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Preface

In the late 19th and early 20th centuries, logic and probability were frequently
treated as closely related disciplines. Each has, in an important sense, gone its own
way, so that neither, in its modern form, is in any proper sense a systematization
of the “Laws of Thought,” as Boole called them.

However, the last four decades have seen a remarkable rapproachment. On the
most obvious level, the various probability logics have developed as formal systems
of reasoning in the modern sense of logic.

At a deeper level, though, attempts have been made to formulate logics in
which model theory of random variables, stochastic processes, and randomized
structures can be explored from the perspective of model theory. Continuous first-
order logic as a context for stability theory on metric structures is perhaps the most
conspicuous example, but others exist.

At the same time, algorithmic randomness in its various forms has come to play
a core role in computability theory, while probabilistic computation of various kinds
(randomized computation, interactive proofs, and others) has come to dominate
major parts of computational complexity. The older recursion-theoretic program of
machine learning, initiated by Gold in the 1960s, has become much more important
thanks to Valiant’s reformulation in probabilistic terms to allow for reasonable
errors.

The model theory of random objects, Fräıssé limits, and pseudofinite structures,
each of which embodies some important aspect of 0-1 laws, has been important for
longer, but advances in stability, simplicity, and the transition from finite to infinite
model theory have enriched this subject.

In set theory, too, the study of dynamics that respect probability measures has
played a central role in the study of equivalence relations. Probability is frequently
at the center of modern descriptive set theory.

Nor have these developments been independent. The PAC learning theory of
Valiant is inextricably linked to the model theory of NIP theories. The dynamics of
computable Polish spaces have become an important emerging area in computabil-
ity. Randomized computation is the natural computation on metric structures.
Notions of random structures have become intertwined with algorithmic random-
ness, and are naturally described in continuous first order logic.

Many of these developments have been adequately treated in isolation by vari-
ous books. Probability logic has been discussed at length from various perspectives
in [10, 239, 242, 394, 419]. Bayesian networks are well-covered, for instance,
in [219, 397, 398], and a monograph on adapted distributions also exists [180].
Randomized computation has a detailed treatment in [30]. Algorithmic random-
ness is the subject of three relatively recent books, [158, 387, 194]. Zero-one
laws are treated at length in [165, 230], and other places, and [266] includes an
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extended treatment of Fräıssé limits. Random graphs are extensively covered in
[74, 125, 338]. The definitive reference on PAC learning is [297]. In the field of
set-theoretic dynamics, there have been several treatments at several levels of de-
tail, among which [55, 260, 298, 303] merit special mention. There is no shortage
of book-length treatments of subjects within the range of this book.

However, a reader in a well-stocked library might well pass all these separate
books without knowing that they had anything substantive in common. Indeed,
one could read most of them in detail — in addition to the long papers that give
strong expositions on many related subjects (the seminal paper [61] on continuous
first-order logic comes to mind) — without finding a commonality.

It is true that [238] describes connections between probability logics and Bayesian
networks. However, it is silent on the rest of these issues.

The present book, then, attempts to take a unified — or, at least, unifying
— approach to this subject. The expanding literature in each of these fields has
seen more interaction between them, so that a model theorist might well want to
know more about the frontier of probabilistic work in set theory, or a computability
theorist more about the relevant work in model theory.

We focus here on mathematical logic and probability. Probability logic and
its relatives seem frequently to arise as works of philosophical logic, and this has
implications for the questions that are asked about it. Frequently it is seen in
connection with the theory of rational decision, as in [242]. Mathematical logic,
by contrast, asks about computability and undecidability; about theories and their
models; about reducibilities and regularity of sets. Alternate logics are of inter-
est to mathematical logic inasmuch as they provide the necessary infrastructure
for carrying out this program in interesting settings. Applications of logic to ar-
tificial intelligence and other modeling contexts are important, but they arise as
applications of the theory, not as its defining elements.

Chapter 1 begins to lay out the central thesis of the book: that all the other
chapters have something to say to one another. This is done by identifying several
important cross-cutting themes that come up in several of the other chapters.

In the next chapter, we begin the technical section of the book by describing
the various logics useful for probability. Continuous first-order logic has a central
role, not least because it generalizes many others. Probability logic is extensively
studied, and is explored here as well, as are some other approaches.

In a third chapter, we will consider the theory of algorithmic randomness, with
special attention to normal numbers, Martin-Löf randomness, and their relation
to computation. This treatment will not be complete, of course — the subject is
well-covered elsewhere. Rather, the focus will be on those aspects of algorithmic
randomness that interact with other areas of advance in the logic and probability
community.

The chapter on randomized computation involves the leap of reasoning that
computability and complexity still have something to say to one another. Recent
work on generic and coarse computability, as well as that on derandomization,
descriptive complexity, and continuous first-order logic support this hypothesis.

The following two chapters will take up the various approaches to random struc-
tures. The investigation of random structures seems to have arisen historically from
the study of random graphs, which invited generalization to 0-1 laws, and which
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connected with the earlier beginnings of Fräıssé limits. More recent approaches con-
sider the “random” structure as a single structure that somehow embodies the pos-
sible variation — graphons, Keisler randomizations, invariant random subgroups,
and the like. Others use algorithmic randomness to define the structure.

In taking up the problem of learning theory, there is a fair viewpoint from
which learning after the tradition of Gold, probably approximately correct (PAC)
learning after the tradition of Valiant, and the model theory of NIP structures are
wildly different fields. The chapter devoted to these topics takes the opposite view.
Valiant’s definition is a natural extension of Gold’s framework, and the theory of
Vapnik-Chervonenkis dimension governs both PAC learning and NIP theories.

The final chapter surveys the general area of dynamics. An introduction to
orbit equivalence relations and Borel cardinality is given, and several topics on
the relation of measure to equivalence relations are considered, including the im-
plications of ergodicity and Hjorth’s notion of turbulence. Recent model-theoretic
approaches to Szemeredi Regularity and Furstenberg Correspondence belong here,
too, as does the characterization of 1-randomness by the Ergodic Theorem and the
emerging theory of computable Polish spaces.

Of course, some limits must be set on the content of such a book. For instance,
a new line of thought has arisen in recent years over categorical treatments of
probability [199, 200, 395]. In view of traditional [350] and recent [119, 248,
247] work on connections between category theory and logic, this work is certainly
interesting and relevant, but it is hard, at this stage of the theory, to explain its
relationship to the other work.

The book is to be formally self-contained, but realistically anticipates a reader
who has completed a first course in logic at the graduate or upper undergradu-
ate level. Such a reader will, after reading the book, be prepared to understand
the frontier of the research literature in probability-related areas of computability,
model theory, set theory, and logical aspects of artificial intelligence. There is an
important place in the world for a reader equipped in this way: A major part of
logic in the coming years will involve connections between these fields, and those
who understand something of all of them will be well-poised to contribute.



CHAPTER 4

Nondeterminism and Randomized Computation

4.1. Nondeterminism

4.1.1. Nondeterministic Machines. One of the greatest insights of com-
plexity theory is that of designing an algorithm that proceeds according to a dis-
tribution of behavior. This insight is, at first face, obviously impractical. Only
on further reflection does it become so practical as to be the industry standard in
many applications.

The most naive approach to this paradigm, perhaps, is to allow a machine to
do almost anything, as long as we have an efficient algorithm to verify success. To
be concrete, we give the following definition.

Definition 4.1.1. Let S ⊆ {0, 1}∗, and f : R → R. We say that S is of class
NTIME(f) if there is some Turing machine T such that on input x ∈ {0, 1}∗, the
machine T halts in at most f (|x|) steps, returning output from {0, 1}, with the
additional provision that x ∈ S if and only if there is some σ ∈ 2<ω such that
T (x, σ) = 1.

We call T the verifier for S, and we call σ the proof that x ∈ S. The idea
is that x ∈ S if and only if there is a proof of this fact, and the verifier T checks
whether the proof is, in fact, a “correct” proof. Note, of course, that because of
the bounded running time of the verifier, we have a natural bound of f (|x|) on the
length of σ, without needing to explicitly bound the length of the proof. Since the
verifier can inspect at most one bit of σ at each time step, if there is no σ shorter
than that on which T (x, σ) = 1, then there is none at all.

This definition is not transparently one of randomized computation, but of
deterministic verification. Consequently, we also give the following definition.

Definition 4.1.2. Let S ⊆ {0, 1}∗ and f : R → R. We say that S is of class
NTIMEcomp(f) if there is some oracle Turing machine T such that on input x ∈
{0, 1}∗, the machine T halts in at most f (|x|) steps, returning output from {0, 1},
with the additional provision that x ∈ S if and only if there is some σ ∈ {0, 1}<ω
such that Tσ(x) = 1.

We will show that these two classes are equal. However, our provisional defini-
tion of NTIMEcomp(f) displays the “random” character more clearly: The oracle
is viewed as a set of coin flips, and the machine “accepts” or “rejects” x, pos-
sibly in light of the values of those coin flips. The condition for membership in
NTIMEcomp(f) is exactly that there is some sequence of coin flips on which the
machine accepts. The randomness in this oracle is exaclty the “nondeterminism”
of nondeterministic computation.

Proposition 4.1.3. The class NTIMEcomp(f) is equal to the class NTIME(f).

71



72 4. NONDETERMINISM AND RANDOMIZED COMPUTATION

Proof. Let S be of class NTIME(f), with verifier T . Then we define an

oracle machine T so that T
σ
(x) = T (x, σ) for all x ∈ {0, 1}∗, with equal running

time. Now T witnesses that S is of class NTIMEcomp(f). The converse is exactly
symmetric. �

Interesting as the questions of nondeterminism may be at the level of complex-
ity (frequently runtime, occasionally space or some other resource), much of the
distinction disappears entirely at the level of computability. Since the proof σ has
bounded length, a Turing machine with adequately large time bounds could scan
all possible proofs, and report whether it accepts any of them. As we will see in a
later section, something of the distinction reemerges in more generalized models of
computation.

4.1.2. NP and the Polynomial Hierarchy. The nondeterministic model
of computation is fundamentally not one of probability, except in the most naive
sense. Membership in the class is determined by the existence or nonexistence of a
single element of the space of random coins — in the limit, a measure zero set.

On the other hand, this model does give rise to one of the most storied problems
of complexity theory, and this problem is, as we shall see, closely entangled with
problems on other models of computation which are more genuinely probabilistic.
We state this problem now.

Definition 4.1.4. Let S ⊆ {0, 1}∗.
(1) We say that S is of class P if there is some Turing machine T and some

polynomial p such that on input x ∈ {0, 1}∗, the machine T halts in at
most p(|x|) steps, returning ouput from {0, 1}, where T (x) = 1 if and only
if x ∈ S.

(2) We say that S is of class NP if S is of class NTIME(p) for some poly-
nomial p.

Problem 4.1.5. Is P = NP?

The literature on this problem is extensive, but the problem is still so open that
Gasarch [210] has polled computer scientists to find their opinions on not only the
answer, but also whether and when a solution will be found (in fairness, a majority
feel that a solution is possible and negative). Since the subject of nondeterministic
computation is, in its own right outside the proper scope of the present book, we
will not even attempt a cursory review of the literature, although the interested
reader will do well to consult [30].

