathcal{O}_{\mathcal{K}})_{\sigma} \coloneqq \sigma^{-1}\left([-4,4]\right),$$

we get:

Theorem (Park)

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v.$

If for each real $\sigma \in \Omega^{\infty}_{K}$ we define

$$(\mathcal{O}_{\mathcal{K}})_{\sigma} \coloneqq \sigma^{-1}\left([-4,4]\right),$$

we get:

Theorem (Park)

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v.$

In particular, $T_{a,b,K}$ is a semi-local ring when $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$.

If for each real $\sigma \in \Omega^{\infty}_{K}$ we define

$$(\mathcal{O}_{\mathcal{K}})_{\sigma} \coloneqq \sigma^{-1}\left([-4,4]\right),$$

we get:

Theorem (Park)

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v$.

In particular, $T_{a,b,K}$ is a semi-local ring when $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$. Using the local-to-global aspects of the theory of quadratic forms, it can be shown that if $\lambda \in K$ then $\sigma(\lambda) \ge 0$ for all real $\sigma \in \Omega_K^{\infty}$ if and only if λ is the sum of four squares in K.

Darmon points

If for each real $\sigma \in \Omega^{\infty}_{K}$ we define

$$(\mathcal{O}_{\mathcal{K}})_{\sigma} \coloneqq \sigma^{-1}\left([-4,4]\right),$$

we get:

Theorem (Park)

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v$.

In particular, $T_{a,b,K}$ is a semi-local ring when $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$. Using the local-to-global aspects of the theory of quadratic forms, it can be shown that if $\lambda \in K$ then $\sigma(\lambda) \ge 0$ for all real $\sigma \in \Omega_K^{\infty}$ if and only if λ is the sum of four squares in K. Combining this with weak approximation, we get:

Corollary

The condition $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ is uniformly diophantine.

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v$.

Corollary

The condition $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ is uniformly diophantine.

If $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ then $T_{a,b,K}$ is a semi-local ring.

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v$.

Corollary

The condition $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ is uniformly diophantine.

If $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ then $\mathcal{T}_{a,b,K}$ is a semi-local ring. It's also the localization of a Dedekind domain, therefore it is a PID.

For all
$$a, b \in K^{\times}$$
 we get $T_{a,b,K} = \bigcap_{v \in \Delta_{a,b,K}} (\mathcal{O}_K)_v.$

Corollary

The condition $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ is uniformly diophantine.

If $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ then $T_{a,b,K}$ is a semi-local ring. It's also the localization of a Dedekind domain, therefore it is a PID. In particular, it admits unique factorization, thus saying that $x \in K$ satisfies that $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$ amounts to writing x as $\frac{y}{z^n}$ where $y, z \in T_{a,b,K}$ are relatively prime.

$$\text{ For all } a,b\in K^{\times} \text{ we get } T_{a,b,K} = \bigcap_{v\in \Delta_{a,b,K}} \left(\mathcal{O}_{K}\right)_{v}.$$

Corollary

The condition $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ is uniformly diophantine.

If $\Delta_{a,b,K} \cap \Omega_K^{\infty} = \emptyset$ then $T_{a,b,K}$ is a semi-local ring. It's also the localization of a Dedekind domain, therefore it is a PID. In particular, it admits unique factorization, thus saying that $x \in K$ satisfies that $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$ amounts to writing x as $\frac{y}{z^n}$ where $y, z \in T_{a,b,K}$ are relatively prime. This being a PID, $y, z \in T_{a,b,K}$ being relatively prime is existentially defined as the existence of $s, t \in T_{a,b,K}$ such that sy + tz = 1.

$$\varphi(x, a, b) \coloneqq \exists y \exists z \left(z \in T_{a, b, K} \land y \in T_{a, b, K} \land \mathsf{gcd}_{T_{a, b, K}} \left(y, z \right) = 1 \land y = xz^n \right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

$$\varphi\left(x,a,b\right) \coloneqq \exists y \exists z \left(z \in T_{a,b,K} \land y \in T_{a,b,K} \land \mathsf{gcd}_{T_{a,b,K}}\left(y,z\right) = 1 \land y = xz^n\right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

