An analytic AKE program

with induced structure results on coefficient field and monomial group

The Online Logic Seminar

Neer Bhardwaj

September 15, 2022

Weizmann Institute of Science

► AKE-type equivalence for valued fields with *analytic structure*.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ▶ In parallel to the original theory of valued fields, we develop an extension theory in our framework.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ▶ In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.

- ► AKE-type equivalence for valued fields with *analytic structure*.
- ▶ In parallel to the original theory of valued fields, we develop an extension theory in our framework.
- New is that in addition to AKE-type results for these structures, we obtain induced structure results for the coefficient field and monomial group.

Joint work with Lou van den Dries.

Outline

- 1 Classical AKE.
- 2 Denef van den Dries' analytic expansion.
- 3 Some induced structure by Binyamini Cluckers Novikov
- 4 Running the AKE program.

All rings are commutative with unity.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), K := Frac(R) is a valued field.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal $\wp(R)$, $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0, 1, +, -, \cdot, s\}$ -structure.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal $\mathcal{O}(R)$, $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0,1,+,-,\cdot,\leqslant\}$ -structure. $a \leqslant b$ iff $a/b \in R$.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal $\mathcal{O}(R)$, $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0,1,+,-,\cdot, s\}$ -structure. $a \le b$ iff $a/b \in R$.

Residue field $\mathbf{k}_K := R/o(R)$, value group $\Gamma_K := K^{\times}/R^{\times}$.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0,1,+,-,\cdot,\leqslant\}$ -structure. $a \leqslant b$ iff $a/b \in R$.

Residue field $\mathbf{k}_K \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_K \coloneqq K^\times/R^\times$. Residue map $\pi : R \to \mathbf{k}_K$, valuation map $v : K^\times \to \Gamma_K$.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal $\phi(R)$, $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0, 1, +, -, \cdot, s\}$ -structure. $a \le b$ iff $a/b \in R$.

Residue field $\mathbf{k}_K \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_K \coloneqq K^\times/R^\times$. Residue map $\pi : R \to \mathbf{k}_K$, valuation map $v : K^\times \to \Gamma_K$.

Theorem (Ax-Kochen-Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0.

All rings are commutative with unity.

A valuation ring R is an integral domain such that for all $x \neq 0 \in K := \operatorname{Frac}(R), x \in R \text{ or } x^{-1} \in R.$

R is local, with maximal ideal o(R), $K \coloneqq \operatorname{Frac}(R)$ is a valued field. A valued field is a $\mathcal{L}_{\operatorname{val}} \coloneqq \{0,1,+,-,\cdot,\leqslant\}$ -structure. $a \leqslant b$ iff $a/b \in R$.

Residue field $\mathbf{k}_K \coloneqq R/\mathcal{O}(R)$, value group $\Gamma_K \coloneqq K^\times/R^\times$. Residue map $\pi : R \to \mathbf{k}_K$, valuation map $v : K^\times \to \Gamma_K$.

Theorem (Ax-Kochen-Ersov, 1965)

Let K and L be henselian valued fields of equicharacteristic 0. Then

 $K \equiv L \iff k_K \equiv k_L$ as fields, and $\Gamma_K \equiv \Gamma_L$ as ordered groups.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field- \mathbb{F}_p and value group- \mathbb{Z} .

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field- \mathbb{F}_p and value group- \mathbb{Z} .

Corollary

Let σ be any $\mathcal{L}_{\mathrm{val}}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group– \mathbb{Z} .

Corollary

Let σ be any $\mathcal{L}_{\mathrm{val}}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field- \mathbb{F}_p and value group- \mathbb{Z} .

Corollary

Let σ be any $\mathcal{L}_{\mathrm{val}}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group– \mathbb{Z} .

Corollary

Let σ be any \mathcal{L}_{val} -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers;

 $\mathbb{F}_p((t))$ and \mathbb{Q}_p have the same residue field– \mathbb{F}_p and value group– \mathbb{Z} .

Corollary

Let σ be any $\mathcal{L}_{\mathrm{val}}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Application: Ax-Kochen theorem.

The AKE program runs through an extension theory of valued fields.

Gives relative elementarity, model completeness, elimination of quantifiers; and induced structure results for lifts of the residue field and the value group.

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure.

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$,

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and $\operatorname{char} C = 0$.