Just as the Continuum Hypothesis (2ℵ0 = ℵ1), when it resisted solution, gave
rise to the much stronger Generalized Continuum Hypothesis (2ℵα = ℵα+1), which
at first seemed no more obviously true or false, the P versus NP problem has a
more general analogue, the collapse of the Polynomial Hierarchy.

Definition 4.1.6. We define the Polynomial Hierarchy, Σpi , Πp
i , and ∆p

i , as
follows:

(1) Σp1 = NP
(2) A set S is of class Πp

n if and only if its complement is of class Σpn
(3) A set S ⊆ {0, 1}∗ is of class Σpn+1 if and only if there is a Πp

n set Q(τ, y)

and for any x ∈ {0, 1}∗ there is a σ ∈ {0, 1}q(|x|) such that x ∈ S if and
only if Q(σ, x).



4.1. NONDETERMINISM 73

(4) ∆p
n = Σp1 ∩Πp

1.

By contrast with the arithmetical hierarchy, in which we know that every possi-
ble inclusion is strict, relatively little is known about the strictness of this hierarchy.
It is not even obvious that ∆p

1 = P. There are, for each i, problems that are Σpi
complete. Moreover, we can give some criteria for collapse.

Proposition 4.1.7. If P = NP, then Σpi = Σpi+1 for all i.

Proof. We proceed by induction on i. For i = 1, since Σp1 = NP, then under
the stated hypothesis we have Σp1 = P = Πp

1. Consequently, Σp2 = NP = Σp1.
Similarly, by induction, Σpi+1 = NP = Σpi . �

This is, a priori, not the only way in which the hierarchy could collapse. It is,
for instance, possible that Σpi ( Σpi+1 exactly for i < k for some k. In that case,
we say that the Polynomial Hierarchy collapses at level k. The uncertainty con-
cerning whether the hierarchy collapses at some point, and, if so, where, enhances
the contrast of this structure with the arithmetical hierarchy — for instance, the
arithmetical hierarchy can have no complete set precisely because the hierarchy
is strict: if an “arithmetical hierarchy complete” set occurred in Σ0

i , it could not
be complete, as it would not admit reduction from a properly Σ0

i+1 set. In the
Polynomial Hierarchy, though, that could just be the level at which the hierarchy
collapses.

Really, the better analogy is with the analytic hierarchy — although the same
differences remain: the analytic hierarchy is known to be strict in a very strong
sense, and little is known unconditionally about the structure of the polynomial
hierarchy. In essense, the step to pass from Πp

n to Σpn+1 is very much like a function
quantifier, an issue to be explored more fully in the next section.

4.1.3. Descriptive Complexity. One of the most powerful insights of com-
putability theory is the connection between degrees of unsolvability on one hand
and logics on the other. In an appropriate context, the sets defined by Σ0

1 formu-
las are precisely the computably enumerable ones, the sets defined by computable
infinitary formulas are exactly those computable from (perhaps transfinitely) iter-
ated Turing jumps, and those defined by Π1

1 formulas exactly those computable
from Kleene’s O.

This connection continues at the level of complexity, as well. We consider
structures in the language of strings, which consists of one binary predicate that is
axiomatically determined to be a linear ordering, and one unary predicate X, which
will be interpreted as the set of bits with a 1. A finite structure in this language is
thus interpreted as a binary string, of length equal to its cardinality.

The standard reference in this area is Immerman’s survey [275], and the treat-
ment in this section is indebted to his. The following theorem, first proved by Fagin
in his 1973 Ph.D. thesis [178], is fundamental in the area.

Theorem 4.1.8. Let S ⊆ 2<ω. Then S is of class NP if and only if S is
axiomatizable in the language of strings by a finitary Σ1

1 formula.

Proof. Let T be an oracle Turing machine running in time nk witnessing
that S ∈ NP. We can arrange (if necessary, by slowing T ) that T uses exactly one
random bit at each time step. Let Γ = (γi : i ≤ g) be a list of all pairs (q, σ), where
q is either a state of T or a new symbol −; and σ is from the tape alphabet of T .
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We let
(
Cs,t : s, t ≤ nk

)
be an array in which Cs,t is a pair (q, σ) ∈ Γ so that σ is

the contents of cell s at time t, and such that if T is on cell s at time t, then q is
the state of the machine at that time, and otherwise q = −. For each i ≤ g, we
define a predicate Ci(s, t) to denote the pairs s, t such that Cs,t = γi.

Let ∆ be the string of random bits used by T in the first nk steps. We then
construct a formula as follows: We let α(C, τ) say that cs,0 codes the input string
τ , and let β(C) say that Ci(s, t) → ¬Cj(s, t) for i 6= j (that is, that at each time,
a particular cell may have only one value). We let ξ(C) state that

(
Cs,nk : s ≤ nk

)
includes the accept state. Finally, we write a sentence η(C,∆) stating that for all
t, the stage Cs,t+1 is the next step prescribed by T after Cs,t on random bit ∆(t).
Now let

ϕ(C,∆, τ) = α(C, τ) ∧ β(C) ∧ ξ(C) ∧ η(C,∆).

Now τ ∈ S if and only if ∃(C,∆) ϕ(C,∆, τ).
On the other hand, any finitary Σ1

1 formula axiomatizing S can be expressed
as ∃fψ(f, τ), where ψ has no second-order quantifiers. Now a Turing machine can
verify in polynomial time that a particular sequence f and input τ satisfy ψ(f, τ),
so that S is of class NP. �

This result generalizes throughout the polynomial hierarchy, as seems to have
been first recorded by Stockmeyer [467].

Theorem 4.1.9. Let S ⊆ 2<ω. Then S is of class Σpn (respectively, Πp
n) if and

only if S is axiomatizable in the language of strings by a finitary Σ1
n (respectively,

Π1
n formula.

Proof. Notice that Πp
n sets are exactly the complements of Σpn sets, just as

Π1
n sets are the complements of Σ1

n sets. Consequently, it suffices to prove the result
for Σpn. We have already established the result for Σp1.

Suppose that the Σpn (respectively, Πp
n) sets are exactly the Σ1

n (respectively,
Π1
n) sets. Then the result Σ1

n ⊆ Σpn follows exactly as in the original case. For the
opposite inclusion, the inductive definition of the polynomial hierarchy admits a
straightforward translation from a Σpn definition to a Σ1

n definition. �

4.2. Randomized Turing Machines

4.2.1. Complexity Classes Defined by Randomization. We now turn
to a more properly probabilistic notion of computation. It is natural enough to
ask that a computation give the correct answer with some high probability, but
it is important to ask in what domain the probability lives. One can (and we do,
in Section 4.5) carry out a satisfactory theory in which we consider a probability
measure on the space of inputs to the computation, and consider the probability
that a randomly selected input is one on which the computation is correct. The
larger body of work, though, has been in a different direction.

Consider the Miller-Rabin primality test, first put forward in [374, 410]. To
determine whether n is prime, we perform several tests. In each test, we choose a
random positive integer a < n, and use it as a test for whether n is composite. To
do this, we compute x = an−1 mod n. If x 6= 1, then n cannot be prime by Fermat’s
Little Theorem. In the course of the calculation, we might also discover a non-trivial
square root of 1 modulo n, in which case we again know that n is composite (a
corollary to Fermat’s Little Theorem). We perform these tests (with new random
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choices of a) as often as we like (in practice, there is a formula that will give the
number of tests necessary to give the desired level of certainty of correctness). If
these checks reveal that n is composite, we report as much. Otherwise, we report
it to be prime.

To those familiar with computably enumerable (or perhaps Π0
1) sets, the issue

here is clear: we are giving output of both positive (prime) and negative (compos-
ite) kinds, based only on negative information. Of course, if we report that n is
composite, it is based on good evidence, and what we reported was correct. If we
report that n is prime, it is possible that we just got unlucky with the choice of
the a’s in all of the tests. Under appropriate (and very strong) number-theoretic
assumptions (a strengthening of the Riemann Hypothesis), such unluckiness is im-
possible, and the algorithm is simply correct for determining whether n is prime.
Without venturing for the wild fancies of number theory quite this far, if n truly is
composite, there are still quite a few of the possible values for a that must be wit-
nesses, and the probability of not finding any of them in several attempts is quate
small (indeed, the probability is 2−t, where t is the number of tests performed; the
interested reader may find a full exposition and analysis of the algorithm in [138]).
While a polynomial-time algorithm for primality testing is now known, methods
like the Miller-Rabin test are still the industrial standard for most applications,
because their correctness is high enough for industrial needs, and they run faster.

The one part of the previous algorithm that is not obviously “algorithmic”
is the clause, “choose a random positive integer a < n.” Indeed, depending on
what, exactly, we mean by it, this operation is not likely to be strictly computable.
As we saw in Chapter 3, an important foundation of algorithmic randomness is
that if we have an algorithm to compute something, it cannot be very random.
Consequently, a broader definition is needed. The following definition, introduced
in [146], formalizes the notion of a Turing machine that can make some random
choices, and then produce an output that is correct with high probability in the
domain of the random choices.

Definition 4.2.1. A randomized Turing machine (sometimes called a proba-
bilistic Turing machine) is a Turing machine equipped with an oracle for an element
of 2ω, called the random bits.

We can then talk reasonably about a randomized Turing machine M having
output k on input n with probability p if the Lebesgue probability measure of the
set of random bit strings x such that Mx(n) = k is equal to p.

The addition of the random bits presents an abundance of new questions. For
instance, we classically ask about whether a Turing machine halts. We can now
ask, for instance about the probability of halting. We consider a Turing functional
T : 2<ω → 2<ω, in the sense that T is a Turing machine which, on oracle σ
will output the sequence T (σ). We call such a functional prefix-free if, whenever
T (σ1) ↓ and T (σ2) ↓, then σ1 is not an initial segement of σ2. A universal prefix-
free machine is a Turing functional U such that for any prefix-free machine T there
is a string νT ∈ 2<ω such that T (σ) = U(νTσ) for all σ ∈ 2<ω.

Following Chaitin [112], we define ΩU , for a fixed universal prefix-free machine
U , to be probability (in the sense of the standard probability measure on 2<ω) of the
set of σ such that U(σ) ↓. This is often described as the probability that a random
(prefix-free) Turing machine halts on a random input. To see this interpretation,
interpret U as a randomized Turing machine whose output, for a fixed oracle, is
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either undefined or constant (over all inputs). We then interpret the random bits
as giving both the U -code for an algorithm (in the first several bits) and the input
(whose arity may be an arbitrary finite number). In this interpretation, all U -codes
of the same length are given equal probability, and, given a U -code, all inputs (of
the correct length) have equal probability.

Theorem 4.2.2 (Chaitin [112]). The probability Ω that a random prefix-free
Turing machine will halt on a random input is a left-c.e. 1-random real.

Proof. To show that Ω is left-c.e. we take the computably enumerable set
H = {σ|U(σ) ↓}. Since each element of U has finite length, we can, uniformly in
n, add the probabilities 2|σ| for all σ enumerated into H by time n. Since this
sequence is monotonically increasing and approximates Ω from the left, the result
follows.

