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CHAPTER 6

Random Structures

6.1. Graphons

6.1.1. Defining Graphons. We turn from the consideration of structures
that, probabilistically, resemble a typical finite structure to structures that intrin-
sically campture an infinite random process. In that sense, we are following more
closely the models of Section 5.1.1 that explicitly follow the construction of a graph.
The standard treatments of these approaches are [306, 139].

Definition 6.1.1. A random graph model is a sequence of probability distribu-
tions σ̄ = (σk : k ∈ N), where σk is a distribution of graphs on vertices {1, 2, . . . , k},
for each k.

At this point, we have not done much beyond the basic Erdős-Renyi model.
Now, however, we would like to link these distributions together in such a way that
the passage from k vertices to k + 1 vertices represents growth in a random graph
process.

Definition 6.1.2. We say that a random graph model σ̄ is consistent if and
only if, for each K, the distribution σk, interpreted on {1, 2, . . . , k − 1}, is equidis-
tributed with σk−1.

Graphs are about adjacency. In most situations where graphs are the appro-
priate model of a mathematical process, the adjacency between vertices x and y
should not depend on the adjacency between w and z, provided that all four are
distinct vertices. We capture this with the following definition.

Definition 6.1.3. We say that a random graph model σ̄ is local if and only
if, for any disjoint sets V,W ⊆ {1, . . . , k} of vertices, the induced subgraphs on V
and W under σk are independent.

We first observe that the various models described in Section 5.1.1 are, in fact,
consistent local random graph models. Consider first the Erdős-Renyi graph G(n, p)
with constant p. The sequence γ̄p = {G(n, p) : n ∈ N} is explicitly a random graph
model. G(n− 1, p) is equidistributed with G(n, p) �{1,...,n−1}. Moreover, subgraphs
on disjoint sets of vertices are independent.

A more subtle example is the preferential attachment model. It is not hard to
believe that the description given in Section 5.1.1 gives a probability distribution on
each set of vertices. Consistency arises exactly from the step-by-step construction.
It is not as easy to see that the model is local, since attachment is dependent on
the global degree distribution. We will ultimately show that this model is local,
but in an indirect way.

A second reasonable way to model the development of a random graph is given
by countable random graph models.
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138 6. RANDOM STRUCTURES

Definition 6.1.4. Let Ω be a locally finite tree of finite graphs up to identity
with the empty graph at the root, and where each graph G on vertices {1, . . . , k} is
an immediate successor of its induced subgraph on {1, . . . , k− 1}. Now a countable
random graph model is a probability measure on the set of paths through Ω which
is invariant under permutations of the positive integers.

In this formalism, the consistency is built in via the tree structure. We do still
have to specify the localism.

Definition 6.1.5. A countable random graph model is said to be local if the
induced subgraphs on any two disjoint finite set of vertices are independent.

We observe that these two approaches are interchangeable, in the following
sense.

Proposition 6.1.6. There are transformations Ψ1 from consistent local ran-
dom graph models to local countable random graph models and Ψ2 from local count-
able random graph models to consistent local random graph models such that Ψ1◦Ψ2

and Ψ2 ◦Ψ1 are both the identity transformations.

Proof. For Ψ1, we interpret σk as a distribution on the kth level of Ω. The
Kolmogorov Extension Theorem (Section II.3 of [407]) shows that there is a unique
probability measure on the set of paths through Ω that restricts to σk for each k.

For Ψ2, we determine σk by setting the probability of a graph G on {1, . . . , k}
as the probability of the set of paths through G. This random graph model is
consistent by construction, and localism is preserved. �

Another natural approach to a graph process, althrough the randomness is less
obvious, is to view an infinite graph process as a limit point of a sequence of graphs
in a certain metric space whose points are graphs. This is the approach of [77].
One natural approach would be to use the “edit distance” between graphs — the
number of adjacencies that must be added or removed to get from one to the other.
The trouble with this approach is that if we take two independent samples of, for
instance, G(n, 1

2 ), the edit distance is likely to be very large; while roughly the same
proportion of vertices will be adjacent, the specific vertices which are adjacent can
vary quite a lot. On the other hand, since these graphs will be isomorphic with
high probability, we prefer a model in which they are likely to be close.

The appropriate metric was introduced in [182] and discussed in the present
context by [78]. It arises by considering cuts in the graph, from the perspective of
network flows. We generalize the standard Ford-Fulkerson framework slightly by
considering arbitrary pairs of sets of vertices, and we count, in each finite graph G,
the number eG(S, T ) of edges joining a vertex in S to a vertex in T . We now define
a metric on finite graphs.

Definition 6.1.7. Given two graphsG0, G1, we define the cut distance d�(G0, G1)
as follows:

(1) If G0, G1 have the same vertex set V ,

d�(G0, G1) = max
S,T⊆V

|eG0
(S, T )− eG1

(S, T )|
|V |2

.

(2) If G0, G1 have distinct sets of vertices, but with the same cardinality, then
we set

d�(G0, G1) = min
(σ0,σ1)

d�(σ0(G0), σ1(G1))
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where σi is a bijection of the vertices of Gi onto the set {1, . . . , n} and
σi(Gi) is interpreted as an isomorphic copy of Gi in the natural way.

(3) If Gi has ni vertices, we construct, for each natural number m, the graph
Gi(m) by replacing each vertex of Gi with m vertices, where vertices of
Gi(m) are adjacent if and only if the original corresponding vertices in Gi
were adjacent. We then define

d�(G0, G1) = lim
k→∞

d� (G0(kn1), G1(kn0)) .

This cut distance is only a pseudometric. There are graphs G0 6= G1 with
d�(G0, G1) = 0. With this cut distance, though, we can make sense of limits in the
space of finite graphs. In that sense, we can understand a random graph process as
a limit point of a convergent sequence of finite graphs. Let G be the pseudometric
space of finite graphs with d�, and let G� be its completion.

Proposition 6.1.8. There are transformations Ψ1 from local countable random
graph models to points in G� and Ψ2 from points in G� to local countable random
graph models such that Ψ1 ◦Ψ2 and Ψ2 ◦Ψ1 are both the identity transformations.

Proof. For Ψ1, we begin by, for each k, independently generating a random
graph Gk according to the distribution σk. We consider, for any fixed finite graph,
the sequence tind(F,Gk), where

tind(F,G) = .

We can show (making appropriate use of locality and consistency, as well as the
Markov-Shebyshev inequality and the Borel-Cantelli Lemma) that this sequence
converges almost surely for any fixed F . It follows from the definition of d� that
this sequence must then be Cauchy in d�, thus defining a point in the completion.

By contrast, a point in the completion is given by a Cauchy sequence, with
two sequences equivalent if they merge to a Cauchy sequence. A Cauchy sequence
of finite graphs can be replaced with an equivalent Cauchy sequence (Gk : k ∈ N)
where Gk has vertex set {1, . . . , k}, and we can define a local countable random
graph model that concentrates on this sequence. �

A fourth perspective on these processes is that of graph parameters. A signed
graph is a structure in a language with two symmetric binary relations E+ and E−,
representing the adjacencies and the nonadjacencies, respectively. In this sense,
every graph is equivalent to a signed graph.

Definition 6.1.9. A normalized multiplicative graph parameter is a function
f : G → R, where G denotes the set of finite signed graphs, satisfying the following
additional properties:

(1) If G0
∼= G1, then f(G0) = f(G1).

(2) For any disjoint graphs G0, G1, we have f(G0∪̇G1) = f(G0)f(G1).
(3) If V denotes the graph with one vertex and no edges, then f(V ) = 1.
(4) For any G, we have f(G) ≥ 0.

A graph parameter of particular importance for the study of random graphs is
the homomorphism density defined by

thom(G0, G1) =
|{f : G0 → G1}|
|G1||G0|

,

that is, the probability that a random map from G0 to G1 is a homomorphism.
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The final approach, that of [307] is that of measurable functions. Let W :
[0, 1]2 → [0, 1] be a symmetric measurable function. Certainly if the range of W is
{0, 1}, there is a natural interpretation of W as a graph structure on the vertex set
[0, 1]. We can interpret symmetric measurable functions more broadly as weighted
graphs: If we partition the unit interval by measurable sets V1, . . . , Vk in such a
way that W is constant on Vi × Vj for every pair i, j, we can then interpret W as
assigning a weight to an edge from vertex i to vertex j.

We could imagine these weights corresponding to probabilities of adjacency,
and could imagine a sequence (Wi : i ∈ N) of these step functions converging to
some more general function — or, as in a standard presentation of the Lebesgue
integral, an arbitrary symmetric measurable W being approximated by a sequence
of step functions. In this sense, a symmetric measurable function W : [0, 1]2 → [0, 1]
represents a limit of graphs.

We can define certain graph-theoretic parameters in a natural way on these
functions. Importantly, we can define the degree of a vertex x by

d(x) =

∫ 1

0

W (x, y)dy.

Similarly, we can define a quantity analogous to homomorphism density. Let G
be a finite graph with vertex set V , and denote by dV the form

∏
i∈V

dxi. We then

define the homomorphism density thom(G,W ) by∫
[0,1]V

∏
iGj

W (xi, xj)dV.

In the case where W is a {0, 1}-valued step function, this exactly matches the usual
definition.

A natural difficulty arises in when to consider two of these measurable func-
tions equivalent. As functions, they are highly sensitive to the labeling of vertices.
This can be resolved by the use of measure-preserving transformations, but such
transformations are not necessarily invertible. Instead, we define two symmetric
measurable functions W0,W1 : [0, 1]2 → [0, 1] to be weakly isomorphic if for any
finite graph G we have thom(G,W0) = thom(G,W1).

Example 6.1.10. The infinite Erdős-Rényi random graph generated as the
limit of G(n, p) can be represented as the function W : (x, y) 7→ p.

We are now ready to consider a foundational result linking all of these perspec-
tives.

Theorem 6.1.11 (Lovász). The following are equivalent, in the sense that one
may construct, from an item of each class, an item of each other class in such a
way that a cycle through these constructions will generate an object equivalent to
the starting point:

(1) A consistent and local random graph model
(2) A local random countable graph model
(3) A point in the completion of the metric space of finite graphs
(4) A nonnegative normalized multiplicative graph parameter on signed graphs
(5) A measurable function W : [0, 1]2 → [0, 1].
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Proof. We have already established some parts of the proof. The equivalence
of parts a and b is Proposition 6.1.6, and the equivalence of parts b and c is
Proposition 6.1.8. It remains only to prove the equivalence of a, d, and e.

Given a consistent and local random graph model σ̄, we construct a measurable
function Wσ̄ in this way. We begin by, for each k, independently generating a
random graph Gk according to the distribution σk. We consider, for any fixed
finite graph, the sequence tind(F,Gk), where

tind(F,G) = .

We can show (making appropriate use of locality and consistency, as well as the
Markov-Shebyshev inequality and the Borel-Cantelli Lemma) that this sequence
converges almost surely for any fixed F . Now we let Vk, Ek be, respectively, the
vertex set and the edge relation of Gk, and take an ultrafilter F on N. We then take

the ultraproduct
∏
F

(Vk × Vk). We can identify this product with

(∏
F
Vk

)2

in the

natural way. We construct a measure by taking µk to be the uniform measure on
Vk, with σ-algebraMk = P(Vk), and letM =

∏
F
Mk, with the product measure µ.

We can also construct an appropriate “edge” object on V by defining E =
∏
F
En,

and define W0 to be the conditional expectation of the characteristic function of E,
given a pair in M2. Now for any finite graph F , the ultralimit limF thom(F,Gn)
gives exactly t(F,W ), as described above. This measurable function W0 can be
transformed to a measurable function W : [0, 1]2 → [0, 1] with the same property
[155].

Given a measurable functionW : [0, 1]2 → [0, 1] we construct a graph parameter
meant to generalize the homomorphism density. We consider the unit interval as
the set of vertices in the limit graph represented by W , and we consider W (x, y)
as a weight for an edge from x to y in a weighted graph. In that sense, allowing xi
to range over all possible “vertices” of W to which the vertex i might be mapped,
the homomorphism density can be defined, for a graph G = (V,E) as

thom(G,W ) :=

∫
[0,1]V

∏
(i,j)∈E

W (xi, xj)
∏
i∈V

dxi.

The analogy in which W has finite domain and values from {0, 1}, and in which
integration is taken with respect to the uniform measure, gives precisely the same
graph parameter as the discrete case. To account for signed graphs, we modify thom
to reflect the preservation of non-adjacencies:

tind(G,W ) :=

∫
[0,1]V

 ∏
(i,j)∈E+

W (xi, xj)

 ∏
(i,j)∈E−

(1−W (xi, xj))

∏
i∈V

dxi.

Observe that tind(·,W ) is a normalized multiplicative graph parameter.
Given any normalized multiplicative graph parameter f on signed graphs, we

will now produce a consistent local random graph model. Given a graph G on k

vertices, let Ĝ be the signed graph equivalent to the graph G. Now as G ranges over

all graphs on k vertices, the map σk : G 7→ f(Ĝ) gives a probability distribution
on these graphs. We can calculate that σk(G) =

∑
σk+1(H), where H ranges

over all one-vertex extensions of G, so that σ̄ is consistent. Moreover, since f is
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multiplicative (for disjoint S, T , we have f(S ∪ T ) = f(S)f(T )), we also see that σ̄
is local. �

In view of this theorem, any of the five equivalent concepts has equal claim to
the name, but the standard formulation in the literature is this:

Definition 6.1.12. A graphon is a measurable function W : [0, 1]2 → [0, 1].

One could also wish to infer, from a graph observed, the random process that
gave rise to it. The literature in this direction is young, but a recent paper gives
an algorithm to estimate a graphon W from a single graph sampled from it [87].

An initial test of the potential of graphons to capture the model-theoretic ran-
domness of structures is their interaction with finite fields. In view of Theorems
5.3.14 and 5.3.17, it is interesting to explore the graphs definable in asymptotic
classes of finite fields, and recent work has followed this lead.

Theorem 6.1.13 ([150]). Let Γ = (U, V,E) be a definable bipartite graph over
a definable set S0 on an asymptotic class of finite structures C. Then there exists a
definable set S over S0 and a definable step function W over S such that for every
ε > 0 there is M > 0 such that for every F ∈ C with |F | ≥ M , every x ∈ S(F )
mapping onto x0 ∈ S0(F ), we have

d� (Γx0
(F ),Wx(F )) ≤ ε.

This result will be seen in Section 8.7.1 to be a version of Szemeredi’s Regularity
Lemma, which will be discussed in more detail there. Džamonja and Tomašić prove
this reult using Theorem 5.3.9.

6.1.2. Invariant Measures. An interesting recent approach to random struc-
tures in recent years starts with the matter of measures on the space of countable
structures. One sometimes says that a construction is exchangeable if it is invariant
under permutations of the elements. This is certainly true, for instance, of the
random graphs G(n,M) and G(n, p(n)) from the previous chapter.

Consider a countable language L, and the space ML of all L-structures with
universe N. For each quantifier-free formula ϕ(x1, . . . , xk) of L and each k-tuple
(n1, . . . , nk) of natural numbers, we have a set Bϕ(n̄) of structures defined by

Bϕ(n̄) := {M :M |= ϕ(n̄)} .
Now ML is naturally a topological space in this so-called “logic topology,” in which
the sets Bϕ(n̄) are taken as the subbasic open sets. The logic action of S∞ on ML is
the action in which an element of S∞ acts in the natural way as a permutation of the
universe, and the orbit of a structure under this action is exactly its isomorphism
type.

Definition 6.1.14. Let µ be a Borel probability measure on ML.

(1) We say that µ is invariant when it is invariant under the logic action.
(2) We say that µ concentrates on a set X when µ(X) = 1.
(3) We say that µ concentrates on a structureM when it concentrates on the

orbit of M under the logic action.

The uniform measure on the set of graphs with universe (that is, vertex set)
N concentrates on the uniform countable random graph, as we saw in the previous
chapter. We also saw that the uniform measure on triangle free graphs does not
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concentrate on the Henson graph (the Fräıssé limit of triangle free graphs), although
there is a known invariant measure that does. A significant recent body of work by
Ackerman, Freer, Patel, and others investigates conditions on a structureM under
which there exists an invariant probability measure that concentrates on M.

We begin by defining some conditions that will be useful in the characterization.

Definition 6.1.15. Let M be a countable L-structure.

(1) Let ā be a finite subset of M. The Lω1ω definable closure of ā in M
(denoted dcl(ā))is the set of b ∈ M such that for any automorphism g of
M with g(a) = a for all a ∈ ā, we have g(b) = b.

