Some existential theories of fields

Sylvy Anscombe

IMJ-PRG, U-Paris

sylvy.anscombe@imj-prg.fr

Online Logic Seminar
Abstract

Building on previous work, I will discuss Turing reductions between various fragments of theories of fields. In particular, we exhibit several theories of fields Turing equivalent to the existential theory of the rational numbers. This is joint work with Arno Fehm, in progress.
Today

1. Motivation
2. Main theorem
 - Ingredient 1: henselian valued fields
 - Ingredient 2: power series fields
3. Equicharacteristic henselian nontrivially valued fields
 - Sketch proof of Corollary 3
4. Equicharacteristic henselian nontrivially ... (reprise)
5. Idea of proof of Theorem 1
 - Step 1
 - Step 2
 - Ingredient 3: large fields
 - Step 3
Motivation

Let R be a ring.

Hilbert’s Tenth Problem (H10) for R

Give an algorithm to decide correctly, for each $f \in \mathbb{Z}[X_1, \ldots, X_n]$, whether the Diophantine equation

$$f(X_1, \ldots, X_n) = 0$$

has a solution in R.

Original version is $R = \mathbb{Z}$.
Let R be a ring.

Hilbert’s Tenth Problem (H10) for R

Give an algorithm to decide correctly, for each $f \in \mathbb{Z}[X_1, \ldots, X_n]$, whether the Diophantine equation

$$f(X_1, \ldots, X_n) = 0$$

has a solution in R.

Original version is $R = \mathbb{Z}$.

Theorem (Davis–Matiyasevich–Putnam–Robinson, 1949-70)

H10 for \mathbb{Z} is unsolvable, i.e. $\text{Th}_\exists(\mathbb{Z})$ is undecidable.

Three open decidability problems:

- $\text{Th}_\exists(\mathbb{Q})$
- $\text{Th}_\exists(\mathbb{C}(t), t)$
- $\text{Th}(\mathbb{F}_p((t)))$
Theorem 1 (A.–Fehm, 2021)

The following theories are Turing-equivalent:

1. The existential theory of \mathbb{Q} in the language of rings.
2. The existential theory of $\mathbb{Q}((t))$ in the language of rings.
3. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields.
4. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields with constant t.
5. The existential theory of fields in the language of rings.
6. The existential theory of large fields in the language of rings.
7. The existential theory of large fields of characteristic zero in the language of rings.
Main theorem

Theorem 1 (A.–Fehm, 2021)

The following theories are Turing-equivalent:

1. The existential theory of \mathbb{Q} in the language of rings.
2. The existential theory of $\mathbb{Q}((t))$ in the language of rings.
3. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields.
4. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields with constant t.
5. The existential theory of fields in the language of rings.
6. The existential theory of large fields in the language of rings.
7. The existential theory of large fields of characteristic zero in the language of rings.

— None of these equivalences seems obvious, to me anyway!
— There is one equality, otherwise these are pairwise distinct
Ingredient 1: henselian valued fields

Definition

Valued field is a pair \((K, \nu)\), where \(K\) is a field and \(\nu : K \rightarrow \Gamma \cup \{\infty\}\), for (additive) ordered abelian group \(\Gamma\), such that

- \(\nu(x) = \infty\) iff \(x = 0\),
- \(\nu(xy) = \nu(x) + \nu(y)\), and
- \(\nu(x + y) \geq \min\{\nu(x), \nu(y)\}\).

- \(\Gamma\) value group
- \(\mathcal{O}_\nu = \{x \in K \mid \nu(x) \geq 0\}\) valuation ring
- \(m_\nu = \{x \in K \mid \nu(x) > 0\}\) maximal ideal
- \(K_\nu = \mathcal{O}_\nu / m_\nu\) residue field
Ingredient 1: henselian valued fields

Definition

Valued field is a pair \((K, \nu)\), where \(K\) is a field and \(\nu : K \to \Gamma \cup \{\infty\}\), for (additive) ordered abelian group \(\Gamma\), such that

- \(\nu(x) = \infty\) iff \(x = 0\),
- \(\nu(xy) = \nu(x) + \nu(y)\), and
- \(\nu(x + y) \geq \min\{\nu(x), \nu(y)\}\).