To show that Ω is 1-random, we follow the proof of [158]. We first describe
a particular prefix-free machine M in the following way. At stage s, we consider
whether U(τ) threatens to be a name for Ω witnessing that K(Ω � s) < s−c, where
c is the coding constant for M in U . That is, we find n such that ωn � s = Ω � s
(this is possible by the proof that Ω is left-c.e.), and search for a τ of length at most
s − c such that U(τ)n = ωn � s. If such a τ exists, we find λ outside the range of
Un, and set M(τ) = µ.

We now verify that this procedure prevents τ as a name for Ω � s. We must
have ν with |ν| ≤ |τ | + c < s such that U(ν) = M(τ). However, Un(σ) 6= µ for
any σ, so that U(ν) does not halt within n steps, and so Ω � s 6= ωn � s. Thus,
U(τ) 6= Ω � s for any τ shorter than s− c, as required. �

Several similar results have been achieved recently, in work of Barmpalias, Cen-
zer, and Porter [44, 45]. Of course, the exact numerical values in all of these results,
including Chaitin’s, depend dramatically on the choice of a universal machine. The
following result from [44] is typical.

Theorem 4.2.3 (Barmpalias–Cenzer–Porter). The following conditions on a
real number x are equivalent:

(1) There is a universal oracle Turing machine U such that the probability
that U produces a computable output when reading from a random oracle
is x.

(2) x satisfies both of the following conditions:
(a) x ∈ (0, 1),
(b) x = α− β, where α and β are ∅′-left-c.e. real numbers.

Proof. Assuming 1, condition 2a is trivial, so we establish 2b. We begin by
showing that x is the difference of two ∅′-right-c.e. numbers. Let C be a Π0

2 class.
Then ∅′ can produce a decreasing sequence of rationals (cn : n ∈ ω) converging
to the measure of C, since, as non-members of C are enumerated, measure can be
subtracted. Now given a Turing functional T , the class of all reals X such that
T (X) is total is a Π0

2 class. If we can subtract from its measure the measure of the
X such that T (X) is total and not computable, we will have the intermediate result.

To this end, consider the set I of all X such that T (X) is total and X ∈
⋃
i∈ω

V
T (X)
i ,

where (Vi : i ∈ ω) is a universal Martin-Löf test. Let X be a 2-random real. We
will show that X ∈ I if and only if T (X) is total and T (X) is not computable.
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Indeed, let T (X) be total and non-computable. Then if X /∈
⋂
i∈ω

V
T (X)
i , then

X would be random relative to T (X), but T (X) ≤T X, and so T (X) must be ∆0
2.

However, no 2-random X computes a non-computable ∆0
2 set, so that X ∈ I. On

the other hand, if X ∈ I and T (X) is 2-random, it must follow that T (X) is not
computable.

Now this set I is a Π0
2 class (and thus has ∅′-right-c.e. measure), and has the

same measures as the set of X such that T (X) is total and not computable. Since
being a difference of ∅′-left-c.e. reals is equivalent to being a difference of ∅′-right-c.e.
reals, condition 2b follows.

The proof from 2 to 1 is more difficult. It makes use of the following well-known
fact (see Section 5.1 of [158]), which will be useful in other results later.

Lemma 4.2.4. The following are equivalent:

(1) The real number α is X-left-c.e.
(2) There is a prefix-free machine M such that α is the measure of the domain

of MX .
(3) There is a Σ0

1(X)-class of measure α.

Moreover, these equivalences hold uniformly.

Proof. If α is X-left-c.e., we can express α as an infinite sum
∑
i∈ω

2−ni where

(ni : i ∈ ω) is a computable sequence. By the Kraft-Chaitin theorem, suitably
relativized, we have a machine M whose domain has measure α. The domain of
this machine will then be a Σ0

1(X)-class of appropriate measure. Finally, X can
enumerate the lower cut of the measure of a Σ0

1(X)-class. �

Let α, β be ∅′-left-c.e. reals and let γ be a 2-random ∅′-left-c.e. real. By a result
of Demuth [150], the numbers α0 = α+ γ and β0 = β + γ are 2-random ∅′-left-c.e.
reals, which, of course, have the same difference as α and β. So we can assume that
α, β are 2-random.

If α − β is also 2-random, then by a result of Rettinger and Zheng [506], we
know that α − β must be either ∅′-left-c.e. or ∅′-right-c.e. In the case that it is
∅′-left-c.e., we take a universal machine V0 such that PX (V0(X) ≡T ∅) = α0 − β0,
where α0, β0 are ∅′-left-c.e. reals. Now by a result of [324] there must be some i
such that (α− β)− 2−iα0 is ∅′-left-c.e. and (α− β)− 2−i(α0 − β0) ∈

(
0, 1− 2−i

)
.

From these two points, if follows that (α− β)− 2−i(α0 − β0) is ∅′-left-c.e. We can
then find a machine M0 such that M0(σ) is undefined for σ comparable with 0i and
where PX (M(X) ≡T ∅) = (α− β)− 2−i(α0 − β0). We then define a machine V so
that

V (ρ) =

{
V0(σ) if ρ = 0iσ
M0(ρ) otherwise

Now PX (V (X) ≡T ∅) = α− β.
If α− β is 2-random and ∅′-right-c.e., then we let δ, e be such that

(α− β)− 2−eδ ∈
(
2−e, 1

)
and such that δ is a ∅′-left-c.e. real. Then, as before, we can find a machine V such
that PX (V (X) ≡T ∅) = δ.

Now we can find a Σ0
2 prefix-free set S of strings incomparable with 0e and

such that µJSK = 1 − ((α− β − 2−eδ). Consequently, we can build a machine N
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such that PX (N(X) ≡T ∅) = (α− β)− 2−eδ. We deine a machine M so that

M(ρ) =

{
N(ρ) if ρ ⊥ 0e

V (σ) if ρ = 0eσ

Now PX (M(X) ≡T ∅) = PX (N(X) ≡T ∅) + 2−ePX (V (X) ≡T ∅) = α− β.
In the case that α − β is not 2-random, we pick a 2-random ∅′-left-c.e. δ. By

a result of [46], it follows (for any e that (α − β) − 2−eδ must be ∅′-right-c.e. We
then pick e such that (α − β) − 2−eδ ∈ (2−e, 1), and pick N,V , and M as in the
previous case. �

The question already arises in the original paper [146] whether randomized
Turing machines represent any genuine gain in power over deterministic Turing
machines. Of course, something of that question depends on what we expect the
machine to do. The authors of that paper prove that there is a set which is not
computably enumerable, but which is enumerated with positive probability by an
object much like a randomized Turing machine, although their formalism is not
quite equivalent and this result fails under the definitions given above. Modern
approaches to the question have asked either more or less. On the one hand,
we might ask that the algorithm be correct with probability bounded above 1

2 ,
something like the Miller-Rabin algorithm. In that case, we could simulate the
algorithm on a (much slower) deterministic machine by the following algorithm: To
compute f(n), list sequences in 2<ω, and run the randomized machine with those
sequences as random bits. When the machine gives the same value on a set of
such strings that collectively have measure more than 1

2 , that must be the correct
answer, so our deterministic machine reports it.

Of course, in the contexts where the Miller-Rabin algorithm is favored over the
AKS class of deterministic primality tests on the basis of being slightly faster but not
quite as certain, this method of massive simulation is not practical. Consequently, a
large literature now centers on this second path of setting some correctness standard
for a randomized Turing machine, and asking whether the same performance could
be matched by a deterministic machine, under given time constraints. This gives
rise the the following definitions.

Definition 4.2.5 (Gill [216]). Let S ⊆ {0, 1}∗.
(1) We say that S is of class BPP if and only if there is some randomized

Turing machine T and some polynomial p such that on input x ∈ {0, 1}∗,
the machine T halts in at most p(|x|) steps, returning ouput from {0, 1},
where T (x) = χS(x) with probability at least 2

3 .
(2) We say that S is of class RP if and only if there is some randomized

Turing machine T and some polynomial p such that on input x ∈ {0, 1}∗,
the machine T halts in at most p(|x|) steps, returning ouput from {0, 1},
where if x ∈ S, we have T (x) = 1 with probability at least 2

3 , and if x /∈ S,
then T (x) = 1 with probability 0.

(3) We say that S is of class coRP if and only if the complement of S is of
class RP.

(4) We say that S is of class ZPP if and only if there is some randomized
Turing machine T and some polynomial p such that on input x ∈ {0, 1}∗,
the machine T halts in p(|x|) steps in expectation, returning ouput from
{0, 1}, where T (x) = χS(x).
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As in many parts of complexity theory, much is unknown about how these
classes relate to one another, to P, to NP, and to the enormous collection of other
classes that have been defined. The following standard result, though, expemplifies
the connectedness of these classes and their tractability (at least, relative to the
rest of complexity theory).

Proposition 4.2.6. ZPP = RP ∩ coRP.

Proof. Suppose T1 witnesses that S ∈ RP, and that T2 witnesses that
S ∈ RP. Then we can simultaneously run T1(x) and T2(x), in total time de-
terministically equal to the sum of two polynomials in |x|. If T1 and T2 agree,
then they must be correct. If not, we repeat the procedure. Since they agree with
probability at least 2

3 on each repetition, we expect agreement on the first trial, so
that the full procedure runs in expected polynomial time.

On the other hand, if T witnesses that S ∈ ZPP, with polynomial p bounding
the expected run time of T , we run T for 3p(|x|) steps, and then return the output
of T , if it halts in that time, and 1 otherwise.

Lemma 4.2.7 (Markov-Chebyshev Inequality; see p. 47 of [448]). Let X be a

non-negative random variable with expected value E(X). Then P (X ≥ ε) ≤ E(X)
ε .

Since the run-time is non-negative, we apply the Markov-Chebyshev inequality
to see that the probability that the actual run time exceeds three times its ex-
pectation is at most 1

3 . Consequently, this algorithm witnesses that S is in RP.
Similarly, if we output 0 when T does not halt in the prescribed time, we see that
S is in coRP. �

The second half of the preceding proof illustrates an important method in
probability: the use of so-called “concentration inequalities.” These results give
(often quite loose) bounds on the probability that a random variable takes values
in some range. Frequently, the conditions for the inequality to hold are broad
enough that, by appropriate choice of parameters, these loose bounds can be made
good enough to prove something useful. We will see more examples, especially in
Chapter 6, but the technique is worth noting in this proof. The Markov-Chebyshev
inequality is an important and simple example of a concentration inequality. It has
as consequenses several other concentration inequalities of interest. Proofs of these
statements can be found in [448].

Corollary 4.2.8. Let X be a random variable and ε > 0. Then the following
hold:

(1) P (|X| ≥ ε) ≤ E(X)
ε

(2) P (|X| ≥ ε) ≤ E(X2)
ε2

(3) P (|X − E(X)| ≥ ε) ≤ var(X)
ε2

The centrality of the concentration inequality method in the proof of Proposi-
tion 4.2.6 may explain the often-cited contrast between the case of randomized com-
putation (where we know that ZPP = RP∩ coRP) and the case of nondetermin-
istic computation (where we emphatically do not know whether P = NP∩coNP).
While we know at least something about the spread of even an arbitrary random
variable, no such structure exists on mere path existence, as is called for in nonde-
terministic computation.
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While work on the descriptive complexity of BPP is ongoing, it is worthwhile
to note that progress has been made. For instance, Eickmeyer and Grohe [168]
have reported a logic that captures BPP.