Now we can define Darmon points: Given $S \subseteq \Omega_K$ finite containing Ω_K^{∞} , pick $a, b, c, d \in K^{\times}$ such that $\Omega_{a,b,c,d,K} = S \cap \Omega_K^{<\infty}$.

$$\varphi(x, a, b) \coloneqq \exists y \exists z \left(z \in T_{a, b, K} \land y \in T_{a, b, K} \land \gcd_{T_{a, b, K}} (y, z) = 1 \land y = xz^n \right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

Now we can define Darmon points: Given $S \subseteq \Omega_K$ finite containing Ω_K^{∞} , pick $a, b, c, d \in K^{\times}$ such that $\Omega_{a,b,c,d,K} = S \cap \Omega_K^{<\infty}$. Buy our stronger parametrization results, the following formula defines Darmon points:

$$\varphi(x, a, b) \coloneqq \exists y \exists z \left(z \in T_{a, b, K} \land y \in T_{a, b, K} \land \mathsf{gcd}_{T_{a, b, K}}(y, z) = 1 \land y = xz^n \right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

Now we can define Darmon points: Given $S \subseteq \Omega_K$ finite containing Ω_K^{∞} , pick $a, b, c, d \in K^{\times}$ such that $\Omega_{a,b,c,d,K} = S \cap \Omega_K^{<\infty}$. Buy our stronger parametrization results, the following formula defines Darmon points:

$$\forall a' \forall b' \left(\left[\begin{pmatrix} abcda'b' \neq 0\\ \Omega_{a,b,c,d,K} \cap \Delta^{a',b',K} = \emptyset\\ \Delta_{a',b',K} \cap \Omega_{K}^{\infty} = \emptyset \end{pmatrix} \land a', b' \in K_{a',b'}^{\mathsf{sf}} \right] \Rightarrow \varphi \left(x, a', b' \right) \right)$$

The conditions $\Delta_{a',b',K} \cap \Omega_K^{\infty} = \emptyset$ and $a', b' \in K_{a',b'}^{sf}$ ensure that $\Delta_{a',b',K} = \Delta^{a',b',K}$.

$$\varphi(x, a, b) \coloneqq \exists y \exists z \left(z \in T_{a, b, K} \land y \in T_{a, b, K} \land \mathsf{gcd}_{T_{a, b, K}}(y, z) = 1 \land y = xz^n \right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

Now we can define Darmon points: Given $S \subseteq \Omega_K$ finite containing Ω_K^{∞} , pick $a, b, c, d \in K^{\times}$ such that $\Omega_{a,b,c,d,K} = S \cap \Omega_K^{<\infty}$. Buy our stronger parametrization results, the following formula defines Darmon points:

$$\forall a' \forall b' \left(\begin{bmatrix} \left(\begin{matrix} abcda'b' \neq 0 \\ \Omega_{a,b,c,d,K} \cap \Delta^{a',b',K} = \emptyset \\ \Delta_{a',b',K} \cap \Omega_{K}^{\infty} = \emptyset \end{matrix} \right) \land a', b' \in K_{a',b'}^{\mathsf{sf}} \end{bmatrix} \Rightarrow \varphi \left(x, a', b' \right) \right)$$

The conditions $\Delta_{a',b',K} \cap \Omega_K^{\infty} = \emptyset$ and $a', b' \in K_{a',b'}^{sf}$ ensure that $\Delta_{a',b',K} = \Delta^{a',b',K}$. Once analyzed, this reveals to be a $\forall \exists \forall$ -formula.

Darmon points

The formula

$$\varphi(x, a, b) \coloneqq \exists y \exists z \left(z \in T_{a, b, K} \land y \in T_{a, b, K} \land \mathsf{gcd}_{T_{a, b, K}}(y, z) = 1 \land y = xz^n \right)$$

diophantinely defines $\nu_{\mathfrak{p}}(x) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}$ for all $\mathfrak{p} \in \Delta_{a,b,K}$.