- \(\Gamma\) value group
- \(\mathcal{O}_\nu = \{x \in K \mid \nu(x) \geq 0\}\) valuation ring
- \(m_\nu = \{x \in K \mid \nu(x) > 0\}\) maximal ideal
- \(K_\nu = \mathcal{O}_\nu / m_\nu\) residue field

Definition

\((K, \nu)\) is henselian if for every monic \(f \in \mathcal{O}_\nu[X]\) and every \(a \in \mathcal{O}_\nu\) with \(\nu(f(a)) > 0\) and \(\nu(f'(a)) = 0\), there exists \(a' \in a + m_\nu\) with \(f(a') = 0\).
Let F be any field, and t be a ‘formal indeterminate’.

Definition

The **power series field** $F((t))$ is the set of formal series

$$\sum_{n \in \mathbb{Z}} a_n t^n,$$

where $a_n \in F$,

such that $\{n \in \mathbb{Z} : a_n \neq 0\}$ is empty or has minimum. We equip with addition and multiplication:

$$\left(\sum_{n} a_n t^n\right) + \left(\sum_{n} b_n t^n\right) := \sum_{n} (a_n + b_n) t^n,$$

$$\left(\sum_{m} a_m t^m\right) \cdot \left(\sum_{n} b_n t^n\right) := \sum_{k} \left(\sum_{m+n=k} a_m b_n\right) t^k.$$
We also equip $F((t))$ with the t-adic valuation:

$$v_t : F((t)) \rightarrow \mathbb{Z} \cup \{\infty\}$$

$$a = \sum_n a_n t^n \mapsto \begin{cases} \min\{n \mid a_n \neq 0\} & a \neq 0 \\ \infty & a = 0. \end{cases}$$

For $(F((t)), v_t)$,

- value group is \mathbb{Z},
- valuation ring is $F[[t]] = \{a \in F((t)) \mid v_t(a) \geq 0\} = \{\sum_{n \geq 0} a_n t^n\}$,
- maximal ideal is $tF[[t]]$,
- residue field is $F[[t]]/tF[[t]] \cong F$.
We also equip $F((t))$ with the t-adic valuation:

$$v_t : F((t)) \rightarrow \mathbb{Z} \cup \{\infty\}$$

$$a = \sum_n a_n t^n \mapsto \begin{cases} \min \{ n \mid a_n \neq 0 \} & a \neq 0 \\ \infty & a = 0 \end{cases}.$$

For $(F((t)), v_t)$,

- value group is \mathbb{Z},
- valuation ring is $F[[t]] = \{ a \in F((t)) \mid v_t(a) \geq 0 \} = \{ \sum_{n \geq 0} a_n t^n \}$,
- maximal ideal is $tF[[t]]$,
- residue field is $F[[t]]/tF[[t]] \cong F$.

$(F((t)), v_t)$ is henselian.
Equicharacteristic henselian nontrivially valued fields

— Language of rings is $\mathcal{L}_{\text{ring}} = \{+, \cdot, -, 0, 1\}$.

— Language of valued fields is \mathcal{L}_{vf}, which is three-sorted (field K, value group Γ, residue field k) with valuation map ($v : K \rightarrow \Gamma$) and residue map ($\text{res} : K \rightarrow k$).

Theorem (Denef–Schoutens, [DS03])

Resolution of Singularities in characteristic p implies that the existential theory of $\mathbb{F}_q((t))$ with constant for t is decidable.
Language of rings is \(L_{\text{ring}} = \{ +, \cdot, -, 0, 1 \} \).