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0.

Consider an $\mathcal{L}_{\text{val}}^{\text{cg}}$ -structure (K, C_K, G_K) , K an \mathcal{L}_{val} -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

$$(K,C_K,G_K)\equiv (L,C_L,G_L)\iff C_K\equiv C_L\ and\ G_K\equiv G_L.$$

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

$$(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L.$$

Corollary

▶ If $X \subseteq C_K^m$ is definable in (K, C_K, G_K) , then X is even definable in the field $(C_K; 0, 1, +, -, \cdot)$.

Consider an $\mathcal{L}_{\mathrm{val}}^{\mathrm{cg}}$ -structure (K, C_K, G_K) , K an $\mathcal{L}_{\mathrm{val}}$ -structure. C_K and G_K are lifts of the residue field and the value group.

Example: $(C((t)), C, t^{\mathbb{Z}})$, with R = C[[t]], C a field and char C = 0.

Theorem (folklore)

Suppose K and L are henselian of equicharacteristic 0. Then

$$(K, C_K, G_K) \equiv (L, C_L, G_L) \iff C_K \equiv C_L \text{ and } G_K \equiv G_L.$$

Corollary

- ▶ If $X \subseteq C_K^m$ is definable in (K, C_K, G_K) , then X is even definable in the field $(C_K; 0, 1, +, -, \cdot)$.
- ▶ Similarly, if $Y \subseteq G_K^n$ is definable in (K, C_K, G_K) , then Y is even definable in the ordered group $(G_K; 1, \cdot, \leq)$.

Outline

- 1 Classical AKE
- 2 Denef van den Dries' analytic expansion.
- 3 Some induced structure by Binyamini Cluckers Novikov
- 4 Running the AKE program.

The valuation rings \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are complete local and come with natural *analytic* structure.

The valuation rings \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are complete local and come with natural *analytic* structure.

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

$$\mathbb{Z}[[t]] \to \mathbb{Z}_p : a(t) \mapsto a(p)$$

The valuation rings \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are complete local and come with natural *analytic* structure.

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

$$\mathbb{Z}[[t]] \to \mathbb{Z}_p : a(t) \mapsto a(p)$$

$$\mathbb{Z}[[t]] \to \mathbb{F}_p[[t]] : a(t) \mapsto a(t) \bmod p$$

The valuation rings \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are complete local and come with natural *analytic* structure.

Moreover, both \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ are homomorphic images of $\mathbb{Z}[[t]]$:

$$\mathbb{Z}[[t]] \to \mathbb{Z}_p : a(t) \mapsto a(p)$$

$$\mathbb{Z}[[t]] \to \mathbb{F}_p[[t]] : a(t) \mapsto a(t) \bmod p$$

Can interpret the analytic structure on \mathbb{Z}_p and $\mathbb{F}_p[[t]]$ through a common language.

Introducing restricted power series

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \dots, Y_n \rangle$

Introducing restricted power series

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]]\langle Y_1,\dots,Y_n\rangle$ consists of the formal power series

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y_n^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \dots Y_n^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, t-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y_n^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, t-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language $\mathcal{L}_{\mathrm{val}}$ to $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ by augmenting an n-ary function symbol for each $f \in \mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$.

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]]\langle Y_1,\ldots,Y_n\rangle$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y_n^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, t-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ by augmenting an n-ary function symbol for each $f \in \mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$.

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -structures.

For each n we have the ring of restricted or strictly convergent power series over $\mathbb{Z}[[t]]$: $\mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$ – the t-adic completion of $\mathbb{Z}[[t]][Y_1, \ldots, Y_n]$.

 $\mathbb{Z}[[t]](Y_1,\ldots,Y_n)$ consists of the formal power series

$$f = f(Y_1, \dots, Y_n) = \sum_{\nu} a_{\nu} Y_1^{\nu_1} \cdots Y_n^{\nu_n}, \qquad \nu = (\nu_1, \dots, \nu_n) \text{ ranging over } \mathbb{N}^n,$$

with all $a_{\nu} \in \mathbb{Z}[[t]]$ such that $a_{\nu} \to 0$, t-adically, as $|\nu| = \nu_1 + \dots + \nu_n \to \infty$.

