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CHAPTER 5

Pseudofinite Objects and 0–1 Laws

5.1. 0–1 Laws

5.1.1. Theories of Random Graphs. The set of all graphs with exactly e
edges on vertex set {0, . . . , n− 1} is, of course, finite, and has a uniform measure
in which each graph (up to identity) has probability 1

((
n
2)
N

)
. Of course, when we

ask about the probability of a graph up to isomorphism, the situation will be more
subtle. At a more basic level, we can ask for the probability that a graph chosen
randomly from this distribution is, for instance, connected. In a foundational 1959
paper [162], Erdös and Rényi considered this sort of problem in the limit as the
number of vertices grows arbitrarily large.

Proposition 5.1.1. Let c be a constant real number, and

N(n, c) =

⌊
1

2
n log n+ cn

⌋
.

Let P (n,N) be the probability that a uniformly randomly chosen graph on vertices
V = {0, . . . , n− 1} with N(n, c) edges is connected. Then

lim
n→∞

P (n,N(n, c)) = e−e
−2c

.

We conventionally denote the probability space of graphs on n vertices with M
edges by G(n,M). Often we may choose M to be some function of n.

Of course, there are many approaches to random graphs. Instead of considering
all graphs with a fixed number of vertices and a fixed number of edges, giving each
equal probability, we could instead consider n vertices and make each pair of vertices
adjacent independently with probability p. The set of graphs on n vertices, with the
probability measure induced by this independent adjacency construction is denoted
by G(n, p). Again, p is often a function of n. For many properties, the two models
are interchangeable. Cases of probability 1 and 0 are of special interest.

Theorem 5.1.2. Let P be a set of graphs on that is closed under isomorphism
and such that whenever F ⊆ G ⊆ H are graphs with F,H ∈ P , then we also have
G ∈ P . Suppose also that p is a function of n such that lim

n→∞
p(1−p)n =∞ and that

lim
n→∞

p(1 − p)
(
n
2

)
= ∞. Let M(x) =

⌊
p
(
n
2

)
+ x
√
p(p− 1)

(
n
2

)⌋
. Then the following

are equivalent:

(1) Almost every graph in G(n, p) is an element of P .
(2) For every fixed x, almost every graph in G(n,M) is an element of P .

Proof. We outline here a proof that is given in more detail as part of Theorem
2.2 in [70]. The number of edes in a graph in G(n, p) is a binomial random variable

105



106 5. PSEUDOFINITE OBJECTS AND 0–1 LAWS

with expected value p
(
n
2

)
. On the one hand, if for every fixed x almost every graph

in G(n,M(x)) is an element of P , then sufficiently large choices of x would require
arbitrarily close agreement between the probability of P in G(n, p) and in G(n,M).
On the other hand, suppose that P is almost sure in G(n, p). Then for each x, the
probability that an element of G(n, p) has exactly M(x) edges is positive, so that
P must be almost sure in G(n,M(x)). �

For the classical treatment of random graphs in model theory, the almost sure
properties are enough. However, something is known about the sets with probability
strictly between 0 and 1. A careful analysis of the details of the proof (again, see
[70]) shows that from sufficient information about the probability in various spaces
G(n,M) we can infer the probability in G(n, p). The other direction is considerably
more fraught; for instance, the set of graphs with an even number of edges will
generally have probability 1/2 in G(n, p) (as long as n is sufficiently large and p is
chosen appropriately).

Another approach, pursued by Erdős and Rényi in [161], views the construction
of a random graph in a more direct way. We consider G0 to be a discrete graph (no
edges) on n vertices. Gt+1 is formed by choosing, uniformly at random, a pair (a, b)
of vertices not adjacent in Gt, and adding an edge between a and b. We denote by
G̃ the set of all sequences of this kind. Note that each element of G̃ is a sequence
of graphs of length

(
n
2

)
. Now the map taking each sequence to its Mth element is

a measure-preserving map from G̃ to G(n,M). In this sense, the construction, or
“random graph process” view matches the probability space G(n,M).

Of course, we may consider random graphs from some collection smaller than
all graphs of a particular size. One major derandomization problem for many years
was the construction of so-called expander graphs. These graphs have applications
in error correcting codes, in interactive proofs, and so-called “hardness of approx-
imation” (in which one proves that even approximating a certain calculation to a
specified precision has high complexity), as well as the derandomization of other
algorithms.

To define this class of graphs, we give some preliminary definitions, which will
be useful in some other results on random graphs.

Definition 5.1.3. Let G be a d-regular graph on n vertices.

(1) Let AG be the matrix with entries

[AG]ij =

{
1
d if iEj
0 otherwise

.

(2) For any vector v, let ‖ v ‖2=

√
n∑
i=1

v2
i .

(3) For any vector v, let v⊥ be the set of all vectors orthogonal to v.
(4) Let 1n denote the vector (1/n, 1/n, . . . , 1/n).
(5) Let λ(G) denote

max
v∈1⊥,‖v‖2=1

‖ Av ‖2 .

We now proceed to give two equivalent definitions of expander graphs. We give
the following result without proof.

Theorem 5.1.4. The following conditions on a finite, d-regular graph G =
(V,E), with |V | = n are equivalent:
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(1) Every subset T ⊆ V with |T | < |V |
2 has the property that the set of edges

from T to the complement of T has size Ω(|T |).
(2) The graph G has the property that λ(G) ≤ 1− ε for some constant ε > 0.

We now define an expander graph to be a graph satisfying the conditions of
Theorem 5.1.4. Explicit constructions for expander graphs (especially graphs where
ε is explicitly known) have been given, but were at first elusive ([28] gives some
detail on this history). Quite early in the study of these objects, however, a prob-
abilistic construction was made.

The idea of the so-called probabilistic method is that one proves existence of an
object (e.g. a graph) with a certain property P by proving that a random object
has property P with some positive probability. This was the original motivation
for the work of Erdős and Rényi.

The original probabilistic proof of the existence of expanders was in [368].
Pinsker carried this out by bounding from above the number of non-expander
graphs, showing that some d-regular graphs on n vertices remain, which must be
expanders.

Consider a randomized algorithm with error probability p that uses m random
bits. Suppose that we have an explicitly constructed d-regular expander graph
with 2m vertices which we can identify with the strings in {0, 1}m, and such that
λ(G) < 1/10. Then take a random walk of length k on G starting with a randomly
selected vertex v1 and at each stage vi choosing stage vi+1 uniformly at random
from the neighbors of vi. Then in a randomized algorithm, we can use v1, . . . , vk
as the random bits for each of k computations with the algorithm, and output a
majority vote. Since G was an expander with λ(G) < 1/10, one can prove that the
error probability of this enhanced algorithm is similar to that achieved by using mk
random bits, but requires only m + O(k) random bits. A detailed explanation of
expander graphs and their uses in randomized computation, error-correcting codes,
and interactive proofs is given in [28].

In modern use, random graphs are often used to model the development of
informational, social, biochemical, or other networks. In these situations, uniform
selection of random graphs from all graphs of the same size (even with some extra
stated properties) is not always a good model for the application. One alternative,
frequently seen in social and informational networks, is the preferential attachment
model. In this model, we take G0 to be some starting graph (often a single vertex
with a self-loop. We also fix at the outset a probability p. Then at each stage s we
act (independently of all other steps) as follows to produce Gs+1:

(1) With probability p, we will add a new vertex v, and add an edge from v
to some existing vertex u, where u is chosen at random, with probability
proportional to its degree in Gs.

(2) Otherwise, we add a new edge between two vertices u, v ∈ Gs which are
independently chosen at random with probability proportional to their
degree in Gs.

This model is of some antiquity. It is often attributed to Simon [410], but I
have been unable to find it there. It seems to have come to its modern prominence
after its use in a 1999 paper by Barabási and Albert [41] to model the world wide
web.

One of the more conspicuous features of the preferential attachment random
network is the distinctive degree distribution.
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Theorem 5.1.5. Let (Gt)t∈N be a preferential attachment random graph pro-
cess, and let mk,t be the number of vertices in Gt with degree k. Then for each k,
the limit lim

t→∞
E(mk,t) exists, and this limit is proportional to

Mk = k−(2+ p
2−p ).

By contrast, the degree distribution of Erdős-Rényi random graphs is generally
Poisson distributed.

Again, one may find a particular finite random graph by stopping the process
at some particular finite stage, although we should note that the natural mappings
to the Erdős-Rényi models are emphatically not measure-preserving.

Another model of random graph development has been suggested to model
biological networks, whose degree distribution is also a power law distribution, like
preferential attachment. An important motivation for this model is that many
biochemical networks tend to have degree distributions proportional to Mk = kβ

with 1 < β < 2, while preferential attachment gives 2 ≤ β ≤ 3.
We start with some initial graph G0, often taken to be a discrete graph of a

single vertex. We also fix a probability p. Then at each stage s, we act (indepen-
dently of all other stages) as follows to produce Gs+1: We select a vertex u ∈ Gs
uniformly at random. We introduce a new vertex v, and set it adjacent to u. Then,
for each neighbor w of u, we make v adjacent to w independently with probability
p.

This duplication model was introduced by Chung and others [112], and also has
a power law degree distribution, with values of β more consistent with biochemical
observation.

An extensive collection of results on preferential attachment, duplication, and
other complex graph process models can be found in [111].

5.1.2. The Almost Sure Theory. From a model-theoretic perspective, the
most important fact about random graphs is that, under the right circumstances,
first-order sentences are either almost surely true or almost surely false, and the set
of almost surely true sentences forms a complete consistent theory.

Theorem 5.1.6 (Fagin [165], Glebskii–Kogan–Liogonkii–Talanov [200]). There
is a complete consistent theory T such that T consists of exactly the sentences in
the language of graphs that are almost always true in G(n, 1

2 ).

Proof. For each natural number m, consider a set of variables x1, . . . , xm, and
for each map σ : {1, . . . ,m}2 → {0, 1}, set Dm,σ(x1, . . . , xm) to be the conjunction
of E(xi, xj) for each (i, j) where σ(i, j) = 0 and ¬E(xi, xj) each (i, j) where σ(i, j) =
1.

We then compose, for each m, for each σ, and for each τ : {1, . . . ,m + 1} →
{0, 1} extending σ, the sentence

ϕm,σ,τ = ∀x1, . . . , xm

∧
i 6=j

xi 6= xj

 ∧Dm,σ(x1, . . . , xm)→

→ ∃y

((
m∧
i=1

y 6= xi

)
∧Dm,τ (x1, . . . xm, y)

)))
.
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Now we define T to be the closure under derivation of the set

{ϕm,σ,τ : m ∈ N, τ ⊇ σ} .

Lemma 5.1.7. For each m and each τ ⊇ σ, the sentence ϕm,σ,τ is almost surely
true in G

(
n, 1

2

)
.