Now we can define Darmon points: Given $S \subseteq \Omega_K$ finite containing Ω_K^{∞} , pick $a, b, c, d \in K^{\times}$ such that $\Omega_{a,b,c,d,K} = S \cap \Omega_K^{<\infty}$. Buy our stronger parametrization results, the following formula defines Darmon points:

$$\forall \mathbf{a}' \forall \mathbf{b}' \left(\begin{bmatrix} \left(\begin{array}{c} \mathbf{a} \mathbf{b} \mathbf{c} \mathbf{d} \mathbf{a}' \mathbf{b}' \neq \mathbf{0} \\ \Omega_{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d},K} \cap \Delta^{\mathbf{a}',\mathbf{b}',K} = \emptyset \\ \Delta_{\mathbf{a}',\mathbf{b}',K} \cap \Omega_{K}^{\infty} = \emptyset \end{array} \right) \land \mathbf{a}', \mathbf{b}' \in \mathcal{K}_{\mathbf{a}',\mathbf{b}'}^{\mathsf{sf}} \end{bmatrix} \Rightarrow \varphi \left(\mathbf{x}, \mathbf{a}', \mathbf{b}' \right) \right)$$

The conditions $\Delta_{a',b',K} \cap \Omega_K^{\infty} = \emptyset$ and $a', b' \in K_{a',b'}^{sf}$ ensure that $\Delta_{a',b',K} = \Delta^{a',b',K}$. Once analyzed, this reveals to be a $\forall \exists \forall$ -formula. When $S = \Omega_K^{\infty}$, it can be improved to a $\forall \exists$ -formula.

Let us now switch to another base field: $\mathbb{C}(z)$.

Let us now switch to another base field: $\mathbb{C}(z)$. Given a finite set S of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$

Let us now switch to another base field: $\mathbb{C}(z)$. Given a finite set S of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C}) = \mathbb{C} \cup \{\widehat{\infty}\}$

$$\mathcal{C}_{\mathcal{S},n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus \mathcal{S}\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n}\right) \right\},\$$

$$C_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \right) \right\},$$
$$D_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \right) \right\}$$
(we assume $\infty\mathbb{Z} = \emptyset$).

$$C_{S,n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus S\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n}\right) \right\},\$$

 $D_{S,n} \coloneqq \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup n \mathbb{Z} \right) \right\}$ (we assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

$$C_{S,n} := \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus S\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n}\right) \right\},\$$

$$D_{\mathcal{S},n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus \mathcal{S}\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}\right) \right\}$$

(we assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

$$\mathcal{C}_{\mathcal{S},n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus \mathcal{S}\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n}\right) \right\},\$$

$$D_{\mathcal{S},n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus \mathcal{S}\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}\right) \right\}$$

(we assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

Let us characterize $C_{\emptyset,\infty} = D_{\emptyset,\infty}$.

$$\mathcal{C}_{\mathcal{S},n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus \mathcal{S}\left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n}\right) \right\},\$$

$$D_{S,n} \coloneqq \left\{ f \in \mathbb{C}\left(z\right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}}\left(\mathbb{C}\right) \setminus S \left(\nu_{\alpha}\left(f\right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z}\right) \right\}$$

(we assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

Let us characterize $C_{\emptyset,\infty} = D_{\emptyset,\infty}$. We want to be integral everywhere.

$$C_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \right) \right\},$$
$$D_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup n \mathbb{Z} \right) \right\}$$
(we assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

Let us characterize $C_{\emptyset,\infty} = D_{\emptyset,\infty}$. We want to be integral everywhere. Being integral outside $\widehat{\infty}$ is belonging to $\mathbb{C}[z]$.

$$C_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \right) \right\},$$
$$D_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup n\mathbb{Z} \right) \right\}$$
assume $\infty\mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

Let us characterize $C_{\emptyset,\infty} = D_{\emptyset,\infty}$. We want to be integral everywhere. Being integral outside $\widehat{\infty}$ is belonging to $\mathbb{C}[z]$. Adding integrality with respect to $\widehat{\infty}$ means reducing us further to \mathbb{C} ,

Juan Pablo De Rasis (OSU)

(we

$$C_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup \mathbb{Z}_{\leq -n} \right) \right\},$$
$$D_{S,n} := \left\{ f \in \mathbb{C} \left(z \right) : \forall \alpha \in \mathbb{P}^{1}_{\mathbb{C}} \left(\mathbb{C} \right) \setminus S \left(\nu_{\alpha} \left(f \right) \in \mathbb{Z}_{\geq 0} \cup n \mathbb{Z} \right) \right\}$$
assume $\infty \mathbb{Z} = \emptyset$). We have $C_{S,\infty} = D_{S,\infty} = S$ -integers if $\widehat{\infty} \in S$.