4.2.2. Effective Completeness for Continuous First Order Logic. The
classical effective completeness theorem is foundational for computable model the-
ory. Let T be a complete first-order theory such that there is a Turing machine to
decide, for each first-order sentence of the signature, whether that sentence is or is
not in T (we call such a theory decidable). Then there is a model M |= T such
that the atomic diagram of M is classically computable as a set of Gödel codes.
This is, in effect, due to the constructive character of Henkin’s proof of classical
completeness.

Of course, this is no guarantee that an arbitrary model of T will be computable.
Indeed, unless T is automorphically trivial any computable model is isomorphic to
a non-computable model. However, even when we weaken the question to which
models have isomorphic copies which are computable, there are typically many
which do not, and a large literature exists on the question of which models of a
given decidable theory have, or do not have, computable copies in this sense.

The converse to effective completeness is false. The standard model of arith-
metic, (N,+, ·, 0, 1), for instance, is computable, but is a model of true arithmetic,
a highly undecidable theory. Moreover, effective completeness is far from the only
way to guarantee the existence of a computable structure. Construction of a model
by Barwise compactness, or even by direct construction are widespread in the lit-
erature.

Nevertheless, the effective completeness theorem provides an important connec-
tion between effectiveness of the theory and effectiveness of at least some models.
In the present section, we will show that a similar result relates continuous first
order logic and randomized computation. The results of this section were originally
proved in [93].

The first consideration in a randomized effective completeness theorem is to
describe the kind of object that will be said to be effective. On the side of the
theory, this is straightforward. As in the first order case, we define a complete
theory to be one that is the theory of some model — in the continuous case, if
T = Th(M) is the set of all continuous L-sentences ϕ such that M(ϕ) = 0. We
now define what it means for a continuous theory to be decidable.

Definition 4.2.9 ([63]). Let L be a continuous signature and Γ a set of for-
mulas of L.

(1) We define
ϕ◦Γ := sup {M(ϕ) :M |= Γ}.

(2) If T is a complete continuous first-order theory, we say that T is decidable if
and only if there is a (classically) computable function f , called a decision
procedure for T such that f(ϕ) is an index for a computable real number
equal to ϕ◦T .

In effect, this means that we can, uniformly in ϕ, compute the truth value of
ϕ required by T of all its models. It is worth remembering that if ϕ is a sentence,
then 1 .− ϕ is also a sentence, so that f will also compute the truth value of 1 .− ϕ
required by T . Since a particular structure will have a single truth value for ϕ,
a complete theory T will include information on both, so that the value of ϕ is
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uniquely determined. In a decidable theory, it is uniquely determined to be a real
number which is computable, uniformly in ϕ.

We now turn our attention to the models. As in the classical case, a model is
identified with its atomic diagram, but since constants are not continuous in the
most interesting continuous structures, some modification is required. We replace
each true constants of classical first-order logic with a unary predicate for the
distance from the constant’s interpretation. In this way, we arrive at the following
definition.

Definition 4.2.10. Let L be a computable continuous signature (i.e. one where
the sets of predicate and function symbols, the set of moduli, and the arity function
are all computable). LetM be a continuous L-structure. Let L(M) be the expan-
sion of L by a constant cm for each m in the universe of M (i.e. a unary predicate
cm ∈ R where cMm (x) := d(x,m)). Then

(1) The continuous atomic diagram of M, written D(M) is the set of all
pairs (ϕ, p), where ϕ is a quantifier-free (i.e. sup- and inf-free) sentence in
L(M) and M(ϕ) = p.

(2) The continuous diagram of M, denoted D∗(M), is the set of all pairs
(ϕ, p), where ϕ is a sentence in L(M) and M(ϕ) = p.

Equipped with this definition, we define what it means for a structure to be
effective in the sense of randomized computation.

Definition 4.2.11. Let M be a continuous structure.

(1) We say that M is probabilistically computable if and only if there is some
randomized Turing machine T such that, for every pair (ϕ, p) ∈ D(M),
the machine T accepts ϕ with probability p.

(2) We say that M is probabilistically decidable if and only if there is some
randomized Turing machine T such that for every pair (ϕ, p) ∈ D∗(M),
the machine T accepts ϕ with probability p.

We now set about to prove the effective completeness theorem for randomized
computation and continuous first order logic. Much of the work of constructing the
model is carried out in [63]; only some effectivization was necessary to complete
the following theorem in [93].

Theorem 4.2.12. Let T be a complete decidable continuous first-order theory.
Then there is a probabilistically decidable continuous structure M |= T .

Proof. We first extend T to a consistent set Γ of formulas which is Henkin
complete; that is, a formula in which for every formula ϕ, every variable x, and
every pair p < q of diadic rationals, there is a constant c such that(

sup
x
ϕ .− q

)
∧ (p .− ϕ[c/x]) ∈ Γ.

This notion of Henkin completeness was used in [63]. We let L0 = L and Γ0 = T .
At stage n, we add, for each formula ϕ ∈ Ln a new constant c(ϕ,x,p,q) to form Ln+1.
We form Γn+1 by adding the formula(

sup
x
ϕ .− q

)
∧
(
p .− ϕ[c(ϕ,x,p,q)/x]

)
.

We observe that this construction of Γ =
⋃
i

Γi is effective uniformly in L and T .
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We can also — still uniformly in L, T , and s, compute a sequence ∆s of sets
such that ∆0 :=

⋃
s∈ω

∆s such that Γ ⊆ ∆0 and such that for any ϕ,ψ ∈ L∗ =
⋃
n∈ω

Ln,

we have either ϕ .− ψ ∈ ∆0 or ψ .− ϕ ∈ ∆0. Indeed, we start with ∆0 = Γ0, and
at stage s, we take the first ϕ,ψ requiring attention, and check (effectively, since
the theory is decidable) whether ∆s proves that ψ .− ϕ has value less than 1

2n .

Accordingly, we add either (ψ .− ϕ) .− 1
2n or (ϕ .− ψ) .− 1

2n to form ∆s+1.
As an intermediate step, we construct two machines: an accepting machine MA

and a rejecting machine MR. At stage s, if ∆s ` ϕ .− k
2n , we will enumerate 1− k

2n

into the left cut of αϕ,A. Similarly, if ∆s ` k
n
.− ϕ, we enumerate k

2n into the left
cut of αϕ,R.

Now, using the uniformity of Lemma 4.2.4, we produce a single machine MA

such that MA(ϕ) halts with probability αϕ,A and a single machine MR such that
MR(ϕ) halts with probability αϕ,R, so that the domains of MA(ϕ) and MR(ϕ) are
disjoint. We now define our final machine M by running both MA and MR on ϕ,
accepting if MA halts and rejecting if MR halts. Now by construction of ∆s, the
machine M accepts ϕ with probability exactly M(ϕ). �

Complexity is a notoriously fraught area for computable model theory, because
of sensitivity to representation of the elements of an infinite structure — indeed,
a choice of whether a natural number is represented by tallies or by binary rep-
resentation can make a difference of exponential time. Still, it is worthwhile to
note the following connection to the complexity-theoretic aspects of randomized
computation, proved in [93].

Proposition 4.2.13. We say that a continuous structure is polynomial time
if and only if there is some polynomial-time randomized Turing machine that, for
any (ϕ, p) ∈ D(M), accepts ϕ with probability p.

(1) Let A ∈ BPP. Then there is a polynomial-time probabilistically com-
putable structure M, with a polynomial-time function f : {0, 1}∗ → M
such that there is a quantifier-free formula ϕ(x) such that M (ϕ(x)) ≤ 1

3

for x ∈ f(A), and M (ϕ(x)) ≥ 2
3 for x /∈ f(A).

(2) LetM be a polynomial time probabilistically computable structure, and let
A,B be quantifier-free definable subsets ofMn, whose distance is bounded
away from zero, and where A ∪ B is polynomial-time computable. Then
each of A and B is of class BPP.

Proof. For the first point, we make a structure on the universe of which A is
naturally a subset, with the discrete metric, and a unary predicateA(x), interpreted
as the probability that x is accepted by the machine that witnesses A ∈ BPP. For
the second point, for any ā ∈ A ∪ B, we can decide whether ā ∈ A by evaluating
M (ϕ(ā) .− ψ(ā)). �

A more recent approach to effective completeness — and, indeed, to computable
metric structures generally, has been followed by Camrud, McNichol, and others.
In this approach, more closely mirroring the constructivizations of the Russian
school [227], the key concept is the presentation. Given a continuous L-structure
M, a presentation of M is a pair (M, g), where g : N → |M|, where the algebra
generated by ran(g) in |M| under the functions of L is dense in M. We say that
the presentation is computable if and only if the predicates of M are uniformly
computable on the elements of this dense algebra. This treatment of effectivity for
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continuous structures can be found in [89, 192], and the corresponding effective
completeness theorem can be found in [104].

4.2.3. Pseudorandom Generators and Derandomization. Consider a
set S of class BPP. The obvious quick way to check whether n ∈ S is to provide
some random bits and see what the randomized algorithm does on them. Since
the algorithm is required to be right a great majority of the time, we could take a
majority vote of the results.

Of course, this doesn’t work quite so easily. In particular, the entirety of
Chapter 3 explores the many ways in which it impossible for us to simply “provide
some random bits.” An interesting hypothesis, which is the subject of intense
current interest in complexity theory, is that it may not be necessary to be random.
It may only be necessary to be so much like random that the algorithm can’t tell
that it isn’t random.

Obviously the literature in this area is large and fast-moving. Knuth [316] de-
scribed many particular algorightms for generation of numbers that were “random
enough” for certain applications, and the use of a random variable with one dis-
tribution to “simulate” (to generate a random variable with) another distribution
is well-established in probability (see [421]). However, the literature on general-
purpose pseudoranom generators of the type we describe here seems to have started
with a paper of Yao [504]. The interested reader will find a much more extensive
survey in [224] and [30], including most of the material of the present section.

Many of the results in this area are — perhaps necessarily (see Theorem 4.2.16)
expressed in the language of Boolean circuits. In this model a k-ary Boolean circuit
of size m takes k boolean inputs, and applies binary AND and OR, and unary NOT
operations to compute a function, with m total operations performed.

Definition 4.2.14. Let ` : N→ N be monotonically increasing. A pseudoran-
dom generator of stretch ` is a deterministic Turing machine G such that for andy
σ ∈ {0, 1}k,

(1) The machine G runs in time polynomial in 2k`(k) steps and outputs a
string of length `(k), and

(2) If Uj is a uniform random binary string of length j, then for every Boolean
circuit Dk of size `(k)2, the circuit accepts G (Uk) and U`(k) with proba-

bilities that differ by less than 1
6 .