Proof. For any sentence ψ, let Pn(ψ) denote the probability of σ in G(n,m).
Now we calculate Pn(¬ϕm,σ,τ ) This quantity matches Pn(θ), where

θ = ∃x1, . . . , xm

∧
i 6=j

xi 6= xj

 ∧Dm,σ(x1, . . . , xm)

 ∧
∧∀y

((
m∧
i=1

y 6= xi

)
∧ ¬Dm,τ (x1, . . . xm, y)

)
.

We set

θ̃(x̄) = Dm,σ(x1, . . . , xm) ∧ ∀y

((
m∧
i=1

y 6= xi

)
∧ ¬Dm,τ (x1, . . . xm, y)

)
.

Now Pn(θ) is bounded by the sum of Pn(θ̃(ā)), where ā ranges over all possible
substitutions of distinct elements. There are n

m such substitutions, each of which

(independently) has probability 1 − 1
22m+1 . This bound approaches zero as n in-

creases. Consequently, Pn(ϕm,σ,τ ) approaches 1. �

We now show that this set of axioms is complete and consistent.

Lemma 5.1.8. T is a complete consistent theory.

Proof. Toward consistency, let S be a finite subset of T . Then let US be the
conjunction of all elements of S, and we will show that this sentence has a model.
Since the sentence US is true in almost all finite graphs, there is some finite graph
in which it is true. By compactness, then, T is consistent.

Toward completeness, we first note that T has no finite models, for if T had
a model of size n, it would not satisfy any of the sentences ϕn,σ,τ , since they
all imply the existence of at least n + 1 distinct elements. We can prove that T
is ℵ0-categorical by a back-and-forth argument. Indeed, let G1, G2 be countable
models of T . We construct an isomorphism as follows. Let f−1 be the empty
function. At stage 2s, we find a new element x2s of G1, and find σ and τ such
that Ds,σ is the atomic diagram of dom(f2s) and Ds+1,τ is the atomic diagram of
dom(f2s) ∪ {xs}. Then to form f2s+1, note that G2 |= ϕs,σ,τ , so there exists some
y such that f2s ∪ (x2s, y2s) is a partial isomorphism from G1 → G2. Similarly, at
stage 2s + 1, we start with an element of G2 and extend. In the limit, we achieve
an isomorphism from G1 to G2.

Now by the  Loś-Vaught test, since T has no finite models and is ℵ0-categorical,
we conclude that it is complete. �

This concludes the proof of the theorem. �

Corollary 5.1.9. Every first-order sentence in the language of graphs is either
almost surely true or almost surely false in finite graphs.
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Proof. Let ϕ be a first order sentence. Either T ` ϕ or T ` ¬ϕ. If T ` ϕ,
then all of the axioms necessary to prove ϕ are true in almost all finite graphs, so
that ϕ must be true in this set of graphs. If T ` ¬ϕ, then ¬ϕ must be true in
almost all finite graphs, so that ϕ must be false in almost all finite graphs. �

Indeed, this theorem, referred to as the 0–1 law, generalizes in almost every di-
rection. To begin, the original proofs show that the result holds for finite structures
in any finite relational language. It is not hard to modify the proof to replace the
constant fraction 1

2 with any other p ∈ (0, 1). Another natural generalization is to
cases where p is not a constant probability, but a more general function of n, a very
common setting in random graphs. Shelah and Spencer took up this question in
[404]. Of particular interst are the so-called sparse situations, where lim

n→∞
p(n) = 0

and (the term is often used vaguely) usually this convergence is fast.
We write Pn,p(n)(ϕ) for the probability that ϕ is satisfied in G(n, p(n)).

Theorem 5.1.10 (Shelah-Spencer). Suppose that one of the following holds:

(1) For all ε > 0, we have lim
n→∞

nεp(n) = 0

(2) lim
n→∞

n2p(n) = 0

(3) For some integer k, both lim
n→∞

n1+1/(k−1)p(n) = 0 and lim
n→∞

n1+1/kp(n) =
∞

(4) For all ε > 0, both lim
n→∞

np(n) = 0 and lim
n→∞

n1+εp(n) =∞

(5) Both lim
n→∞

np(n)
logn = 0 and lim

n→∞
pn =∞

(6) For all ε > 0, both lim
n→∞

(logn)(p(n))
n = 0 and lim

n→∞
n1−εp(n) = 0.

Then for each first order sentence ϕ in the language of graphs, lim
n→∞

Pn,p(n)(ϕ)

exists and is either 0 or 1.

Proof. The proof outline is, in each case, similar to Fagin’s. Case 1 can be
proved exactly like Fagin’s theorem, except that the quantity at the end of the
proof whose convergence to zero must be checked is a different one. In Case 2, we
axiomatize the theory of a discrete graph (one with no edges) and show that it is
complete and satisfied with probability 1. The proof for Case 3 is similar, with a
more involved axiomatization.

The remaining cases are more subtle, in that the resulting theories are not ℵ0-
categorical. It is possible, however, in each case, to give an almost-sure complete
axiomatization consisting of certain required and forbidden configurations. �

An additional result of Shelah and Spencer, from the same paper, has been the
subject of considerable subsequent interest.

Theorem 5.1.11 (Shelah-Spencer). Let α be an irrational number. Then for
each first order sentence ϕ in the language of graphs, lim

n→∞
Pn,n−α(ϕ) exists and is

either 0 or 1.

Again, the proof is by formulating axioms that are almost surely true in the
appropriate space of structures, and then proving that they constitute a complete
consistent theory. A few axiomatizations have been given for this theory. Baldwin
and Shelah [39] point out the similarity of the theory to Hrushovski’s construction of
an ℵ0-categorical strictly stable pseudoplane. The one given here, due to Laskowski
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[297], has several advantages. It is relatively simple, it is an ∀∃ theory, and it allows
a clarification of several model-theoretic properties of the theory.

Proof. Let α be an irrational number. For each finite graph G = (V,E), we
set δ(G) = |V |−α|E|. Now we define the class Kα to be the set of all graphs (finite
or not) G such that for each finite (complete) subgraph H ⊆ G we have δ(H) ≥ 0,
and we set Kα to be the set of finite graphs in Kα. We note that membership
in Kα is elementary since, for each n, we may write that for each n-tuple, every
relation of the form “there are at most m edges,” with m ≤ n

α , holds.
We now arrive at our axiomatization. We take sentences guaranteeing mem-

bership in Kα, and guaranteeing that for every pair of finite graphs G,H and every
embedding f : G → M in a model M, if G is a complete subgraph of H with
δ(H)− δ(G) ≥ 0 and both are in Kα, then f extends to an embedding of H in M.

To prove that this is a complete theory, we prove that every formula is provably
equivalent to one of a specified form. An extension formula is a formula ψG,H, where
G ⊆ H is a complete subgraph, with G ∈ Kα, of the form DG(x̄)∧∃ȳ DH(x̄ȳ), where
DG , DH are the atomic diagrams of G,H, respectively. It turns out that for any
formula ϕ, the theory Tα proves that ϕ is equivalent to some boolean combination
of extension formulas. Now since the empty structure is contained in every element
of Kα, the theory Tα decides every extension formula with no free variables, so
that Tα is complete. It follows from the original work of Shelah and Spencer (using
Chebyshev’s Inequality) that each of the axioms of Tα holds almost surely. �

Interestingly, Laskowski proves that the theory Tα is stable, but not superstable.
By contrast, the Fagin theory for constant-proportion random graphs is not only
unstable, but even has the independence property (see Section 5.3.2). Brody and
Laskowski [84] show that certain theories closely related to Tα interpret a sufficient
fragment of arithmetic to be essentially undecidable and others are ℵ0-stable. It
would be interesting to know for what funtions p(n) the almost sure theory of
G(n, p(n)) is stable, or has NIP. Of course, not every such structure even has an
almost sure theory (there are functions for which the zero-one law fails).

It is important to note than in each of these cases, the zero-one law is established
by giving a complete effective axiomatization of the almost sure theory, so that the
almost sure theory is decidable. It is not, a priori, obvious even that the almost
surely true and almost surely false sentences should be computably separable, and
in cases where the zero-one law fails (the example of Brody and Laskowski, for
instance), it is sometimes known that they are not computably separable.

There are some negative results on zero-one laws, but less than a complete
characterization. Shelah and Spencer had one case.

Theorem 5.1.12 (Shelah-Spencer). Let q(n) be such that n1/ log5 n < q(n) <
logn
log5 n

, and let p(n) = n−1/7 (q(n))
1/7

. Then there is a first-order sentence ϕ such

that
(
Pn,p(n)(ϕ) : n ∈ N

)
has no limit

Proof. We begin by some preliminary formulas toward the goal of defining ϕ.
For all of these preliminary formulas, we will have global variables x1, . . . , x7, y, y1, . . . , y7.
We say that S holds of a 7-tuple when the elements of the 7-tuple are distinct, and
there is no other vertex adjacent to all of them. We say that N(z, x1, x2, . . . , x7)
holds when all of the variables are distinct and z is adjacent to all of the xi.

Continuing, we let Σ(x1, . . . , x7, y, y1, . . . , y6) be the assertion that
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(1) For all z1 for which N(z1, x̄) holds, there exists a unique tuple (z2, . . . , z6

of distinct vertices such that S(y, z1, . . . , z6) holds,
(2) For all z1 for which N(z1, x̄) holds, there is a unique i such that there

exist distinct z2, . . . , z6 with S(yi, z1, . . . , z6), and
(3) If S(y, z1, . . . , z6) for distinct zj and ij is the i guaranteed by item 2 for

zj in the place of z1, then all of the ij are distinct.

This Σ will be a conjunct, and so we will freely make reference to the i guaranteed
by Σ for a particular z1.

We will now write an interpretation of arithmetic. For the universe of the
interpretation of arithmetic, we take Z to be the set of q such that N(q, x̄) holds
and such that the i guaranteed by Σ is 1. Further, for each q ∈ Z, we set q(1) = q
and q(i) to be the unique element r such that there are distinct z3, . . . , z6 such
that S(y, q, r, z3, . . . , z6). We then let Π(x̄, y, ȳ) be the statement that there is
a labeling 1, 2, . . . , s of Z such that z1 + z2 = z3 and z4z5 = z6 if and only if

S(x, z
(1)
1 , z

(2)
2 , . . . , z

(6)
6 ).

We aim for our eventual sentence to describe a “largest” possible arithmetic,
so we introduce a formula to compare the size of two definable sets that could
potentially play the role of Z in the formula Π. For each pair (x̄, y, ȳ), (x̄′, y′, ȳ′),
we write Γ for the statement that there exist distinct vertices v3, . . . , v7 such that
fv̄ := {(x, f(x)) : S(x, f(x), v̄)} is an injection from the Z defined from (x̄, y, ȳ) to
the Z defined from (x̄′, y′, ȳ′), but not a bijection. We can then formulate M(x̄, y, ȳ)
as the statement that there does not exist a tuple (x̄′, y′, ȳ′) such that Σ ∧ Π ∧ Γ
holds.