Observe that $C_{S,1} = D_{S,1} = \mathbb{C}(z)$.

Let us characterize $C_{\emptyset,\infty} = D_{\emptyset,\infty}$. We want to be integral everywhere. Being integral outside $\widehat{\infty}$ is belonging to $\mathbb{C}[z]$. Adding integrality with respect to $\widehat{\infty}$ means reducing us further to \mathbb{C} , so $C_{\emptyset,\infty} = D_{\emptyset,\infty} = \mathbb{C}$.

Juan Pablo De Rasis (OSU)

(we

Let $D \subseteq \mathbb{C}(z)$ be any subset.

Let $D \subseteq \mathbb{C}(z)$ be any subset. For each $n \in \mathbb{Z}_{\geq 0}$ we can consider $D \cap \mathbb{C}[z]_n$ as a subset of \mathbb{C}^{n+1} .

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Clearly $C_{S,1} = D_{S,1} = \mathbb{C}(z)$ is diophantine.

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Clearly $C_{S,1} = D_{S,1} = \mathbb{C}(z)$ is diophantine. Moreover, $C_{\emptyset,\infty} = D_{\emptyset,\infty} = \mathbb{C}$ is also diophantine,

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Clearly $C_{S,1} = D_{S,1} = \mathbb{C}(z)$ is diophantine. Moreover, $C_{\emptyset,\infty} = D_{\emptyset,\infty} = \mathbb{C}$ is also diophantine, because every large field *L* is diophantine in *L*(*z*) (a field *L* is *large* if every curve over *L* has either infinitely many or none *L*-rational points).

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Clearly $C_{S,1} = D_{S,1} = \mathbb{C}(z)$ is diophantine. Moreover, $C_{\emptyset,\infty} = D_{\emptyset,\infty} = \mathbb{C}$ is also diophantine, because every large field *L* is diophantine in *L*(*z*) (a field *L* is *large* if every curve over *L* has either infinitely many or none *L*-rational points). Are there other diophantine instances?

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be any subset. For each $n \in \mathbb{Z}_{\geq 0}$ we can consider $D \cap \mathbb{C}[z]_n$ as a subset of \mathbb{C}^{n+1} . We will consider the Zariski topology here.

Kollar's Conjecture

Let $D \subseteq \mathbb{C}(z)$ be a diophantine set such that, for infinitely many $n \in \mathbb{Z}_{\geq 0}$ the set D contains a Zariski open subset of $\mathbb{C}[z]_n$. Then D is cofinite.

Clearly $C_{S,1} = D_{S,1} = \mathbb{C}(z)$ is diophantine. Moreover, $C_{\emptyset,\infty} = D_{\emptyset,\infty} = \mathbb{C}$ is also diophantine, because every large field *L* is diophantine in *L*(*z*) (a field *L* is *large* if every curve over *L* has either infinitely many or none *L*-rational points). Are there other diophantine instances?

Theorem (García-Fritz, Pasten, Pheidas; 2022)

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $C_{S,n}$ is NOT diophantine, except for the cases $C_{S,1} = \mathbb{C}(z)$ and $C_{\emptyset,\infty} = \mathbb{C}$.
Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$. We want to show that $S = \emptyset$.

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$,

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$, so that $D_{S,n} = (\mathbb{C}[z])_S$

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n}$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$, so that $D_{S,n} = (\mathbb{C}[z])_S \supseteq \mathbb{C}[z]_\ell$ for all $\ell \in \mathbb{Z}_{\geq 0}$.

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n} = (\mathbb{C}[z])_S$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$, so that $D_{S,n} = (\mathbb{C}[z])_S \supseteq \underbrace{\mathbb{C}[z]_\ell}_{\mathbb{C}^{\ell+1}}$ for all $\ell \in \mathbb{Z}_{\geq 0}$. By

Kollar's Conjecture, $D_{S,n} = (\mathbb{C}[z])_S$ is cofinite.