Extend the language \mathcal{L}_{val} to $\mathcal{L}_{val}^{\mathbb{Z}[[t]]}$ by augmenting an n-ary function symbol for each $f \in \mathbb{Z}[[t]]\langle Y_1, \ldots, Y_n \rangle$.

Construe \mathbb{Q}_p and $\mathbb{F}_p((t))$ as $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -structures. $f \in \mathbb{Z}[[t]]\langle Y \rangle$ only takes values in \mathbb{Z}_p and $\mathbb{F}_p[[t]]$.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries.

Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers,

Theorem (van den Dries, 1992)

Let σ be any $\mathcal{L}_{\mathrm{val}}^{\mathbb{Z}[[t]]}$ -sentence. Then

$$\mathbb{Q}_p \vDash \sigma \Longleftrightarrow \mathbb{F}_p((t)) \vDash \sigma$$

for all but finitely many primes p.

Followed seminal work of Denef and van den Dries. Strategy: Directly reduce to AKE-theory by Weierstrass division.

Application: solution to a problem posed by Serre.

Gives relative elementarity, model completeness, elimination of quantifiers, but **not** induced structure results for the coefficient field and monomial group.

Outline

- 1 Classical AKE.
- Denef van den Dries' analytic expansion.
- 3 Some induced structure by Binyamini Cluckers Novikov.
- 4 Running the AKE program.

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\phi(A) \neq A$, and A is $\phi(A)$ -adically complete.

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\phi(A) \neq A$, and A is $\phi(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

$$\iota_n: A\langle Y_1, \dots, Y_n \rangle \rightarrow \text{ring of } R\text{-valued functions on } R^n$$

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\mathcal{O}(A) \neq A$, and A is $\mathcal{O}(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

$$\iota_n: A(Y_1,\ldots,Y_n) \to \text{ring of } R\text{-valued functions on } R^n$$

for every n,

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\phi(A) \neq A$, and A is $\phi(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

$$\iota_n: A(Y_1,\ldots,Y_n) \to \text{ring of } R\text{-valued functions on } R^n$$

for every n, with the following properties:

(A1)
$$\iota_n(Y_k)(y_1,...,y_n) = y_k$$
, for $k = 1,...,n$;

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\phi(A) \neq A$, and A is $\phi(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

$$\iota_n: A(Y_1,\ldots,Y_n) \to \text{ring of } R\text{-valued functions on } R^n$$

for every n, with the following properties:

(A1)
$$\iota_n(Y_k)(y_1,...,y_n) = y_k$$
, for $k = 1,...,n$;

(A2) ι_{n+1} extends ι_n .

In the role of $\mathbb{Z}[[t]]$ we consider a general noetherian ring A with a distinguished ideal $\phi(A) \neq A$, and A is $\phi(A)$ -adically complete.

A ring R has A-analytic structure if there is a ring morphism

$$\iota_n: A(Y_1,\ldots,Y_n) \to \text{ring of } R\text{-valued functions on } R^n$$

for every n, with the following properties:

(A1)
$$\iota_n(Y_k)(y_1,...,y_n) = y_k$$
, for $k = 1,...,n$;

(A2)
$$\iota_{n+1}$$
 extends ι_n .

We consider valuation rings with A-analytic structure and construe their fraction fields as $\mathcal{L}_{\mathrm{val}}^{A}$ -structures.

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{val}^{\mathbb{C}[[t]]}$ -structure,

With $A \coloneqq \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure \mathcal{M} comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure $\mathcal M$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the v and \overline{ac} maps relating the sorts.

13/22

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure $\mathcal M$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}}$, the field \mathbb{C} , the ordered abelian group \mathbb{Z} . and the v and $\overline{\mathrm{ac}}$ maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure $\mathcal M$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the v and \overline{ac} maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

Proof uses that ${\mathcal M}$ has quantifier elimination.

With $A := \mathbb{C}[[t]]$, construe $\mathbb{C}((t))$ as a $\mathcal{L}_{\mathrm{val}}^{\mathbb{C}[[t]]}$ -structure, $-\mathbb{C}((t))_{\mathrm{an}}$.

In connection with a non-archimedean analogue of Pila-Wilkie type counting result, BCN consider a 3-sorted structure $\mathcal M$ comprised of:

the analytic valued field $\mathbb{C}((t))_{\mathrm{an}},$ the field $\mathbb{C},$ the ordered abelian group $\mathbb{Z}.$

and the v and \overline{ac} maps relating the sorts.