Within this arithmetic, we will formulate additional properties. The iterated
logarithm of n, denoted log∗ n, is the least k such that a k-fold composition of log
evaluated on n is less than or equal to 1. On the other hand, the tower function
t(n) is defined inductively by t(1) = 2 and t(n + 1) = 2t(n). We can then de-
fine L(x, x̄, y, ȳ) = ∃k [t(x) = k] ∧ ∀` [t(x+ 1) 6= `] where x ranges over Z and the
arithmetic is that defined on Z. We now define the final conjunct of ϕ by setting
Λ(x̄, y, ȳ) denote

∀(x)

[
L(x, x̄, y, ȳ)→ ∃q ∈ Z

[
50∨
i=1

(x = 100q + i)

]]
.

Now the desired sentence ϕ is given by

ϕ = ∃x̄, y, ȳ [Σ ∧Π ∧M ∧ Λ] .

The failure of the zero-one law for this sentence can be calculated by observing
its behavior on a certain almost sure set of graphs. Indeed, on one such set, ϕ holds
of all graphs on n vertices where log∗ n ≡ 25 mod 100 and fails on all graphs on n
vertices where log∗ n ≡ 50 mod 100. Thus, the sequence

(
Pn,p(n)(ϕ) : n ∈ N

)
has

subsequences converging to each of 0 and 1. �

The question of which functions p(n) satisfy a zero-one law is an important
one.  Luczak and Spencer [310] made several additional characterizations, as well
as the following interesting observation:

Theorem 5.1.13 ( Luczak–Spencer). There is no recursive function p such that

p(n) < n−1/7 and p(n) = n−
1
7 +o(1) where G(n, p(n)) satisfies the zero-one law.
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Shelah and Spencer pose the problem of characterizing the threshold spectra of
first-order sentences. It is common as early as the 1960 work of Erdős and Rényi
on the evolution of random graphs [161] to identify p(n) as a threshold function for
some property ϕ if and only if for all functions p̃(n), we have this dichotomy:

• If lim
n→∞

p̃(n)
p(n) = 1 then ϕ is almost sure, and

• If lim
n→∞

p̃(n)
p(n) = 1 then ¬ϕ is almost sure.

The spectrum of a sentence ϕ is the set of all a > 0 such that for all ε > 0 there is no
v ∈ {0, 1} such that for all p(n) with na−ε < p(n) < na+ε we have lim

n→∞
Pn,p(n) = v.

Given the positive results of Shelah and Spencer on zero-one laws, the points of the
spectrum of ϕ represent discontinuities in lim

n→∞
Pn,p(n) as it depends on p(n). The

initial Shelah-Spencer paper [404] gave some initial properties of possible spectra of
setences, and Spencer used Ehrenfeucht-Fräıssé games [415] and other techniques
[414], and a full characterization, even in restricted cases, is still an area of active
research [466, 418, 330].

Another direction for zero-one laws is the logic from which the formulas come. It
would certainly be too much to suggest that every second order sentence was either
almost surely true or almost surely false even on G(n, 1

2 ). Indeed, Compton [114]
uses the classification of Shelah and Spencer to identify cases where even a monadic
second order zero-one law fails. However, Compton sumarizes several other results
showing that zero-one laws hold for TC and LFP logics, both important benchmarks
for the descriptive complexity theory described in Section 4.1.3.

Theorem 5.1.14 (Kolaitis-Vardi [285]). Let L be the set of Σ1
1 sentences ϕ in

the language of graphs such that ϕ is of the form

∃S∃x1, . . . , xk∀y∃z1, . . . , zk R(x̄, y, Z̄, S)

where R is quantifier free in the language of graphs with a unary predicate for
S. Then each formula of L is either almost surely true or almost surely false on
G
(
n, 1

2

)
.

To prove this theorem, we adopt a slightly different perspective on Fagin’s
result. From the Kolaitis-Vardi perspective, the important point was not the con-
struction of a theory of almost sure sentences, but the construction of a structure
(which they termed the random structure) whose theory was the almost sure the-
ory. This structure should be the unique countable model of an appropriate set
of “extension axioms.” As it turns out, the first-order extension axioms of Fagin
suffice, so that the unique countable model of those axioms has the property that
it satisfies, among ϕ of the form given in the theorem, exactly those ϕ which are al-
most sure. Similar reasoning also allowed Kolaitis and Vardi to prove the following
theorem.

Theorem 5.1.15 (Kolaitis-Vardi [286]). Let ϕ ∈ L∞ω be an infinitary sentence
in which a finite number of variables occur. Then ϕ is either almost surely true or
almost surely false on G

(
n, 1

2

)
.

5.2. Fräıssé Limits

5.2.1. Fräıssé’s Theorem. Kolaitis and Vardi were perhaps not the first
to refer to the unique countable model of the almost sure theory as “the random
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structure.” However, this terminology makes an important link between the random
behavior of finite structures and a standard construction technique. Before the
emergence of zero-one laws as a standard area of research, Fräıssé [176] proved the
following.

Theorem 5.2.1 (Fräıssé). Let L be a countable language, and K be a set, at
most countable, of finite L-structures with the following properties:

(1) If M1 ∈ K and M2 is a substructure of M1, then M2 has an isomorphic
copy in K,

(2) If M1,M2 ∈ K, then there is some M3 ∈ K such that each of M1 and
M2 embeds in M3, (the Joint Embedding Property), and

(3) If M0,M1,M3 ∈ K, with embeddings ei : M0 → Mi, then there exists
some M∗ ∈ K with embeddings fi :Mi →M∗ such that f1 ◦ e2 = f2 ◦ e2

(the Amalgamation Property).

Then there is a unique L-structure A of cardinality at most ω such that

(1) K is the class of all finitely generated structures that can be embedded in
A (we say that K is the age of A), and

(2) Every isomorphism between finitely generated substructures of A extends
to an automorphism of A (we say that A is ultrahomogeneous).

Proof. Suppose that K satisfies the hypotheses of the theorem. Let A0 ∈ K.
At stage s+ 1, we set As+1 to be an element of K (whose existence is guaranteed
by condition 3) such that for all (f,B,C) where B ⊆ C and f : B → Dk is
an embedding, the function f extends to an embedding of C in Ds+1. We take
A =

⋃
s∈N

Ak.

Note first that every finitely generated substructue of A is in K, by condition
1. Suppose that B ∈ K, and take C ⊇ B in which A0 embeds. Then by the
construction of As+1, there is some s such that C embeds in Ds, so that B is a
substructure of A and K is the class of all finitely gnerated structures that can be
embedded in A, as required.

Toward the homogeneity condition, notice that any embedding of a finite sub-
structure B in A extends along any inclusion B ⊆ C. Now ultrahomogeneity follows
by a back-and-forth argument.

It remains to show uniqueness. Ultrahomogeneity implies that any embedding
of a finite substructure B in A extends along any inclusion B ⊆ C. This per-
mits a back-and-forth argument showing that any two countable ultrahomogeneous
structures with the same age must be isomorphic. �

We call the structure A whose existence is guaranteed by Fräıssé’s theorem the
Fräıssé limit of K. As an important example, consider the random graph. Let K
be the class of all finite graphs. Clearly all of the hypotheses are satisfied. We
claim that the unique countable model A of the almost sure theory of G

(
n, 1

2

)
is

the Fräıssé limit of K. Clearly K is the age of A. It remains only to prove that A
is ultrahomogeneous.

Proposition 5.2.2. The unique countable random graph A is ultrahomoge-
neous.

Proof. Note that a finitely generated sbustructure is, in this case, just finite.
Let ā and b̄ be two finite tuples of vertices of A such that f0 : ā → b̄ is an
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isomorphism. At stage 2s + 1, we let x be the least vertex of A which is not in
the domain of f2s. The axioms of the almost sure theory of G

(
n, 1

2

)
guarantees

that there is some vertex y of A such that the atomic diagram of (ā, x) exactly
matches that of (b̄, y). We then set f2s+1 = f2s ∪ {(x, y)}. At stage 2s+ 2, we act
symmetrically, extending so that the range of f2s+2 contains the first new element.
Now f :=

⋃
s
fs is an isomorphism from (A, ā) to (A, b̄). �

It is not obvious that the Fräıssé limit should always satisfy the almost sure
theory of a class — if such a theory even exists, which may itself be uncertain
depending on what measures are chosen on the age and what structures are included
in the age. A notorious challenge to this interpretation of the Fräıssé limit as a
random structure was posed by the so-called Henson graph, the Fräıssé limit of the
class of finite triangle-free graphs.

Lemma 5.2.3. The class of finite triangle-free graphs has a Fräıssé limit.

Proof. Any subgraph of a triangle free graph is itself triangle free. Similarly,
the disjoint union of two triangle-free graphs is triangle-free. The principal chal-
lenge, then, is amalgamation. Let G0, G1, G2 be finite triangle-free graphs with
embeddings ei : G0 → Gi. Let G∗ be defined as follows. The vertices of G∗ are the
equivalence classes of vertices of G1 ∪· G2 under the relation x ∼ y if and only if
x = e1(v) and y = e2(v) for some fixed v ∈ G0. If x, y are two vertices of G∗, then
we put an edge from x to y if and only if there are alements of x and y joined by
an edge in G1 ∪· G2.

We first observe that the natural embeddings fi : Gi → G∗ are graph homo-
morphisms. Indeed, if x1 is adjacent to x2 in Gi, then it is obvious that fi(x1)
and fi(x2) will be adjacent. For the converse, suppose that fi(x1) and fi(x2) are
adjacent in G∗. Then there are x′1, x

′
2 such that xj ∼ x′j and x′1 is adjacent to x′2

in G1 ∪· G2. To be adjacent, they must be in the same G1, so that their preimages
are adjacent.

The property that f1 ◦ e2 = f2 ◦ e2 follows from the definition of G∗. �

We call this limit the Henson graph.

Proposition 5.2.4. The Henson graph is not a model of the almost sure theory
of triangle-free graphs in the uniform measure.

Proof. The bipartite graphs have measure 1 among the triangle-free graphs
[159]. However, bipartite graphs are 2-colorable and the Henson graph has infinite
chromatic number [226]. Since “bipartite” is a first-order property, a sentence
asserting it must be provable in the almost-sure theory. �

However, the uniform measure is not the only possible measure. A more recent
result [365] showed that the Henson graph is a model of the almost sure theory in
some invariant measure.

Theorem 5.2.5. There is an invariant probability measure on the class of
countable triangle-free graphs such that the isomorphism type of the Henson graph
has measure 1.

The proof of this will be deferred until the discussion in Section 6.1.2 of the
much more general results in this same direction of Ackerman, Freer, and Patel. For
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now it suffices that Fräıssé’s theorem does guarantee the existence, under some cir-
cumstances, of structures that are universal in a certain sense and that are random
— sometimes in a way that is not intuitive at all.