(2) We say that M has trivial definable closure if and only if for every finite
ā ⊆M, we have dcl(ā) = ā.

In the present section we oftentimes do not write that the definable closure in
question is Lω1ω definable closure, but we will have this meaning in mind throughout
the present section.

Theorem 6.1.16 ([5]). Let L be a countable language and M a countable in-
finite L-structure. Then the following are equivalent:

(1) There is an invariant probability measure on ML that concentrates on M.
(2) The structure M has trivial definable closure.

Proof. The key element of the proof is in constructing a Borel structure with
appropriate properties. We say that an L-structure W is a Borel structure if its
universe is R and if, in addition, for each n-ary relation symbol R ∈ L, the set RU

is a Borel set of Rn and for each n-ary function symbol f ∈ L, the graph of fU is
a Borel subset of Rn+1. These structures have been described in [421, 345].

In such a structure, we might hope to sample, as we sample the unit interval
with graphons, to produce a countable sequence of elements ofW that constitute the
universe for a countable L-structure. We define Clo(W) to be the set of countable
sequences τ ⊆ W where τ , as a set, contains all constants of W and is closed under
all functions of W. We say that W is samplable if and only if Clo(W) is exactly
the set of all countable sequences of elements of W.

The main idea is to pass from the structureM to a samplable Borel structureW
that gives rise to the appopriate measure. A theory T is said to admit duplication of
quantifier-free types when for every complete Lω1ω type p(x, z̄) of distinct elements
consistent with T there exists a complete Lω1ω type q(x, y, z̄) of distinct elements
that implies boty p(x, z̄) and p(y, z̄). If every countable model of T has trivial
definable closure, then T has duplication of quantifier free types, since for any type
over z̄, the type p cannot define x, so that there is y 6= x also satisfying p(y, z̄).

We will pass from the structure M to another structure M representing M.
Let ∼k be the relation on k-tuples of elements from M denoting that they are in
the same automorphism class. We establish a language LM consisting of a k-ary

relation symbol for each ∼k equivalence class for each k. The structureM is an LM
structure interpreting each relation symbol as the appropriate equivalence class. It
is not difficult to believe that M and M are Lω1ω-interdefinable, or that M has
trivial definable closure if and only ifM does. It is also true, although less obvious,
that there is an invariant measure concentrating on M if and only if there is one
for M.

The advantage ofM is that there is a theory TM axiomatized in a highly regular

way whose models are exactly the isomorphic copies ofM. The necessary condition
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is that the axioms for TM have the property that Ackerman, Freer, and Patel call
pithy : They are (possibly infinitary) Π2 sentences of the form ∀x̄∃yϕ(x̄, y), with ϕ
quantifier free.

We then construct a samplable Borel LM-structure W such that for every
probability measure µ giving every nonempty open set positive measure, and for
every sentence ∀x̄∃yϕ(x̄, y) ∈ TM and every ā ∈ W, either W |= ϕ(ā, b) for some
b ∈ ā or µ {b ∈ W :W |= ϕ(ā, b)} > 0. This requires careful assignment of predicate
values and tracking of intervals, but the key element is that whenever there is no i
such that ϕ(ā, ai), an interval of y is added, each element satisfying ϕ(ā, y).

Now to get a measure λ concentrated on M, we define a function F mapping
Clo(W) to the set of LM-structures with universe N in the natural way: given an
infinite sequence τ ∈ Clo(W), we define a structure F (τ) on the natural numbers
with RF (τ)(n1, . . . , nj) if and only if W |= R(τ(n1), . . . τ(nj)), and similarly for
function and constant symbols. Given a probability measure µ on R, we define a
measure µW on the set of countable LM -structures by composing F−1 with the
product measure on Rω. This measure is invariant.

Let n1, . . . , nk ∈ N, and let ∀x̄∃yϕ(x̄, y) be an axiom of TM, considering each
ni as τ(ni) for some fixed τ ∈ Clo(W). Now either W |= ϕ(n̄, ni) for some i or
there is a positive measure set of y such that W |= ϕ(n̄, y). In either case, we can
show that, µW -almost surely, we have F (τ) |= ∃yϕ(n̄, y), so that almost surely,
F (τ) |= TM.

It follows that µW concentrates on the models of TM, that is, on isomorphic

copies of M. By interdefinability of M and M, we have a measure concentrating
on M.

For the reverse implication, suppose that there is an invariant measure µ con-
centrated onM, suppose for contradiction that b 6= ā is in dcl(ā). Let p(x̄, y) be an
Lω1ω formula isolating the type of āb, and note that µ must concentrate on the set
of structures that satisfy ∃x̄, y[p(x̄, y)]. Since µ is countably additive, there must
be some tuple n̄,m of natural numbers that satisfies p in a positive-measure set of
structures. We consider the family of sets of structures

Γj := {M :M |= p(n̄, j)}.

Since b is in the definable closure of a, these sets must be disjoint, and since µ is
invariant, they must all have the same finite positive measure. The measure of their
union, then, must be infinite, a contradiction. �

From the perspective of this result, long-known amalgamation results concern-
ing the Henson graph prove that the generic triangle-free graph has trivial definable
closure, so that this result generalizes the result of Petrov and Vershik showing that
there is an invariant measure under which that graph is almost sure.

Ideologically, of course, the idea of sampling from a samplable Borel structure
to get a random structure is familiar from graphons, but it is not entirely straight-
forward to say what the connection is. Let W be a Borel graph defined on the
unit interval. We define a grapon WW by setting WW(x, y) = 1 if W |= xEy, and
WW(x, y) = 0 otherwise. Now the distribution of a random graph sampled from
WW is exactly µW as in the proof above. Similarly, if W is a graphon taking values
in {0, 1}, we can define a Borel graph WW corresponding to it.
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The theorerm also shows that if a countable graph admits an invariant measure,
then there is some samplable Borel structure from which that measure is the sam-
pling measure. Consequently, if W is a graphon such that random graphs sampled
from W concentrate on a single isomorphism type, then there is a {0, 1}-valued
graphon W ′ such that random graphs sampled from W ′ are also concentrated on
that same type. This connection is explored in more detail in [4].

In [4], a condition is given similar to duplication of types under which an inverse
limit construction on finite structures can construct a measure concentrated on
models of a single theory, but assigning measure zero to each isomorphism type.

Recall from Chapter 2 that Gaifman proposed in 1964 an idea of measure
models. In this context, he asked for conditions under which it is possible for
a theory to have a measure model with strict equality and invariant under finite
permutations of the domain [189]. This problem has recently been solved. Note
that while Gaifman’s original statement of the problem specified invariance under
finite permutations, by the Kolmogorov Extension Theorem (Theorem II.3.4 of
[407]), this is equivalent to invariance under the full logic action.

Definition 6.1.17. Let G act on X, and let µ be an invariant probability
measure. Then the system (G,X, µ) is said to be ergodic if and only if for every
V ⊆ S with g(x) ∈ V for every g ∈ G and µ-almost every x ∈ V , we have
µ(V ) ∈ {0, 1}

Note that this definition is concordant with the standard definition in [456] of
an ergodic measure-preserving transformaiton. For Walters, it is the transformation
that is ergodic, and it is important that the invariant set have measure 1 or 0.
From that perspective, the “almost every” quantifier is of no importance, since a
difference of a measure 0 set will not change the provision that V has measure 1 or
0. Similarly, it does not matter whether we consider the forward or inverse image
of elements of V : we specified that G is a group. For brevity, one usually says
that either the group action or the measure is ergodic, although, of course, it is a
property of the pair.

Theorem 6.1.18 ([6]). Let Σ be a countable set of sentences in Lω1ω. Then
the following are equivalent.

(1) There is an invariant probability measure concentrated on models of Σ
(2) There is an ergodic invariant probability measure concentrated on the mod-

els of Σ.
(3) There is a countable fragment A of Lω1ω and a consistent theory T ⊆ A

complete for A and extending Σ such that T has trivial A-definable closure.
(4) For all countable fragments A of Lω1ω containing Σ, there is a consistent

theory T ⊆ A complete for A and extending Σ such that T has trivial
A-definable closure.

Proof Outline. We explain only the proof that the existence of an invariant
measure implies the existence of an ergodic invariant measure. Let Σ be a countable
set of sentences such that there is an invariant measure µ concentrated on models
of Σ, and suppose that there is no ergodic measure concentrated on Σ.

Now we can decompose µ as a mixture of ergodic measures. This decomposition
is standard (see, for instance, [456, 256]), but may not be familiar to many readers
of the present volume, so we give some idea of it. Now there exists an invariant set
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I of positive measure in the sense of µ, and we have

µ(A) = µ(I)µ(A|I) + µ(¬I)µ(A|¬I).

Now these conditional measures are invariant, so that µ is a nontrivial convex com-
bination of invariant measures. We want, in the end, to have these measures ergodic.
By Choquet’s Theorem [366] there is a decomposition into ergodic measures.

Since none of the measures in the decomposition is concentrated on the models
of Σ, and since they are ergodic, they must all be concentrated away from the models
of Σ. But then µ is concentrated away from the models of Σ, a contradiction. �

It is reasonable to ask about the number of distinct probability measures invari-
ant under the logic action. In connection with the decomposition just described,
it is a standard result that the set of probability measures on a fixed space X in-
variant under a fixed group action constitute a compact convex subset of the full
space of probability measures on X, and that the extremal points of this convex
set are exactly the ergodic measures. Naturally, then, if there is a unique invariant
measure, it must be ergodic.

More is true, though. By the Birkhoff Ergodic Theorem, for any ergodic system
(G,X, µ) there is a measure 1 set Y ⊆ X such that for all x ∈ Y , all σ ∈ G, and
all continuous real-valued functions f on X, we have

1

n

n−1∑
i=0

f
(
σi(x)

)
→
∫
X

fdµ.

In the case of a unique invariant measure, this convergence is uniform, and holds
for all x ∈ X, not merely almost everywhere.

From this perspective, it is important to understand the diversity of the class
of invariant ergodic measures, since they compose a convex basis for the class of all
invariant measures. The following result not only revines the previous results on in-
variant measures, but also classifies the number of invariant measures concentrating
on a structure. We first define a condition used in the theorem.

Definition 6.1.19. Let M be a structure. We say that M is t-homgeneous if
and only if Aut(M) acts transitively on the set of t-element subsets ofM. We say
that M is highly homogeneous if and only if it is t-homogeneous for all t.

An older result of Cameron classifies the highly homogeneous structures up to
interdefinability [93]. There are five.

Theorem 6.1.20 ([3]). LetM be a countable structure in a countable language.
Then exactly one of the following holds:

(1) M has nontrivial Lω1ω-definable closure
(2) M is highly homogeneous and there is a unique invariant measure con-

centrating on M.
(3) There are 2ℵ0 distinct ergodic invariant probability measures concentrating

on M.

Proof. We already know that existence of an invariant measure concentrat-
ing on M is equivalent to the failure of 1. The examples of highly homogeneous
structures are all known to have trivial definable closure.

In the highly homogenous case, uniqueness follows by considering the number
αn of distinct quantifier-free types of n-tuples realized inM. There are less than n
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such types, sinceM is highly homogeneous, so that the set of structures in which a
fixed tuple realizes each type has measure 1

αn
. Since these sets generate the Borel

subsets of the orbit of M, this uniquely determines the measure.
It remains to show that a structure which is not highly homogeneous but has

trivial definable closure has continuum many measures. Certainly there is an in-
variant measure that concentrates on M. The structure M constructed in the
proof of Theorem 6.1.16 is ultrahomogeneous (that is, every isomorphism of finitely
generated substructures extends to a full automorphism), so it suffices to consider
M ultrahomogeneous. We consider the structure W constructed in the proof of
Theorem 6.1.16, and modify the measure µW . Consider A0, A1, non-isomorphic
n-element substructures of M, and let ϕi be a quantifier-free formula satisfied by
Ai but not in A1−i.

Now let I = (U1, . . . , Uk), where each Ui is a union of finitely many half-open

intervals, and let u : I → R>0 be a function satisfying
k∑
i=1

u(Ui) = 1. We can then

modify µW by setting, for each Borel set B ⊆ R,

µIW(B) =

k∑
i=1

u(Ui)µ(B|Ui).

This new measure µIW is an invariant measure concentrated on the orbit of M.
It is possible to achieve continuum many distinct measures in this way as (I, u)
varies. �

6.1.3. Entropy Methods for Graphons and Invariant Measures. The
language of statistical mechanics has long been a part of the study of large ran-
dom graphs. In physical terms, this area studies the rise of macroscopic (thermal)
properties of systems from the states of their microscopic constituent particles and
subsystems. Of course, there are limits to the analogy of, for instance, the large
finite number of molecules in a macroscopic sample of a gas on one hand, and the
truly infinite number of elements of a countable structure on the other. However,
the way in which this analysis is made is generally by treating the molecules as if
there are infinitely many, for instance, by approximating a summation by an inte-
gral. Certainly this approximation must have a role in the program Anil Nerode
has talked about since at least 2011 in the formulation of controls for statistical
mechanical and quantum systems.

On a more directly falsifiable level, a clear entry of physical language into
the study of random structures came with the observation of what Chung and Lu
call “the rise of the giant component.” Stated simply, if p(n) ∈ o

(
1
n

)
, so that

np > 1, a random graph drawn from G(n, p) will, with high probability, have a
component whose size is a constant fraction of n. If np < 1, on the other hand, all
components have size O (log n). The case where np = 1 is a boundary case, at which
the macroscopic property of the existence of a giant component changes abruptly.
Such situations are well-known in the physical context, and are known as phase
transitions. Erdős and Rényi did not use this language, but did describe “threshold
functions,” with essentially similar meaning. Certainly by 1970, Stepanov makes
reference to this phenomenon as a phase transition [423].

Certainly in the 1970s, entropy bounds were used in probabilistic method esti-
mates to construct expander graphs [368, 110]. We have already seen a dynamical
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treatment of graphons, in the sense that a graphon constitutes a size continuum
Borel structure from which we sample to get a countable structure, with a prob-
ability distribution invariant under the logic action. In this context, entropy has
well-established meaning. Since entropy is not often presented in a clear elementary
way, particularly to logicians, we explain a little here exactly what is being talked
about.

Let (X,µ) be a probability space and P = {Ai : i ≤ n} a partition of X, with
pi := µ(Ai). The entropy of P, denoted H(P) is intended to be a measure of the
information gained by performing an experiment and observing which Ai occurs,
and really depends only on the probabilities pi, for which reason we frequently
write H(p1, . . . , pn). Naturally, if there is i with pi = 1, no information is gained by
such an observation. It is also reasonable to require that any such measurement of
information should be invariant under permutation of the indices and the addition
of a probability zero part, and that it should be continuous in each pi.

There are two other conditions that are less obvious. If we understand entropy
as the information gained by making the observation, it is at least plausible that the
maximum information would be in the case as far from concentration as possible
— the case where pi = pj for all i, j.

Finally, if P0 = {A0,i : i ≤ n0} and P1 = {A1,i : i ≤ n1}, with pi,j := µ(Ai,j),
there is a natural partition P0 ∨P1 consisting of the n0n1 intersections A0,i ∩A1,j .
We define, as an intermediate notion, the conditional entropy H(P1|P0) by the
follwoing relation:

H(P1|P0) =

n2∑
j=1

(
p0,jH

(
µ(A1,1 ∩A0,j)

p0,j
,
µ(A1,2 ∩A0,j)

p0,j
, · · · µ(A1,n1

∩A0,j)

p0,j

))
.

In view of our interpretation of H as information gain, we will require that the
information gain from the joint observation P0∨P1 should be the informaiton gain
from P0, plus the information gain from P1 given the result of P0. Formulaically,
we require

H(P0 ∨ P1) = H(P0) +H(P1|P0).

The following theorem is standard, and is found, for instance, in [275].

Theorem 6.1.21. Let H be a real-valued function defined on all finite strings

of nonnegative reals (p1, . . . , pn) such that
n∑
i=1

pi = 1, and let H satisfy the following

conditions:

(1) For any sequence p̄, we have H(p̄, 0) = H(p̄).
(2) H is continuous in all its arguments.
(3) H(p̄) takes its maximum value where pi = pj for all i, j.
(4) Again recalling that H is defined on partitions by virtue of depending only

on the associated probabilities, for any partitions P0,P1, we have

H(P0 ∨ P1) = H(P0) +H(P1|P0).