Something should be said about the formulation of this definition. In particular,
the use of Boolean circuits in item 2 is striking. Generally, Boolan circuits are a
non-uniform model of computation — the circuits on different numbers of inputs
are not, a priori, required to have anything to do with one another, which allows
such counterintuitive results as the fact that every set of natural numbers in unary
representation is computable by a system of relatively small circuits. The point in
the present application, though, is that nothing that a randomized Turing machine
might want to do with its random bits should depend so sensitively on the difference
between G (Uk) and U`(k) that the outcome of a majority vote could be changed.

It also needs to be recognized that the existence of pseudorandom generators
is already deeply problematic. As with much of complexity theory, so much is un-
known that one can find entire books developing the consequenses of and conditions
for the existence of objects whose existence itself is unknown. However, this custom
is at odds with the usual practice of mathematics, and so it needs to be noted. The
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payoff is that many complexity classes based on randomization collapse under the
assumption that certain pseudorandom generators exist.

Of course, even if a pseudorandom generator exists, it only reduces the number
of random bits needed. If the randomized algorithm needs `(k) random bits, we
must still come up with k of them. Another obstacle still to be overcome is that the
definition only calls for the pseudorandom generator to run in time exponential in its
input. It is not obvious that an exponential time algorithm should require anything
built from it to run in polynomial time. Nevertheless, the following theorem shows
that the definition given is enough.

Theorem 4.2.15. If for some ε > 0 there is a pseudorandom generator of
stretch k 7→ 2εk, then BPP = P.

Proof. Let G be a pseudorandom generaotr of stretch k 7→ 2εk. Let T be a
randomized Turing machine witnessing that S ∈ BPP. We define a deterministic
Turing machine U as follows. On input n, suppose that T runs in s steps. let k be
the least natural number such that 2εk ≥ s. We let U search over all binary strings
σ of length k, computing, for each one, TG(σ)(n), and output the majority result.
Note that the computation σ 7→ TG(σ)(n) can be represented by a circuit of size
22εk, for each n, this transformation must accept with the same probability (plus or
minus error of less than 1

6 ) as the transformation τ → T τ (n), where τ ranges over

all strings of length 2εk. Since T was correct on set of {0, 1}2εk with probability
greater than 2

3 , and since the error introduced by G was less than 1
6 , the majority

vote still gives the correct solution. Since U searches over strings of length k, it
must compute G a total of 2k times, each of which takes time polynomial in 2k+εk.
However, k is approximately log s, where s is polynomial in the size of n, so that
U runs in polynomial time. �

The same strategy applies much more broadly, allowing many complexity classes
to be collapsed if a pseudorandom generator of the right stretch exists.

As has been pointed out, the existence of pseudorandom generators is problem-
atic. There are several well-known results giving other difficult conditions necessary
or sufficient to the existence of pseudorandom generators with particular stretch.
An important example is a result of Nisan and Wigderson [388].

Theorem 4.2.16. Let ` : N → N be monotonically increasing, and `(n) ≤ 2n

for all n. Then the following are equivalent:

(1) There is some c > 0 such that EXPTIME cannot be approximated by
Boolean circuits of size `(mc).

(2) There is some c > 0 such that there is a pseudorandom generator of stretch
`.

While the existence of pseudorandom generators sufficient to collapse BPP to
P is currently unknown, there are objects called expander graphs, unconditionally
known to exist, that give some reduction in the length of the string of random bits
needed by certain randomized Turing machines. These graphs arise naturally in
the study of random graphs, and will be seen in Section 5.1.1.

4.3. Interactive Proofs

4.3.1. Interactive Proofs as Games. The complexity classes arising from
randomized computation can be viewed as a modification of those arising from
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nondeterminism: Instead of requiring that there exist one path, we require that
there exist a lot of paths. Another modification in a similar spirit views NP as a
proof environment. We have already hinted at this view in the description of the
“proof” and the “verifier” in comments after the definition of NTIME.

In this view, an agent (the “prover”) using a lot of computing power finds a
proof, if one exists, and then communicates it to the verifier, who is required to
check it in polynomial time. We can imagine an environment in which more complex
communication takes place between the prover and the verifier. This is the idea
behind interactive proofs, introduced in slightly different forms independently by
[226, 39].

Definition 4.3.1. Let S ⊆ {0, 1}∗. We say that S is of class IP if and only
if there is a randomized polynomial-time Turing machine V and a natural number
constant k with the following properties:

(1) If σ ∈ S, there is a function P : {0, 1}∗ → {0, 1}∗ so that the se-
quence V (σ), P (σ, V (σ)) , V (σ, V (σ), P (σ, V (σ))) , . . . achieves a 1 in the
kth term with probability at least 2

3 .
(2) If σ /∈ S, then for any function P : {0, 1}∗ → {0, 1}∗, the sequence

described in part 1 achieves a 1 in the kth term with probability at most
1
3 .

The idea is that if σ ∈ S, there should be some prover that can prove this to
the verifier’s general satisfaction, but if σ /∈ S, no prover should reliably convince
the verifier otherwise.

Some examples will illustrate the significance of the definition. Recall that the
isomorphism on finite graphs is known to be of class NP, since it is easy to check
whether a given function is an isomorphism.

Proposition 4.3.2 (Goldreich–Micali–Wigderson 1991 [225]). The isomor-
phism problem for finite graphs is of class IP.

Proof. A straightforward proof arises from the fact that the isomorphism
problem for finite graphs is NP. To achieve this, the prover need only find an
isomorphism and send it to the verifier. The verifier then checks (in polynomial
time) that the function given is, in fact, an isomorphism.

Another proof system is possible, though, which has the additional interesting
property that the prover does not have to reveal any information to the verifier
beyond the fact that the two graphs are isomorphic (a so-called zero knowledge
proof ). On input (G0, G1), the prover selects uniformly at random a permutation
π of the finite set of vertices of G0, and interprets this as a graph H ∼= G0, and
sends H to the verifier. The verifier chooses α ∈ {0, 1} uniformly at random, and
sends α to the prover. If α = 0, the prover sends π, and if α = 1, the prover
sends π ◦ f , where f is an isomorphism from G0 to G1, if any such isomorphism
exists. The verifier checks whether the function sent is an isomorphism. If so, the
procedure is repeated a second time, accepting if the second function is also an
isomorphism. If either function fails to be an isomorphism, it rejects.

If G0
∼= G1, then the prover will always be able to send the verifier an isomor-

phism. Otherwise, the verifier will reject with probability at least 3
4 , since with that

probability it will have asked about isomorphism of H with G1 at least once. �
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Graph non-isomorphism is not known to be in NP. In that sense, the following
result was initially viewed as surprising.

Proposition 4.3.3 (Goldreich–Micali–Wigderson 1991 [225]). The non-isomorphism
problem for finite graphs is of class IP.

Proof. On input (G0, G1), the verifier chooses α0, α1 uniformly at random,
and selects uniformly at random a permutation πi of Gαi , interpreting it as a
graph Hi

∼= Gαi , and sends (H0, H1) to the prover. The prover computes, for each
i, whether Hi

∼= G0 or Hi
∼= G1, and sends the verifier (β0, β1), where Hi

∼= Gβi .
The verifier accepts if βi = αi for each i, and rejects otherwise.

If G0 and G1 are not isomorphic, then each Hi is isomorphic to exactly one of

G0, G1, and the prover can distinguish the two cases, so that ~β = ~α and the verifier
accepts. Otherwise, the probability that both α0 = β0 and α1 = β1 is at most
1
4 . �

Although much is unknown about the complexity of graph isomorphism and
non-isomorphism, these two results suggest, at least, that IP is a very large class. In
1990, it was shown that IP contains the polynomial hierarchy, and shortly afterward
that it is equal to PSPACE, the class of problems decidable in arbitrary time using
a polynomially bounded number of cells on the tape of the Turing machine.

Proposition 4.3.4 ([343]). IP contains the polynomial hierarchy.

Proof. The permanent per(A) of an r × r matrix A is the sum∑
σ∈Sr

(
r∏
i=1

aiσ(i)

)
.

Equivalently,

per(A) =

r∑
i=1

per
(
A{1i}

)
,

where the matrix minor A{ij} is the result of deleting the ith row and jth column
of A. There is a nondeterministic machine M such that for any 0-1 matrix A,
the computation M(A) has per(A) accepting paths (this follows from the recursive
definition just given); that is, the permanent function is of class #P.

Moreover, the permanent function is known to be complete in this class [489].
Consequently, the set

L = {(A, s) : A is a 0-1 matrix and per(A) = s}

is complete among problems solvable in polynomial time with an oracle for solving
problems in #P. Since this class contains PH, by a result of Toda [485], it suffices
to show that L has an interactive proof system.

To prove that (A, s) ∈ L, where A is an r × r matrix with entries from {0, 1},
we use the following procedure. The prover picks a prime p such that r! < p < 2r,
and sends both p and a proof that p is prime to the verifier. All later arithmetic in
the procedure is done modulo p. Set L0 = {(A, s)}.

In stage t, the verifier checks whether Lt is a singleton (B, q) where B is a 1×1
matrix. If so, the verifier will accept if q = per(B), and reject otherwise.

If Lt is a singleton with a larger matrix, the verifier will construct the minors
B{1,i} for each i, and send them to the prover. The prover returns the permanent
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qi = per
(
B{1,i}

)
. The verifier then computes

r∑
i=1

b1iqi.

If this quantity is not equal to q, the verifier rejects. Otherwise,

Lt+1 = {(B{l,i}, qi) : 1 ≤ i ≤ dim(B)}.
If Lt is not a singleton, then the verifier chooses the first two pairs in Lt, say

(B1, q1) and (B2, q2) and sends them to the prover. Note that at any time t, all
matrices in Lt have the same dimension. The prover computes

f(x) = per (C + x(D − C)) ,

a polynomial of degree at most equal to the dimension of C and D, and sends
f0, . . . fk to the verifier, where

f(x) =

k∑
i=0

fix
i.

The verifier then evaluates this polynomial on 0 and 1, and checks whether f(0) = c
and f(1) = d. If either is not equal, the verifier rejects. Otherwise, the verifier sets

Lt+1 = (Lt − {(C, c), (D, d)}) ∪ {((C + a(D − C)) , g(a))}
for some a chosen uniformly at random from Zp.

The verifier will certainly either accept or reject by the time t at which Lt
consists of a singleton whose matrix is 1 × 1. This will happen in at most 2(r −
1) + (r − 2) + · · ·+ 1 steps. If per(A) = s, then the verifier will accept (A, s).

We now consider the case in which per(A) 6= s, and show that the probability
of accepting is low. Notice that the verifier will eventually accept if and only if
at some stage t every pair (B, q) ∈ Lt has the property that per(B) = q. This
cannot attain in either of the cases where Lt−1 is a singleton. We assume, then,
that we have a stage t in which there is some (B, q) ∈ Lt such that per(B) 6= q,
but there is no such (B, q) ∈ Lt+1. What must be shown is that the step which
replaces two entries of Lt by one will, with high probability, preserve the property
that per(B) 6= q for some element of L.