Proposition (Binyamini – Cluckers – Novikov, 2022)

If $P \subseteq \mathbb{C}((t))^n$ is definable in \mathcal{M} , then $P \cap \mathbb{C}^n$ is definable in the field $(\mathbb{C}; 0, 1, +, -, \cdot)$.

Proof uses that ${\mathcal M}$ has quantifier elimination.

Lou's "analytic AKE" results do give that any subset of \mathbb{C}^n definable in \mathcal{M} is definable in the field \mathbb{C} , but that's not enough.

We consider the 1-sorted structure $(C((t))_{an}, C, t^{\mathbb{Z}})$, which includes lifts for the residue field and value group.

We consider the 1-sorted structure $(C((t))_{an}, C, t^{\mathbb{Z}})$, which includes lifts for the residue field and value group.

Theorem (B. – van den Dries, 2022)

▶ If $X \subseteq C^m$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then X is even definable in the field $(C; 0, 1, +, -, \cdot)$.

We consider the 1-sorted structure $(C((t))_{an}, C, t^{\mathbb{Z}})$, which includes lifts for the residue field and value group.

Theorem (B. – van den Dries, 2022)

- ▶ If $X \subseteq C^m$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then X is even definable in the field $(C; 0, 1, +, -, \cdot)$.
- ▶ Similarly, if $Y \subseteq (t^{\mathbb{Z}})^n$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then Y is even definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leq)$.

We consider the 1-sorted structure $(C((t))_{an}, C, t^{\mathbb{Z}})$, which includes lifts for the residue field and value group.

Theorem (B. – van den Dries, 2022)

- ▶ If $X \subseteq C^m$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then X is even definable in the field $(C; 0, 1, +, -, \cdot)$.
- ▶ Similarly, if $Y \subseteq (t^{\mathbb{Z}})^n$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then Y is even definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leq)$.

The BCN proposition is a special case.

We consider the 1-sorted structure $(C((t))_{an}, C, t^{\mathbb{Z}})$, which includes lifts for the residue field and value group.

Theorem (B. – van den Dries, 2022)

- ▶ If $X \subseteq C^m$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then X is even definable in the field $(C; 0, 1, +, -, \cdot)$.
- ▶ Similarly, if $Y \subseteq (t^{\mathbb{Z}})^n$ is definable in $(C((t))_{an}, C, t^{\mathbb{Z}})$, then Y is even definable in the ordered group $(t^{\mathbb{Z}}; 1, \cdot, \leq)$.

The BCN proposition is a special case. Note that subsets \mathbb{C} and t^Z of $\mathbb{C}((t))$ are not definable in \mathcal{M} .

Outline

- Classical AKE
- 2 Denef van den Dries' analytic expansion.
- 3 Some induced structure by Binyamini Cluckers Novikov
- 4 Running the AKE program.

Work with valuation rings with A-analytic structure.

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring.

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring. Then $K = \operatorname{Frac}(R)$ is an $\mathcal{L}_{\operatorname{val}}^A$ -structure.

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring. Then $K = \operatorname{Frac}(R)$ is an $\mathcal{L}_{\operatorname{val}}^A$ -structure.

Assume from here on that A-ring R is viable:

Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring. Then $K = \operatorname{Frac}(R)$ is an $\mathcal{L}_{\operatorname{val}}^A$ -structure.

Assume from here on that A-ring R is viable: $o(R) = \rho R$ for some ρ , and $\rho \in \sqrt{o(A)R}$.

Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring. Then $K = \operatorname{Frac}(R)$ is an $\mathcal{L}_{\operatorname{val}}^A$ -structure.

Assume from here on that A-ring R is viable: $o(R) = \rho R$ for some ρ , and $\rho \in \sqrt{o(A)R}$.

 $R \text{ viable} \implies R \text{ is henselian}.$

Our assumptions

Work with valuation rings with A-analytic structure.

R will denote a valuation A-ring. Then $K = \operatorname{Frac}(R)$ is an $\mathcal{L}_{\operatorname{val}}^A$ -structure.

Assume from here on that A-ring R is viable: $o(R) = \rho R$ for some ρ , and $\rho \in \sqrt{o(A)R}$.