Then there is some positive real λ such that H(p1, . . . , pn) = −λ
n∑
i=1

pi log pi.

Proof. We define Hn
max := H

(
1
n , . . . ,

1
n

)
, and will first establish that Hn

max =

λ log n. Indeed, since Hn+1
max is, by assumption, maximal for (n+ 1)-tuples, Hn

max =
H
(

1
n , · · · ,

1
n , 0
)
≤ Hn+1

max for any n, so that Hn
max is increasing in n.
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Now if we select partitions P1, . . .Pm which are pairwise independent in the

obvious sense, we apply condition 4 to see that H (P1 ∨ P2 ∨ · · · ∨ Pm) =
m∑
i=1

H(Pi),

and if each of Pi has k parts with uniform distribution as in condition 3, we then
have H (P1 ∨ P2 ∨ · · · ∨ Pm) = mHk

max. However, P1 ∨ P2 ∨ · · · ∨ Pm consists of
km parts with uniform distribution, so that Hkm

max = mHk
max.

Now consider integers k0, k1,m, n such that

km0 ≤ kn1 ≤ km+1
0 .

In this case, we will have

m log k0 ≤ n log k1 ≤ (m+ 1) log k0,

so that
m

n
≤ log k1

log k0
≤ m+ 1

n
.

A similar argument, from the observation that Hn
max is increasing, allows us to

observe that
m

n
≤ Hk1

max

Hk0
max

≤ m+ 1

n
.

This shows that, for arbitrary values of n, we have∣∣∣∣Hk1
max

Hk0
max

− log k1

log k0

∣∣∣∣ ≤ 1

n
,

leaving Hk
max = λ log k, as desired.

The problem of the non-uniform case remains. We show that H is determined
on rational arguments, and reason from continuity to the full theorem. Given
P = (A1, . . . , An), with µ(Ai) = pi = `i

q . We refine P to P ′ = (Ai,j : i ≤ n, j ≤ `i),
where µ(Ai,j) = 1

q for all i, j. Now

H(P ′|P) =

(
n∑
i=1

piH
`i
max

)
=

(
n∑
i=1

piλ log `i

)
.

Using product-to-sum properties of logarithms, we convert this to

H(P ′|P) = λ

(
log q +

n∑
i=1

pi log pi

)
.

Since P ′ is a refinement of P, we know that H(P ∨ P ′) = H(P ′) = Hq
max. On

the other hand, by condition 4, we have

H(P ∨ P ′) = H(P) +H(P ′|P).

We can then derive

H(P) = −λ
n∑
i=1

pi log pi

as desired. �

Similarly, from a physical perspective, if we consider a system of k particles
(with some very large k), each with six degrees of freedom (three each of position
and momentum), the energy of the system is a function of all 6k degrees of freedom,
and its values are probabilistic, with distribution ρ(E) and mean E. We define a
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quantity ∆Γ as the volume of the 6k-dimensional phase space such that ρ
(
E
)

∆Γ =
1. We then define H = log ∆Γ.

Now since log ∆Γ = − log ρ
(
E
)
, we can expand this expression as

H = −
∑

ρ(En) log ρ(En),

exactly mathcing the previous argument. Also, we have

dH =
d∆Γ

∆Γ
,

another familiar presentation in thermodynamics.
Now let (X,µ) be a measure space and T : X → X a measure-preserving

transformation. Let A be a σ-algebra of measurable sets. We denote by T−n(A)
the σ-algebra {T−n(A) : A ∈ A}. Now if we have a partition P = {A0, . . . , Ak} of
X, we can also partition X, for each n, by PTn , consisting of all sets of the form⋂

i = 0n−1T−i(Aij ).

That is, two elements a0, ai are in the same part of PTn if and only if a0 and a1 are
in the same part of P, and also T−1(a0) and T−1(a1) are in the same part of P,
and so on. We define

h(T,P) := lim
n→∞

H(PTn ),

and define h(t) to be the supremum over all partitions P. It is not obvious, but
true, that the limit h(T,P) must always exist, so that this quantity is well-defined.

Now in Pinsker’s original proof of the existence of expander graphs, and in later
work in this tradition, for instance, by Chung, entropy seems to be used primarily to
express the tradeoffs available in the parameters for expander construction, without
much explicit mention of its information-theoretic content. For instance, there is
α such that for sufficiently large N , a graph selected at random from all D-regular
bipartite graphs with N vertices in each part will have the property that for all sets
S of at most αN vertices, the neighborhood of that set is of size at least A times
the size of S with high probability if and only if

D >
h2(α) + h2(αA)

h2(α)− αAh2(1/A)
,

where h2(z) = z log z + (1 − z) log (1− z), with the convention that 0 log 0 = 0
(which is true, in the limit), as is described in [446].

More recently, however, entropy has received more center-stage attention in
the study of random graphs. Given a graphon W : [0, 1]2 → [0, 1], we define the
entropy of W as

H(W ) =

∫ 1

0

∫ 1

0

h2(W (x, y))dxdy.

Janson proved that this definition, in the limit, matches the entropy

H (G(n,W ))(
n
2

) ,

in the sense of taking G(n,W ) as a random graph drawn from W with finitely many
outcomes.

Theorem 6.1.22 ([250]). Let W be a graphon. Then ran(W ) = {0, 1} if and
only if H(W ) = 0.
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Proof. The integral defining H(W ) is zero if and only if h2(W (x, y)) = 0 for
almost every (x, y). Now h2(W (x, y)) = 0 if and only if W (x, y) ∈ {0, 1}. �

This result shows that the entropy H (G(n,W )) of a {0, 1}-valued graphon is
o(n2). Hatami and Norine showed that this bound can be made tight, in the sense
that there are {0, 1}-valued graphons with asymptotic entropy arbitrarily close to
n2. However, some conditions push this asymptotic entropy lower. If Q is a set of
graphs, closed under isomorphism, such that every convergent sequence of graphs
in Q converges to a graphon with range {0, 1}. Then H (G(n,W )) is O(n log n)
[224].

One emerging concern about random graph models has been their bias as es-
timators. In many applications, actual simulation of the random process of gen-
erating a large random graph has become a practical part of science. For instance,
to perform a hypothesis test on network observations, one could simulate many
random graphs with the appropriate properties, and then observe the distribution
of their properties. Of course, the quality of such a simulation matters.

One statistical approach to the quality of simulations is through the notion of
bias. If we take a sample with measurements ā and use the function δ evaluated
on ā to estimate the value of a parameter θ, then an important property of δ as an
estimator of θ is the difference between the expected value of δ(ā) as ā is drawn at
random from the true value of θ. This difference is known as the bias of δ, and δ is
said to be unbiased if the bias is zero. A standard example is the sample variance
as an unbiased estimator of population variance.

Some have suggested that a random graph model with maximum entropy rel-
ative to the prescribed properties would be unbiased estimators [449], although I
have not seen a proof of this property, or even a precise formulation of what it
should mean in terms of the parameter being estimated.

Radin and Sadun have shown that graphons exhibiting minimal entropy subject
to appropriate constraints also optimize for small triangle density [373].

In view of the characterization in Theorem 6.1.22 and the characterization of
the graphons arising as sampling from Borel structures, studying the asymptotic
growth of the entropy function is relevant to the general study of random structures.
As we have seen, in the case of graphs (in a language with a relation of arity 2),
the growth is approximately n2. More recent work has generalized that insight [7].

We first note that the investigation of entropy functions on random structures
can be restricted to a special case.

We say that an L-structure A is non-redundant when for any relation symbol
R ∈ L, the structure satisfies R only on tuples of distinct elements. We say that an
invariant measure is non-redundant when it concentrates on non-redundant struc-
tures. Since any theory T is quantifier-free interdefinable with a non-redundant
relational theory T ′, and any invariant measure concentrating on T gives rise in
a natural way to an invariant measure concentrating on T ′, it suffices to consider
that case.

Definition 6.1.23. Let L be a relational signature. An extended L-hypergraphon
is a measurable function

W : [0, 1][{1,...,k}]
<k

→M,

whereM is the space of probability measures on the set of non-redundant quantifier-

free L-types, such that for any sequence x̄ ∈ [0, 1][{1,...,k}]
<k

and any permutation
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σ of the natural numbers, the measure W
(
xσ(i1), . . . xσ(ij)

)
is equal to the measure

W
(
xi1 , . . . , xij

)
, translated by σ.

If L is the signature for graphs, an extended L-hypergraphon is not exactly a
graphon — it takes sample sequences from the unit interval to probability measures
— but sampling from a graphon gives an extended hypergraphon. The reverse is
not quite true. Some extended hypergraphons do not arise from sampling Borel
structures.

For any extended L-hypergraphon W and any set S, we take an independent

identically distributed sequence
(
ζD : D ∈ [{1, . . . , k}]<k

)
of reals from the unit

interval, and represent G(S,W) in the following way. For a set J ∈ [{1, . . . , k}]k,
let ZJ = (zF : F ⊆fin J) be defined by zF = ζF . Now for each ζD, the quantifier-
free type of the tuple (n1, . . . , nk) is distributed according to

EWJ :=W (ZJ , ζJ) .

Theorem 6.1.24 ([7]). Let L be a relational signature where k is the maximum
arity of any relation symbol of L. LetW be an extended L-hypergraphon, and denote
by G(S,W) a structure sampled from W with universe S. Then

lim
n→∞

H (G(N,W)) (n)(
n
k

) =

∫
H(W (t))dt.

Proof. We prove only the less-technical side, that

lim
n→∞

H (G(N,W)) (n)(
n
k

) ≥
∫
H(W (t))dt.

By the independence assumptions of the model construction,

H
(
G(n,W)

∣∣∣(ζI : I ∈ [{1, . . . , n}]<k
))

is equal to the sum
∑

J∈[{1,...,n}]k
H(W(ZJ)). Taking expectations, we can find that

H (G(n,W)) ≥
∑

J∈[{1,...,n}]k
E(H(W(ZJ))),

which, by identical distribution, is equal to∣∣∣[{1, . . . , n}]k∣∣∣ ∫ H(W (t))dt.

�

One particular outcome of this theorem is that for some constant C, we have
H (G(N,W)) (n) = Cnk + o(nk), generalizing the result for graphs.

6.2. Keisler Randomizations

6.2.1. The Idea of Randomization Structures. There have been other
ways beyond graphons to capture randomness in a single structure. The idea of
Keisler was to start with a structure M, and pass to another structure whose
elements are random elements sampled fromM. After Keisler’s initial formulation
of these structures and their theories, an additional refinement was added by Ben
Yaacov and Keisler by formulating this process in continuous logic. In any case,
the phenomenon of random elements sampled from another structure is by now
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familiar, paralleling, as it does, the sampling of graphons and of sampleable Borel
structures.

We first consider the relationship of this sections with the previous sections.
Let W be a structure — in the preceding sections it would have been a samplable
Borel structure, but these restrictions are not critical for the current purpose. The
countable sequences of elements from W can be parameterized as functions from
[0, 1) to W with countable range. We call the set of such functions W [0,1). We can
describe a random structure sampled from W in this sense by talking about the
probabilities that various sentences in the language of M hold on an element of
W [0,1). We will form a two-sorted metric structure in the following way: we take K
to be the setM[0,1), and B to be the set of Borel subsets of [0, 1), with the standard
Lebesgue measure λ. For any formula ϕ(x̄) in the language of W, we include in
our structure a function mapping tuples of elements from K into elements of B by
setting, for any tuple of functions f̄ ∈M[0,1),

Jϕ(f̄)K :=
{
t ∈ [0, 1) :M |= ϕ

(
f̄(t)

)}
.

We define the metrics dK(f, g) = λ {t : f(t) 6= g(t)} and dB(a, b) = λ(a4b). This
important example of the randomization structures of the present section was in-
troduced in [23], where it was called the Borel randomization of M.

This approach differs in an important way from the work of Gaifman we have
already mentioned. Gaifman took the assignment of probability values (measures)
to sentences to be primitive. In the present approach, we take the sampling to be
primitive, and calculate probabilies according to the canonical probablilty theory
of Kolmogorov.

The major initial insight of this line of research is that, given an initial structure
M, the “randomizations” of M are all models of a single complete theory. From
this, it turns out that the passage from Th(M) to the “randomization theory”
preserves various important properties of first-order theories.

We begin with describing the appropriate signature for the randomizaiton struc-
ture.

Definition 6.2.1 (Ben Yaacov-Keisler). Let L be a first-order signature. Then
LR is the following continuous signature with a sort K of random elements and a
sort B of events.

• For each first-order formula ϕ(x̄) in n free variables, the signature LR has
the n-ary function symbol Jϕ(·)K : Kn → B.

• A unary predicate a unary (continuous) predicate µ on B,
• The Boolean operations t,u,¬,>, and ⊥ on B
• A metric dK on K
• A metric dB on B.

Now, given an L-structure M, we begin to construct a randomization MR.

Definition 6.2.2. LetM be an L-structure. Then a pre-randomization of M
is a 2-sorted LR-structure with universe (K,B) such that

(1) (B,t,u,¬) is an algebra of sets.
(2) There is some pair (Ω, µ) such that (Ω, B, µ) is an atomless finitely additive

probability space.
(3) K is a set of functions from Ω to M.
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(4) For any f̄ ∈ Kn, the set Jϕ(f̄)K is the element of B consisting of all w
such that M |= ϕ

(
f̄(w)

)
This much already captures K as a set of random elements of M. A more

complete treatment of the idea of a randomization structure would provide semantic
meaning for the measure µ and the metrics on the two sorts, and restrict B to events
with semantic meaning in the sense of M.

Definition 6.2.3. Let M be an L-structure, and MR a pre-randomization of
M. We say thatMR is a randomization ofM if and only if the following conditions
hold.

(1) For each b ∈ B and each ε > 0, there are f, g ∈ K such that µ (b4Jf = gK) <
ε

(2) For each formula ϕ(x, ȳ) of L, for each ε > 0, and for each tuple ḡ of
elements from K, there is f ∈ K such that µ (Jϕ(f, ḡ)K4J∃x ϕ(x, ḡ)K) < ε.

(3) The pseudo-metric dK on K is defined by dK(f, g) = µJf 6= gK.
(4) The pseudo-metric dB on B is defined by dB(a, b) = µ(a4b).

The degree to which randomizations of M are canonical will be considered in
the next section. For now, it suffices that we have them. It is at least relevant for
completeness that [57] shows how to randomize a metric structure.

There is a natural notion of pseudofiniteness for metric structures, first de-
scribed by Goldbring and Lopes. Indeed, there are two closely related notions, as
Goldbring and Lopes note that compact metric structures are frequently the right
metric analogy to finite first-order structures.

Definition 6.2.4 ([202]). Let M be a metric structure.

(1) We say that M is pseudofinite if and only if for any sentence σ, if for all
finite substructures A ⊆M, we have σA = 0, then we also have σM = 0.

(2) We say that M is strongly pseudofinite if and only if for any sentence σ
with σM = 0 there is some finite substructure A such that σA = 0.

(3) We say that M is pseudocompact if and only if for any sentence σ, if for
all compact substructures A ⊆ M, we have σA = 0, then we also have
σM = 0.

(4) We say that M is strongly pseudocompact if and only if for any sentence
σ with σM = 0 there is some compact substructure A such that σA = 0.

One natural test for these definitions is whether they agree with the classi-
cal notion of pseudofiniteness on classical structures considered as discrete metric
structures. This turns out to be the case.

Theorem 6.2.5 ([202]). Let M be a classical first-order structure. Then the
following conditions are equivalent.

(1) M is pseudofinite (in the classical first-order sense).
(2) M, considered as a discrete metric structure, is pseudofinite.
(3) M, considered as a discrete metric structure, is strongly pseudofinite.
(4) M, considered as a discrete metric structure, is pseudocompact.
(5) M, considered as a discrete metric structure, is strongly pseudocompact.

Proof. Some of the implications are straightforward. Pseudofiniteness as a
metric structure implies pseudofiniteness in the classical sense (the converse is more
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subtle, since there are metric structures that are not discrete). Since every finite
structure is compact, a strongly pseudofinite structure is strongly pseudocompact.

Strong pseudofiniteness implies pseudofiniteness and strong pseudocompactness
implies pseudocompactness, much as these concepts follow in the classical case: If
every sentence σ with σM = 0 has a finite (or compact) model within M, then
M is elementarily equivalent to an ultraproduct of finite (respectively, compact)
structures. In that case, if every sentence evaluates to zero on every finite (com-
pact) structure, then it must evaluate to zero in the ultraproduct, so that M is
pseudofinite.