Let (C, c), (D, d) ∈ Lt, with either per(C) 6= c or per(D) 6= d. Note that if
C,D are of dimension r × r, the polynomial f(x) = per(C + x(D − C)) over Zp is
of degree at most r. At x = 0 this polynomial should compute the permanent of C,
and at 1 it should compute the permanent of D. Suppose that the prover has sent
a degree r polynomial g different from f . If the verifier does not reject, g(0) = c
and g(1) = d, so one of them does not match the permanent of the appropriate
matrix, so that f and g are not identical. Consequently, they can agree on at most
r elements of Zp, so that the probability that a, chosen uniformly at random from
Zp is a point of agreement is at most r

p . Since p > r! and the total probability of a
spurious acceptance is at most

(2(r − 1) + (r − 2) + · · ·+ 1) r

p
,

the proof is complete. �

The following result is originally due to Shamir [440], but we follow the simpler
proof by Shen [446] as described in [30].
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Theorem 4.3.5. IP = PSPACE.

Proof. Consider the setB of propositional formulas ϕ(X1, . . . , Xn) with propo-
sitional atoms X1, . . . , Xn. A quantified Boolean formula is an expression of the
kind

Q1X1Q2X2 · · ·QnXnϕ(X1, . . . , Xn),

where ϕ ∈ B and where for each i, the quantifier Qi is either ∀ or ∃. If ψ is a
quantified Boolean formula, we say that it is true if it is a true predicate sentence
where the quantifiers range over the Boolean constants > and ⊥. The problem of
determining which quantified Boolean formulas are true is known to be PSPACE
complete (see, for instance, [30]). Consequently, to show that PSPACE ⊆ IP it
suffices to show that this problem has an interactive proof system.

We can read any propositional formula as a polynomial: we interpret ¬Xi as
(1 − Xi), we interpret conjunction as a product; disjunction may be interpreted
by deMorgan’s law. If the variables take values from {0, 1}, the polynomial Pϕ
interpreting ϕ will also take values from {0, 1}, and this value will correspond to
the truth of the formula. We can interpret ∀Xi as a product of the cases Xi = 0 and
Xi = 1, and ∃Xi as a sum, where the formula is true if the polynomial evaluates
to some value greater than zero. A first intuition to give interactive proof for true
Boolean formulas is simply to give interactive proofs for an equation asserting the
value of the appropriate polynomial. However, since the products tend to increase
the degree of the polynomial, they may give us a polynomial that the time-bounded
verifier cannot evaluate.

To avoid this, we introduce another “quantifier”-like operator. We define

Li : Zp[X1, . . . Xn]→ Zp[X1, . . . , Xn]

by

Li(p(X)) := Xip(X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) +

+(1−Xi)p(X1, . . . , Xi−1, 0, Xi+1, . . . , Xn).

This “linearization” operator has the property that for all X ∈ 2n, we have
Li(p(X)) = p(X). Note also that Li(p) always has degree 1 in Xi. Consequently,
we have

Q1X1Q2X2 · · ·QnXnϕ(X1, . . . , Xn) =

= Q1X1L1Q2X2L1L2 · · ·QnXnL1L2 · · ·Lnϕ(X1, . . . , Xn).

Moreover, the expression on the right has size O(n2).
Now let f ∈ Zp[X1, . . . , Xn], and suppose, for induction, that for any ā ∈ Znp ,

there is an interactive proof system for f(ā) = C0 in which the verifier accepts
with probability 1 if the equation is true and rejects with probability 1 − ε if it
is false. To verify ∃X1f(X1, a2, . . . , an) = C1, the prover sends a polynomial g ∈
Zp[X1, . . . , Xn] of appropriate degree r, and the verifier checks it for equality to
f(X1, a2, . . . , an) in the following way: If g(0) + g(1) 6= C1, the verifier rejects.
Otherwise, it sends the prover a, uniformly randomly chosen from Zp, and asks for
a proof that g(a, a2, . . . , an) = f(X1, a2, . . . , an). As in the proof of Theorem 4.3.4,
the probability that distinct g, f of degree r agree on a is at most r

p . Similarly, to

verify ∀X1f(X1, a2, . . . , an), we follow the same procedure, except that the verifier
checks g(0)g(1) = C1. Finally, to verify LX1f(X1, a2, . . . , an), the prover sends a
polynomial g(X1, . . . , Xn] of appropriate degree, and the verifier checks if a1g(0) +
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(1− a1)g(0) = C1. If not, it rejects. Otherwise, it picks a random a ∈ Zp, and asks
for a proof that g(a) = f(a, a2, . . . , ak).

As in the proof of the previous theorem, with high probability the new state-
ment to be verified is still false if the original was false. �

Note that the statement that S ∈ IP is a statement about winning strategies
for certain games. The games in question are similar to, but not precisely like,
several types of games that are well-studied. At least one reasonable construction
is this: If σ /∈ S, then there is no winning strategy for player P in a game where
P wins if V accepts and loses otherwise. If σ ∈ S, then P does have a winning
strategy for this game.

The random coins are at least one level of preventing a straightforward interpre-
tation of this, and they are essential to the definition of IP. This randomness can
be incorporated by viewing the game as a stochastic game in the sense of Shapley
[442]. In these games, when the players choose their alternatives at a particular
stage, the game moves to a new position determined by a random variable that
depends on the position and the alternatives chosen.

The usual treatment of these games, however, centers on their expectation,
rather than the concentration required in the definition of the class IP. For in-
stance, these games have equilibria [369, 368, 494]. Condon [130] showed that
the complexity of deciding which player has the greatest chance of winning is of
class NP ∩ coNP, at least for a large class of stochastic games. What is wanted
for IP is not the expected value of the game, but the probability that each player
will win.

An approach to this has been made in recent research of Kiefer and others
[311]. In this paper, it is shown that these games sometimes exhibit a property
called “strong determinacy.” This is exactly the condition that one player has a
strategy that will enforce that a winning condition holds with probability at least
(or at most) c. If c = 1, all such games are strongly determined. However, if
c ∈ (0, 1), which is what we care about for interactive proofs, this condition may
not hold.

There is still another obstace. As Condon [130] points out, much of the litera-
ture on stochastic games does not impose resource bounds on the players, and the
assymetric resource bound (polynomial-time verifier, unbounded prover) in interac-
tive proofs is a significant barrier between the game research and the IP research.

While the quantum features of MIP∗ are beyond the scope of the present work,
is is germane to point out to the reader that the interactive proofs described here
are a natural entry point to understanding the recent result that MIP∗ = IP,
proved in [280], and the related work on the Connes Embedding Problem [221].

4.3.2. Interactive Proofs as Proofs. While complexity theorists are per-
fectly comfortable calling the objects of the previous section “proofs,” this will likely
seem strange to logicians. We are accustomed to seeing a proof as a sequence, to
be sure, but it is a sequence whose every step consists of syntactically meaningful
“calculations” to determine the truth value of a proposition. More exact definitions
could be given, and have been. Is there, then, some meaningful sense in which an
interactive proof (in the sense of the previous section) is a proof?

There is actually something like interactive proof in logic. Hintikka and others
have described a “Game-theoretic semantics” for various logics, including classical
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first-order logic (see, for instance, the survey [255]). This does not transparently
encompas the full power of IP, but it suggests a direction for further work in this
area.

Definition 4.3.6. Given a first-order L-structureM and an L-sentence ϕ, we
define the game G(ϕ,M) between a prover and a verifier by induction on the form
of ϕ as follows:

(1) If ϕ is an atomic formula, the prover wins if ϕ is true in M, and loses
otherwise.

(2) If ϕ = ¬ψ, then the prover and the verifier trade positions and continue
the game as G(ψ,M).

(3) If ϕ = ψ1∨ψ2, then the prover chooses i ∈ {1, 2}, and the game continues
as G(ψi,M).

(4) If ϕ = ψ1∧ψ2, then the verifier chooses i ∈ {1, 2}, and the game continues
as G(ψi,M).

(5) If ϕ = ∃xψ(x), then the prover chooses some c in the domain of M, and
the game continues as G(ψ(c),M).

(6) If ϕ = ∀xψ(x), then the verifier chosses some c in the domain of M, and
the game continues as G(ψ(c),M).

Now if ϕ is true, then the prover always has a winning strategy — a way of
making all necessary choices in such a way as to win. If ϕ is false, then the verifier
always has a winning strategy. Indeed, in keeping with the results of Section 4.1.3,
if M is finite, then both the verifier and the prover, when they have a winning
strategy, have one that they can compute in time polynomial in the size of the
problem instance (ϕ,M).

In that sense, the game-theoretic semantics of Hintikka represent another, per-
haps more concrete proof, that for any finite structureM, the set of sentences true
in M is of class IP. At the same time, the moves of the game look very much like
an actual proof of ϕ (from, say, the complete diagram of M).

Of course, this game uses very little of the power available in IP. Not only
is the prover using a time-bounded strategy, but the randomization is completely
absent, and with it the opportunity for the wrong conclusion to be reached with
some positive probability.

It is not immediately clear what strengthening of the proof system of Definition
4.3.6 would be logically sensible and have a chance of matching the power of IP.

Hintikka and Sandu point out that game-theoretic semantics have been used
for quite a long time for extremely diverse logics. It may be reasonable, then, to
ask what a game-theoretic semantics for continuous first-order logic would look like.
This seems like a difficult question for several reasons. At the level of quantifiers,
there is, in general, no a priori reason that suprema and infema must be realized,
meaning that those clauses must look very different from the ones in Definition
4.3.6.

Moreover, even handling ψ1
.− ψ2 seems difficult. However, if the players are

allowed randomization, it seems germane to point out that if r is picked uniformly at
random from [0, 1], the truth value of ψ1

.− ψ2 corresponds exactly to the probability
that M(ψ2) ≤ r ≤ M(ψ1). Making a game for that is still not straightforward,
but it gives some cause for hope that there may be something like a proof system
corresponding to IP.
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4.4. Word Problems

In Section 4.2, we suggested two kinds of randomization that could be consid-
ered in computation. The first kind, which we have considered up to this point,
involves an extrinsic randomization: the algorithm has access to some random bits
that it can use, for instance, to simulate, or pick some “place” to check. A second
possibility is randomization in the input. This approach has a long history in the
theory of algorithms (see, for instance, [138]), where it is used to consider how an
algorithm would perfom under conditions other than the best or worst case. Exam-
ples arising in group theory have led to a collection of new work in computability.

4.4.1. Groups with Solvable Word Problem. Up to this point, our de-
scription of randomized computation has focused on a randomization within the
algorithm. There is a very different dimension of randomization possible, and it
occurs commonly in practice: randomization in the input.

Consider, for example, the simplex algorithm in linear programming. It is
well-known that the worst case complexity of the algorithm is exponential [314].
However, the algorithm empirically runs in such short time on almost all practi-
cally useful problem instances to make it the industry standard [83]. Intuitively,
the “hard” instances of the problem that establish the worst-case complexity are
relatively rare, and “most” instances allow a short running time.

In complexity, one way to handle this is with “average-case” complexity anal-
ysis, which can be sensitive to a choice of distribution on inputs. Moreover, a
computation that does not halt at all, if it arises with any nonzero probability,
must cause significant problems with a complexity measure based on the expected
value. A more robust method is used for computability, and it first arose in the
context of group theory.

Group theory is perhaps a natural field for the consideration of such problems.
The word problem for groups is not solvable, but the standard examples proving
that it is unsolvable are not only special groups; they are groups in which particular
— apparently rare — words witness the unsolvability.