 $R \text{ viable} \implies R \text{ is henselian}.$

Our assumptions give that viable valuation A-rings have:

piecewise uniform Weierstrass division with respect to parameters.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K.

Let L be an $\mathcal{L}_{\text{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

1. when $a \le 1$ and $\pi(a)$ is transcendental over k_K .

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

- 1. when $a \le 1$ and $\pi(a)$ is transcendental over k_K .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$.

Let L be an $\mathcal{L}_{\mathrm{val}}^{A}$ -extension of K. R_{L} not necessarily viable.

For $a \in L$, K_a denotes the \mathcal{L}_{val}^A -structure generated by a over K.

Suppose $a \in L$ is algebraic over K. Henselianity of R gives $K_a = K(a)$.

Want an isomorphism theory for K_a :

- 1. when $a \le 1$ and $\pi(a)$ is transcendental over k_K .
- 2. when $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$.
- 3. when K(a) is an immediate extension of K.

Assume char $k_K = 0$.

Assume char $k_K = 0$. So K is algebraically maximal,

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$.

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Set
$$R(a) := \{g(a) : g \in R(Z)\}$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

$$\mathsf{Set}\ R\langle a\rangle \coloneqq \{g(a):\ g\in R\langle Z\rangle\} = \bigcup_n \{\ f(a_1,\ldots,a_n,a):\ f\in A\langle Y_1,\ldots,Y_n,Z\rangle\ \}$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R\langle a \rangle := \{g(a): g \in R\langle Z \rangle\} = \bigcup_n \{f(a_1, \dots, a_n, a): f \in A\langle Y_1, \dots, Y_n, Z \rangle\}$$

 $R(a) \subseteq K_a$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

$$\mathsf{Set}\ R(a) \coloneqq \{g(a):\ g \in R(Z)\} = \bigcup_n \{\ f(a_1,\ldots,a_n,a):\ f \in A(Y_1,\ldots,Y_n,Z)\ \}$$

$$R(a) \subseteq K_a, K(a) \nsubseteq K_a,$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

$$\mathsf{Set}\; R(a) \coloneqq \{g(a):\; g \in R(Z)\} = \bigcup_n \{\; f(a_1,\ldots,a_n,a):\; f \in A(Y_1,\ldots,Y_n,Z) \;\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, ..., a_n, a) : f \in A(Y_1, ..., Y_n, Z)\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho} u_{\rho},$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, ..., a_n, a) : f \in A(Y_1, ..., Y_n, Z)\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_\rho + t_\rho u_\rho, \quad t_\rho \in R,$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

$$\mathsf{Set}\ R\langle a\rangle \coloneqq \{g(a):\ g\in R\langle Z\rangle\} = \bigcup_n \{\ f(a_1,\ldots,a_n,a):\ f\in A\langle Y_1,\ldots,Y_n,Z\rangle\ \}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad v(u_{\rho}) = 0$$

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R(a) := \{g(a): g \in R(Z)\} = \bigcup_n \{f(a_1, \dots, a_n, a): f \in A(Y_1, \dots, Y_n, Z)\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad v(u_{\rho}) = 0$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, ..., a_n, a) : f \in A(Y_1, ..., Y_n, Z)\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad v(u_{\rho}) = 0$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

$$R\langle a\rangle\subseteq R\langle u_{\rho}\rangle\subseteq R_a$$
,

Assume char $k_K = 0$. So K is algebraically maximal, and we need only consider the case of a pc-sequence (a_ρ) of transcendental type.

Take $a_{\rho} \rightsquigarrow a$, $a \in R_L$. Is K_a an immediate extension of K?

Set
$$R(a) := \{g(a) : g \in R(Z)\} = \bigcup_n \{f(a_1, ..., a_n, a) : f \in A(Y_1, ..., Y_n, Z)\}$$

 $R(a) \subseteq K_a$, $K(a) \nsubseteq K_a$, and R(a) is not a valuation ring.

Take an index ρ_0 such that for $\rho > \rho_0$,

$$a = a_{\rho} + t_{\rho}u_{\rho}, \quad t_{\rho} \in R, \quad v(u_{\rho}) = 0$$

and $v(t_{\rho})$ is strictly increasing as a function of $\rho > \rho_0$.