Suppose thatM is pseudofinite in the classical sense. WriteM, up to elemen-
tary equivalence, as a ultraproduct

∏
U
Ai of finite structures. By Proposition 2.6.9,

we have M≡CFO
∏
U
Ai. Then we observe that M is strongly pseudofinite.

It now suffices to prove that if M is pseudocompact, then it is pseudofinite in
the classical sense. Recall from Definition 2.6.7 the natural translation of classical
formulas to continuous formulas. Let M be pseudocompact, and ϕ a classical L-
sentence with M |= ϕ. For each predicate P occurring in ϕ (for convenience, we
count equality as such a predicate for the present proof), since M is discrete, we
know that if PM(ā) ≤ 1

2 , then PM(ā) = 0. Consequently, for each such P , we form
the sentence

ψ′P (x̄) =

(
P (x̄) .−

(
P (x̄) .− 1

2

))
.

We note that whenever PM(x̄) ≤ 1
2 we have PM(x̄) .− 1

2 = 0, so that (ψ′P )M(x̄) =

PM(x̄) ≤ 1
2 . On the other hand, if PM(x̄) > 1

2 , then (ψ′P )M(x̄) = 1
2 . Consequently,

we define ψP = sup
x
ψ′P (x̄), and note that ψMP = 0. Let

Ψ = max (ϕ̃, ψP : P occurs in ϕ) .

Now there is a compact structure A ⊆M with ΨA ≤ 1
4 . We take a quotient of

A by the relation E1/4 that holds of (x, y) if and only if d(x, y) ≤ 1
4 . This relation

is transitive, since ψA= ≤ 1
4 . Since A is compact, a covering by open balls of radius

1
4 must have a finite subcover, so that this quotient must be finite. We note that
every predicate of L is invariant on E1/4, so that we can interpret L in a natural
way on the quotient B = A/E1/4. One can then see that B is a finite structure
satisfying ϕ. �

The sturcture of definability in a randomization of M is closely related to
definability in M. Recall that we say that an element is definable if there is a
formula satisfied by exactly that element.

Theorem 6.2.6 ([21]). Let M be a first-order L-structure, and (K,B) a ran-
domization of M, and let A ⊆ K.

(1) An element b ∈ B is definable with parameters from A if and only if it is
in the dB-closure of the set of elements e such that e = Jϕ(ā)K for some
first order formula ϕ and some tuple ā ⊆ A.

(2) An element f ∈ K is definable with parameters from A if and only if there
exist pairwise disjoint elements {En : n ∈ N} of B such that

(a)
∞∑
n=0

µ(En) = 1,
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(b) For every n, the element En is definable with parameters from A,
and

(c) For every n, there is some classical L-formula ϕn and some tuple
ā ⊆ A such that f �En is equal to the set Jϕn(ā)K.

6.2.2. The Randomization Theory. Keisler constructed a transformation
from a classical first-order L-theory T to a randomization theory TR whose models
are the randomizations of models of T . This theory is expressed in the random-
ization signature LR introduced in the previous section. We axiomatize that the
true formulas of T have value 0, that the Boolean connectives in type B match
their first-order counterparts, and that the definitive criteria of randomizations of
a model are satisfied.

Definition 6.2.7. Let T be a first-order L-theory. Then the randomization of
T , denoted TR, is the theory axiomatized by the following schema:

(1) For any L-formula ϕ(x̄) for which ∀x̄ϕ(x̄) is logically valid, the formula
sup
x̄
dB (Jϕ(x̄)K,>)

(2) For any ϕ ∈ T , the formula dB(JϕK,>)
(3) Standard Boolean axioms in type B
(4) sup

x̄
dB (J¬ϕ(x̄)K,¬Jϕ(x̄)K)

(5) sup
x̄
dB (Jϕ1 ∨ ϕ2(x̄)K, Jϕ1(x̄)K t Jϕ2(x̄)K)

(6) sup
x̄
dB (Jϕ1 ∧ ϕ2(x̄)K, Jϕ1(x̄)K u Jϕ2(x̄)K)

(7) sup
x,y

dK(x, y) = 1− µJx = yK

(8) sup
a,b

dB(a, b) = µ(a4b)

(9) sup
ȳ

inf
x
dB (Jϕ(x, ȳ)K, J∃x ϕ(x, ȳ)K)

(10) sup
b

inf
x,y

dB (b, Jx = yK)

(11) µ(>) = 1
(12) µ(⊥) = 0
(13) sup

a,b
(µ(a t b)− µ(a)− µ(b) + µ(a u b))

(14) sup
a

inf
b
µ(a u b) = µ(a)

2

This theory TR is reasonably well-behaved even without any assumptions on
T or its models.

Theorem 6.2.8 ([272]). The randomization theory TR admits quantifier elim-
ination.

Proof. We show first that all quantifiers of sort K can be eliminated, and
then those of sort B. We consider the case

ψ = inf f ∈ Kψ1(f, x̄)

where ψ1 is quantifier-free. Consider the set of first-order formulas ϕi(f, x̄) such that
the term Jϕx(f, x̄)K occurs in ψ1. We can now express ψ1 as a quantifier free formula
ψ2 in which f occurs only in terms of the form Jθ(f, x̄)K, where θ is a conjunction
of literals in the ϕi. Now there exists a formula ψ3 equivalent to ψ2 in which each
such θ is replaced by a new variable of sort B, with only existential B-quantifiers.
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By the standard induction, it now suffices to prove quantifier elimination for the
case of a formula ψ with only sort B quantifiers.

Again we focus on a single quantifer of type B. Let

ψ1 = inf
b∈B

ψ(b, x̄),

where ψ1 is quantifier-free. We let {αi : i ∈ I} be a finite set of terms such
that {b} ∪ {αi : i ∈ I} generates a boolean algebra containing all terms of sort B
occurring in ψ1. At this point, any term of sort B occurring in ψ1 can be expressed
in such a way that the only terms involving b are the terms of the form b u αi. By
axiom 14, these can be replaced by terms not involving b at all. Consequently, ψ is
equivalent to a quantifier-free formula. �

The completeness of the theory TR follows from quantifier elimination.

Theorem 6.2.9. If T is complete, then TR is complete.

Proof. Given a sentence ψ, we assume without loss of generality that ψ is
quantifier-free. It can, then, have no variables. Since there are no constant symbols
of sort K and only two constant symbols of sort B, the constant terms must be
boolean combinations of ⊥,>, and terms of the form JϕK, where ϕ is a sentence of
L. By axioms 2, 11, and 12, either TR ` ϕ or TR ` ¬ϕ. �

So we do, at least, have a theory of something. It remains to show that we
actually have a theory of the randomization structures.

Theorem 6.2.10. If T is the complete theory of an L-structure M, then, up
to pre-isomorphism, the randomizations of M are exactly the models of TR.

Proof. Let N = (K,B) be a randomization of M. If ϕ is a sentence true in
M, then dNB (JϕK,>) is the measure of the symmetric difference of the set of elements
satisfying ϕ and the universe >— that is, the measure of the emptyset. Now every
element of B is approximated by elements of the form JϕK, so by approximation all
of the boolean axioms (1–7, 9, and 11–13) hold. Axiom 8 holds by definition of a
randomization. Axiom 10 is a direct interpretation of the first point of Definition
6.2.3. Axiom 14 arises from the fact that (Ω, B, µ) is atomless. We conclude that
N |= TR.

Now suppose that N = (K,B) is a model of TR. Let Ω be the set of functions
from K to M with finite range. For k ∈ K, define Xk : Ω→M by Xk : ω 7→ ω(k)
We let K ′ := {Xk : k ∈ K} and B′ =

{
Jϕ
(
Xk

)
K : k ∈ K,ϕ ∈ L

}
. The natural

maps from K to K ′ and from B to B′ are a pre-isomorphism, and (K ′, B′) is a
randomization of M. �

In connection with the interpretation of both randomizations and pseudofinite
structures as being, in different senses, “random,” we return briefly to pseudofinite
metric structures in light of Theorem 6.2.10.

Corollary 6.2.11 ([202]). If M is a pseudofinite classical first-order struc-
ture, then any of its randomizations is a pseudofinite metric structure.

Proof. In metric structures, as in classical structures, pseudofiniteness is
equivalent to being elementarily equivalent to an ultraproduct of finite structures.

By Theorem 6.2.10, it suffices to prove that some model of (Th(M))
R

is an ultra-
product of finite structures. ViewM as an ultraproduct

∏
U
Mn of finite structures.
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LetKn be the set of functions from {1, . . . , n} toMn, and letBn = P{1, . . . , n},
with counting measure. We set N =

∏
U

(Kn, Bn), defining dB and dK in the obvious

ways. Axioms 3–8 and 11–13 hold by construction on N . Axioms 1, 9, and 10 are
true in each of the factor structures, so are true inN , as well. Axiom 2 also transfers
from the factor structures, only with the provision that a sentence may only be true
in almost all of them. It remains to verify axiom 14.

Let a = (an : n ∈ N) be an element of
∏
U
Bn. If µ(an) = 0 for a set of n which

is not U-null, then µ(a) = 0 and there is nothing to prove. Suppose, then, that
µ(an) > 0 for all n ∈ U . Since the measure on Bn is counting measure, that puts
the cardinality of the event an greater than 1 for almost all n. For any n where

this condition holds, we define some subset bn ⊆ an with |bn| ≤ |an|2 . Now Axiom
14 is verified. �

This result links together the results of the previous chapter with those of
this chapter, and establishes that randomization structures generalize pseudofinite
structures, as well as matching the sampling model of an important class of graphons
and of the entire class of samplable structures.

Much of the model-theoretic work around randomizations has followed the pro-
gram of transfering stability characteristics from T to TR, and there seems to be a
robust transfer. A natural place to start is with the existence of prime models.

Theorem 6.2.12 ([23]). Let T be a first-order L-theory. Then T has a prime
model if and only if TR has a prime model. Moreover, a model of TR is prime if
and only if it is isomorphic to the Borel randomization of a prime model of T .

Proof. Let M be a prime model of T . Consider the Borel randomization
(M[0,1), B) described at the outset of Section 6.2.1. We will show that this model
of TR is prime. Let f̄ be a tuple in M[0,1] of complete type p. Let ran(f̄) be
enumerated by {āi : i ∈ I}, denote by pi the complete L-type of āi, and let
αi = µ

{
x : f̄(x) = āi

}
. Since M is prime, each pi is isolated, so that it must be

realized in every model of TR, so that (M[0,1], B) is prime, as desired.
On the other hand, suppose TR has a prime model N = (K,B). If T does not

have a prime model, then there is a formula ϕ(x̄) consistent with T but not in a
principal type. Because ϕ(x̄) is consistent with T , we have TR |= J∃x̄ϕ(x̄)K .= >,

so that there is a tuple f̄ such that
(
dB(Jϕ(f̄)

)N
= 0 (this is a nontrivial theorem

of [59]). We denote the type of f̄ by pf̄ . Since N is prime and pf̄ is realized in N ,
it follows that pf̄ is principal. On the other hand, then, pf̄ must be realized in the
Borel randomization of an arbitrary countable model N0, and can be decomposed
as in the previous part into complete L-types pi with measures αi. If αi > 0, then
pi is realized in N0, which, we recall, is arbitrary. Thus, pi is principal, and ϕ(x̄)
belongs to a principal type pi. Thus, T has a prime model. �

In view of Section 7.4, the transfer of stability properties has potential im-
portance to the general theory of logic and probability. We summarize several
important results here.

Theorem 6.2.13 ([59, 56, 57]). Let T be a first-order theory and TR its
randomization.

• T is ℵ0-categorical if and only if TR is ℵ0-categorical.
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• T is ℵ0-stable if and only if TR is ℵ0-stable.
• If T is stable, then TR is stable.
• T is NIP if and only if TR is NIP.
• If T is simple unstable, then TR is not simple.

6.3. Algorithmically Random Structures

6.3.1. Algorithmic Randomness and Selection Randomness. Readers
of Chapter 3 may have already wondered about another method of constructing
“random” structures that has not yet explicitly been discussed. We could order
the unordered pairs of distinct natural numbers lexicographically (or in whatever
other way we like) by {{ae, be} : e ∈ N}, let σ ∈ 2ω be Martin-Löf random (or
algorithmically random in whatever other way we like), and construct a graph with
vertex set N by putting an edge between ae and be if and only if σ(e) = 1.

A related technique would be to start with some fixed graph G with vertex set
N, let S ⊆ N be an algorithmically random set, and let Gr be the induced subgraph
of G with vertex set S.

There is certainly a relationship of these techniques to the others described in
this chapter and the previous one, and we will see that under the right conditions
(at least in the obvious cases) they lead to similar ends. It is appropriate, though,
before taking up these approaches to random structures, to note some sensitivities
and some connections.

The reader will recall from Chapter 3 that the measure-theoretic definitions of
algorithmic randomness arise naturally from the Kolmogorov model of probability
described in Section 2.1.2: we begin with a measure space of total measure 1,
interpret random variables as functions defined on that space, and interpret sets
as events. An element of the codomain of these random variables is defined to be
random in various senses, according to its membership in sets which effectively have
large measure or its nonmembership in sets which effectively have small measure.
All of this makes sense, in principle, whether the codomain of the random variables
is the set of reals, the set of graphs, or the set of semisimple Lie algebras1.

There are, however, significant sensitivities in this study. What is the ap-
propriate measure to use. In the case of graphs, the construction given in the
introduction to this paragraph seems natural enough, but it is not at all obvious
that the graph constructed (even up to isomorphism) should be independent of the
ordering of pairs, and even then the Lebesgue measure on reals still seems foreign
to the structure of the random graphs in a sense that none of the previous models
have.

We constructed random graphs as models of an almost sure theory, and while
the precise structure may have required some suspension of disbelief, the selection
of the first order theory was at least clearly from the world of graphs (and we
were fortunate to find that theory ℵ0-categorical when we got there. Perhaps the
main result of Section 6.1 is that several different approaches — many of them
transparently arising from the intrinsic nature of graphs — led to interchangeable

1To the best of my knowledge, there has been limited work to date on the effective structure

theory of Lie algebras of any kind, in spite of the rich algebraic literature on their structure and
their relationship with several algebraic groups which have been somewhat more studied in this

field, e.g. in [231, 19].
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definitions. Invariant measures, sampleable Borel structures, and Keisler random-
izations have an even more direct connection to the graphs they represent. The
choice of a measure in which to construct algorithmically random structures requires
care and then careful defense.

Several approaches have been attempted, which deal with these issues differ-
ently, but the sensitivity around whether the randomness is really of an “intrinsic”
nature does seem to be a real issue. It is, of course, a standard (but often tacit)
concern in mathematics, to, as Hilbert put it, “use in the proof of a theorem as
far as possible only those auxiliary means that are required by the content of the
theorem,” [228], with the standard problematic example presented by the proof of
the Prime Number Theorem using methods of complex analysis. Something of the
philosophical literature on this point can be found in [26, 138]. Philosophical and
cultural concerns notwithstanding, it is difficult to accept a mathematical definition
as definitive unless it either shows tight tethering to the object being modeled or
has some proven sense of canonicity, and both seem hard to come by here.

6.3.2. Defining Algorithmically Random Structures. An early approach
to algorithmically random structures was given by Khoussainov.

Definition 6.3.1 ([276]). Let L = (Pi : i ≤ k) be a finite relational language,
where Pi has arity ni, and let cn : ω → ωn be a bijection for each n ∈ N. Also,
denote, for each i ∈ N, by q(i), r(i) the unique natural numbers such that i =
kq(i) + r(i), with r(i) ∈ {0, . . . , k − 1}. We say that a structure A with univers N
is Martin-Löf string-random if and only if the function αA ∈ 2ω given by

αA : i 7→ Pr(i)(cnr(i)(q(i)))

is Martin-Löf random.

For a graph, we have exactly one binary relation, and (subject to the ordering
given by cn) corresponds exactly with the construction given at the outset of the
previous section. Khoussainov and Nies independently proved the following result.

Proposition 6.3.2. Let G be a Martin-Löf string-random graph. Then G is
isomorphic to the random graph; that is, to the unique countable model of the almost
sure theory of finite graphs.

Proof. Suppose that G is Martin-Löf string random. Let x1, . . . , xn, y1, . . . , ym
be a sequence of distinct elements. It suffices to show that there is some z adjacent
to every xi and not adjacent to any yi. We define f : ω → ωn+m in the following
way:

f : z 7→
(
c−1
2 (x1, z), . . . , c

−1
2 (xn, z), c

−1
2 (y1, z), . . . , c

−1
2 (ym, z)

)
.