We first consider the classical problem, and in the following section we will take
up the model of computability used to formalize the informally rare nature of the
obstructions to computability.

It is well-known that a group can be presented by a list of generators and a list
of relations. In particular, we write

G = 〈{gi : i ∈ I}|{ri : i ∈ J}〉
where each ri is a word in the letters gi and their inverses. In this presentation
system, G is the quotient of the free group on generators {gi : i ∈ I} by the
smallest normal subgroup containing all the relators {ri : i ∈ G}. Any group can
be presented in this way, and the presentations of groups are highly non-unique.
Indeed, a significant open problem in group theory, the Andrews-Curtis Conjecture,
involves recognizing presentations of the trivial group [22]. Additional background
on group presentations can be found in standard algebra texts, such as [274], or
in the group theory text [422], which gives one of the standard expositions on the
unsolvability of the word problem.

In 1911, Dehn [147] identified three “Fundamental Problems Of Infinite Discon-
tinuous Groups.” He envisioned each group being given by finitely many generators
and relations. The three problems were as follows:



92 4. NONDETERMINISM AND RANDOMIZED COMPUTATION

The Word Problem: (Dehn called this the “Identity Problem.”) In a par-
ticular presentation of a particular group, give an algorithm which will,
given an element of the group (in the form of a word on the generators
and their inverses, decide whether that element is equal to the identity or
not.

The Conjugacy Problem: (Dehn called it the “Transformation Problem.”)
In a particular presentation of a particular group, give an algorithm which
will, given two elements of the group, decide whether those elements are
conjugate or not.

The Isomorphism Problem: Given two group presentations decide whether
the two groups are isomorphic or not.

Of course, for many well-known classes of groups, these problems are known to
be solvable. Dehn himself showed that the word problem for fundamental groups
of certain manifolds must be solvable [148]. Of course, positive solutions tend
to require less logical sophistication than negative solutions. However, after the
definition of computability in the 1930s, it was clear, at least, what a negative
solution could look like.

Indeed, not long after Dehn, Thue had posed the word problem for semigroups
[483], and Post [408] proved it unsolvable in 1947 by a method that, with appro-
priate modificaitons, would also settle the word problem for groups.

Theorem 4.4.1 (Post). There is a finitely presented semigroup P such that the
word problem for P is not computable.

Proof. Let T be a universal Turing machine with states Q = {q0, . . . , qns},
where q0 is the halting state, and tape alphabet S = {σ1, . . . , σnA}. Consider the
free semigroup F generated by Q∪S. Within this semigroup computation states are
represented by the words with exactly one letter from Q. We form the semigroup
P with relations prescribing that two computation states are equal if T prescribes
a transition from one to another, and that q0 is equal to the identity.

The result follows from the fact that it is not possible to decide, from input n,
whether a universal Turing machine will halt with an empty tape on input n. �

To produce a group with unsolvable word problem, we must define the compu-
tation state words more carefully: a word is said to be special if it is of the form
Σ1qiΣ2, where Σ1,Σ2 ∈ S<ω. The difficulty of groups is that with inverses, words
may be equivalent in more subtle ways.

Novikov [389], and independently Boone [76, 77] demonstrated that there is
indeed a finitely generated group with unsolvable word problem. The parts of
the proof that concern us here are not the most difficult parts of the proof. The
full algebraic details, including the proof of the critical lemma, can be found in
Rotman’s book [422]. Since most of those details are not germane to the present
work, the reader is referred to that treatment, while we give only a brief outline of
the proof below.

Theorem 4.4.2. There is a group with unsolvable word problem.

Proof. Let S and Q be as in Post’s construction, and let R = {Bi = Γi} be
the set of relators in Post’s construction. Let G be generated by

S ∪· Q ∪· {k, t, x, y} ∪· {`i : i ∈ R} ∪· {ri : i ∈ R}
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and defined by the following relations (for all values in the range of b and i):

sby = yysb

xsb = sbxx

sb`i = y`isb

risb = sbxrix

Bi = `i

Γi = ri

t`i = `it

ty = yt

rik = kri

xk = kx(
q−1tq

)
k = k

(
q−1tq

)
.

We note that all of the words of Post’s semigroup are still words of G, and the
definition of “special” words above is still meaningful. Again, it is the special
words that will allow us to encode computation.

Let ∆ be a special word in G which is equal in P to q0. Then we can show
from the relators that in G, we have ∆ = Lq0R, where L is a word in {y, `i : i ∈ R}
and R is a word in {x, ri : i ∈ R}. Then, by the commutativity relations of G,
it follows that

(
∆−1t∆

)
k = k

(
∆−1t∆

)
. Through some involved group-theoretical

arguments, it is possible to show that the converse also holds. At this point, we
know that there can be no algorithm to decide, for any special word, whether((

∆−1t∆
)
k
) (
k
(
∆−1t∆

))−1
is the identity. �

4.4.2. Groups with Generically Solvable Word Problem. In some sense
the proof of Theorem 4.4.2 is unsatisfying: While the result is, in fact, established,
there is nothing to prevent the existence of an algorithm that would solve the word
problem for the vast majority of words in the group. The words representing the
obstruction are called “special” for a reason (considerably predating any of the
results or considerations of the present section). They are, in fact, relatively rare.

In 2003, Kapovich, Myasnikov, Schupp, and Shpilrain formalized this dissatis-
faction [288]. In particular, they showed that for large classes of groups — including
the group constructed in Theorem 4.4.2, the word problem is almost solvable, in
the sense that there is an algorithm (indeed, a linear time algorithm) that will solve
almost all instances of the word problem.

To this point, we have not yet defined what “almost all” should mean in this
context, and a reader who has kept in mind that all of the structures involved are
countable is doubtless ready to see a definition.

Definition 4.4.3. Let Σ be a finite alphabet, and let (X∗)
k

be, as usual, the

set of k-tuples of words on X. Let Bn be the set of elements of (X∗)
k

where the

sum of the lengths of the words involved is at most n, and S ⊆ (X∗)
k
. Then the

asymptotic density of S, denoted ρa(S) is defined as

lim sup
n→∞

|S ∩Bn|
|Bn|

.
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In this sense, “almost all” means on a set of density 1, or (equivalently) except
for a set of density 0. Of course, there is still some flexibility in the definition, and
we will see in the following section how this flexibility leads to several notions of
effectiveness. For the present, however, we follow the original work.

Definition 4.4.4. Let P ⊆ (X∗)
k
. We say that P is generically computable if

there is a Turing machine T with domain S such that ρa(S) = 1, and such that if
σ ∈ S, we have T (σ) = χP (σ).

Theorem 4.4.5. Let G be a finitely generated group, such that G has a finite
index subgroup with infinite quotient G for which the word problem is solvable. Then
the word problem for G is generically solvable.

Before considering the proof of this theorem, we point out the following corol-
lary, which clarifies the situation of the Boone group.

Corollary 4.4.6. The group G constructed in Theorem 4.4.2 has generically
solvable word problem.

Proof. Consider the subgroup G of G generated by the set {ri : i ∈ R}. Now
this G is a quotient of G, and is a non-Abelian free group on its generators. Since
such a group has solvable word problem, the Corollary follows from the Theorem.

�

Actually, Theorem 4.4.5 follows from another technical result of the same paper.
Given a group presentation and a subgroup H, the membership problem for H is
that of determining whether a word is an element of H. Note that the word problem
for a group is equivalent to the membership problem for its trivial subgroup.

Proposition 4.4.7. Let G be a finitely generated group and H ≤ G a finitely
generated subgroup of infinite index. Let G1 ≥ H be a finite-index subgroup of G,
and φ : G1 → G an epimorphism to some group G. If H := φ(H) is contained in
an infinite index K ≤ G and the membership problem for K is solvable, then the
membership problem for H is generically solvable.

Before entering the interesting details of Proposition 4.4.7, let us see how it
implies Theorem 4.4.5.

Proof of Theorem 4.4.5. Let G1 be a finite index subgroup of G with infi-
nite quotient G, where G has solvable word problem, with φ : G1 → G the standard
projection. Let H be the trivial subgroup of G and K the trivial subgroup of G.
Then ϕ(H) ≤ K. Note that K has infinite index in G, and that the word problem
of G is exactly the membership problem of K, so that the membership problem of
K is, by assumption, solvable. By Proposition 4.4.7, the membership problem for
H is generically solvable. But this problem is exactly the word problem for G. �

We now undertake the proof of Proposition 4.4.7. As usual, the interested
reader will want to follow up with the original paper, which has both stronger
conclusions and more details of the proof.

Proof of Proposition 4.4.7. Let A be a generating set of length k for G
and let B be a finite generating set for G1. Let π : F (A) → G be the standard
projection of the free group on A, denoted F (A) to G. Let K1 := φ−1

(
K
)
, and
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K2 := π−1 (K1). Note that K has infinite index in G by assumption, and K1 has
infinite index in G1. Consequently, K2 has infinite index in F (A).

We let zn denote the number of words σ in A∪A−1 of length n, with π(σ) ∈ K2,
and note that there are

(2k)n+1 − 1

2k − 1

distinct words in (A ∪ A−1) of length n. Consequently, the assymptotic density of
K2 is given by

lim
n→∞

zn
(2k)n+1−1

2k−1

.

By assumption, H ≤ K1, so that if σ is a word in A∪A−1, but not in K2, it follows
that π(w) ∈ G−H. Consequently, if we can prove that the asymptotic density of
K2 is 0, the proof is done.

We define the Cayley graph of F (A), as the graph whose vertices are the ele-
ments of F (A), and where two vertices σ, τ are adjacent if and only if σ = τx for
some x ∈ A. In the standard graph metric, where adjacent vertices have distance
1, the ball of radius n about the origin contains exactly the words of length at most
n.

Lemma 4.4.8. Let Γ be the Cayley graph of a group with d-generators, where
d ≥ 3. Let ζn denote the number of paths of length at most n from the identity to
the identity. Then

lim
n→∞

ζn
dn

= 0.

Proof. if bn denotes the number of paths without backtracks of length at most
n from the identity to the identity, and β := lim sup

n→∞

n
√
bn. It is known [48] that we

can assume β < d, so that there is some N0 ≥ 1 and 0 < b < d, so that

lim
n→∞

bn
dn
≤ bn

dn
→ 0.

The lemma follows, by some well-established limit comparison theorems. �

It follows from the definition of the Cayley graph that zn = ζn. Consequently,
by the lemma, K2 has asymptotic density 0, as required. �

The group theory is important in this theorem, and to generalize this notion of
computability it is necessary to replace it. In particular, the notion of asymptotic
density depended on properties of random words in a group, or equivalently, random
walks in a graph. It will be the business of the next section to pose a definition of a
notion of computation that carries the sense of a generically solvable word problem,
but in a more general setting.

While we turn from the group theoretic origins of generic computability for the
present, we will return to them. There is important work in this area on dynamics,
to which we will return in Chapter 8, and random walks in a graph will be important
when we take up the subject of expander graphs in Chapter 5.
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4.5. Generic and Coarse Computability

4.5.1. Generic Computability. In 2012, Jockusch and Schupp [281] ex-
tended the theory of generic solvability to subsets of N, the native realm of com-
putability theory. By identifying n ∈ N with its unary representation, the defini-
tions of the previous section reduce to something reasonable on the natural numbers.