Language of valued fields is \(L_{\text{vf}} \), which is three-sorted (field \(K \), value group \(\Gamma \), residue field \(k \)) with valuation map \(v : K \rightarrow \Gamma \) and residue map \(\text{res} : K \rightarrow k \).

Theorem (Denef–Schoutens, [DS03])

Resolution of Singularities in characteristic \(p \) implies that the existential theory of \(\mathbb{F}_q((t)) \) with constant for \(t \) is decidable.

Theorem 2 (A.–Fehm, [AF16])

Equal characteristic henselian valued fields satisfy an existential-decidability Ax–Kochen/Ershov principle:

\[
\text{Th}_\exists(K, v) \text{ decidable} \iff \text{Th}_\exists(Kv) \text{ decidable}
\]
Language of rings is $\mathcal{L}_{\text{ring}} = \{+, \cdot, -, 0, 1\}$.

Language of valued fields is \mathcal{L}_{vf}, which is three-sorted (field K, value group Γ, residue field k) with valuation map ($v : K \to \Gamma$) and residue map ($\text{res} : K \to k$).

Theorem (Denef–Schoutens, [DS03])

Resolution of Singularities in characteristic p implies that the existential theory of $\mathbb{F}_q((t))$ with constant for t is decidable.

Theorem 2 (A.–Fehm, [AF16])

Equal characteristic henselian valued fields satisfy an existential-decidability Ax–Kochen/Ershov principle:

$$\text{Th}_\exists(K, v) \text{ decidable} \iff \text{Th}_\exists(Kv) \text{ decidable}$$

Corollary 3

$\text{Th}_\exists(\mathbb{F}_q((t)), v_t)$ is decidable
Equicharacteristic henselian nontrivially valued fields

— Language of rings is $\mathcal{L}_{\text{ring}} = \{+, \cdot, -, 0, 1\}$.

— Language of valued fields is \mathcal{L}_{vf}, which is three-sorted (field K, value group Γ, residue field k) with valuation map ($v : K \to \Gamma$) and residue map ($\text{res} : K \to k$).

Theorem (Denef–Schoutens, [DS03])

Resolution of Singularities in characteristic p implies that the existential theory of $\mathbb{F}_q((t))$ with constant for t is decidable.

Theorem 2 (A.–Fehm, [AF16])

Equal characteristic henselian valued fields satisfy an existential-decidability Ax–Kochen/Ershov principle:

$$\text{Th}_\exists(K, v) \text{ decidable } \iff \text{Th}_\exists(Kv) \text{ decidable}$$

Corollary 3

$\text{Th}_\exists(\mathbb{F}_q((t)), v_t)$ is decidable — no constant for t!
Sketch proof of Corollary 3

Corollary 3

$\text{Th}_\exists(\mathbb{F}_q((t)), \nu_t)$ is decidable.
Corollary 3

\(\text{Th}_\exists (\mathbb{F}_q((t)), \nu_t) \) is decidable.

The tame valued field \(\mathbb{F}_q((t)^Q) \) has decidable theory, by a theorem of F.-V. Kuhlmann, [Kuh14]. Denote by \(\mathbb{F}_q((t))^Q \) the relative algebraic closure of \(\mathbb{F}_q((t)) \) in \(\mathbb{F}_q((t^Q)) \). Then \(\mathbb{F}_q((t)) \) is a directed union of fields \(\mathbb{F}_q((s)) \), isomorphic copies of \(\mathbb{F}_q((t)) \). Moreover, \(\mathbb{F}_q((t))^Q \preceq \mathbb{F}_q((t^Q)) \) by another theorem of F.-V. Kuhlmann, [Kuh14].