If Fräıssé limits are interesting, it is helpful to know their effectiveness proper-
ties. One thinks quickly of the expander graphs, whose existence was proved in the
abstract long before there was any concrete construction, when the concrete con-
struction is exactly what is most needed. While the complexity-theoretic structure
seems largely unexplored, something is known about the computability-theoretic
content.

We say that a set K of finitely generated structures of the same language is a
computable age if and only if K = ((Ai, āi) : i ∈ N) is uniformly computable, with
Ai generated by āi. We say that such a system K has the computable extension
property if there is a partial computable function which, given i ∈ N and a quantifier
free formula θ(ā, x̄), behaves as follows:

• Returns a triple (j, e, b̄), where ϕe : Ai → Aj is an embedding, and
Aj |= θ

(
ϕe (ā) , b̄

)
if such a triple exists, and

• Otherwise does not halt.

Theorem 5.2.6 ([126]). Let K be a computable age that satisfies the amalga-
mation property. Then K has a computable Fräıssé limit if and only if K has a
computable representation which has the computable extension property.

There are two fundamental questions about the effectiveness of Fräıssé’s the-
orem: the existence and the uniqueness. Theorem 5.2.6 addresses the existence
side: under certain circumstances, there will be a computable structure which is
(isomorphic to) the Fräıssé limit. Fräıssé’s theorem also posits the uniqueness of
the limit, up to isomorphism. The best possible result, from a computable stand-
point, is that any two isomorphic copies of the Fräıssé limit must be isomorphic
by a computable isomorphism (we say that the structure is computably isomorphic.
This is a little stronger than the truth. However, the following result says that any
two copies must be isomorphic by a ∆0

2 isomorphism.

Theorem 5.2.7 ([169]). Let A be a computable structure which is a Fräıssé
limit. Then A is relatively ∆0

2-categorical.

Proof. Given B ∼= B, the isomorphism can be constructed by a back-and-
forth argument, which depends only on determinations of whether, for given ā
and b̄, whether there is an isomorphism from the structure generated by ā to that
generated by b̄ that takes ai to bi. This can be determined by checking all atomic
formulas, possible with a B′ oracle. �

5.2.2. Ehrenfeucht-Fräıssé Games and 0–1 Laws. A somewhat different
view of the proof of Theorem 5.1.6 is given by Ehrenfeucht-Fräıssé games. Again,
for concreteness, we carry out the analysis on graphs, although the results are valid
much more broadly.

Consider two finite graphs, G1 and G2. the Ehrenfeucht-Fräıssé game of length
k on G1, G2, denoted EFk(G1, G2), is played by two players, E and A, over k
rounds. In round i, player A first chooses either G1 or G2, then chooses one vertex
of it to label i. Then player E chooses one vertex of the other graph to label i. The
vertex labeled i in G1 is called xi and the one in G2 is called yi.
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Player E wins if for all i, j < k, we have xi adjacent to xj if and only if yi is
adjacent to yj . Otherwise player A wins. Since EFk(G1, G2) is a finite game of
perfect information, it is determined; that is, exactly one of the players has strategy
to guarantee a win. We say G1 ≡k G2 exactly when E has a winning strategy. It
is routine to show that ≡k is an equivalence relation.

This game, while first formulated as a game by Ehrenfeucht, amounts to a
formalization of the back-and-forth proofs used by Fräıssé to prove Theorem 5.2.1.

Definition 5.2.8. We define the quantifier rank of a first-order formula ϕ,
denoted qr(ϕ), as follows:

(1) If ϕ is atomic, then qr(ϕ) = 0.
(2) If ϕ = ψ1 ∧ ψ2, then qr(ϕ) = max (qr(ψ1), qr(ψ2)).
(3) If ϕ = ψ1 ∨ ψ2, then qr(ϕ) = max (qr(ψ1), qr(ψ2)).
(4) If ϕ = ¬ψ, then qr(ϕ) = qr(ψ).
(5) If varphi = ∃xψ then qr(ϕ) = qr(ψ) + 1
(6) If varphi = ∀xψ then qr(ϕ) = qr(ψ) + 1

Those accustomed to easy contraction of multiple like quantifiers will need to
take careful note that every quantifier counts here.

The fundamental result of Ehrenfeucht-Fräıssé games is the following:

Theorem 5.2.9. The following are equivalent:

(1) G1 ≡k G2

(2) G1 and G2 satisfy the same sentences of quantifier depth at most k.

One standard application of these games is to show that a given property is
not first-order: If we can, for any k, find G1 ≡k G2 which differ on the property in
question, then no first-order sentence can capture the property.

For any fixed k, suppose now that G1 and G2 are chosen at random from
G(n, 1

2 ). We claim that, as n becomes arbitrarily large, with high probability in
the pair (G1, G2), player E has a winning strategy. Indeed, in round i of the game,
we suppose without loss of generality that A determines xi. Then E should choose
yi so that for all j < i we have yi adjacent to yj if and only if xi is adjacent to xj .
By similar analysis to the earlier proof, the probability that this strategy can be
carried out goes to 1. This is certainly a winning strategy for E, so with probability
approaching 1, we have G1 ≡k G2, providing an alternate proof of Theorem 5.1.6.
This is the approach taken, for instance, in [248], and is also described as an
alternate approach in [416]. It retains the flexibility of the original approach, as
well; in [415], the results of [404] are derived using this approach.

An important difference from the interactive proof games of Section 4.3 is that
here the play is completely deterministic. Only the particular game is chosen at
random, and that is chosen once for all, at the outset of the game.

This alternate proof, though, has allowed a finer analysis of the speed of con-
vergence of the zero-one law. For a fixed random graph model G(n, p(n)), which
is suppressed in the notation, we define the tenacity function Tε(n) be the max-
imum k such that E has, with probability at least 1 − ε, a winning strategy for
EFk(G1, G2), where G1, G2 are drawn independently at random from G(n, p(n)).
We expect, in general, that Tε(n) will grow with n; heuristically, larger graphs can
have more subtle differences than small ones. Indeed, [415] shows that Tε(n)→∞.
However, this growth can be very slow.
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Theorem 5.2.10 ([417]). Fix ε > 0 and let p(n)� n−1/2 and 1−p(n)� n−1/2.
Then for any n ≤ Tower(k), we have Tε(n) > 5k + 1.

What this means is that, with high probability, the quantifier depth necessary
to distinguish random graphs is a very slow-growing function of n. Close at hand
here is the notion of a Scott sentence. For any finite structure M there is a first-
order sentence ϕ whose models are exactly the isomorphic copies of M. This is
also true for a countable structure, if we allow ϕ to be a sentence of Lω1ω.

For other graph distributions, including the one of constant probability, [280]
quantifies the growth of Tε (equivalently, the quantifier depth of Scott sentences
for finite graphs). In particular, the results of [280] show that the results of [417]
depended importantly on the particular function p(n) selected.

Theorem 5.2.11 ([280]). Let p(n) = p be constant, with 0 < p ≤ 1
2 . Let G be

selected at random from G (n, p), and let ϕG be a Scott sentence for G of minimal
quantifier depth among all Scott sentences for G. Then the condition

−O(1) ≤ qd(ϕG)− log1/p n+ 2 log1/p lnn ≤ (2 + o(1))
ln lnn

−p ln p− (1− p) ln (1− p)
holds with probability 1− o(1) as n→∞.

5.3. Model Theory of Pseudofinite Structures

5.3.1. Pseudofinite Fields. We mentioned already that graphs were not
unique in the existence of a zero-one law, although they are, of course, well-studied.
It is natural to ask, in more familiar categories, what a random element of the cat-
egory looks like. This question can often be a good deal more subtle, and is, in a
sense, the subject of the next chapter. On the other hand, the question of what
happens in a typical finite structure from the category is now within the range of
our consideration.

This question is well-studied in fields. In the natural language, at least, fields
are not the class of all structures in their language, so the application of the
Glebskii–Fagin Theorem is not direct. However, it is an observation, arising largely
from the work of Ax, that there is at least a large, if not quite a complete, theory
that consists of the sentences true in almost all (that is, all but finitely many) finite
fields.

Recall that finite fields are relatively rare, and there is a standard classification
of them: there is exactly one field Fpd for each prime p and natural d, and it has
the structure Zp[X]/(q(X)) for some polynomial q. Now for each n, consider the
sentence

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

This sentence is false in all but finitely many finite fields. In that sense, each partic-
ular positive characteristic is not the characteristic of a “typical” finite structure.
Indeed, what is typical is that all of these sentences fail, so that the “typical”
behavior is to have characteristic zero. The fields of large positive characteristic
approximate more and more correctly the typical case of characteristic zero.

We need a few algebraic definitions here.

Definition 5.3.1. Let F be a field. We say that F is perfect in either of the
following cases:
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(1) F has characteristic zero, or
(2) F has characteristic p and every element of p has a pth root in F .

Given a finite sequence of polynomials f1, . . . , fm ∈ F [X1, . . . , Xn], we consider
the variety

V = V (f1, . . . , fm) = {x̄ ∈ acl(F )n : ∀i fi(x̄) = 0} .
It is also conventional to consider, for a variety V over any field K, the set IK(V ) =
{f ∈ K[X1, . . . , Xn] : ∀x̄ ∈ V [f(x̄ = 0]}.

We say that V is defined over F if and only if Iacl(F )(V ) is generated by elements
of F [X1, . . . , Xn]. We say that V has a K-rational point if there is some x̄ ∈ V ∩Kn.

Definition 5.3.2. Let F be a field. We say that F is pseudo algebraically
closed if every non-empty variety defined over F has an F -rational point.

We first observe that every algebraically closed field is pseudoalgebraically
closed, although the converse is not true.

Now for any field F , in a fixed algebraic closure F̃ of F , there is a unique
separable extension F s of F , containing all separable extensions of F within F̃ .
Further, F s = F̃ if and only if F is perfect.

In any case, we consider the Galois group Gal(F ) = Gal(F s/F ). Toward
characterizing the typical behavior of finite fields, we note that the field Fp has
a unique extension of each degree n. This extension has a cyclic Galois group.
By following the interactions of this tower of extensions, we find that Gal(Fp) =

lim← Z/nZ. We call this group Ẑ.
We now proceed, after a definition, to the first major result.

Definition 5.3.3. The first order theory of finite fields is the set of sentences
which are true of almost all finite fields.

Theorem 5.3.4 (Ax [36]). The following are equivalent

(1) F is an infinite field satisfying all sentences that are satisfied by all but
finitely many fields of characteristic p.

(2) F is perfect, pseudo algebraically closed, of characteristic p > 0, and

Gal(F ) = Ẑ.

Proof. The proof goes through the mechanism of ultraproducts. Given a
nonempty set S, an ultrafilter on S is a nonempty subset U ⊆ P (S) satisfying the
following properties:

(1) If A ∈ U and A ⊆ B, then B ∈ U .
(2) If A,B ∈ U , then A ∩B ∈ U .
(3) ∅ /∈ U .
(4) For each A ∈ P (S), exactly one of {A,S −A} is in U .