 $R(a) \subseteq R(u_{\rho}) \subseteq R_a$, and we discover that $R_a = \bigcup_{\rho > \rho_0} R(u_{\rho})$.

Let $a \in L$.

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms,

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}_{\mathrm{val}}^{\mathsf{A}}$ -type of a over K is completely determined by its quantifier-free $\mathcal{L}_{\mathrm{val}}$ -type over K.

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}_{\mathrm{val}}^{A}$ -type of a over K is completely determined by its quantifier-free $\mathcal{L}_{\mathrm{val}}$ -type over K.

Lemma

(i) If $a \le 1$ and $\pi(a)$ is transcendental over \mathbf{k}_K , then K_a is an immediate extension of K(a).

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}_{\mathrm{val}}^{A}$ -type of a over K is completely determined by its quantifier-free $\mathcal{L}_{\mathrm{val}}$ -type over K.

Lemma

- (i) If $a \le 1$ and $\pi(a)$ is transcendental over \mathbf{k}_K , then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate extension of K(a)

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}_{\mathrm{val}}^{A}$ -type of a over K is completely determined by its quantifier-free $\mathcal{L}_{\mathrm{val}}$ -type over K.

Lemma

- (i) If $a \le 1$ and $\pi(a)$ is transcendental over \mathbf{k}_K , then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate extension of K(a) provided Γ_K is a \mathbb{Z} -group and R_a is viable.

Let $a \in L$.

Weierstrass preparation for *affinoid algebras* gives a nice piecewise description of 1-variable terms, and we obtain:

Proposition

The quantifier-free $\mathcal{L}_{\mathrm{val}}^{A}$ -type of a over K is completely determined by its quantifier-free $\mathcal{L}_{\mathrm{val}}$ -type over K.

Lemma

- (i) If $a \le 1$ and $\pi(a)$ is transcendental over \mathbf{k}_K , then K_a is an immediate extension of K(a).
- (ii) If $a \neq 0$ and $dv(a) \notin \Gamma_K$ for all $d \geq 1$, then K_a is an immediate extension of K(a) provided Γ_K is a \mathbb{Z} -group and R_a is viable.
- · Is K_a always an immediate extension of K(a)?

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$.

Let $A = \mathbb{Z}[[t]]$ and $o(A) = t\mathbb{Z}[[t]]$. Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. - van den Dries, 2022)

Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group.

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. - van den Dries, 2022)

Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group. Suppose $t \in G_K, G_L$.

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. – van den Dries, 2022)

Assume char $k_K = 0$ and Γ_K is a \mathbb{Z} -group. Suppose $t \in G_K, G_L$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. - van den Dries, 2022)

Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group. Suppose $t \in G_K, G_L$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. - van den Dries, 2022)

Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group. Suppose $t \in G_K, G_L$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group.

Let
$$A = \mathbb{Z}[[t]]$$
 and $o(A) = t\mathbb{Z}[[t]]$.
Then for $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structures $\mathcal{K} = (K_{\mathrm{an}}, C_K, G_K)$ and $\mathcal{E} = (E_{\mathrm{an}}, C_E, G_E)$:

Theorem (B. - van den Dries, 2022)

Assume char $\mathbf{k}_K = 0$ and Γ_K is a \mathbb{Z} -group. Suppose $t \in G_K, G_L$. Then

$$\mathcal{K} \equiv \mathcal{E} \iff C_K \equiv C_E \text{ and } G_K \equiv_t G_E.$$

Using an NIP transfer principle by Jahnke and Simon, we obtain:

Proposition (B. – van den Dries, 2022)

Let A be "general". Assume char $k_K=0$ and Γ_K is a \mathbb{Z} -group. Then

the $\mathcal{L}_{\mathrm{val}}^{\mathrm{Acg}}$ -structure \mathcal{K} has NIP \iff the ring k_{K} has NIP.

References

J. Denef and L. van den Dries, *p-adic and real subanalytic sets*, Ann. Math. 128 (1988), 79-138.

R. Cluckers, L. Lipshitz, *Strictly convergent analytic structures*, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 107–149.

G. Binyamini, R. Cluckers, and D. Novikov, *Point counting and Wilkie's conjecture for non-Archimedean Pfaffian and Noetherian functions*, Duke Mathematical Journal 171 (2022), no. 9, 1823–1842.

The end

Thank you!