Now for any z, the string f(z) is a substring of αA, and if 1n0m /∈ ran(f), then we
have a betting strategy by which, in any of the infinitely many times we come close
to seeing 1n0m we can bet against its completion (see Proposition 3.2.20). So we
have 1n0m ∈ ran(f), so that there is some z with the desired properties. �

Khoussainov, very reasonably, found this result counterintuitive, since a Martin-
Löf random string can never be computable, but a Martin-Löf random graph must
be (at least, up to isomorphism).

To extend this definition to structures with functions, Khoussainov defined a
notion of branching classes, on which a similar definition could hold.
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Definition 6.3.3 ([277, 223]). Let K be a decidable class of structures, closed
under isomorphism.

(1) A height function on K is a function h : K/ ∼=→ N with the following
properties:
(a) If ∅ ∈ K, then h(∅) = 0.
(b) For each i ∈ N, the set of isomorphism types of structures h−1(i) is

finite,
(c) For each A ∈ K with h(A) = i > 0, there is a substructure A[i−1] ∈

K with h(A[i−1]) = i−1, with the property that for any substructure
B ⊆ A with h(B) < i, we have B ⊆ A[i− 1], and

(d) For each A,B ∈ K with h(A) = i and A[i − 1] ⊂ B ⊆ A such that
A[i− 1] = B[i− 1], we have h(B) = i.

(2) We say that a height function h on K is effective if and only if it is
computable as a function h : K → N and there is a computable function
to determine, given i, the cardinality of h−1(i).

(3) We say that K, with height function h, is a branching class if for any
A ∈ K with h(A) = i, there exist distinct structures B0,B1 such that
h(B0) = h(B1) > h(A), and B0[i] = B1[i] = A.

(4) We say that K is an effective branching class if and only if it is a branching
class with an effective height function.

Examples of effective branching classes do not seem as abundant as one might
wish. Nevertheless, some are available.

Example 6.3.4. Let L be a finite language consisting only of function and
constant symbols. A c-generated L-algebra is an L-structure in which every element
is the interpretation of some ground term, and a c-generated partial L-algebra A
is a set A along with interpretations of constant symbols of L as distinguished
elements of A and interpretations of function symbols of L as partial functions. We
define the height of a ground term by induction, with h(c) = 0 for every constant
symbol c, and h(t) = max{h(t1), . . . , h(tn)} + 1 where f is an n-ary function and
t = f(t1, . . . , tn). We define the height of an element of a c-generated algebra as
the minimum height of a ground term representing that element. We now consider
the class of proper partial algebras, that is, partial algebras that arise by taking an
infinite c-generated L-algebra and restricting the interpretation of functions to be
defined exactly on elements of height less than n for some n. Certainly, the axioms
of an effective height function are satisfied here. Moreover, the partial functions
can be extended in many ways, so that the class of proper partial algebras forms a
branching class.

One would like, of course, in light of the previous chapter, to have graphs and
fields as up-front examples. This is difficult, though. In the case of fields, only
the prime fields are c-generated, so those would require a very different approach.
Some restricted classes of graphs, generally with additional structure, can be shown
to be branching classes, but the full class of finite graphs does not seem obvious;
choices for the height function satisfying axioms 3 and 4 seem elusive.

The goal here, of course, is to give many options for extension, so that an infinite
path representing all the necessary choices will construct an infinite structure. The
reader will do well to compare the following construction to Definition 6.1.4.
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Definition 6.3.5. Let K be a branching class. We simultaneously define a
tree T (K) and a map γ : T (K) → K ∪ {∅}, (by convention, we will assign height
−1 to ∅), in the following way.

(1) T (K) has a root r, with γ(r) := ∅.
(2) Let n ≥ 1, and let σ ∈ T (K) be a node at level n− 1. The successors of

σ at level n are given by {σ1, . . . , σk}, and γ(σi) is, for each i, a distinct
structure of height n such that γ(σi)[n − 1] = γ(σ), in such a way that
the successors of σ exhaust such structures.

Lemma 6.3.6. The function γ induces a bijection γ∗ from paths of T (K) to
countable structures which arise as direct limits of systems of the form ((Ai, fi) : i ∈ N)
where for each i, the structure Ai is an element of K and fi : Ai → Ai+1 is an
embedding.

Proof. Given a path σ ∈ [T (K)], we define γ∗(σ) to be the direct limit of the
system ((γ(σ �i, fi) : i ∈ N), where fi is the natural inclusion. The function γ∗ is a
bijection. �

The goal is now to identify the random branches in T (K), and identify the
limits of those systems as the random structures.

Definition 6.3.7. Let K be a branching class with height function h.

(1) For each B ∈ K with h(B) = n, we define

Cone(B) = {A ∈ [T (K)] : A[n] = B}
and form a topology with sets of the form Cone(B) as a basis.

(2) We define a measure µ on [T (K)] in the following way:
(a) µ (Cone(∅)) = 1
(b) Let A be a label on σ ∈ T (K) with e immediate successors labeled

with A1, . . . ,Ae. Then for any i, we assign

µ (Cone(Ai)) =
µ (Cone(A))

e
.

Now, in light of the interpretation of [T (K)] as the class of infinite structures
of interest and in light of Definition 3.2.12, the notion of randomness is natural:
A structure is said to be Martin-Löf Random if and only if it is a µ-Martin-Löf
random point of [T (K)].

Certainly the measure µ concentrates on the set of Martin-Löf random paths.
Moreover, µ is invariant under the logic action of S∞. Consequently, the results of
Section 6.1.2 govern the circumstances under which, for instance, any two Martin-
Löf random structures must be isomorphic.

Proposition 6.3.8 ([277]). Let K be a branching class. Then there exists a
Martin-Löf random structure A ∈ [T (K)] such that A ≤T ∅′.

Proof. Let {Ui : i ∈ N} be the universal Martin-Löf test for [T (K)]. We
will construct, by stages, a path σ outside the intersection of this test. Suppose
that we have constructed σs �s, and that, for all i, we have γ(σs(i − 1)) = Bi. If
Cone(Bs−1) ⊆ Us, then we find (using a ∅′ oracle) the greatest t < s such that σs �t
has an extension, σ∗s /∈

⋃
i≤s

Ui, with |σ∗s | = s+1. We define σs+1 �s+1= σ∗s . We define

σ = lim
s
σs, and we see that γ∗(σ) is Martin-Löf random and ∅′-computable. �
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Since the class of finite graphs does not appear to be an effective branching
class in any routine way, it would be easy to suspect that the difficulty of having
random structures isomorphic to computable structures might have been avoided.
This is not the case.

Proposition 6.3.9 ([277, 223]). There is a branching class K such that some
Martin-Löf random structure in [T (K)] has a computable copy.

Proof. Consider a structure whose elements are infinite binary strings, in a
language with a constant symbol e interpreted as the empty string and two binary
predicates 1,0, where 1(σ, τ) if and only if τ = σ1 and 0(σ, τ) if and only if τ = σ0.
The class K will consist of substructures of this structure.

In particular, letting ≤ denote the lexicographical ordering, we let K consist
of the substructures of the form

Pσ = ({τ : (τ ≤ σ) ∧ (|τ | ≤ |σ|)} , e,1,0) .

We define an effective height function h(Pσ) = |σ|.
Now let {Ui : i ∈ N} be the universal Martin-Löf test for [T (K)], and consider

the leftmost element σ of [T (K)] U0. This path is both random and computably
approximable from the left. Let t0 ≤ t1 ≤ · · · be such a computable approximation
of strictly increasing length. The direct limit of Pt̄ is isomorphic to Pσ, but is
computable. �

There is a natural version of Post’s problem here. We are guaranteed that in
any branching class there will be a ∆0

2 random structure, and computable structures
sometimes occur. Given a branching class K, for what degrees d is there a 1-random
element of [T (K)] of degree d. Some partial answers are known.

In this connection, we make reference to the Turing degree of the isomorphism
type of a structure. Given a countable structure M, consider the set of Turing
degrees of structures isomorphic to M with universe N. It is well-known that this
set may or may not have a least element under Turing reducibility. If it does, then
that degree is called the degree of the isomorphism type of M [378, 90].

Theorem 6.3.10 ([223]). There is a branching class K such that [T (K)] has
Martin-Löf random structures whose isomorphism types have degree ∅ and degree
∅′, but has no Martin-Löf random structures whose isomorhpism types have any
other degree.

Proof. Again, we let ≤ denote the lexicographical ordering on nodes in a tree.
Let K be an effectively branching class with the following properties:

(1) For every η ∈ [T (K)] and every sequence σ0 ≤ σ1 ≤ σ2 ≤ · · · with
lim
i→∞

σi = η, we have γ∗(η) ≤T (σi : i ∈ N).

(2) For every path η ∈ [T (K)] and every M ∼= γ∗(η), there is a sequence
σ0 ≤ σ1 ≤ σ2 ≤ · · · with lim

i→∞
σi = η, such that (σi : i ∈ N) ≤T γ∗(η).

We note that the class constructed in the previous proof has these properties. Such
a class will always have the properties required by the conclusion of the theorem.

We first consider that, for a universal Martin-Löf test (Ui : i ∈ N), the set
of paths in T (K) − U0 has a leftmost element η that can be approximated by a
computable sequence σ0 ≤ σ1 ≤ σ2 ≤ · · · , so that γ∗(η) has a computable copy.
Similarly, if we let υ be the right-most path in T (K)−U0, then every copy of γ∗(υ)
computes υ. It can be shown that υ has degree ∅′.
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As usual, the proof that no other degrees are possible is more technical, but
the essential element is that if γ∗(η) has a degree, then η must be the limit of either
a computable increasing sequence or a computable decreasing sequence, as in the
prior two cases. �

Of the (false) intuition that a random structure cannot be computable, some-
thing does remain, though.

Theorem 6.3.11 ([223]). Let A be a computable structure. Then A is not
2-random in any branching class.

6.3.3. Glasner-Weiss Measures and Their Random Structures. The
sensitivity of the characterization of random structures to the choice of measure was
already highlighted in Section 6.1.2, where unique ergodicity was already an issue.
An approach by Fouché draws on topological dynamics to address this canonicity
problem.

We consider again the logic action of S∞ on the topological space ML of all L-
structures. The group S∞, of course, enjoys a topological and measurable structure
of its own; indeed, there is a left-invariant metric given by

d(σ, τ) =

{
2−n if n is the first place that σ(n) 6= τ(n)
0 if ∀n [σ(n) = τ(n)]

,

but it is not complete. On the other hand, there is a complete metric on S∞ given
by

D(σ, τ) = d(σ, τ) + d(σ−1, τ−1).

Since functions of finite support (that is, those which fix all but finitely many
elements of N) are dense in this metric, we see that S∞ is second countable.

Now the dense subgroup Sfin∞ < S∞ of functions of finite support is the union
of an increasing sequence of finite groups, and on each of these, the uniform proba-
bility measure is left-invariant, inducing a left-invariant finitely additive probability
measure on S∞.

Definition 6.3.12. We say that a group is amenable if it admits a left-invariant
finitely additive probability measure.

Thus, we say that S∞ is amenable. Now in the context of Hausdorff topological
groups acting on Hausdorff spaces, we have the following situation:

Definition 6.3.13. Let G be a Hausdorff topological group and X a Hausdorff
space.

(1) A G-flow on X, denoted (G, ·, X) is a continuous action of G on X.
(2) A G-subflow of (G, ·, X) is a G-flow (G,�, Y ) where Y ⊆ X and · �G×Y =
�.

The logic action of S∞ on ML is, of course, a flow, and if ϕ is an Lω1ω sentence
of L, then the restriction of the logic action to models of ϕ is a subflow. There is a
natural interest in decomposing flows into their constituent parts, and the following
result identifies those parts.

Proposition 6.3.14. Let (G, ·, Y ) be a subflow of (G, ·, X). The following
conditions are equivalent:

(1) (G, ·, Y ) has no proper subflows
(2) Every orbit of (G, ·, Y ) is dense.
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Subflows satisfying either of these two equivalent conditions are called minimal
subflows. The minimal subflows are connected to one another by the following
standard result.

Theorem 6.3.15. Let G be a Hausdorff topological group. Then there exists a
unique G-flow (G, ·,M) on a Hausdorff space such that for every G-flow (G,�, X)
and every minimal subflow (G,�, Y ) of (G,�, X), there exists a homomorphism
π : (G, ·,M)→ (G,�, Y ).

This unique flow is called the universal minimal flow of G. The following result
of Glasner and Weis identified the universal minimal flow of S∞. Since this universal
flow is uniquely determined by S∞, it gives a canonicity to that flow among all S∞
actions, including the logic action in any language.

Theorem 6.3.16 ([199]). The logic action of S∞ on the set of linear orderings
with universe N is the universal minimal flow of S∞.

Proof. We consider the set Ωk of maps from the set Nk to the set {0, 1},
noting that it represents the set of structures with universe N in a language with a
single k-ary relation. S∞ acts on this set via the logic action.

For T : Sk → {0, 1}, we denote by HT the set of all π ∈ Sk such that for all
σ ∈ Sk we have T (π−1σ) = T (σ). For any ω ∈ Ωk, we define ω̂ : Nk → {0, 1}Sk by

ω̂(i1, . . . , ik) : σ 7→ ω(iσ(1), . . . , iσ(k)).

Finally, we denote by Ωk[H] the set of ω ∈ Ωk such that for all ī ∈ Nk the set Hω̂(̄i)

is conjugate to H.
Let Σ be a minimal subset of Ωk. For each ω ∈ Ωk, Ramsey’s theorem gives

an infinite set J ⊆ N which is monochromatic in that ω̂ �Jk has a constant value
T : Sk → {0, 1}. After possibly applying some elements of S∞, we transform ω to
an ω0 where ω̂0 is constant.

We will also see that there is a subgroup H ⊆ Sk such that Σ is contained in
Ωk[H]. Indeed, if T is the constant value of ω̂0, then we let H = HT .

We are now prepared to define, for the logic action on L, the space of linear
orderings on N, a map π : L → Σ. For a linear ordering L = (N, <L), and for each
ū ∈ Nk, we select σL,ū ∈ Sk so that

uσ−1
L,ū(1) <L uσ−1

L,ū(2) <L · · · <L uσ−1
L,ū(k)

and define π by
π(L) : ū 7→ T (σL,ū).

To show that π communites with the logic action on L, let α ∈ S∞. Consider
a linear ordering L and its image M = αL. In that case,

π(M)(i1, . . . , ik) = T (σM,̄i),

and
α−1iσ−1

M,̄i
(1) <L α

−1iσ−1

M,̄i
(2) <L · · · <L α

−1iσ−1

M,̄i
(k).

We will then compare σM,̄i with σM,α−1 ī, since απL(̄i) = T (σM,α−1 ī). Showing
that these two are identical, we have πα = απ, as required. �

At this point, we have canonicity, but no measure. Recall from Section 6.1.2
our discussion of the decomposition of an invariant measure as a mixture of ergodic
measures, and the observation that the set of all invariant measures must be a
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compact convex set whose extremal points are exactly the ergodic measures. We
say that a flow is uniquely ergodic if and only if there is exactly one invariant
measure (which must, of necessity, be ergodic).

Theorem 6.3.17 ([199]). The logic action of S∞ on the space L of linear
orderings with universe N is uniquely ergodic.

Proof. We let µ be an arbitrary S∞-invariant probability measure on L, and
consider its values on sets of the form X`, where ` is a finite linear ordering and
X` is the set of all extensions of ` to elements of L. Since, for every finite `, every
element of L extends σ` for some σinSn for some n, the space L must be covered by
S∞-translates of X`, and by invariance, each must have measure 1

|`|. This uniquely

determines the value of µ on all Borel subsets of L. �

We follow here the usage of Fouché in calling this unique measure on the uni-
versal minimal flow the Glasner-Weiss measure, and denote it by µGW .

Lemma 6.3.18 ([174]). The Glasner-Weiss measure is computable.

Proof. We say that a set S of orders is a simple set if there are sets P and N ,
each of finite linear orderings, such that S consists of exactly the linear orderings
extending those in P which do not extend those in N . It suffices to compute the
measure on simple sets. This can be done by the inclusion-exclusion principle, using
the calculation in the proof of Theorem 6.3.17. �

Theorem 6.3.19 ([174]). Let (L,<) be a µGW -Martin-Löf random linear or-
dering. Then (L,<) is dense and without endpoints.