\[
\mathbb{F}_q((t^Q)) \\
\downarrow \preceq \\
\mathbb{F}_q((t))^Q = \bigcup_s \mathbb{F}_q((s)) \\
\downarrow \preceq \exists - \emptyset \\
\mathbb{F}_q((t))
\]
Let H^e' be a recursive axiomatisation of the \mathcal{L}_{vf}-theory of equicharacteristic henselian nontrivially valued fields. For any theory R of fields, write

$$H^e'(R) = H^e' \cup \{\text{“}\varphi\text{ holds in residue field”} \mid \varphi \in R\}.$$
Definition

Let \mathcal{H}' be a recursive axiomatisation of the \mathcal{L}_{vf}-theory of equicharacteristic henselian nontrivially valued fields. For any theory R of fields, write

$$\mathcal{H}'(R) = \mathcal{H}' \cup \{\text{"φ holds in residue field" | $\varphi \in R}\}.$$

Proposition 4

Let F be any field. Then $\mathcal{H}'(\text{Th}(F))$ is existentially complete. That is, for every $\varphi \in \text{Sent}_\exists(\mathcal{L}_{\text{vf}})$, either $\mathcal{H}'(\text{Th}(F)) \models \varphi$ or $\mathcal{H}'(\text{Th}(F)) \models \neg \varphi$.

Corollary: Theorem 2.
Proposition 5 (Existential Elimination)

There is a recursive map

\[\text{Sent}_\exists (\mathcal{L}_{vf}) \rightarrow \text{Sent}_\exists (\mathcal{L}_{\text{ring}}) \]

\[\varphi \mapsto \varphi_k \]

such that

\[(K, v) \models \varphi \iff Kv \models \varphi_k \]

for every \((K, v) \models H^{ef} \).
Proposition 5 (Existential Elimination)

There is a recursive map

\[\text{Sent}_\exists(\mathcal{L}_{vf}) \longrightarrow \text{Sent}_\exists(\mathcal{L}_{\text{ring}}) \]

\[\varphi \mapsto \varphi_k \]

such that

\[(K, v) \models \varphi \iff Kv \models \varphi_k \]

for every \((K, v) \models H^e\).

Proof: Proposition 4 + Separation Lemma!
Proposition 5 (Existential Elimination)

There is a recursive map

\[
\text{Sent}_\exists (\mathcal{L}_{\text{vf}}) \rightarrow \text{Sent}_\exists (\mathcal{L}_{\text{ring}})
\]

\[
\varphi \mapsto \varphi_k
\]

such that

\[
(K, v) \models \varphi \iff K^v \models \varphi_k
\]

for every \((K, v) \models \mathcal{H}^e\).

Proof: Proposition 4 + Separation Lemma!

Theorem 6 ("\(\mathcal{H}^e\) Theorem")

For any \(\mathcal{L}_{\text{ring}}\)-theory \(R\) of fields, the set of existential consequences of \(R\) is Turing-equivalent to the set of existential sentences in the language of valued fields that hold in every equicharacteristic henselian non-trivially valued field with residue field a model of \(R\). That is:

\[
\mathcal{H}^e(\mathcal{R})_\exists \simeq_T \mathcal{R}_\exists
\]
Proposition 5 (Existential Elimination)

There is a recursive map

\[
\text{Sent}_\exists(\mathcal{L}_{vf}) \longrightarrow \text{Sent}_\exists(\mathcal{L}_{\text{ring}})
\]

\[
\varphi \longmapsto \varphi_k
\]

such that

\[
(K, v) \models \varphi \iff Kv \models \varphi_k
\]

for every \((K, v) \models \text{He}'\).

Proof: Proposition 4 + Separation Lemma!

Theorem 6 (“\text{He}' Theorem”)

For any \(\mathcal{L}_{\text{ring}}\)-theory \(R\) of fields, the set of existential consequences of \(R\) is Turing-equivalent to the set of existential sentences in the language of valued fields that hold in every equicharacteristic henselian non-trivially valued field with residue field a model of \(R\). That is:

\[
\text{He}'(R)_\exists \simeq_T R_\exists
\]

Proof: \(\varphi \in \text{He}'(R)_\exists \iff \varphi_k \in R_\exists\).
Let’s briefly recall the statement.