The ultrafilter U is said to be principal if and only if it is of the form {A : B ⊆ A}
for some fixed B. Otherwise it is said to be non-principal.

Now let (Fi : i ∈ I) be a family of non-empty fields, and U some ultrafilter on I.
We form a field as a quotient of the usual cartesian product

∏
i∈I

Fi in the following

way. We first set P =
∏
i∈I

Fi, and define an equivalence relation ∼ on P by f ∼ g if

and only if the set of i ∈ I where f and g agree is an element of U . Now P/ ∼ will
be the domain of our new field. We can define a natural structure on this set, taking
0 and 1 to be the equivalence class of (0i : i ∈ I) and (1i : i ∈ I), respectively, and
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with addition and multiplication defined similarly (e.g. taking the equivalence class
of the sum for the sum of the equivalence classes). It takes checking to be sure
that this is well defined, but it is. The resulting structure is called the ultraproduct∏
i∈I

Fi/U

Even granting that the structure has been well-defined, it is not obvious even
that it should be a field. The following fundamental result of  Loś, which we state
here without proof, is important.

Lemma 5.3.5 ( Loś’s Theorem). Let L be a first-order signature, (Ai : i ∈ I)
a family of non-empty L-structures, and U an ultrafilter over I. Then for any
L-sentence ϕ, the following are equivalent:

(1)
∏
i∈I

Fi/U |= ϕ

(2) The set of i for which Ai |= ϕ is an element of U .

Now suppose that ϕ is true in all but finitely many finite fields, and let F be
perfect, pseudo algebraically closed, of characteristic p, and Gal(F ) = Ẑ. Now ϕ
must certainly be true of all but finitely many of the fields Fpn . We construct an
ultraproduct D =

∏
n∈N

Fpn/U , where U is still to be specified.

It is a standard result that if we have a family of subsets of N such that any finite
intersection of members of this family must be infinite, then there is a nonprincipal
ultrafilter containing this family. We invoke this result on the family

αd :=
{
n ∈ N : Fpn ∩ Fpd = acl(Fp) ∩ Fpd

}
.

We choose the resulting nonprincipal ultrafilter as U .
We now have D ∩ acl(Fp) = F ∩ acl(Fp). Since the properties of being per-

fect, pseudo algebraically closed, and having absolute Galois group Ẑ are all ele-
mentary, as is the specification of a characteristic, so that D must inherit all of
these properties (via  Loś’s Theorem) from its factors. In combination with having
D∩acl(Fp) = F∩acl(Fp), this is enough to guarantee that F and D are elementarily
equivalent. Since D |= ϕ by design, it follows that F |= ϕ.

Conversely, suppose that we have an infinite sequence Fi of finite fields of
characteristic p, all satisfying ¬ϕ. Now for any nonprincipal ultrafilter U on N, we
have

∏
i∈N

Fi/U |= ¬ϕ, and this ultraproduct is perfect, pseudo algebraically closed,

and has absolute Galois group Ẑ and characteristic p. �

A similar argument shows the following:

Theorem 5.3.6 (Ax [36]). The following are equivalent

(1) F is an infinite field satisfying all sentences that are satisfied by all but
finitely many finite fields.

(2) F is perfect, pseudo algebraically closed, of characteristic 0, and Gal(F ) =

Ẑ.

Definition 5.3.7. We say that a field F is pseudofinite if and only if it is
perfect, pseudo algebraically closed, and Gal(F ) = Ẑ.

Intuitively, these fields resemble random graphs in that the property of satis-
fying all sentences satisfied by “almost all” finite structures in the class resembles
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a zero-one law. They also resemble Fräissé limits in that the ultraproduct con-
struction in some ways resembles the extension and amalgamation process of the
existence proof for Fräissé’s theorem.

For Ax, the main point of this was that the “theory of finite fields” (that is,
the set of sentences satisfied by all but finitely many finite fields) is decidable. The-
orem 5.3.6, together with his classification of pseudofinite fields up to elementary
equivalence, establishes this fact. We have already used this classification, without
proof, to establish Theorem 5.3.4, since its proof is not central to the argument of
the present book, but we do state the result here.

Proposition 5.3.8 (Ax [36]). Let E and F be pseudofinite fields with prime
fields E0, F0, respectively. Then E ≡ F if and only if E ∩ acl(E0) ∼= F ∩ acl(F0).

These pseudofinite fields are ubiquitous among fields, but it is difficult to give
more than a few concrete examples. Probably the most comprehesnive reference
on the algebraic aspects of these fields is [180].

Pseudofinite fields have also been extensively studied from the perspective of
model theory. One often talks about the “theory of pseudofinite fields,” although,
as we have seen, this theory is not complete. However, we do understand its com-
pletions very well. There are natural known languages in which the theory of pseu-
dofinite fields admits quantifier elimination, or is model complete. Fundamental for
more recent results is the following result.

Theorem 5.3.9 ([105]). Let ϕ(x̄, ȳ) be a formula in the language of rings.
Then there is a finite set D ⊆ {0, 1, . . . , n} × Q>0 ∪ {(0, 0)} of pairs (d, µ), along
with a positive constant C such that for any q and each x̄ ∈ Qm, if the set of ȳ ∈ Fnq
such that ϕ(x̄, ȳ) is nonempty, then there is some (d, µ) such that∣∣|ϕ(x̄,Fq| − µqd

∣∣ ≤ Cqd−1/2.

The point of comparison here is the bound of [296].

Theorem 5.3.10. There exists a constant A, depending only on n, d, and r
such that for any variety V of dimension r and degree d in Pn defined over a finite
field k, we compute δ = (d− 1)(d− 2), and denote by N the number of points of V
which are in k. The following inequality holds:

|N − qr| ≤ δqr− 1
2 +Aqr−1.

Even more can be said about the definable groups. The following result, origi-
nally due to Hrushovski and Pillay [246], was simplified by Hodges [240].

Theorem 5.3.11. Let F be a pseudofinite field, and G a d-dimensional affine
group defined over F . For each i ∈ I, let X(i) ⊆ G be an irreducible F -definable
set containing 1G. Let A be the subgroup of G(F ) generated by

⋃
i∈I

X(i), and let B

be the Zariski closure of A. Then the following hold:

(1) B is connected,
(2) A has finite index in B(F ), and
(3) There are i1, . . . , im ∈ I and ε1 . . . , εm ∈ {−1, 1} such that

(a) A = X(i1)ε1 · · ·X(im)εm

(b) B = X(i1)
ε1 · · ·X(im)

εm
.
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Proof. We take i1, . . . , ik so that the set X(i1) · · ·X(ik) has maximal dimen-
sion in G. The rest, by various dimension couting arguments, boils down to the
following result, of independent interest.

Theorem 5.3.12. Let F be a pseudofinite subfield of K, and G an affine group
definable over F . Let U be a subset of G(F ) definable in F which contains 1G and
has the same dimension as G(F ). Then the subgroup of G(F ) generated by U is
definable in F , and has the form Uν1 · · ·Uνk for some ν1, . . . , νk ∈ {−1, 1}.

Proof. Let W be the set of all x ∈ G such that dim(xU ∩ U) = dim(G(F )).
For any g ∈ W , there must then be u1, u2 ∈ U such that gu1 = u2, so that
W ⊆ UU−1.

We let a0 be the identity, and at stage s + 1 we choose some as+1 in the
subgroup of G(F ) generated by U such that as+1 /∈ a0W · · · asW . By a dimensional
argument, this process must halt, and then the decomposition of the subgroup of
G(F ) generated by U is chosen according to the sequence of ai. �

�

The importance of these results is that the very tight control these fields have
on their definable groups is similar to what is seen in algebraically closed fields. In
general fields, there may be quite a lot of definable things, very few of which corre-
spond nicely to affine algebraic groups defined over the field. The tight relationship
here is given by the following result of Hrushovski and Pillay.

Theorem 5.3.13 ([245]). Let G be a group definable in a pseudofinite field F .
Then there is a definable subgroup G1 ⊆ G, an algebraic group H defined over F ,
and a definable group homomorphism G1 → H(F ) with finite kernel.

Beyond the status of pseudofinite fields as models of an almost sure theory
in their own right, an interesting result of Beyarslan shows that certain random
structures (in the sense of Section 5.1) can be interpreted in them.

Theorem 5.3.14 ([149]). Let K be a pseudofinite field which is not separably
closed. Then the inifinite random graph is interpretable in K.

Proof. We take the set of field elements as vertices. For any two vertices a, b,
we make a and b adjacent if there is a pth root of a+ b. The graph defined in this
way satisfies the axioms of a random graph. �

Corollary 5.3.15. Pseudofinite fields have the independence property, and so
are unstable.

More recently, Beyarslan has taken up the extension of this line of thought to
random hypergraphs.

Definition 5.3.16. A k-hypergraph is a structure (V,H), such that H is a
k-ary relation with the following properties:

(1) For any permutation π ∈ Sk and for any a1, . . . , ak ∈ V , we haveH(a1 . . . , ak)
if and only if we have H(aπ(1), . . . , aπ(k)).

(2) For any a1, . . . , ak ∈ V and any i, j ≤ k, if ai = aj , then we do not have
H(a1, . . . , ak).
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Hypergraphs generalize graphs, of course, in that a 2-hypergraph is exactly a
graph. If H(a1, . . . , ak) holds, we say taht there is a hyperedge containing vertices
a1, . . . , ak. These structures see frequent applications, including the phenomenon
of folksonomy, in which a group of individuals collaboratively annotate a data set,
as in the application of tags in social media. One way to model this phenomenon
is to have G consist of all users, resources, and tags, and to represent a tag of
a resource by a user as a 3-hyperedge [197]. There is now a significant body of
combinatorial and probabilistic literature on random hypergraphs, similar to that
on random graphs [127, 197, 122].

It is not hard to imagine a set of extension axioms for a theory of random
hypergraphs, and indeed it is common to refer, by a random k-hypergraph, to a
hypergraph in wich for all distinct a1, . . . , am, b1, . . . , bn ∈ V k−1 (that is, each ai
and each bi is a k − 1-sequence), there is some c ∈ V such that∧

i≤m

H(ai, c)

 ∧
∧
i≤n

¬H(bi, c)

 .

Matushkin has announced work in the tradition of [404] toward a broader class of
zero-one laws for random hypergraphs [329].

A result of Hrushovski showed that random k-hypergraphs are more complex
in increasing values of k, in the sense that one cannot interpret a random (k +
1)-hypergraph in a random k-hypergraph [242]. In particular, this means that
Duret’s result on interpreting random graphs does not directly give interpretability
of random k-hypergraphs for k > 2.

Theorem 5.3.17 ([64]). Let F be a pseudofinite field and k ∈ N. Then there
is a random k-hypergraph interpretable in F .

Proof. Suppose that we can construct some polynomial g(T, Y1, . . . , Yk) ∈
F [T, Y1, . . . , Yk] which is symmetric in Y1, . . . , Yk, and which satisfies the following
properties. (For each ā ∈ F k−1, we let Lā be the splitting field of g(t, ā, x) over
F (x).)

