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» AKE-type equivalence for valued fields with analytic structure.

» In parallel to the original theory of valued fields, we develop an
extension theory in our framework.

» New is that in addition to AKE-type results for these structures,
we obtain induced structure results for the coefficient field and
monomial group.

Joint work with Lou van den Dries.
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R is local, with maximal ideal o(R), K := Frac(R) is a valued field.
Avalued field is a Lya :={0,1,+,—,-,<}-structure. a< b iff a/b e R.

Residue field kg := R/o(R), value group Ik := K*/R*.
Residue map 7 : R — Ry, valuation map v: K* — Ik.

Theorem (Ax-Kochen-Ersov, 1965)
Let K and L be henselian valued fields of equicharacteristic 0. Then

K=L <= R¢ =R, as fields, and Ty =T, as ordered groups.
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Corollary

Let o be any L,.-sentence. Then

QErEo=TFy((t)Eo
for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of
quantifiers; and induced structure results for lifts of the residue field
and the value group.
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val

Ck and Gy are lifts of the residue field and the value group.

Example: (C((t)),C,t%), with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

(K, Cx,Gk) = (L,C,G,) <= Cx=C,and Gk = G,.

Corollary

» IfXc CY is definable in (K, Ck, Gk), then X is even definable in the
field (Ck; 0,1,+,—,-).

» Similarly, if Y € G¢ is definable in (K, Ck, Gk), then Y is even
definable in the ordered group (Gk; 1, -, <).
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Expansion by Z[[t]]-structure

The valuation rings Z, and F,[[t]] are complete local and come with
natural analytic structure.

Moreover, both Z, and F,[[t]] are homomorphic images of Z[[t]]:

Z[[t]] » Zp : a(t) ~ a(p)

Z[[t]] = Fp[[t]] - a(t) = a(t) modp

Can interpret the analytic structure on Z, and Fp[[t]] through a
common language.
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Introducing restricted power series

For each n we have the ring of restricted or strictly convergent power
series over Z[[t]]: Z[[t]]{Y,...,Yn) - the t-adic completion of
Z[[t]][y17 coog Yﬂ]

Z[[t]){Y4, ..., Yn) consists of the formal power series

f=FfV1,....Yn) = > a,Yyyp, v=(v,...,vy) ranging over N",

with all a, € Z[[t]] such that a, — 0, t-adically, as |v| = v1 + - + v, = 0.

Extend the language L, to Eiﬂt” by augmenting an n-ary function
symbol for each fe Z[[t]]{Y1,-.., Yn).

Construe Qp and Fy((t)) as A stryctures.

val

fe Z[[t]](Y) only takes values in Z, and F,[[t]].
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Theorem (van den Dries, 1992)

Let o be any L%ﬁt]]—sentence. Then

QEo=TFp((t)Eo

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries.
Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of
quantifiers, but not induced structure results for the coefficient field
and monomial group.
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Formal analytic structure

In the role of Z[[t]] we consider a general noetherian ring A with a
distinguished ideal 0(A) # A, and A is o(A)-adically complete.

A ring R has A-analytic structure if there is a ring morphism
tn = A{Yq,...,Yn) - ring of R-valued functions on R"

for every n, with the following properties:

(A1) tn(Y)Vay-- -3 ¥n) =V, fOrk=1,....n;

(A2) 1peq extends .

We consider valuation rings with A-analytic structure and construe
their fraction fields as £7,,-structures.
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In connection with a non-archimedean analogue of Pila-Wilkie type
counting result, BCN consider a 3-sorted structure M comprised of:

the analytic valued field (C((t))an, the field (C, the ordered abelian group Z.

and the v and ac maps relating the sorts.

Proposition (Binyamini - Cluckers — Novikov, 2022)
If Pc C((t))" is definable in M, then Pn C" is definable in the field
(C;0,1,+,—,).

Proof uses that M has quantifier elimination.

Lou’s “analytic AKE” results do give that any subset of C" definable in
M is definable in the field C, but that's not enough.
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We consider the 1-sorted structure (C((t))an,C, tZ), which includes
lifts for the residue field and value group.

Theorem (B. — van den Dries, 2022)

» If X< C™ is definable in (C((t))an, C,t*), then X is even definable
in the field (C; 0,1, +,—,-).

» Similarly, if Y ¢ (t*)" is definable in (C((t))an, C,t*), then Y is
even definable in the ordered group (t%;1,-,%).

The BCN proposition is a special case. Note that subsets C and t# of
C((t)) are not definable in M.

14/22



O Running the AKE program.

15/22



Our assumptions

Work with valuation rings with A-analytic structure.

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.
Then K = Frac(R) is an LA ,-structure.

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.
Then K = Frac(R) is an LA ,-structure.

Assume from here on that A-ring R is viable:

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.
Then K = Frac(R) is an LA ,-structure.

Assume from here on that A-ring R is viable:

o(R) = pR for some p, and p € \/Jo(A)R.

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.
Then K = Frac(R) is an LA ,-structure.

Assume from here on that A-ring R is viable:

o(R) = pR for some p, and p € \/Jo(A)R.

R viable = R is henselian.

16/22



Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.
Then K = Frac(R) is an LA ,-structure.

Assume from here on that A-ring R is viable:

o(R) = pR for some p, and p € \/Jo(A)R.
R viable = R is henselian.

Our assumptions give that viable valuation A-rings have:

piecewise uniform Weierstrass division with respect to parameters.
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Immediate extensions

Assume char R¢ = 0. So K is algebraically maximal, and we need only
consider the case of a pc-sequence (a,) of transcendental type.

Take a, ~ a, a e R,. Is K, an immediate extension of K?
Set R(a):={g(a): geR(Z)} =Up{ f(ar,...,an,a): feA(Yy,...,Yn,2) }
R(a) < Kq, K(a) € Kq, and R{a) is not a valuation ring.
Take an index po such that for p > po,
a=a,+tu, t,eR, Vv(u,)=0
and v(t,) is strictly increasing as a function of p > po.

R{a) € R(u,) € Rq, and we discover that Rq = U,sp, R(U)).
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Completing the extension array

Letael.
Weierstrass preparation for affinoid algebras gives a nice piecewise
description of 1-variable terms, and we obtain:

Proposition
The quantifier-free L2 ,-type of a over K is completely determined

val

by its quantifier-free L..-type over K.

Lemma

(i) If a<x1and =(a) is transcendental over R, then K, is an
immediate extension of K(a).

(ii) If a+ 0 and dv(a) ¢ Tk for all d > 1, then Kq is an immediate
extension of K(a) provided Ik is a Z-group and R, is viable.

- Is K, always an immediate extension of K(a)? .
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Then for £:%-structures K = (Kan, Cx, Gx) and € = (Ean, Ct, Ge):
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Theorem (B. — van den Dries, 2022)

Assume char R = 0 and T is a Z-group. Suppose t € Gk, G,. Then

K=& <— Ck=C¢ and Gk =t Gg.

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. - van den Dries, 2022)
Let A be “general”. Assume char Ry =0 and g is a Z-group. Then

the Eé‘;%—structure K has NIP <= the ring R¢ has NIP.
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