Theorem 1

The following theories are Turing-equivalent:

1. The existential theory of \mathbb{Q} in the language of rings.
2. The existential theory of $\mathbb{Q}((t))$ in the language of rings.
3. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields.
4. The existential theory of $\mathbb{Q}((t))$ in the language of valued fields with constant t.
5. The existential theory of fields in the language of rings.
6. The existential theory of large fields in the language of rings.
7. The existential theory of large fields of characteristic zero in the language of rings.
Idea of proof of Theorem 1

Step 1

\[(1) \leq_T (2) \simeq_T (3) \leq_T (4).\]

Reducts and interpretations

- \(\text{Th}_\exists(\mathbb{Q}) \leq_T \text{Th}_\exists(\mathbb{Q}(t), v_t) \leq_T \text{Th}_\exists(\mathbb{Q}(t), v_t, t)\)
- \(\text{Th}_\exists(\mathbb{Q}(t)) \leq_T \text{Th}_\exists(\mathbb{Q}(t), v_t)\)

Thus \((1) \leq_T (3) \leq_T (4)\) and \((2) \leq_T (3)\).
Idea of proof of Theorem 1

Step 1

\((1) \leq_T (2) \simeq_T (3) \leq_T (4)\).

Reducts and interpretations

- \(\text{Th}_\exists(Q) \leq_T \text{Th}_\exists(Q((t)), v_t) \leq_T \text{Th}_\exists(Q((t)), v_t, t)\)
- \(\text{Th}_\exists(Q((t))) \leq_T \text{Th}_\exists(Q((t)), v_t)\)

Thus \((1) \leq_T (3) \leq_T (4)\) and \((2) \leq_T (3)\).

First we note that the valuation ring \(Q[[t]]\) is \(\exists\)- and \(\forall-\mathcal{L}_\text{ring}\)-definable in \(Q((t))\). For example

\[
Q[[t]] = \left\{ \frac{1}{z^2 - 2} + \frac{1}{1 + u^2 + v^2 + w^2 + x^2} \middle| u, v, w, x, z \in Q((t)) \right\},
\]

as in [AF17]. Therefore \(\text{Th}_\exists(Q((t))) \simeq_T \text{Th}_\exists(Q((t)), v_t)\). Thus \((2) \simeq_T (3)\).

\(\square\) (Step 1)

Theorem 2 already gives \((1) \simeq_T (3)\). Also see [San96, Remark, p. 23].
Idea of proof of Theorem 1

Step 2

\((4) \leq_T (1)\)

In fact we’ll simply show \((4) \simeq_T (1)\), i.e. \(\text{Th}_\exists(\mathbb{Q}((t))), v_t, t) \simeq_T \text{Th}_\exists(\mathbb{Q})\). We mimic the proof of \((3) \simeq_T (1)\) via Theorem 2. Expand the language with a new constant symbol:

\[
\mathcal{L}_{vf}(\pi) := \mathcal{L}_{vf} \cup \{\pi\}.
\]

Consider the \(\mathcal{L}_{vf}(\pi)\)-theory

\[
H^{e,\pi} := H^{e'} \cup \{\forall x \ (0 < v(x) \rightarrow v(\pi) \leq v(x))\}.
\]

Also \(H^{e,\pi}(R) = H^{e,\pi} \cup \{“\varphi \ holds \ in \ residue \ field” \mid \varphi \in R\}\.\)
Idea of proof of Theorem 1

Step 2

\((4) \leq_T (1)\)

In fact we’ll simply show \((4) \simeq_T (1) \), i.e. \(\text{Th}_\exists(\mathbb{Q}((t))), v_t, t \simeq_T \text{Th}_\exists(\mathbb{Q}) \). We mimic the proof of \((3) \simeq_T (1)\) via Theorem 2. Expand the language with a new constant symbol:

\[\mathcal{L}_{vf}(\pi) := \mathcal{L}_{vf} \cup \{\pi\}. \]

Consider the \(\mathcal{L}_{vf}(\pi) \)-theory

\[H^{e,\pi} := H^{e'} \cup \{\forall x \ (0 < v(x) \rightarrow v(\pi) \leq v(x))\}. \]

Also \(H^{e,\pi}(R) = H^{e,\pi} \cup \{“\varphi \text{ holds in residue field”} \ | \ \varphi \in R\} \).