(1) Gal (Lā/F (x)) is non-Abelian and simple.
(2) Lā is a regular extension of F .
(3) Lā = Lb̄ if and only if ā = b̄.

We then define a k-hypergraph on F by setting H(a1, . . . , ak) if and only if F has
a root of g(T, a1, . . . , an).

To verify the success of this construction, it suffices to show that the extension
axioms are satisfied in an elementary extension (since they would then have to be
satisfied in F itself). Given a sequence of distinct a1, . . . , am, b1, . . . , bn ∈ F k−1, we
observe that the fields Lz are linearly disjoint as z ranges over a1, . . . , am, b1, . . . , bn.
We can then find an automorphism µ of the join of all of the Lz which moves all
roots of g(T, bi, x) for each i, but restricts to the identity on each Lai .

Let σ ∈ Gal(F ) be such that the topological closure of 〈σ〉 is Gal(F ), and let
τ ∈ Gal (F (x)) be a common extension of σ and µ. Let M be the fixed field of τ ,

and note that Gal(M) = Ẑ. Thus, there is a pseudofinite E containing M with
acl(M)∩E = M , so that E is an elementary extension of F . By construction, x ∈ E
witnesses the extension axioms showing that (F,H) is a random k-hypergraph.

All that remains is to construct the polynomial g. This can, in fact be done,
completing the proof. �
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The reverse interpretation is not possible. Any structure interpretable in an ℵ0-
categorical theory must also be ℵ0-categorical, so no infinite field can be interpreted
in a random graph. From an alternate viewpoint, if a pseudofinite field could be
interpreted in a random k-hypergraph, then one could interpret a random (k + 1)-
hypergraph in that field, which would give an interpretation of a random (k + 1)-
hypergraph in a random k-hypergraph, a contradiction.

In this sense, pseudofinite fields have quite a lot of randomness. They are
themselves models of an almost sure theory, and interpret many other models of
almost sure theories. This gives rise to the following problem.

Problem 5.3.18. Is there a theory T such that if (K,µ) is a probability space
of finite structures in a finite relational language satisfying a zero-one law, with
almost sure theory TK , and M is a model of TK , then there is some model of T
that interprets M?

5.3.2. Pseudofinite Groups. The analogous class of groups, the pseudofinite
groups, is defined differently. A significant part of the reason for this is that the
good model-theoretic behavior of groups under this definition is analogous to that
of the pseudofinite fields already defined. A second part is their characterization,
originally due to Wilson, but strengthened by Ryten as groups of Lie type over
pseudofinite fields.

Proposition 5.3.19. Given a group G, the following are equivaelnt:

(1) G is an infinite group and G satisfies every first-order sentence that holds
in all finite groups.

(2) G is an infinite group such that every first-order sentence true of G is also
true of some finite group.

(3) G is elementarily equivalent to an infinite ultraproduct of finite groups.

Definition 5.3.20. A group G is said to be pseudofinite if and only if it satisfies
one of the equivalent conditions of Proposition 5.3.19.

As we might expect, pseudofinite groups are not quite as neatly classified as
pseudofinite fields. However, the simple pseudofinite groups are well-understood
(see [207]).

Definition 5.3.21. A simple group of Lie type is a simple non-Abelian compo-
sition factor of the centralizer in an algebraic group G over a field F by a surjective
endomorphism of G.

In partiular, all simple groups of Lie type are subgroups of linear algebraic
groups. The following theorem was proved, in its original form, by [460], and was
strengthened to the present statement in [388]. Much of the reasoning in the proof
appears already in [168].

Theorem 5.3.22. Every simple pseudofinite group is isomorphic to a group of
Lie type, possibly twisted, over a pseudofinite field.

Proof. We give an outline of the proof. Suppose that G is simple and is
elementarily equivalent to an ultraproduct

∏
i∈I

Gi/U of finite groups. We consider

each factor Gi. There is some integer k such that each element of Gi is a product
of k commutators. One can also show that for each i, the group Gi is either simple
or has the property that the set of all products of k + 3 commutators is a proper
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normal subgroup. This property is first-order, so the set of i on which it holds
cannot belong to U . Thus, there is a set I ′ ⊆ I such that I ′ ∈ U , such that Gi
is simple for all i ∈ I ′, and such that G ≡

∏
i∈I′

Gi/U . A similar argument shows

that if G is elementarily equivalent to an ultraproduct of groups of Lie type, then
it must be elementarily equivalent to an ultraproduct of groups of the same Lie
type. An ultraproduct of alternating groups must be finite. Consequently, G must
be elementarily euqivalent to an ultraproduct of finite simple groups of the same
Lie type, thus, a group of Lie type over a pseudofinite field F .

If we can now replace elementary equivalence with isomorphism, the theorem
is established. For this, it suffices to show that there is a field F or difference
field (F, σ) (according to the Lie type of G), such that F or (F, σ) is uniformly
bi-interpretable with G. If this is true, then the theory of G will state that there
is a field F or a difference field (F, σ) and a group H of Lie type over F hich is
definably isomorphic to G. We outline the non-twisted case.

Define H to be the subgroup of G generated by the elements of the form(
λ 0
0 λ−1

)
.

Note that this group is definable in G.
We shall also need the root group, which for most readers of this book will

require some explanation. Let G be the Lie algebra associated with G, and let H be
a subalgera of G such that H is nilpotent (interation of the Lie bracket terminates)
and such that if [x, h] ∈ H for all h ∈ H, then x ∈ H. We can then decompose G as

a direct sum of H-invariant subspaces G = H⊕
(

k⊕
i=1

Li

)
, where Li is 1-dimensional

for each i. We let ei be a non-zero element of Li. We define

exp(δ) =

∞∑
j=0

δj

j

and let xi(t) = exp (te∗r), where ∗ denotes the adjoint operation. We note that this
series does, in fact, terminate, by the construction of the direct sum decomposition.
Now for each i, we have a subgroup Xi := {xi(t) : t ∈ F} of G, which we call the
root subgroup.

The proof works more generally, but suppose that H acts transitively on the
root subgroup Xi. Now to multiply xi(a) and xi(b), we define the element hz such
that hzxi(1) = xi(z). Now xi(a) ⊗ xi(b) can be defined as hahbxi(1). Now Xi

was already isomorphic to the additive subgroup of F , and it can be seen that the
operation ⊗ defines a field on Xi which is isomorphic to F . �

Naturally, the situation beyond simple groups is a good deal more complex.
We will consider NIP theories in more detail in Section , but since that condition
is important in the literature of pseudofinite groups, we define it here.

Definition 5.3.23. Let T be a first-order L-theory.

(1) Let ϕ(x̄; ȳ) a first-order L-formula, and S a set of n-tuples. Then we say
that S is shattered by ϕ(x̄; ȳ) if and only if there is a family

(
b̄i : i ∈ I

)
such that for each V ⊆ S we have some i such that ϕ(ā; b̄i) holds exactly
of those ā with ā ∈ S.
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(2) A formula ϕ(x̄; ȳ) is said to be NIP if no infinite set S is shattered by
ϕ(x̄; ȳ).

(3) A theory T is said to be NIP if and only if all formulas ϕ(x; y) ∈ L are
NIP.

Theorem 5.3.24 ([316]). Let G be a pseudofinite group with NIP theory, and
suppose that there is a natural number n such that there is no sequence of sets
F1, . . . , Fn+1 ⊂ G with CG(F1) < CG(F2) < · · · < CG(Fn+1). Then G has a
solvable definable normal subgroup of finite index.

More recently, Conant and Pillay have shown that in the context of psuedofinite
groups one can apply NIP theory locally, a key feature of stability that does not
easily generalize to the broader approach of NIP [115].

In addition to the asymptotic behavior of satisfaction of sentences, there is also
an approach to the asymptotic study of realization of formulas.

Definition 5.3.25 ([156, 314]). Let N be a positive integer and C a class
of finite structures in a common signature L. We say that C is an N -dimensional
asymptotic class if and only if for every L-formula ϕ(x̄, ȳ) there is a finite set
D ⊆

(
{0, . . . , N · `(x̄)} × R>0

)
∪ {(0, 0)}, and for each pair (d, µ) ∈ D a collection

Φ(d,µ) of pairs (M, ā) such that

(1) M ∈ C
(2) ā ∈M `(ȳ)

(3)
{

Φ(d,µ) : (d, µ) ∈ D
}

is a partition of
{

(M, ā) : M ∈ C, ā ∈M `(ȳ)
}

, and
(4) When M ranges over C, we have

lim
|M |→∞

∣∣∣∣∣ϕ (M `(x̄), ā
)∣∣− µ |M |d/N ∣∣∣

|M |d/N
= 0

(5) The family
{
ā : (M, ā) ∈ Φ(d,µ)

}
is uniformly ∅-definable.

This definition, especially in Clause 4, parallels the Lang-Weil bound of The-
orem 5.3.10. The difference from a zero-one law may be exemplified by the case
of finite fields. Theorem 5.3.6 gives the behavior of finite fields that most nearly
matches a zero-one law. On the other hand, Theorem ?? shows that finite fields
constitute a 1-dimensional asymptotic class. The proof of Theorem 5.3.22 demon-
strates that any family of finite simple groups of fixed Lie type constitutes an
N -dimensional asymptotic class for some N .

5.3.3. Classes of Finite Structures and Pseudofinite Structures. The
general definition of pseudofinite structures is similar to that for pseudofinite groups.

Definition 5.3.26. A structure M is said to be pseudofinite if for every sen-
tence ϕ such that M |= ϕ, there is some finite structure N with N |= ϕ.

In this framework, certain parts of nonstandard analysis will become useful. It
is common to consider a standard model V = (V,∈) of set theory, and a “large sat-
urated” elementary extension V∗ = (V ∗,∈∗) of V). Of course, precise formulation
of a “large saturated” model of set theory is more subtle, but the subtleties are
not central to our needs here. We say that an object in V∗ is internal if and only
if it is definable with parameters in V∗. We can then define a pseudofinite object
(set, structure, etc.) to be one which is finite in the sense of V∗ (recall that V∗
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will have many functions that V does not have, which may witness bijections that
may not exist in V). If we have a pseudofinite structure satisfying a sentence in V∗,
we can use the fact that V∗ is an elementary extension of V to find a finite struc-
ture satisfying the same sentence. Conversely, we can construct, by compactness,
a non-principal type in V whose realization in V∗ is a V∗-finite structure satisfies
the conditions of Definition 5.3.26.

We first explore a particular family of strengthenings of the pseudofinite con-
dition that give rise to highly regular model theory. In particular, the existence
of a chain of finite submodels with strong regularity properties is equivalent to a
decomposition into a very limited class of structures — enough, at least, to imply
ℵ0-categoricity.

Definition 5.3.27. Let M be a structure.