Proof. The statement that L is dense and the statement that L is without
endpoints can each be expressed as infinite conjuctions of Σ1 conditions. It suffices
to show that each of these Σ1 conditions has measure 1. Really, the two are similar,
so we show here the argument respecting density.

Let n 6= m ∈ N. For density to fail on n,m — that is, for {n,m} to be an
unordered successor pair — we must have, for each N ∈ N,

∀j ≤ N [j ≤ min{n,m} ∨ j ≥ max{n,m}] .
For a fixed N , the quantifier-free part of this condition has measure M

N where M is
the number of finite linear orderings on {1, . . . , N} such that {n,m} is an unordered
successor pair in that finite ordering. Since there are 2(N−1)(N−2)such orderings,
we have

M

N
=

2(N − 1)(N − 2)

N
=

2

N
.

In the limit, this condition has measure zero, so that a random linear ordering
cannot satisfy it. �

We denote, as usual, by MLµGW the set of µGW -Martin-Löf randoms. Now for
any linear ordering L = (L,<), it is natural to consider the set

SµGW (L) = {σ ∈ S∞ : σL ∈MLµGW }.
Naturally, this set is empty if L is not a dense linear ordering without endpoints. In
particular, an interesting approach to Khoussainov’s paradox that algorithmically
random structures could be isomorphic to a computable structure goes through the
consideration of SµGW (L) where L is computable.
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We approach the problem in this way. The set of randomizers of a computable
linear ordering L — that is, the set of permutations that transform a computable
L to a µGW -random linear ordering — can be expressed as

R(L) :=
⋃

σ∈Sc∞

SµGW (σL).

While the problem of identifying the randomizers of a computable linear order-
ing remains open, Fouché has described some progress on this problem.

Definition 6.3.20. ([269]) Let K be an age of L-structures.

(1) We say that K is Ramsey if and only if for all π,A ∈ K for which there
is an embedding ϕ0 : π → A, and for all positive r ∈ N, there is some
B ∈ K such that for every r-coloring χ of embeddings of ϕ1 : π → B,
there exists an embedding α : A→ B such that χ is constant on the range
of α∗ : ψ 7→ α ◦ψ, which maps embeddings π → A to embeddings π → B.

(2) We say that K is an order age if and only if there is a binary predicate
<∈ L which is interpreted as a linear ordering in every element of K.

It is not hard to believe that the Fräıssé limit of an order age should be a linear
ordering. Let K be an order age, and let K0 be the class of reducts of elements of
K to the language that omits the predicate <.

Definition 6.3.21. Let K be an order age in a signature L = L0 ∪ {<}. Let
K0 be the L0 reduct of K. We say that K is reasonable if and only if for every
embedding π : A0 → B0 of elements of K0, every linear ordering on A0 extends,
via π, to a linear ordering � on B0 so that (B0,�) ∈ K.

It was observed in [269] that if K is a reasonable order age, then the Fräıssé
limit F0 of K0 is the reduct of the Fräıssé limit F of K, say, F = (F0, <

F ). We
now consider the action of Aut(F0) < S∞ on the class of linear orderings on F0. In
this action, we consider the orbit of F , and denote the topological closure of this
orbit by XK. We call XK the discerning flow of K.

Theorem 6.3.22 ([175]). Let K be a computable age (order class) in signature
L = L0 ∪ {≤} which is Ramsey and has the ordering property. Let K0 denote the
L0 reduct of K. Let XK be its discerning flow, and F = (F0, <) its Fräıssé limit.
If XK contains a µGW -Martin-Löf random structure, then Aut(F) is amenable.

Proof. A linear ordering A belongs to XK if and only if for any B ∈ K0 with
an ordering <B , the ordering <B is the restriction of A. Since K is computable, the
relation A ∈ XK is Π0

1, and XK either contains a random element or has positive
measure. The latter case makes Aut(F) amenable. �

Returning to the question of randomizers for a computable linear ordering, we
see that if L is a computable linear ordering in XK , then if there is a randomizer
σ of L in Aut(F0), then Aut(F0) must be amenable.

The other issue, of course, is to consider µGW -random structures which are not
linear orderings. The key is to observe that the logic action on the set of linear
orderings is the universal minimal flow of S∞.

Consider the logic action of S∞ on the set Mϕ of models of ϕ ∈ Lω1ω. This
is a minimal flow if and only if ϕ is complete. Since the logic action on the set
MLO of linear orderings is the universal minimal flow, we have a homomorphism



168 6. RANDOM STRUCTURES

π : (S∞, ·,MLO) → (S∞, ·,Mϕ). Now π must respect orbits, so we can define
a random element of Mϕ to be π(A) for some µGW -random linear ordering A.
Another approach is to only define random elements of Mϕ where the logic action
on Mϕ is uniquely ergodic. This will either refer us back to Section 6.1.2 or forward
to Section 8.5.

6.3.4. Haar Measure and Haar Compatible Measure. Some classes of
structures come with standard measures, but those measures are not always trans-
parently measures on the class of structures involved. For instance, in considering
algebraic fields, Haar measure is perhaps the measure most natural to the situation.
Unfortunately, Haar measure is a measure on the absolute Galois group, and not
on the class of algebraic fields itself.

Let K ⊇ F be a Galois extension of fields. Then Gal(K/F ) is profinite, and so
locally compact. Any locally compact group admits a unique translation-invariant
measure, known as Haar measure. In the case of Galois groups, this measure is
characterized by the following well-known result.

Lemma 6.3.23. Let K ⊇ F be a Galois extension of fields, and let µH be the
Haar measure on Gal(K/F ). If J ⊆ K is a finite Galois extension of F , then
µH (Gal(K/J)) = 1

[J:F ] .

It would be interesting to have a well-established notion of an algorithmically
random field. In view of Theorems ?? and 5.3.6, we expect that a random field
should be pseudofinite. At the very least, they should be pseudo algebraically
closed; the intuition of the introduction to [180] is that, if we select at random a
finite sequence σ̄ of automorphisms of Q̄, then the fixed field of σ̄ will be pseudo
algebraically closed with Haar probability 1. At least two recent efforts have at-
tempted to use Haar measure in different ways to define algorithmically random
fields.

In addition to the usual addition, multiplication, and identity elements, we
frequently consider fields in the language L∗ = (+, ·, 0, 1, (Rn : n ∈ N)), where for
each n, the “root predicate” Rn is n-ary, and Rn(a0, . . . , an−1) holds in the field
F exactly when the polynomial xn +

∑
i=0

n− 1aix
i has a solution in F . In keeping

with Khoussainov’s definitions from section ?? — and, indeed, with standard usage
in effective structure theory — we identify a field with its atomic diagram, so that
it can be regarded as an element of 2ω. We note that in this treatment, exactly
matching the usual logic topology, a basic open set of algebraic fields is given by a
finite string σ ∈ 2n, giving a finite initial segment of the atomic diagram.

Proposition 6.3.24 ([341]). The class of algebraic fields of characteristic 0
up to isomorphism is computably homeomorphic to 2ω under its usual topology.

Proof. Enumerate the monic elements of Q̄[X] by (fi : i ∈ N). Fir each
σ ∈ 2<ω, we define a polynomial gσ and a subextension Q ⊆ Fσ ⊆ Q̄ by recursion.
We set F∅ = Q.

For each σ ∈ 2<ω, we find the least n with the following properties:

(1) fn ∈ Fσ[X],
(2) fn has prime degree,
(3) fn is irreducible in Fσ[X], and
(4) For the least root x of fn in Q̄, and for every τ ∈ 2<ω with τ0 ⊆ σ, there

is no root of fτ in Fσ(x).
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Since Fσ is finitely generated (by induction), there must be some n such that these
conditions are satisfied. We set gσ = fn. Now we set Fσ0 = Fσ and Fσ1 = Fσ(α)
where α is the least root of gσ in Q̄.

This assignment σ → Fσ defines a homeomorphism on a basis for 2ω, and so
uniquely extends to 2ω. The resulting homeomorphism can be seen to be com-
putable. �

This homeomorphism would, of course, justify using the uniform Lebesgue
measure on 2ω, exactly as Khoussainov and his collaborators did. However, this
choice of measure is not obvious, and even gives some counterintuitive results. For
instance, 29 is prime, so the class of fields containing a 29th root of 2 has measure 1

2 .
On the other hand, the fields containing a 28th or 30th root of 2 have much smaller
measure. To address this incongruity, Miller suggested the following measure.

Definition 6.3.25. We define the Haar-compatible measure H on the set of
algebraically closed fields of characteristic up to isomorphism as follows. Let σ ∈
2<ω. Let Uσ denote the basic open set of fields whose atomic diagram has initial
segment σ. Then we set H(U∅) = 1, and

H(σi) =

{
1
dH(Uσ) if i = 1
d−1
d H(Uσ) if i = 0

,

where d is the degree of the polynomial fσ, as described in the proof of Proposition
6.3.24.

This measure can, of course, be extended to arbitrary sets in the usual way.
It is evident that this measure has some significant relationship to Haar measure,
although its prima facie definition still depends on the choice of fσ. The follow-
ing result both solidifies the connection to Haar measure and sharply limits the
sensitivity of the measure to the choice of fσ.

Lemma 6.3.26 ([341]). Let K ⊆ Q be a finite Galois extension, and let VK be
the set of algebraic fields up to isomorphism containing K. Let GK be the stabilizer
of K in G = Gal(Q/Q). Then H(VK) = µH(GK).

Proof. If K = Q, the statement is obvious. Let σ ∈ 2ω, and let CK,σ =
{n|Fσ�n ∩K ( Fσ�n1 ∩K}. Note that these are exactly the branchings relevant for
whether h ∈ VK . For each n ∈ CK,σ, we have already designated a polynomial fσ�n
of degree dn, and the case where Fσ ∈ VK has probability given by H(Uσ�n1), which
is equal to 1

dn
H(Uσ�n). After exhausting all the prime factors of [K : Q], counting

with multiplicity, we will have Fσ ∈ VK with the probability we have calculated by
induction. This measure will match the Haar measure of GK , as required. �

While this measure is also not without its difficulties, Russell Miller and Jo-
hanna Franklin have recently claimed the following result, for which a proof has
not yet been published.

Theorem 6.3.27. For every H-Schnorr-random real h ∈ 2ω, the corresponding
field Ff is relatively computably categorical in the language L∗. Moreover, there is
a Kurtz-random h ∈ 2ω such that Fh is not relatively computably categorical in L∗.

Another approach is possible for developing a notion of Haar-random algebraic
fields. The present author, working with Harizanov and Shlapentokh, has proposed
the following approach.
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Definition 6.3.28. Let S ⊆ Gal(Q/Q). We say that S is computable if and

only if for each n there is a computable function In : Qn → N × Qn such that
I(~α) = (n, TS) if and only if TS is a set of size n, and is exactly the set of images
of ~α under elements of S.

We note that Haar measure is a computable measure on Gal(Q/Q), so it is
clear what a µH -Martin-Löf random element of Gal(Q/Q) should be.

Definition 6.3.29. Let F be an algebraic field. We say that F is Haar random
if and only if its absolute Galois group is of measure zero and contains a µH -Martin-
Löf random element.

This seems to us closer to what Fried and Jarden had in mind in their descrip-
tion referenced above of the “typical” behavior of fields. While the full character-
ization of the Haar random fields is a work in progress, we do have the following
initial results.

Proposition 6.3.30 ([91]). No computable field is Haar random. Moreover,
there exists a non-computable algebraic extension of Q which is not random.

Proof. No algebraic number field is Haar random, as its absolute Galois group
has positive measure. Let K be a computable infinite algebraic extension of Q.
Then the sequence of subsets of Gal(Q̄/Q) that fix increasing subextensions of K
constitutes a µH -Martin-Löf test, which can contain no random members.

On the other hand, if K is a computable field of infinite degree and M a non-
computable field of infinite degree, then KM is not computable but every element
of Gal(Q̄/KM) is an element of Gal(Q̄/K) which is computable and of measure
0. �

6.4. Invariant Random Subgroups

6.4.1. Defining Invariant Random Subgroups. In recent years, a notion
of random structure has arisen among group theorists that bears striking similarities
to some of the other notions introduced in the present chapter. Of course, Gromov
described random groups some time ago in [209], but his approach does not seem
to have led yet to extensive work in logic. The closest the logic literature seems to
come to Gromov’s random groups is its use as inspiration for generic computability,
explored in Section 4.5.

Another approach, though, has thus far seemed more fruitful. Consider a locally
compact group G, and consider the set Sub(G) of closed subgroups of G. This set
has a natural topology, first described in [99], with basis elements

{O(S) : S ⊆ G open} ∪ {K(S) : S ⊆ G compact},
where

O(S) = {H : H ∩ S 6= ∅}
K(S) = {H : H ∩ S = ∅}.

It is a well-known result that if G is locally compact, then Sub(G) must be compact
in this topology.

As an example of the kind of quesiton that can be asked in this space, consider
the subgroups known as lattices. A lattice is a discrete subgroup Γ ≤ G such that
the quotient of G by Γ has finite Haar measure — a generalization of the role that
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Z2 plays in R2. The study of lattices in Lie groups is subtle [321], but we might,
for instance, ask for which subgroups H ≤ SL3(R) there is a sequence (Li : i ∈ N)
such that H = lim

i→∞
Li, and this topology on Sub (SL3(R)) gives a context in which

such a question can be asked.
Consider the action of G on Sub(G) by conjugation:

g : H 7→ gHg−1.

We are now prepared to state the definition of invariant random subgroups.

Definition 6.4.1. An invariant random subgroup is a Borel probability mea-
sure on Sub(G) which is invariant under the action of G by conjugation.

As a first example, of course, an atomic measure concentrating on a single
normal subgroup is an invariant random subgroup. We could, on the other hand,
construct a probability measure that concentrates on the conjugacy class of a lattice:
if Γ ≤ G is a lattice, then the action of G on Sub(G) factors through G/Γ. In this
sense, invariant random subgroups generalize both normal subgroups and lattices.

This feature of generalizing these important concepts was part of the early mo-
tivation for the study of invariant random subgroups. A classical theorem of Kesten
states that a normal subgroup N of a finitely generated group G is amenable if and
only if the spectral radius of the Cayley graph of G/N was equal to that of G. This
result appeared to generalize beyond normal subgroups (with appropriate replace-
ment of the Cayley graph), but was certainly not true for arbitrary subgroups. The
result, in approrpiate form, does hold for invariant random subgroups [2].

Invariant random subgroups have also been used to strengthen the Kazhdan-
Margulis Theorem. Let G be a connected linear semisimple Lie group with no
compact factor, and Γ ≤ G discrete. A long-open question had asked whether
there was a positive lower bound on the G-Haar measure of G/Γ, and another had
asked whether, if G/Γ had finite measure but was not compact, whether Γ must
contain a non-identity unipotent element. Kazhdan and Margulis [266] resolved
both questions with the following result.

Theorem 6.4.2 ([266]). If G is a semisimple Lie group with no compact fac-
tors, then there is an open neighborhood U ⊆ G containing 1G such that for every
lattice Γ ≤ G there is some g ∈ G with gΓg−1 ∩ U = {1G}.

This can be strengthened to the following result.

Theorem 6.4.3 ([196]). Let G be a connected center-free semisimple Lie group
with no compact factors. Then for every ε > 0 there exists a neighborhood Uε ⊆ G
containing 1G such that for any invariant random subgroup µ concentrating on
discrete subgroups has the property that

µ {Γ ≤ G : Γ ∩ Uε 6= {1G}} < ε.

Gelander claims that this result, applied with ε < 1 and the invariant random
subgroups concentrating on lattices, clearly leads to the Kazhdan-Margulis result.
Even without working out that reasoning, though, it is clear that Gelander’s result
gives considerably more contextual information, in the same way that Theorem 4.4.5
gives context to the Boone-Novikov result on the unsolvability of the word problem,
except in the opposite direction: the Boone-Novikov Theorem is highly sensitive to
the deterministic statement of the theorem; the Kazhdan-Margulis Theorem is not.
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Classifying invariant random subgroups is, of course, an interesting problem,
and some results are known. Borel proved, and Furstenberg later gave a new proof
of, the following result.

Theorem 6.4.4 ([75, 186]). If G is a semisimple Lie group and H is a closed
subgroup such that G/H has finite measure, then for any finite-dimensional rep-
resentation of G, each H-invariant subspace is G-invariant. In particular, if G is
simple and H is not dense in G, then the closure of H is discrete.