Claim 1

\(H^{e,\pi}(\text{Th}(\mathbb{Q})) \) is existentially complete.

It follows that \(H^{e,\pi}(\text{Th}(\mathbb{Q}))_\exists = \text{Th}_\exists(\mathbb{Q}((t))), v_t, t \) and \(H^{e,\pi}(\text{Th}(\mathbb{Q}))_\exists \simeq_T \text{Th}_\exists(\mathbb{Q}) \).
Proof of Claim 1

Let $(K, \nu, \pi_\nu), (L, w, \pi_w) \models H_{\nu}^{\pi}(\text{Th}(\mathbb{Q}))$. Assuming sufficient saturation, there are sections of the residue maps: $K\nu \rightarrow K$ and $Lw \rightarrow L$; and moreover there is an embedding $K\nu \rightarrow Lw$ between the residue fields. In fact we get this picture:

![Diagram showing the relationships between the fields and residue maps]

The embedding on the left is existentially closed because $\text{char}(K\nu((s))) = 0$.

\(\Box\) (Step 2)

Observation ([AF16])

$\text{Th}_\exists(F((t)), \nu_t, \nu) \simeq_T \text{Th}_{\forall \exists}^1(F((t)), \nu_t)$.
A field L is *large* if

$$C(L) \neq \emptyset \implies |C(L)| = \infty,$$

for all smooth curves C defined over L.

Theorem (Pop, [Pop96])

TFAE

1. L is large
2. for each smooth irreducible L-variety V, if $V(L) \neq \emptyset$ then $V(L)$ is Zariski dense in V.
3. $L \preceq \exists L((t))$
4. $L \preceq \exists L(t) h$

Theorem (Pop, [Pop96])

If (L, w) is a henselian nontrivially valued field, then L is large.
Definition

A field L is large if

$$C(L) \neq \emptyset \implies |C(L)| = \infty,$$

for all smooth curves C defined over L.

Theorem (Pop, [Pop96])

TFAE

1. L is large

2. for each smooth irreducible L-variety V, if $V(L) \neq \emptyset$ then $V(L)$ is Zariski dense in V.

3. $L \preceq L((t))$

4. $L \preceq L(t)^h$
Ingredient 3: large fields

Definition

A field L is *large* if

$$C(L) \neq \emptyset \implies |C(L)| = \infty,$$

for all smooth curves C defined over L.

Theorem (Pop, [Pop96])

TFAE

1. L is large
2. for each smooth irreducible L-variety V, if $V(L) \neq \emptyset$ then $V(L)$ is Zariski dense in V.
3. $L \preceq \exists L((t))$
4. $L \preceq \exists L(t)^h$

Theorem (Pop, [Pop96])

If (L, w) is a henselian nontrivially valued field, then L is large.
Example

1. \(\mathbb{C}, \mathbb{Q}_{\text{alg}}, \mathbb{F}_{p}^{\text{alg}} \), any algebraically closed field
2. \(\mathbb{R}, \mathbb{R}_{\text{alg}}, \), any real closed field
3. \(\mathbb{Q}_{p}, \mathbb{Q}_{p,\text{alg}} \), any \(p \)-adically closed field
4. PAC/PRC/PpC/PCC
Example