(1) M is said to be smoothly approximable by finite structures if and only if
it is countable and ℵ0-categorical and there is a chain

M0 ⊆M1 ⊆ · · ·

of finite substructures such that
(a) M =

⋃
i∈N
Mi

(b) For each i, if ā, b̄ are sequences from N of finite length, then they lie
in the same Aut(M) orbit if and only if they lie in the same orbit of
the setwise stabilizer of N in Aut(M).

(2) M is said to be strongly k-quasifinite if and only if in a nonstandard exten-
sion of the set-theoretical universe, there is an internally finite structure
N ≡M with a finite number of internal k-types which coincide with the
k-types.

The major work of [106] is to associate these properties of quasifiniteness and
smooth approximability with certain geometric properties, and to exploit this equiv-
alence. We now define a list of structures collectively called geometries. We will
then define a class of structures whose key feature is that they can be decomposed
as an assembly of geometries. Finally, we will see the main theorem just described.

Definition 5.3.28. Geometries are defined as follows:

(1) A linear geometry is an expansion of one of the following types of struc-
tures M by a set of algebraic elements in Meq:
(a) A pure set
(b) A pure vector space over a finite field, with a sort for the field and

scaling as a binary function
(c) (V ∪W,K,L, β), where K is a finite field, L, V , and W are vector

spaces over K where L has dimension 1, and β : V ×W → L is a
nondegenerate bilinear map.

(d) An inner product space over a finite field
(e) (V,K,L, q), where K is a finite field, L and V vector spaces over K

where L has dimension 1, and q is a quadratic form V → L whose
associated bilinear form is nondegenerate

(f) A finite field K of characteristic 2 with a vector space K and nonde-
generate symplectic bilinear form βV , along with a set Q of quadratic
forms on V , with some additional structure (+Q,−Q, βQ, ω) on Q.
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(2) A projective geometry is the quotient of a linear geometry by the relation
acl(x) = acl(y).

Definition 5.3.29. A structureM is said to be Lie coordinatizable if and only
if it is bi-interpretable with a structure M′ such that

(1) M′ has finitely many 1-types.
(2) M′ has a definable tree structure of finite height with an ∅-definable root,

with the following properties:
(a) For each a ∈ M which is not the root, either a is algebraic over its

predecessor or there is b < a and a b-definable projective geometry
Jb with representative cb in M′eq, such that

(i) The ∅-definable relations of Jb are the relations on M which
are cb-definable in M′.

(ii) The set of M′-definable relations on Jb is uniformly definable
in Jb.

(iii) One of the following holds:
(A) a ∈ Jb, or
(B) There is b′ ∈M′ with b < b′ < a and a b′-definable affine

or quadratic geometry (Jb′ , Ab′) such that a ∈ Ab′ and the
projectivization of Jb′ is Jb.

(b) If tp(a) = tp(b) and are associated with geometries Ja and Jb of type
f, then any definable map preserves all elements of the geometric
structure except ω, then it must also preserve ω.

Lie coordinatizability is related to the notion, defined earlier, of asymptotic
classes (see Definition 5.3.25).

Proposition 5.3.30 ([156]). Let M be a Lie coordinatized structure. Then
there exists some N and some N -dimensional asymptotic class C such that C
smoothly approximates M.

It is not obvious, but true, that every Lie coordinatizable structure is ℵ0-
categorical. We now state the main result of [106].

Theorem 5.3.31. The following are equivalent.

(1) M is smoothly approximable.
(2) M is strongly 4-quasifinite.
(3) M is Lie coordinatizable.

Proof. The implication 1→ 2 is straightforward from the definitions. Toward
3 → 1, we note that in a Lie coordinatizable structure one can construct a subset
known as an envelope. A dimension function is a function µ whose domain is the set
of equivalence classes of ∅-definable functions mapping a complete type to a family
of projective geometries and which takes values in isomorphism types of finite or
countable dimensional geometries of the same type. If M is Lie coordinatizable,
then relative to a particular choice of µ, we can construct, for any sufficiently regular
algebraically closed E0 ⊆ M, a set E ⊆ M containing E0 which is algebraically
closed in M, and with the following two properties:

(1) For any c ∈M− E we have
(a) a ∅-definable function J mapping a complete type A to a family of

projective geometries, and
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(b) an element b ∈ A ∩ E such that acl(E) ∩ Jb ( acl(E, c) ∩ Jb.
(2) For any such function J and any element b ∈ A∩E, the isomorphism type

of Jb ∩ E is given by µ(J).

While it is not elementary, it can be shown that this construction is always possible,
and that if µ is always finite, then E is finite, as well. Finally, it can be shown that
E has the necessary homogeneity to satisfy the conditions of witnessing that M is
smoothly approximable.

It remains to show that 2→ 3. Suppose thatM is strongly 4-quasifinite. Then
we can construct a finite cover Mc of M (so that Mc is bi-interpretable with M)
which satisfies the necessary geometric properties. �

Definition 5.3.25 has limited application to ordered structures, in the sense
that every o-minimal structure arising from linearly ordered finite structures must
be discretely ordered [367]. To this end, Macpherson and Steinhorn offered the
following definition:

Definition 5.3.32 ([315]). A robust chain of finite L-structures consists of a
sequence (Mi : i ∈ N) such that

(1) For each i, we have Mi ⊆Mi+1

(2) For each L-formula ϕ(x̄), there is a function fϕ : N → N such that for
each i ∈ N, for each ā ⊆ Mi, and each j ≥ fϕ(i), we have Mfϕ(i) |= ϕ(ā)
if and only if Mj |= ϕ(ā).

An initial indication that this definition has appropriate scope is the following
result:

Proposition 5.3.33 ([324]). Let M be a countable infinite structure such that
every finite subset of M is contained in a finite substructure of M. Then M is the
direct limit of a robust chain of finite structures.

In previous constructions we have observed the existence of an almost sure
theory and regarded its (often unique) model as the limit of the collection of finite
models. Thinking strictly in the logic topology, this idea has merit. However,
in the context of robust chains and their direct limits, “direct limit” is already a
construction of a particular model, and it is necessary to assess agreement between
the theory T lim of the direct limit of the chain and, on the other hand, the almost
sure theory T as of the chain itself.

Proposition 5.3.34 ([315]). Let C be a robust chain of models, with almost
sure theory T as and limit theory T lim. If T as is ∀∃-axiomatized, then T lim |= T as.

Proof. Every ∀∃ sentence in T as must hold in all Mi for sufficiently large i.
Consequently, they must hold in the direct limit. �

On the other hand, let C be a robust chain of finite fields of characteristic p,
having union Fp. Now the limit theory T lim is a theory of algebraically closed
fields, but the almost sure theory has the independence property, so that these two
theories differ dramatically. In exchange for this limitation on the construction
method, Macpherson and Steinhorn proved that there is a robust chain of finite
structures whose limit theory is the theory of divisible ordered Abelian groups.

In light of Theorem ?? and Definition 5.3.25, MacPherson and Steinhorn pro-
posed the following definition.
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Definition 5.3.35. An infinite L-structure M is said to be measurable if and
only if there is, for every definable set X, a pair δ(X) = (d, µ) ∈ N × R with the
following properties:

(1) For each formula ϕ(x̄, ȳ), there is a finite set Dϕ such that for any ā, we
have δ(ϕ(x̄, ā)) ∈ Dϕ.

(2) If X is finite, then δ(X) = (0, |X|).
(3) For each L-formula ϕ(x̄, ȳ) and each fixed pair (d, µ), the set of parameters

ā such that δ (ϕ(x̄, ā)) = (d, µ) is definable without parameters.
(4) Let X,Y be definable sets ofM and f : X → Y be a definable surjection.

Then
(a) There are finitely many pairs (di, µi) such that the sets

Yi :=
{
ȳ ∈ Y : δ

(
f−1(ȳ)

)
= (di, µi)

}
partition Y , and

(b) If δ(Yi) = (ei, νi), then δ(H) = (c, θ), where c = max {di + ei}, where
this maximum is attained by those i with i ≤ s, and θ =

∑
i≤s

µiνi.

In particular, every non-principal ultraproduct of an N -dimensional asymptotic
class is measurable, via the pairs (d, µ) arising in Definition 5.3.25. However, there
are measurable structures arising in other ways, too. One can get this simply by
taking a vector space over an infinite field. Alternately, Elwes shows that such an
example arises by taking the “Hrushovski fusion” of two algebraically closed fields
of different positive characteristic [156].

Pseudofinite structures admit a particulary useful class of measures that mirror
the counting measures on finite structures. We note that for any real x ∈ V∗ there
is a unique real st(x) ∈ V such that |st(x)−x| < 1

n for all standard natural numbers
n. Then for any pseudofinite structure M and any definable set X ⊆Mn, we may
define

µX(Y ) := st

(
|Y |
|X|

)
where | · | denotes the V∗ cardinality and Y ranges over definable subsets of X.
This function µX is a finitely additive probability measure on the definable subsets
of X. That is, it is a Keisler measure.

Keisler measures (that is, finitely additive probability measures on a class of
definable sets) generalize types in that a type can be interpreted as a {0, 1} measure
by giving measeure 0 to formulas not in the type and measure 1 tor formulas in the
type. We will see more about such measures in Section 5.3.2, and the pseudofinite
counting measure just described, in particular, will play a role in the discussion of
the Szemeredi Regularity Lemma in Section 8.7.1.

5.4. The Lovasz Local Lemma

5.4.1. The Local Lemma and the probabilisitic Method. While there
is considerable classical logical interest in zero-one laws, there are also techniques
available for intermediate probabilities. Perhaps the best known example is the
Lovász Local Lemma, an estimate of the probability of a certain Boolean combina-
tion of events.

The following result, now standard, was first proved in [160].
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Theorem 5.4.1 (Lovász Local Lemma). Let A1, . . . , An be events. Let E be
the edge relation of a directed graph structure on {1, . . . , n} such that Ai is mutually
independent of all events {Aj : (i, j) /∈ E}. Finally, let {xi : i ∈ {1, . . . , n}} be real
numbers in the unit interval such that

P (Ai) ≤ xi
∏

(i,j)∈E

(1− xj).

Then the intersection of the complements of all of the Ai has positive probability

bounded from below by
n∏
i=1

(1− xi).

Before proceeding to a proof or to applications of this result, we should first
observe the relationship of the directed graph E to the Bayesian networks of Sec-
tion 2.3.1. The subtle difference in these graphs is that in Bayesian network,
each Ai should be conditionally independent of {Aj : (i, j) /∈ E} over the events
{Aj : (i, j) ∈ E}. Here, we disregard the conditionality — events on which Ai de-
pends may be direct predecessors even if their influence is factored through other
intermediate nodes in the network.

Proof. We observe that P

(
n∧
i=1

Ai

)
can be computed by

n∏
i=1

1− P

Ai| i−1∧
j=1

 .