This gives reason to hope that, at least in the right context, invariant random
subgroups might concentrate on discrete groups. This turns out to be the case.

Theorem 6.4.5 ([1]). Let G be a simple Lie group with trivial center, and let µ
be a non-atomic invariant random subgroup on G. Then µ is supported on discrete
Zariski dense subgroups of G.

Proof. Let G and µ be as in the hypotheses of the theorem. We define two
measurable functions from Sub(G) to the Grassmanian of the Lie algebra g of G:
one mapping a closed subgroup H to the Lie algebra of the identity component of
H, and the other map, and the other mapping H to the Lie algebra of the identity
component of the Zariski closure of H. Via these two functions, µ induces two
measures (µ1 and µ2, respectively) on the Grassmanian. These measures must be
suported on {{0}, g}.

The measure µ1 must assign measure 0 to g, since µ was nonatomic. Con-
sequently, µ1 must concentrate on the Lie algebra {0}. That is, for µ-almost all
subgroups H, the identity component is trivial — in other words, H is discrete. We
can also argue that µ2 must concentrate on g, so that µ is concentrated on Zariski
dense subgroups. �

Margulis proved a series of “Arithmeticity Theorems,” closely related to the
superrigidity results of Section 8.4.1, classifying the discrete subgroups of semisim-
ple Lie groups (under very broad hypotheses) as the integer points of algebraic
groups [321]. The exact statement, to say nothing of the proof, of Margulis’s re-
sults is far beyond the scope of the present work, but it matters that this territory
is understood.

Another characterization of invariant random subgroups tells less, but applies
more broadly.

Theorem 6.4.6 ([1]). Let G be a locally compact second countable group, and
µ an invariant random subgroup on G. Then there is a measure-preserving action
(G,X,m) on a probability space such that µ is induced by the stabilizer map x 7→ Gx.

We frequently consider, for various purposes, the space IRS(G) of invariant
random subgroups of a fixed group G, in the weak-∗ topology. The following result
follows from Alaoglu’s therem.

Proposition 6.4.7. If G is locally compact, then IRS(G) is compact.

There is, in any case, a considerable literature applying the space of invariant
random subgroups to study the special points of this space representing lattices, as
well as the manifolds arising from those lattices. A more extensive survey can be
found in [195].
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6.4.2. Classifying Invariant Random Subgroups. As with any space of
measures, the ergodic measures play a leading role, and have been instrumental in
classifying the invariant random subgroups in some important cases. A countably
infinite group G is said to be strongly simple if its only ergodic invariant random
subgroups are those concentrated on G and {1G}. There are, as we will see, several
known examples of this kind. However, the following question remains open.

Problem 6.4.8 ([195]). Does every non-discrete locally compact group admit
a non-trivial invariant random subgroup?

Some partial answers are known. The exposition of the next two results owes
much to some unpublished lecture slides of Simon Thomas.

Theorem 6.4.9 ([426, 2]). Let G be a simple real Lie group of rank at least 2.

(1) Let µ be an invariant random subgroup of G. Then either µ is uniform or
there is a lattice Γ ≤ G such that µ concentrates on conjugates of Γ and
its restriction to them is uniform.

(2) If Γ ≤ G is a lattice and ν is an ergodic invariant random subgroup of Γ,
then ν is either trivial or there is some H ≤ Γ of finite index such that ν
concentrates on conjugates of H and its restriction to them is uniform.

Proof. Suppose that µ is a nontrivial ergodic invariant random subgroup of
G. We have seen that µ is induced by the stabilizer map of an ergodic action of
G. Now this action must either be essentially transitive (i.e. there is an orbit of
measure 1) or properly ergodic (ergodic but not essentially transitive). Stuck and
Zimmer showed that in a properly ergodic action, almost every point would have
trivial stabilizer. That situation clearly does not obtain here, so there is a single
orbit Gz of full measure, and ν concentrates uniformly on the conjugacy classes of
the stabilizer Gz. The proof of the second part is similar. �

Vershik’s classification of the invariant random subgroups of the group S∞,0
of finitely-supported permutations of N is more complex, in that it requires more
definitions to state precisely.

Let α : N → [0, 1] with
∑
i ∈ Nα(i) = 1. We can interpret α as an (atomic)

probability measure on N, and can construct a product measure on NN, denoting
it by µα. The action of S∞,0 on NN given by

π : ξ → ξ ◦ π−1

is ergodic with respect to µα.

Now for any ξ ∈ NN, we define a partition ηξ of N as follows. The part Bξi is

given by {n ∈ N : ξ(n) = i}, and ηξ = {Bξi : i ∈ N}. Under this correspondance,
the measure µα gives rise to a measure να on partitions of N, and this measure is
invariant under the action of S0,∞. An older result of Kingman (a variant of de
Finetti’s theorem) tells us that these are all of the invariant measures on the space
of partitions of N.

Let S0,T be the finitely supported permutations of the set T . We set Pα to be
a direct sum of one copy of Z2 for each i where α(i) 6= 0. For any A ≤ Pα, we can
define a map

sξ :
⊕

α(i) 6= 0S0,Bξi
→ Pα
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by mapping each coordinate to its sign as a permutation. Then, for each A ≤ Pα,
we have a map

fA : ξ → s−1
ξ (A),

which, under mild conditions on ξ, transfers µα to an ergodic random measure νAα
on S0,∞.

Theorem 6.4.10 ([451]). The ergodic invariant random subgroups of S∞,0 are
exactly the measures that arise as νAα for some choices of α and A.

Proof. Now if H ≤ S∞,0 has no nontrivial invariant partitions, then H must
either be the full group or an alternating group. If H does have nontrivial invariant
partitions but is transitive, all of the nontrivial minimal blocks must have the same
finite length. A measure giving positive probability to such groups must induce a
probability measure on partitions of N with countably many blocks of a fixed finite
length. We can show that there are no such measures.

Let Π be the set of partitions of N, and let P : Sub(S∞,0)→ Π map a subgroup
to the partition according to its orbits. Now for any ergodic invariant random
subgroup ν, the map P induces from ν an ergodic random invariant partition, which
must be the image of µα for some α. There is a ν-measure 1 set Ξ of subgroups H
such that there exists a ξ ∈ NN so that the partition P (H) is exactly the partition

{Bξi : i ∈ N}.
It is possible, but not elementary, to show that there is a fixed subgroup A ≤⊕

i∈N Z2 such that ν concentrates on the same set of subgroups as νAα . But the

action of S∞,0 on this set is now uniquely ergodic, so ν = νAα . �

Moving toward somewhat larger classes of groups, Thomas and Tucker-Drob
classified invariant random subgroups of groups they called strictly diagonal limits
of finite symmetric groups. Let Sn and S`n be finite symmetric groups, and h :
Sn → S`n. We say that h is a diagonal embedding if its image acts on each of
its orbits on {1, . . . , `n} via its permutation representation. A countable locally
finite group G is said to be a strictly diagonal limit of finite symmetric groups (an
SDS -group) if and only if it is the union of an increasing chain of finite symmetric
groups under diagonal embeddings.

To classify random subgroups of such a group, we consider the action of
⋃
i∈N

Sni

on
X =

∏
i∈N
{1, . . . , ni}.

If we take µ to be the product of the uniform measures on the factors of X, we
have a measure-preserving action of G on (X,µ). The diagonal action of G on Xr

with the product measure is ergodic for any r ∈ N, so that measure νr induced by
the stabilizer map of this action is an invariant random measure. Now this group
G is simple if and only if ni is odd for all but finitely many i. If this condition
fails, then A(G) =

⋃
i∈N

Ani is a subgroup, and we have a map Xr → Sub(G) by

x̄ → Gx̄ ∩ A(G). This map induces (from the product measure on Xr another
invariant random subgroup λr on G.

Theorem 6.4.11 ([439]). If G is an SDS-group, then the nontrivial ergodic
invariant random subgroups are exactly the following:

(1) If G is simple, {νr : r ∈ N}
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(2) If G is not simple, {νr, λr : r ∈ N}.

Proof Outline. We begin with characters. For finite groups, characters are
neither more nor less than homomorphisms of the group into the multiplicative
group of C, or perhaps some other field. In the mid-1960’s, Thoma argued that the
naive translation of this concept was not the right notion of character for countable
infinite groups, but that the right analogy was with positive-definite class functions
[437, 436]. For this reason, those functions are often called characters, including
in the paper by Thomas and Tucker-Drob, and we will follow this usage here.

For a countable discrete group Γ, a character of Γ is a map χ : Γ → C such
that

(1) χ is conjugation invariant,
(2) χ(1) = 1, and

(3) For any ~λ ∈ Cn and any ~g ∈ Γn, we have
n∑

i,j=1

λiλjχ(g−1
j gi) ≥ 0.

We let G be an SDS-group with the associated notation as in the discusssion
preceding the statement of the theorem, and let ν be an ergodic random subgroup,
induced by the stabilizer map of the ergodic action (G,Z, µ). We define χ to map
an element g ∈ G to the measure of its set of fixed points. We note that this map
is, indeed a character.

Now by applying the Pointwise Ergodic Theorem (see Section 3.2.2) to the
characteristic function of the set of fixed points FZg of a particular g ∈ G, and
denoting the Gi orbit in Z of z ∈ Z by Ωi(z), we have, for µ-almost every z ∈ Z
and for all g ∈ G,

µ(FZg ) = lim
i→∞

∣∣∣FΩi(z)
g

∣∣∣
|Ωi(z)|

.

Let z satisfy the above equation, and let H ≤ G be its stabilizer. Denote by
Hi the group H ∩Gi, so that

χ(g) = lim
i→∞

∣∣{s ∈ Gi|sgs−1 ∈ Hi

}∣∣
|Gi|

.

It is true, but not obvious, that there are only finitely many i such that Hi

acts transitively on {1, . . . , ni}, and we let I be the set of i ∈ N such that this does
not occur. For each i, we set ri to be the maximum cardinality of an Hi-invariant
subset U ⊆ {1, . . . , ni} with |U | ≤ ni

2 , and we set r = lim inf ri, and let Ir be the set
of i ∈ I such that ri = r, such that i > r+1, and such that i > max{j ∈ I : rj < r}.
We note that Ir is closed upwards.

Now for each i ∈ Ir, we can prove that there is a unique Hi invariant subset
Ui ⊆ {1, . . . , i} of cardinality r such that Hn acts transitively on the remainder of
{1, . . . , i}. We let BH be the set of all x ∈ x such that for any i ∈ Ir, we have
x �i∈ Ui.

At this point we begin to peek out of the business of defining one subgroup
or stabilizer after another, as we notice that BH is exactly the set of x ∈ X with
finite H-orbit. The map H 7→ BH respects the action of G, so that it induces a
G-invariant probability measure on the set of r-element subsets of X. If there is
some i ∈ Ir such that Hn acts nontrivially on Ui, then there are x 6= y ∈ BH where
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xE0y, with E0 representing the Vitali relation of equality on all but finitely many
entries. Since there is not a G-invariant Borel probability measure on

{F ∈ [X]r : E0 �F is not identity} ,

the measure ν must concentrate on the H such that Hi acts trivially on Ui.
Knowing that Hi acts trivially on Ui, we can then see that if G is simple, then

Hi is the symmetric group on {1, . . . , i} − Ui for all i ∈ Ir. Otherwise, either that
condition obtains, or Hi is the alternating group on the same set for all but finitely
many i ∈ Ir. It follows, again using the Pointwise Ergodic Theorem, that νr and
(in the non-simple case) λr are the only possible invariant random subgroups. �

Thomas and Tucker-Drob use a similar method to handle another special case
arising from the alternating groups. We say that G is an L(Alt) group if G =⋃
i∈N

Ani . For each i, j ∈ N, we denote by si,j the number of orbits of Gi on {1, . . . , j},

and by fi,j the number of trivial orbits of Gi on {1, . . . , j}. We further write

ei = ni − (s(i−1),ini−1 + f(i−1),i).

With this notation, we say that an L(Alt) group G is an almost diagonal limit if
and only if the following two conditions obtain:

(1) For all i ∈ N, we have s(i−1),i > 0, and
(2)

∑
i∈N

ei
s0,i

<∞

Theorem 6.4.12 ([440]). If G is an L(Alt) group, then G has a nontrivial
ergodic invariant random subgroup if and only if G can be expressed as an almost
diagonal limit of finite alternating groups.

Proof outline. We say that an L(Alt) group G as above has linear natural
orbit growth if and only if ai = lim

j→∞
si,j
nj

is positive, and sublinear growth otherise.

In any case, the limit is guaranteed to exist, and the condition is independent of
the representation of G as a union of finite alternating groups. Further, a group
with linear natural orbit growth is an almost diagonal limit.

By the Pointwise Ergodic Theorem, a G-invariant ergodic probability measure
only exists in the case of linear natural orbit growth, and in that case the action is
uniquely ergodic. �

The classification of the invariant random subgroups in this case is similar to
the previous case.

On the other hand, some groups have obstructions to such a classificaiton. Of
course, it is a traditionally subtle point to state that something is an obstruction
to classification, in the sense that we normally do not have a precise mathematical
definition of what would count as a classification (see a detailed discussion in [239,
234, 92]). Nevertheless, there are some features that seem, at least in a relative
sense, to convince us that we will not have a simple classification.

We have seen that the set of invariant probability measures on a space consti-
tutes a simplex with the ergodic measures as extremal points. A Poulsen simplex
is a simplex in which the extremal points are dense in the simplex — a situation
that at least suggests a high level of complexity in the space of measures.
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Theorem 6.4.13 ([80]). If G is a nonabelian free group, then the space of
invariant random subgroups of G concentrating on subgroups of infinite index con-
stitute a Poulsen subsimplex.

Proof. Let Fr be the free group on r generators (denoted S = {s1, s2, . . . , sr}),
and let ν be an invariant random subgroup concentrating on subgroups of infinite
index. Then it suffices to construct a set of ergodic measures (νp : p ∈ (0, 1)) with
lim
p→0

νp = ν.

For each p ∈ (0, 1), we construct a random directed graph Γp by sampling
a subgroup K ≤ Fr according to ν, and constructing the Schreier coset graph
Γp,0 = Sch(K,S) of K with generating set S, in the following way. The vertices of
Γp,0 are exactly the right cosets of K in Fr, and there is an edge from Kg1 to Kg2

if and only if g2 = g1si for some i.
Now at stage n, with Γp,n constructed, we designate a random subsetXp,n of the

vertices of Γp,n − Γp,n−1 (using Γp,−1 = ∅) by including each vertex independently
with probability p — that is, a Bernoulli p-percolation of Γp,n; see [313]. We now
designate independently, for each x ∈ Xp,n, a ν-random Kp,x,n ≤ Fr, and form
Γp,n+1 as the disjoint union of Γp,n and the disjoint union of the Schreier coset
graphs of Kp,x,n for all n, with an undirected edge from each x ∈ Xp,n to Kp,x,n1.
We define Γp =

⋃
n∈N

Γp,n.

We form a new graph φ(Γp) as follows. For an edge (v, w) joining a vertex in
Γp,n to a vertex in Γp,n+1 − Γp,n for any n, we remove the edge, as well as the
edges (v, vs1) and (w,ws1), and we add the edge (v, ws1) and (w, vs1). Now φ(Γp)
is Sch(Hp, S) for some Hp ≤ G, and the random mapping p 7→ Hp induces an
invariant random subgroup νp on G.

To show that νp → ν, let ε > 0 be given, and take p smal enough that with
probability at least 1 − ε the graph-metric ball of radius r centered at K ∈ φ(Γp)
has trivial intersection with Xp,0. If that intersection is trivial, then this ball is
isomorphic to the analogous ball in Sch(K,S). Then for any subset T ⊆ Fr, the
νp proabability that a subgroup intersects the ball of radius r about the identity in
exactly F cannot differ from the ν-probability of this event by more than 2ε.

We could show that νp is ergodic by showing that any measurable invariant
function is constant. We actually prove ergodicity in this way in a slightly different
space, and then transfer the result.