1. $\mathbb{C}, \mathbb{Q}_{\text{alg}}, \overline{\mathbb{F}}_p$, any algebraically closed field
2. $\mathbb{R}, \mathbb{R}_{\text{alg}}$, any real closed field
3. $\mathbb{Q}_p, \mathbb{Q}_{p,\text{alg}}$, any p-adically closed field
4. PAC/PRC/PpC/PCC

Non-examples

1. \mathbb{F}_{p^k},
2. number fields
3. function fields
Example

1. \(\mathbb{C}, \mathbb{Q}_{\text{alg}}, \mathbb{F}_p^{\text{alg}} \), any algebraically closed field
2. \(\mathbb{R}, \mathbb{R}_{\text{alg}} \), any real closed field
3. \(\mathbb{Q}_p, \mathbb{Q}_p^{\text{alg}} \), any \(p \)-adically closed field
4. PAC/PRC/PpC/PCC

Non-examples

1. \(\mathbb{F}_{p^k} \),
2. number fields
3. function fields

Definition

- \(\mathbb{L}_{\exists} \) is the common existential \(\mathbb{L}_{\text{ring}} \)-theory of large fields
- \(\mathbb{L}_{\exists,0} \) (resp. \(\mathbb{L}_{\exists,p} \)) is ... of characteristic 0 (resp. characteristic \(p \))
- \(\mathbb{L}_{\exists,>0} \) is ... of positive characteristic
- \(\mathbb{L}_{\exists,\gg0} \) is ... of sufficiently high positive characteristic.
Step 3

\[(6) \cong_T (7) = (2).\]

Claim 2 (Sander, [San96, Proposition 2.25])

\[\text{Th}_\exists(\mathbb{Q}((t))) = L_{\exists,0}.\]
Idea of proof of Theorem 1

Step 3

\[(6) \simeq_T (7) = (2).\]

Claim 2 (Sander, [San96, Proposition 2.25])

\[\text{Th}_\exists(\mathbb{Q}((t))) = \mathbb{L}_{\exists,0}.\]

Proof of Claim 2

Since \(\mathbb{Q}((t))\) is nontrivially valued henselian, it is large. Thus \(\text{Th}_\exists(\mathbb{Q}((t))) \models \mathbb{L}_{\exists,0}.\)

In the other direction, let \(L\) be a large field of characteristic 0. Then \(L \preceq_\exists L((t)) \supseteq \mathbb{Q}((t)).\) Thus \(L \models \text{Th}_\exists(\mathbb{Q}((t))).\) Therefore \(\mathbb{L}_{\exists,0} \models \text{Th}_\exists(\mathbb{Q}((t))).\)

Thus \((2) = (7).\)

Similarly: \(\text{Th}_\exists(\mathbb{F}_p((t))) = \mathbb{L}_{\exists,p}\) for each prime number \(p.\)
Claim 3

Both $L_{\exists, > 0}$ and $L_{\exists, \gg 0}$ are decidable.
Claim 3
Both $L_{∃,>0}$ and $L_{∃,≫0}$ are decidable.

Proof of Claim 3
We use the theory Fin of finite fields, and the theory $\text{Fin}_{≫0}$ of finite fields of sufficiently high characteristic. Both are decidable by Ax.

Building on Claim 2, we have

- $L_{∃,>0} = H^{e_t}(\text{Fin}_∃)_{∃} \cap \text{Sent}(\mathcal{L}_{\text{ring}})$
- $L_{∃,≫0} = H^{e_t}(\text{Fin}_∃,≫0)_{∃} \cap \text{Sent}(\mathcal{L}_{\text{ring}})$.

By the H^{e_t} Theorem:

- $L_{∃,>0} \leq_T \text{Fin}_∃$
- $L_{∃,≫0} \leq_T \text{Fin}_∃,≫0$.
Claim 4

\[L_\exists \cong T L_{\exists,0}. \]

Proof of Claim 4

First:

\[L_\exists \models \forall \iff L_\exists \models \forall_0 \& L_\exists \models \forall_0 \models [T_h \exists (F p (\varphi))] \cong (T_h \exists (F p)) \]

is decidable. We outline an algorithm to decide \(L_\exists \models_0 \) given an oracle for \(L_\exists \models_0 \).