We will now show that this quantity satisfies the claimed inequality.
Certainly, it holds that P (Ai) ≤ xi, since (1 − xj) < 1 for all j. We proceed

by induction to show that this estimate remains valid when the probability is con-
ditioned on

∧
i∈S

Ai for some set S ⊆ {1, . . . , n}. We have established, of course,

that this holds for |S| = 0. Suppose that it holds for |S| < s, and separate the
dependent events Si,1 = {j ∈ S : (i, j) ∈ E} from the others Si,2 = S − Si,1. For
the immediate calculation, i is fixed, so we suppress it in our notation. We consider

P

Ai|∧
j∈S

Aj

 =

P

(
Ai ∧

∧
j∈S1

Aj |

( ∧
j∈S2

Aj

))

P

( ∧
j∈S1

Aj |
∧
j∈S2

Aj

) .

Now the numerator is bounded by P

(
Ai|

∧
j∈S2

Aj

)
, which, by the independence

hypothesis is equal to

P (Ai) ≤ xi ≤ xi
∏

(i,j)∈E

(1− xj).

We estimate the denominator by noting that it is equal to

∏
j∈S1

1− P

Aj |
∧
`∈S1
`<j

A`

 ∧
( ∧
`∈S2

A`

)
 .
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By induction, this quantity must be bounded from below by∏
j∈S1

(1− xj) =
∏

(i,j)∈E

(1− xj).

In that case,

P

Ai|∧
j∈S

Aj

 ≤ xi
∏

(i,j)∈E
(1− xj)∏

(i,j)∈E
(1− xj)

= xi.

Now we conclude the proof by noting that

n∏
i=1

1− P

Ai| i−1∧
j=1

 ≥ n∏
i=1

(1− xi).

�

A standard deployment of this result is in the use of the probabilistic method,
which we have already seen in Section 5.1.1: to prove the existence of an object
with prescribed properties (in Section 5.1.1, an expander graph) by showing that a
random element of some class would have these properties with positive probabil-
ity. A detailed treatment of the probabilistic method, including the Lovász Local
Lemma, is found in [18].

Corollary 5.4.2 ([413, 18]). Denoting by R(k, `) the Ramsey number — that
is, the least R such that every 2-coloring of the complete graph on R vertices (say,
by Red and Green) contains either a red clique of k vertices or a green clique of `

vertices — we have R(k, 4) > k
5
2 +o(1).

Proof. We randomly color the edges of Kn, coloring each edge red indepen-
dently with probability p. For each set S of k vertices, let RS be the event that
every edge between elements of S is red, and for each set T of 4 elements let GT
be the event that every edge between elements of T is green. We can construct a
dependency graph E, as in the theorem, by joining two events sharing an edge. We
can calculate the probabilities of these two sets, as well as the necessary contribu-
tions of dependencies. For a given value of n, we calculate the probability that our
random coloring produces no monochromatic cliques of the appropriate size.

The probability of RS is p(
k
2), and the probability of GT is (1−p)(

4
2) = (1−p)6.

For any S of size k, there are at most
(
n
k

)
other sets Si size k such that RS is

adjacent to RSi , and there are at most
(
k
2

)(
n−2

2

)
sets of T size 4 such that RS is

adjacent to GT . Similarly, for any T of size 4, we have at most
(
n
k

)
sets S of size k

such that RS is adjacent to GT , and at most
(

4
2

)(
n
2

)
= 6
(
n
2

)
.

In formulating the appropriate instance of the hypotheses of Theorem 5.4.1, we
note that we would need

P (RS) ≤ x1(1− x1)(
n
k)(1− x2)(

k
2)(

n−2
2 )

and
P (GT ) ≤ x2(1− x1)(

n
k)(1− x2)6(n2).

We can achieve a choice of p, x1, x2 satisfying these inequalities whenever n ≤
k

5
2 +o(1). In that case, Theorem 5.4.1 applies, producing a 2-coloring of Kn which

has neither a Red k-clique nor a green 4-clique. �
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5.4.2. The Computable Lovász Local Lemma. The Lovász Local Lemma
is another example of the probabilistic method: it guarantees the existence of ob-
jects — indeed, a positive fraction of them — but it does not constructively give
one. One direction of recent work has been to explore algorithmic aspects of this
theorem.

Starting with the seminal 1991 paper of Beck, there have been algorithms
developed that will, in certain cases, construct an element of the intersection of the
complements of all of the events Ai in bounded time [51]. A seminal advance of
[348] resulted in an algorithmic approach that covers most known applications of
the Lemma. The major restriction remaining is that the general dependency graph
of Theorem 5.4.1 is replaced by a slightly more restrictive system of dependency.

Theorem 5.4.3 ([348]). There is a randomized algorithm M with the follow-
ing property. Let P be a finite set of mutually independent computable random
variables, and let A1, . . . , An each be a computable {0, 1}-valued function of a finite
number of random variables from P. Let E be the edge relation of the directed graph
structure on {1, . . . , n} such that Ai does not share any variables from P with any
of the events {Aj : (i, j) /∈ E}. Finally, let {xi : i ∈ {1, . . . , n}} be real numbers in
the unit interval such that

P (Ai = 1) ≤ xi
∏

(i,j)∈E

(1− xj).

Then M will return a set of values p̄ for the elements of P such that for every i,
we have Ai(p̄) = 0.

In considering the hypotheses for this effective version of the theorem, consider
the example of Corollary 5.4.2. The random variables P are the colors of the edges
in Kn. The events RS and GT are, for each S and T , functions of only the edges
included in S and T , and the dependencies are exactly between sets S and T that
share an edge. Consequently, the Moser-Tardos Effective Local Lemma would, for
each n ≤ k 5

2 +o(1), produce a 2-coloring of Kn which has neither a red k-clique nor
a green 4-clique.

Proof of Theorem 5.4.3. The algorithm is as follows: First, generate a ran-
dom assignment of values p̄ to the elements of P. Then, check to see if the assign-
ment satisfies Ai(p̄) = 0 for all i. If so, we are done. If not, pick the least i such
that Ai(p̄) = 1, and update p̄ by generating a new independent random assignment
of values to the variables on which Ai depends, and check satisfaction again. We
continue until we find an assignment that is accepted.

Of course, if this algorithm ever halts, it will produce a satisfying evaluation of
P. Also, with probability one this algorithm will result in a satisfying assignment in
some finite time, following what Russell Miller has whimsically called the “Are you
my mother?” algorithm [151] (more prosaically known as exhaustive search). More
practical, though, is to bound the number of “resamplings” (random reassignments
of values) necessary for convergence. Moser and Tardos show that the expected

number of resamplings is
n∑
i=1

xi
1−xi . Then, as in the proof of Proposition 4.2.6, we

can use the Markov-Chebyshev Inequality to translate this expected run-time into
time T by which, with high probability, M will terminate successfully.

To get this expectation for the number of resamplings, we will consider the
ordered “log” of the events that we resample to correct, and, for each one, consider
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a tree, where each node in the gree is resampled because of its children (with the
root being the resampling actually occurring in the log. We will then use the
probability of appearance of each of these trees to bound the expected number of
resamplings.

We now consider a random branching process (a Galton-Watson process) in
which these witness trees are randomly generated.At each round, we take a vertex
produced in the previous round, and, for each vertex adjacent to it in the depen-
dency graph (counting every vertex as self-adjacent for this purpose), we add a
node labeled by that vertex with probability determined by the related x.

The expected number of resamplings, then, is the sum over all possible witness
trees of the probability that each one appears in the log. A routine, but laborious,

calculation bounds this expectation below
n∑
i=1

xi
1−xi . �

In some sense, this does not fully answer the challenge: a non-deterministic
algorithm is still used. While Moser and Tardos gave some conditions under which
their result could be carried out by a deterministic algorithm, Chandrasekaran gave
broad criteria under which one can run a deterministic version of this algorithm,
giving, in some cases, a deterministic computable version of the Local Lemma. In
another strengthening that has found use in computability theory, [384, 385] have
given the following infinite computable version.

Theorem 5.4.4 ([384, 385]). Suppose ε ∈ (0, 1), suppose that we have a set of
events A = {A0, A1, . . . } with graph structure E as in Theorem 5.4.3, and there is
a uniformly computable function x : A → (0, 1) such that for each A ∈ A, we have

P (Ai) ≤ (1− ε)x(Ai)
∏

(i,j)∈E

(1− x(Aj)).

Then there exists a computable function σ assigning values to every variable occur-
ring in A in such a way that every Ai evaluates to zero.

These effective versions of the Lovász Local Lemma became imporant in the
investigation of a problem in reverse mathematics that is not obviously linked to
probability. Work in the program of reverse mathematics takes some (true) combi-
natorial principle and attempts to classify it by its “proof-theoretic strength;” that
is, over some weak base theory T0, typically a fragment of second-order arithmetic,
to situate it in an equivalence class of theorems under the relation

(ϕ1 ∼ ϕ2)⇔ ((T0, ϕ1 ` ϕ2) ∧ (T0, ϕ2 ` ϕ1)) .

Hindman’s theorem is a standard deterministic result in colorings, stating that
for every coloring of N with finitely many colors, there is an infinite set H such
that all nonempty sums of distinct elements of H have the same color. A natural
weakening of this principle involves restricting the statement to sums of a specific
number or range of distinct elements. The case of sums of exactly two elements
was particularly difficult to classify in the system of reverse mathematics, and the
eventual solution, published in [113], makes use of Rumyantsev and Shen’s effective
Lovász Local Lemma.

Proposition 5.4.5 ([113]). There exists a computable coloring of N with ex-
actly two colors, such that there is no computable infinite set H in which the set
{(a+ b) : a 6= b ∈ H} is not homogeneous.
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Proof. We consider an enumeration {Wi : i ∈ N} of the computably enumer-
able sets. We pick appropriate large values of ki for each i, and set Ei = Wi,ki .
Now for each s ∈ N, the event that Ei + s is homogeneous has low probability and
is independent of most other events of the form “Ej + t is homogeneous.” We then
use Theorem 5.4.4 to produce a coloring avoiding all of these events. �



Bibliography
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150. M. Džamonja and I. Tomašić, Graphons arising from graphs definable over finite fields,

preprint, 2017.

151. P. D. Eastman, Are you my mother?, Random House, 1960.
152. G. Edgar, Measure, topology, and fractal geometry, second ed., Undergraduate Texts in

Mathematics, Springer, 2008.

153. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number
theory, Proceedings of the London Mathematical Society 54 (1952), 42–93.

154. K. Eickmeyer and M. Grohe, Randomisation and derandomisation in descriptive complexity

theory, Logical Methods in Computer Science 7 (2011), 1–24.
155. G. Elek and B. Szegedy, A measure-theoretica approach to the theory of dense hypergraphs,

Advances in Mathematics 231 (2012), 1731–1772.
156. R. Elwes, Asymptotic classes of finite structures, Journal of Symbolic Logic 72 (2007), 418–

438.

157. H. B. Enderton, A mathematical introduction to logic, Academic Press, 1972.
158. I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint, 2008.
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