For a bounded function f mapping rooted graphs with labels from S and degree
bounded by 2r+1, we use the Bernoulli condition in the construction of Γp to show
that f factors through the map π taking a rooted labeled graph to the subgroup
whose Schrieier coset is the same as the S-labeled component of the root. Say
f = g ◦ π. By the symmetry in the induction step of the construction of Γp, we
have g(Kp,x) = g(Kp), so that g is constant ν-almost everywhere. This property
pulls back, so that νp has the same property. �

As we conclude the technical core of this two-chapter sequence on random
structures, it is fitting that we do so on this note. We began with a consideration
of random graphs, and we end here, constructing invariant random subgroups to
order using an intermediate construction of (appropriately labeled) random graphs.
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6.5. Probabilistic Boolean Networks

6.5.1. An Application: Gene Regulatory Networks. At this point, we
engage in a brief digression from the pure mathematics that tends to character-
ize mathematical logic and from the idealized models of computing that tend to
characterize complexity theory, and consider an application problem on which the
material of the present chapter has significant promise. Of course, logic is always
closely involved in systems of specification and control, even if that interpretation
is rarely emphasized by mathematicians. On the other hand, while domain-specific
logics for such applications are common currency in certain parts of software engi-
neering and electrical engineering, there seem to have been few explicit applications
of classical, infinitary, or continuous model theory — not to say computability or
the existence of invariant measures — to this area.

The problem of sequencing an archetypal human genome was declared solved by
biologists in 2003, although other organisms had already been sequenced. Both in
principle and in fact, this is a major accomplishment of science, but the sequencing
of a genome has a fundamentally Linnean character: We get a list, perhaps well
organized, with a good deal of additional data, of what genes there are. Of course,
there is interpretation of this data which is literally Darwinian, but the question
of how genes interact to carry out the life processes of a cell remains a broad area
of active research. Questions of which genes are expressed in what strength under
what conditions seem to be of special importance. For a gene to be “expressed”
means roughly that the protein it encodes is produced in the cell, and while each
individual step of transcription and translation — the whole process from gene to
protein — happens or does not happen as a binary state, this process can happen
quantitatively more or less often.

For the present purposes, we might first represent the genome as a directed
graph in which each vertex represents a gene. Some genes produce code “promoter”
proteins which cause other genes to be expressed more. We might start by drawing
an edge from gene a to gene b if and only if a promotes b. There are also “inhibitors”
which decrease the expression of another gene. This would give us a second “color”
of edge in the directed graph. The topology of the graph can be intricate. Positive
and negative feed-back and feed-forward loops are not uncommon. Of course, the
strength of these actions can also vary quantitatively. [13]

A full understanding of the gene regulatory network of an organism is a strong
understanding of its biology, and is a difficult target even for a relatively simple
species. It still does not represent complete understanding, though. One might still
want to include the interaction of this system with the environment. In many plant
species, for example, there is a characteristic subnetwork of the interactome that ac-
tivates under conditions of cold stress, and another characteristic subnetwork that
activates under conditions of drought stress. How does each of these subnetworks
improve the organism’s survival? Perhaps more interesting from a mathematical
standpoint, is the intersection of these two subnetworks what we might find by ran-
domly intersecting two sets of vertices, or does this intersection reflect a biological
function common to the two responses?

There are sensible ways to model these systems, and many of them have the
potential to be reflected in the random structures described in the present chapter.
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6.5.2. Defining Probabilistic Boolean Networks. An initial attempt at
modeling gene regulatory networks would be to use a vertex for each gene with an
edge between each pair of genes, weighting each edge according to the correlation
coefficient of the expressions of the two genes. We might, to simplify the model and
avoid overfitting, choose a threshold τ , and discard all edges of absolute weight less
than τ . It is entirely possible, of course, that two genes may be weakly correlated
as a pair, but still in the same connected component in this graph.

This representation is certainly adequate for some biological purposes, but it
also has shortcomings. In paticular, it does not represent the dynamic nature of
gene expression, and it is, in the end, a purely empirical model, showing little direct
reflection of the phenomena under study.

A second approach to modeling is to again use genes as vertices, but to use a
directed edge between genes to represent the action of one gene to up- or down-
regulate another. We can add structure by giving each vertex a Boolean state,
which may change over time, to reflect the expression (or lack thereof) of the
respective gene. We might specify that a gene v takes on, in stage t+ 1, the value
of a given Boolean function, called the coupling function of the stage t values of its
predecessors.

There remains the problem of specifying the Boolean functions that determine
the evolution of the network. By analogy with hypothesis tests in which we generate
a probability model reflecting the null hypothesis, we can define a model of the
random variation of the networks by selecting a Boolean function at random. It is
customary to first specify, for each vertex v, a parameter Kv, intending that the
value of v at stage t will be determined by a Boolean function of at most Kv other
vertices. Often, a global value K is set so that Kv = K for all v.

From here, we can specify a probability distribution on the (finitely many)
Boolean functions on the vertex set depending on at most Kv arguments. Different
models for this abound, but the uniform distribution is commonly used. It is still
at issue whether the coupling functions should be fixed for all time or should be
re-selected at each step, and, in the latter case, whether these choices should be
independent. We assume that all vertices update synchronously. This model was
originally introduced in [262, 261, 263, 264], and a survey of the various choices
possible in the model formulation can be found in [14].

This level of modeling can represent, for instance, stability properties. In many
systems, for instance, a perturbation of the expression of a few genes will not change
the long-term state of the model.

Of course, at this point, the Bayesian networks of Section 2.3.1 will come to
mind. There, too, the value at one vertex depends, at each stage of evaluation, on
the values of several inputs. We have, as yet, made no independence requirements
on our Boolean networks. Moreover, aside from the choice of coupling functions
— really, a choice of network topology — the dynamics of a Boolean network are
completely deterministic.

A major challenge lies in inferring the structure of a Boolean network from data.
In particular, in spite of even the more generous assumptions in the “annealed”
models that allow coupling functions to be re-selected at every time step, the real
biochemical processes being modeled are genuinely not deterministic. Molecules
become more or less likely to bind with one another. Worse, available measurements
are likely to represent a small sample for the purposes of model inference.
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Probabilistic Boolean Networks, described in detail in [408, 409], represent an
attempt to address these issues by fusing the concepts of Boolean networks and
Bayesian networks.

Definition 6.5.1. A Probabilistic Boolean Network consists of the following:

• A set V = {vi : i ∈ I} of vertices.
• For every i ∈ I, a set Fi =

{
f (i)j : j ∈ Ji

}
of Boolean functions, each

with domain some subset of V .
• A joint probability distribution P on the random variables Fi

A probabilisitc Boolean network is said to be independent if and only if the
random variables {Fi : i ∈ I} are independent. The dynamics of a network, inde-
pendent or not, constitute a Markov chain whose transitions are determined by the
distribution P .

An important feature of this model is that it incorporates transition of network
topology as a random event, according as the same or different values of Fi are
realized at each time step.

There remains the question of the relationship of probabilistic Boolean networks
to Bayesian networks. An initial concern is the temporal structure. Natively,
Bayesian networks only represent the joint probability distribution on the values at
the vertices. This can be corrected by a straightforward adaptation, though.

Definition 6.5.2. A dynamic Bayesian network (B1, B→) consists of the fol-
lowing:

• A Bayesian network B0 (see Section 2.3.1) on the vertex set {vi,0 : i ∈ I},
defining the initial state (vi,0 : i ∈ I) of the system, and

• A Bayesian network B→ on the vertex set (vi,t : i ∈ I; t ∈ N), where
the predecessors of vi,t are all included in (vj,t−1 : j ∈ I), defining the
transition probabilities P (vi,t|vi,t−1).

It is worthwhile to note that dynamical Bayesian networks have both hidden
Markov models and Kalman filters as special cases [350].

The principle connection between probabilistic Boolean networks and dynamic
Bayesian networks is given by the following:

Theorem 6.5.3 ([293]). The following properties of a joint probability distri-
bution P are equivalent:

(1) P can be represented by an independent probabilistic Boolean network.
(2) P can be represented by a binary-valued dynamic Boolean network.

6.5.3. Some Problems on Probabilistic Boolean Networks. It is be-
coming a routine laboratory technique to gather data on expression of genes. A
major biological goal in this area is to use this data on gene expression to infer the
network that produces it. Once the network structure is known with high certainty,
one can then attempt to design interventions to modify the state of the network,
for instance, to treat cancer.

The inference problem is fundamentally one of machine learning, which is prop-
erly the subject of Chapter 7. However, some results on this particular problem
may help to motivate the more general approach of that chapter.

The state of a Boolean network at a particular time is the assignment of truth
values to its vertices. Perhaps the most basic piece of inference in Boolean networks
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is the consistency problem: Given a particular vertex v and known examples of its
value under some truth assignments to other vertices, is there a Boolean function
that could be the coupling function of v in a (deterministic) Boolean network?

As long as the number of vertices is finite (obviously true in the case of genetic
data), the search space of possible Boolean functions is also finite, so that this
problem is obviously effectively solvable. One might still wish for a more efficient
solution, and, in fact, if we have a bound on the number of predecessors of v, one
exists. If T is the set of states of the predecessors (encoded as an element of 2n)
prescribed to be true, and F is the set of states prescribed to be false, the solution
to the problem of existence of a common extension can be decided in the following
way: we first sort both T and F , and then compare the two lists to see if they
contain any common element. If they do not, there is a common extension. If
|T ∪F | = m, this algorithm halts in time O (m logmp(n)), where p is a polynomial.

Of course, we generally want more than to know that a solution exists. To
find all consistent functions, we use the following procecdure. We seek to learn a
boolean function f : 2n → 2. We begin with f−1(x̄) undefined for all x̄. If, at any
stage, we find an x̄ ∈ T ∩ F , we halt and declare the data inconsistent. At stage s,
we take the least x̄ such that x̄ ∈ T ∪ F , and set

fs(x̄) =

{
0 if x̄ ∈ F
1 if x̄ ∈ T

We set f− =
⋃
s
fs, and any extension of f− to a total function on 2n is then

consistent. The time complexity to generate f− is O(mp(n)). This procedure, with
several added features, can be found in [294].

Those experienced with applied data analysis will find it no surprise that
sometimes there is no consistent extension. Certainly there is measurement noise
in the complex processes of gathering the biochemical data, and there are other
sources of inconsistency, as well. To deal with this, we assign a nonnegative weight
w : T ∪ F → R, and attempt to find a Boolean function f minimizing the to-
tal weight of all states x̄ that f misclassifies. This problem, too, is solvable in
polynomial time.

Frequently samples are taken in a way that give only one time point of data (e.g.
clinical samples from a human tumor). Since the dynamical system represented by
either a Boolean or probabilisitc Boolean network constitutes an ergodic Markov
chain, there must exist a stationary distribution — that is, a distribution which
is fixed by the transition matrix. Under biologically reasonable hypotheses, most
of the probability mass of the steady state distribution will be in the attractors of
the dynamical system. Where only a single time point is available, the customary
treatment is to assume that the sample represents a stationary state of the network,
and thus, with high probability, comes from the attractor states.

Obviously, as we pass from deterministic Boolean networks to probabilisitc
Boolean networks, these problems become much more difficult. The dynamics
surrounding the steady state assumption give a clue to a reeasonable approach.
The following algorithm, introduced in [358], generates a Boolean network, but
can be leveraged to generate a probabilistic Boolean network.

We begin by generating, at random, a set of k attractor states and, for each
vertex v, a set Wv of predictor vertices. We then check compatibility: is the
assumption that the attractor states generated are attractors consistent with the
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choice of Wv? If not, we generate new sets Wv. Otherwise, we use the attractors
generated to determine sets Tv, Fv of known entries in the transition function fv.
The rest of the function f is generated at random from Boolean functions on Wv

consistent with Tv and Fv. If the state transition diagram associated with the
resulting network has cycles, we resample the functions f . Otherwise, we return
the network generated.

This procedure generates a deterministic Boolean network consistent with the
data. To generate a probabilistic Boolean network, we run this randomized al-
gorithm many times, sampling from it to infer the distribution of the coupling
functions.

Of course, the literature on inference of, and intervention in, probabilistic
Boolean networks is large. The books [408, 409] are good entry points to the
literature.
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150. M. Džamonja and I. Tomašić, Graphons arising from graphs definable over finite fields,

preprint, 2017.

151. P. D. Eastman, Are you my mother?, Random House, 1960.
152. G. Edgar, Measure, topology, and fractal geometry, second ed., Undergraduate Texts in

Mathematics, Springer, 2008.

153. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number
theory, Proceedings of the London Mathematical Society 54 (1952), 42–93.

154. K. Eickmeyer and M. Grohe, Randomisation and derandomisation in descriptive complexity

theory, Logical Methods in Computer Science 7 (2011), 1–24.
155. G. Elek and B. Szegedy, A measure-theoretica approach to the theory of dense hypergraphs,

Advances in Mathematics 231 (2012), 1731–1772.
156. R. Elwes, Asymptotic classes of finite structures, Journal of Symbolic Logic 72 (2007), 418–

438.

157. H. B. Enderton, A mathematical introduction to logic, Academic Press, 1972.
158. I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint, 2008.
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174. , Martin-Löf randomness, invariant measures and countable homogeneous structures,

Theory of Computing Systems 52 (2013), 65–79.
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394. W. M. Schmidt, Über die Normalität von Zahlen zu verschiedenen Basen, Acta Arithmetica

VII (1962), 299–309.
395. , Irregularities of distribution, VII, Acta Arithmetica 21 (1972), 45–50.

396. C. P. Schnorr, A unified approach to the definition of random sequences, Mathematical
systems theory 5 (1971), 246–258.

397. , Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Mathematics, no. 218,

Springer, 1971.
398. G. Shafer, A mathematical theory of evidence, Princeton University Press, 1976.

399. A. Shamir, IP = PSPACE, Journal of the Association for Computing Machinery 39 (1992),

869–877.
400. C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal

27 (1948), 379–423.

401. L. S. Shapley, Stochastic games, Proceedings of the National Academy of Sciences 39 (1953),
1095–1100.

402. S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary

languages, Pacific Journal of Mathematics 41 (1972), 247–261.
403. , Classification theory and the number of non-isomorphic models, revised ed., Studies

in Logic and the Foundations of Mathematics, no. 92, North-Holland, 1990.
404. S. Shelah and J. Spencer, Zero-one laws for sparse random graphs, Journal of the American

Mathematical Society 1 (1988), 97–115.

405. A. Shen, IP = PSPACE: Simplified proof, Journal of the Association for Computing Ma-
chinery 39 (1992), 878–880.

406. A. K. Shen, On relations between different algorithmic definitions of randomness, Sovient

Mathematics Doklady 38 (1989), 316–319.
407. A. N. Shiryaev, Probability, second ed., Graduate Texts in Mathematics, no. 95, Springer,

1996.

408. I. Shmulevich and E. R. Dougherty, Genomic signal processing, Princeton Series in Applied
Mathematics, Princeton University Press, 2007.



BIBLIOGRAPHY 279

409. , Probabilisitc boolean networks, Society for Industrial and Applied Mathematics,

2010.

410. H. A. Simon, On a class of skew distribution functions, Biometrika 42 (1955), 425–440.
411. P. Simon, A guide to NIP theories, Lecture Notes in Logic, no. 44, Cambridge, 2015.

412. R. I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, 1987.

413. J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Mathematics 20 (1977),
69–76.

414. , Threshold functions for extension statements, Journal of Combinatorial Theory A

53 (1990), 286–305.
415. , Threshold spectra via the Ehrenfeucht game, Discrete Applied Mathematics 30

(1991), 235–252.

416. , The strange logic of random graphs, Algorithms and Combinatorics, no. 22, Springer,

2001.

417. J. Spencer and K. St. John, The tenacity of zero-one laws, The Electronic Journal of Com-
binatorics 8 (2001), R17.1–R17.14.

418. J. Spencer and M. E. Zhukovskii, Bounded quantifier depth spectra for random graphs, Dis-

crete Mathematics 339 (2016), 1651–1664.
419. L. Staiger, Kolmogorov complexity and Hausdorff dimension, Information and Computation

103 (1993), 159–194.

420. , A tight upper bound on Kolmogorov complexity and uniformly optimal prediction,
Theory of Computing Systems 31 (1998), 215–229.

421. C. I. Steinhorn, Borel structures and measure and category logics, Model Theoretic Logics,

Perspectives in Logic, no. 8, Springer, 1985, pp. 579–596.
422. G. Stengle and J. E. Yukich, Some new Vapnik-Chervonenkis classes, The Annals of Statis-

tics 17 (1989), 1441–1446.
423. V. E. Stepanov, Phase transitions in random graphs, Theory of Probability and its Applica-

tions 15 (1970), 187–203.

424. F. Stephan and Yu. Ventsov, Learning algebraic structures from text, Theoretical Computer
Science 268 (2001), 221–273.

425. L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Computer Science 3 (1976),

1–22.
426. G. Stuck and R. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups,

Annals of Mathematics 139 (1994), 723–747.
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