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n} = (\mathbb{C}[z])_S$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$, so that $D_{S,n} = (\mathbb{C}[z])_S \supseteq \mathbb{C}[z]_{\ell}$ for all $\ell \in \mathbb{Z}_{\geq 0}$. By

Kollar's Conjecture, $D_{S,n} = (\mathbb{C}[z])_S$ is cofinite. This is obviously false (we have $\frac{1}{z-\lambda} \notin D_{S,n}$ for all $\lambda \notin S$).

Proposition

Let S be a finite subset of $\mathbb{P}^1_{\mathbb{C}}(\mathbb{C})$ and let $n \in \mathbb{Z}_{\geq 1} \cup \{\infty\}$. If Kollar's Conjecture is true, then $D_{S,n} = (\mathbb{C}[z])_S$ is NOT diophantine, except for the cases $D_{S,1} = \mathbb{C}(z)$ and $D_{\emptyset,\infty} = \mathbb{C}$.

Assume $D_{S,n}$ is diophantine.

CASE 1: $n = \infty$.

We want to show that $S = \emptyset$. If not, up to a linear change of variables we may assume $\widehat{\infty} \in S$, so that $D_{S,n} = (\mathbb{C}[z])_S \supseteq \underbrace{\mathbb{C}[z]}_{\ell}$ for all $\ell \in \mathbb{Z}_{\geq 0}$. By

Kollar's Conjecture, $D_{S,n} = (\mathbb{C}[z])_S$ is cofinite. This is obviously false (we have $\frac{1}{z-\lambda} \notin D_{S,n}$ for all $\lambda \notin S$).

CASE 2: $n \neq \infty$. We want to show that n = 1.

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

CASE 2: $n \neq \infty$.

We want to show that n = 1. If $\alpha \in n\mathbb{Z}_{\geq 1}$, let us show that

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set.

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^\times\times\mathbb{C}^\alpha$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}.$

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \geq 0$ for all $\lambda \in \mathbb{C}$

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^\times\times\mathbb{C}^\alpha$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}.$

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$).

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$). Moreover, $\nu_{\widehat{\infty}}(f) = -\deg(f) = -\alpha \in n\mathbb{Z}$,

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$). Moreover, $\nu_{\widehat{\infty}}(f) = -\deg(f) = -\alpha \in n\mathbb{Z}$, thus $f \in D_{S,n}$, as desired.

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$). Moreover, $\nu_{\widehat{\infty}}(f) = -\deg(f) = -\alpha \in n\mathbb{Z}$, thus $f \in D_{S,n}$, as desired.

By Kollar's Conjecture $D_{S,n}$ is cofinite.

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$). Moreover, $\nu_{\widehat{\infty}}(f) = -\deg(f) = -\alpha \in n\mathbb{Z}$, thus $f \in D_{S,n}$, as desired.

By Kollar's Conjecture $D_{S,n}$ is cofinite. If n > 1 then $\frac{1}{z-\lambda} \notin D_{S,n}$ for all $\lambda \in \mathbb{C} \setminus (S \cup \{\widehat{\infty}\})$,

$$D_{S,n} \supseteq \{f \in \mathbb{C} [z] : \deg(f) = \alpha\},\$$

the latter set being identified with $\mathbb{C}^{\times} \times \mathbb{C}^{\alpha}$, which is a Zariski open subset of $\mathbb{C}^{\alpha+1}$.

Fix f in the latter set. Since $f \in \mathbb{C}[z]$ then $\nu_{\lambda}(f) \ge 0$ for all $\lambda \in \mathbb{C}$ (in particular, for all $\lambda \in \mathbb{C} \setminus S$). Moreover, $\nu_{\widehat{\infty}}(f) = -\deg(f) = -\alpha \in n\mathbb{Z}$, thus $f \in D_{S,n}$, as desired.

By Kollar's Conjecture $D_{S,n}$ is cofinite. If n > 1 then $\frac{1}{z-\lambda} \notin D_{S,n}$ for all $\lambda \in \mathbb{C} \setminus (S \cup \{\widehat{\infty}\})$, so we must have n = 1.