1. Decide whether or not \(L_\exists \models_0 \models \forall \). If ‘NO’ then \(L_\exists \models_0 \not\models \forall \). If ‘YES’ then continue.

2. For each \(n \geq 2 \), let \(\chi_n \models = \bigvee_{p = 1}^n 1 \). Let \(\varphi_n \models = \varphi \lor \chi_n \). Since \(L_\exists \models_0 \models \forall \), there is some \(n \) such that \(L_\exists \models_0 \models \chi_n \). Apply decision procedure for \(L_\exists \models_0 \) to \(\varphi_n \) successively until we have found minimal \(n_0 \) with \(L_\exists \models_0 \models \chi_n \).

3. Decide whether or not \(L_\exists \models_0 \models \forall \). If ‘YES’ then we have \(L_\exists \models_0 \models \forall \). Thus \(L_\exists \models_0 \models \forall \). Output ‘YES’ and finish. If ‘NO’ then \(L_\exists \models_0 \not\models \forall \). We already know that \(L_\exists \models_0 \models \forall \). Thus \(L_\exists \models_0 \not\models \forall \). Output ‘NO’ and finish.
Claim 4

$L_\exists \simeq_T L_{\exists,0}$.

Proof of Claim 4

First: $L_\exists \models \varphi \iff L_{\exists,0} \models \varphi \& L_{\exists,>0} \models \varphi$. Thus $L_\exists \leq_T L_{\exists,0}$. For the other direction, we know that $L_\exists, p = \text{Th}_\exists(\mathbb{F}_p((t))) \simeq_T \text{Th}_\exists(\mathbb{F}_p)$ is decidable. We outline an algorithm to decide $L_{\exists,0}$ given an oracle for L_\exists. Let $\varphi \in \text{Sent}_\exists(\mathcal{L}_{\text{ring}})$.

1. Decide whether or not $L_{\exists,\gg 0} \models \varphi$.

 If ‘NO’ then $L_{\exists,0} \not\models \varphi$. If ‘YES’ then continue.

2. For each $n \geq 2$, let $\chi_n \models \bigvee_{p \leq n} 1 + \ldots + 1 = 0$. Let $\varphi_n \models \varphi \lor \chi_n$. Since $L_{\exists,\gg 0} \models \varphi$, there is some n such that $L_{\exists,>0} \models \varphi_n$. Apply decision procedure for $L_{\exists,>0}$ to φ_n successively until we have found minimal n_0 with $L_{\exists,>0} \models \varphi_{n_0}$.

3. Decide whether or not $L_\exists \models \varphi_{n_0}$.

 If ‘YES’ then we have $L_{\exists,0} \models \varphi_{n_0}$. Thus $L_{\exists,0} \models \varphi$. Output ‘YES’ and finish. If ‘NO’ then $L_\exists \not\models \varphi_{n_0}$. We already know that $L_{\exists,>0} \models \varphi_{n_0}$. Thus $L_{\exists,0} \not\models \varphi_{n_0}$. Output ‘NO’ and finish.

\square (Step 3)
Thank you for listening. Questions are very welcome!
Sylvy Anscombe and Arno Fehm.
The existential theory of equicharacteristic henselian valued fields.

Sylvy Anscombe and Arno Fehm.
Characterizing diophantine henselian valuations rings and valuation ideals.

Jan Denef and Hans Schoutens.
On the decidability of the existential theory of $\mathbb{F}_p[[t]]$.

Franz-Viktor Kuhlmann.
The algebra and model theory of tame valued fields.

Florian Pop.
Embedding problems over large fields.

Tomas Sander.
Aspects of Algebraic Geometry over Non Algebraically Closed Fields.