Definition 4.5.1. Let S ⊆ N.

(1) The density of S up to n, denoted ρn(S) is given by

S ∩ {0, 1, 2, . . . , n}
n+ 1

(2) The density of S, denoted ρ(S) is given by

lim
n→∞

ρn(S).

Under the interpretation of natural numbers by their unary representations, this
definition coincides exactly with the one in Section 4.4.2. We have the corresponding
definition.

Definition 4.5.2. generically computable—textbf Let P ⊆ N. We say that
P is generically computable if and only if there is a Turing machine T such that
T (n) = χP (n) wherever T is defined, and T is defined on a set of density 1.

Jockusch and Schupp made several initial observations about these sets.

Proposition 4.5.3. Every Turing degree contains a set which is generically
computable.

Proof. Let d be a Turing degree, with A ∈ d. We set B = {2m : m ∈ A}.
Note that B ∈ d, since the set of natural numbers which are not powers of 2 is
computable. We define a Turing machine T so that

T (n) =

{
1 if n = 2k for some k
↑ otherwise

Now T (n) = χB(n) for all n ∈ dom(T ), and dom(T ) has density 1. �

Even after the structural evidence of the generically solvable word problem, it
is still natural, after Proposition 4.5.3 to wonder how nearly trivial the concept of
generic computability could be.

Proposition 4.5.4. Every nonzero Turing degree contains a set which is not
generically computable.

Proof. Let d >T ∅, and let A ∈ d. Let

Rk = {m : 2k|m and 2k+1 - m}.

We write

R(A) =
⋃
k∈A

Rk.

Now if T were a Turing machine witnessing that R(A) is generically computable,
we could decide whether n ∈ R(A) by running T on all multiples of 2n until it
answers on one. We know that T must answer on some element of Rn, since this
set has density 2−k > 0. Since R(A) ≡ A, the result follows. �
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Recall that a set is said to be bi-immune if both it and is complement are
infinite, with no infinite computably enumerable subsets.

Proposition 4.5.5. No bi-immune set is generically computable.

Proof. Suppose that Turing maching T witnesses that A is generically com-
putable. Let C0 be the set of n such that T (n) = 0 and C1 the set of n such that
T (n) = 1. Now C0 ⊆ A and C1 ⊆ A, and C0 ∪ C1 has density 1. Consequently, C0

and C1 cannot both be finite, so that A cannot be bi-immune. �

Of course, probabilities other than 1 are still interesting, although they do de-
pend more sensitively on the distribution of possible inputs. Since we, by definition,
have fixed a distribution (the uniform distribution), it is possible to talk about these
sets. Downey, Jockusch, and Schupp gave the following definition, which extends
generic computability in this natural way.

Definition 4.5.6. Let S ⊆ N. We define the lower density of S, denoted ρ`(S)
as

lim inf
n→∞

|S ∩ {0, 1, . . . , n}|
n+ 1

.

We then say, for any r ∈ R, that a set A ⊆ N is partially computable at density r
if there is a Turing machine T such that T (n) = A(n) for all n in the domain of T ,
and such that the domain of T has lower density greater than or equal to r.

In the same paper, several observations were made about this definition. To
begin with, this definition differs significantly from the definition of generic com-
putability.

Proposition 4.5.7. Every nonzero Turing degree contains a set which is par-
tially computable exactly at the densities strictly less than 1.

Proof. Let the sets Rk and the operator R be as in the proof of Proposition
4.5.4. Let d be a nonzero Turing degree, with A ∈ d. Let ε > 0, and note that
R(A) is partially computable at density 1− ε, for a Turing machine witnessing its
partial computability need not have in its domain any element of Rk for sufficiently
large k. As we observed, however, R(A) cannot be partially computable at density
1. �

In this sense, it is easier to believe in a set which is partially computable at all
densities less than 1 than it is to believe in one which is partially computable at
some proper subset of those densities. The following result shows that such sets do
exist.

Theorem 4.5.8. Let r ∈ [0, 1]. Then there is a set A which is partially com-
putable at density r, but not at any higher density, if and only if r is left-Σ0

3.

Proof. Let r ∈ [0, 1] be left-Σ0
3. We first produce a computably enumerable

set C with lower density r and a simple set S of density 0.
Toward the first goal, we first produce a ∆0

2 set C̃ with lower density r. We
construct a ∆0

2-computable sequence (qs : s ∈ N) where lim inf
s→∞

qs = r. Let A be

the set of rationals less than r, a Σ0
3 set. We can then construct a ∆0

2 sequence
(As : s ∈ N) of finite sets such that for all x ∈ A, we have x ∈ As for all sufficiently
large s, such that there are infinitely many s such that As ⊆ A, and such that
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0 ∈ As for all s. We set qs := maxAs. Now we will inductively define C̃ =
⋃
i∈N

and

a sequence (si : i ∈ N). At stage 0, we set s0 = 1 and Γ0 = {0}. At stage t, we
check whether

|Γt−1|
st−1 + 1

< qt.

If so, we find the least k such that

|Γt−1|+ k

st−1 + 1 + k
≥ qt

and set st+1 = st + k and Γt = Γt−1 ∪ {st + 1, . . . , st + k}. Otherwise, we find the
least k such that

|Γt−1|
st−1 + 1 + k

< qt

and set st+1 = st+k and Γt+1 = Γt. All of these operations can be completed with

a ∆0
2 oracle, so that C̃ is ∆0

2, as required.

Now let C̃s be a computable approximation to C̃. At stage 0, set C0 = ∅ and
t(n, 0) = n+ 1, and t(−1, n) = −1 for all n. At stage s+ 1, we let ns be the least

n ≤ s, if any, such that ρt(n,s)

(
C̃s

)
6= ρn (Cs). We then find a finite set Cs+1 ⊇ Cs

and a number t̂ greater than any number in Cs and greater than t(n, s) such that
ρc (Cs+1) = ρn(Cs), with the additional requirements that Cs+1 agrees with Cs
between ns and s, and that Cs+1 includes an initial segment of [t(n, s),∞). It can
be shown that for each k > 0 there are only finitely many s where ns = k, and

that ρ lim
s→∞

t(k,s)(Cs) = ρk

(
C̃s

)
. We set C =

⋃
s∈N

Cs, so that C is a computably

enumerable set of lower density r.
We also produce a simple set S of density 0. Indeed, for each e, we look for

the first n > e2 with n ∈ We. If such and e exists, we include it in S. Now any
computably enumerable set disjoint from S must be finite, but S contains at most
e elements less than e2 for each e, so that

ρ(S) ≤ lim
n→∞

n

n2
= 0.

Let A = C ∪ S. Then A is computable at density r, because C ⊆ A. However,
if r′ > r and T witnesses that A is partially computable at density r′, then the
set {n : T (n) = 0} must be disjoint from S (since S ⊆ A), infinite (since density
r′ − r > 0 of the domain of T must be outside A), and computably enumerable.
Since S is simple, this is impossible.

On the other hand, let r fail to be left-Σ0
3, and let T witness that A is partially

computable at density r. Suppose T has domain D. From the definitions, it is clear
that r′ := ρ`(D) = lim inf

n→∞
qn, where (qn : n ∈ N) is a ∆0

2 sequence of rationals. If r′

is irrational, then for any rational q, and for all but finitely many of the qn, we have
q < qn, so that r′ is left-Σ0

3. Since r′ ≥ r, we know that r′ > r, with A partially
computable at density r′. �

It is worth noting the similarities between the construction of C̃ in the last
proof and the proof of Theorem 4.2.12. In both cases, the construction proceeds
by recruiting witnesses to the necessary case to establish a needed probability.

Definition 4.5.9. Let A ⊆ N. Then the partial computability bound of A,
denoted α(A), is the supremum of all r such that A is computable at density r.
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Proposition 4.5.10. Let r ∈ (0, 1). Then there is a set with partial com-
putability bound r.

Proof. Let r =
∞∑
i=1

bi2
−1 where bi ∈ {0, 1} and infinitely many of the bi are

1. Let S be the simple set of density 0 constructed above, and let

Rk = {m : 2k|m and 2k+1 - m}
as before. We set D =

⋃
bi=1

Ri, and set A = D ∪ S. As before, A is partially

computable at any density strictly less than r, but not at any density greater than
r. �

4.5.2. Coarse Computability. Jockusch and Schupp [281] identified and
studied a second notion of approximate computability. As we suggested earlier, the
key difference is in what it means — even after agreeing on the meaning of “almost
all” — for an algorithm to solve almost all instances of the problem. Of course, all
correct solutions are alike. The real question concerns what the algorithm does on
the places where it does not give a correct solution. In generic computability, the
algorithm must be correct everywhere it halts: it can either be correct or not halt
at all.

In this second notion, however, the algorithm is required to halt on all inputs,
and be correct almost everywhere.

Definition 4.5.11. Let P ⊆ N. We say that P is coarsely computable if there
is a Turing machine T which is defined on all natural numbers, and such that for
some set S ⊆ N of density one, we have T (n) = χP (n) for all n ∈ S.

Jockusch and Schupp point out that this notion says something important
about the initial issue of word problems for groups. Indeed, the following result,
in light of the proofs of the previous section, suggests that the “coarse” in the
definition is very coarse indeed. Importantly, we need not know where the machine
goes wrong, only that it do so very seldom.

Proposition 4.5.12. Every finitely generated group has coarsely computable
word problem.

Proof. If G is a finitely generated infinite group, then the set of words not
equal to the identity has density 1, so that a Turing machine rejecting every in-
put coarsely computes the word problem. If G is finite, then its word problem is
computable. �

In view of the near-triviality of the preceding proof, it is tempting to think
that coarse computability would be a notion permissive to the point of uselessness.
However, a recent paper of Greenberg, J. Miller, Shen, and Westrick [231] demon-
strates that its approach via the density of the points of agreement is exactly what
is needed to settle an important question in effective dimension and algorithmic
randomness. We say that two sets are coarsely equivalent if they agree on a set of
density 1. We first note a preliminary result.

Proposition 4.5.13. If two sequences are coarsely equivalent, they have the
same effective Hausdorff dimension.

Theorem 4.5.14 ([231]). A sequence has effective Hausdorff dimension 1 if
and only if it is coarsely equivalent to a 1-random sequence.
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Proof. Let X be 1-random. By Proposition 3.4.7, it has effective Hausdorff
dimension 1, and by Proposition 4.5.13, any Y coarsely equivalent to X must have
the same effective Hausdorff dimension. The second direction is more involved.

Assume X has effective Hausdorff dimension 1, and let

sm = dim(X �[2m,2m+1) |X �2m).

Let
P = {Y : ∀n K (Y �n) ≥ n} ,

and let P denote the set of finite initial segments of elements of P . Let d denote
the Hamming distance, and let E be the set of all sequences (em : m ∈ N) such
that e0 = 1 and such that for all k either ek ∈

{
ek−1,

ek−1

2

}
. For each ē ∈ E, we

define a relation ∼ē on strings so that σ ∼ē τ if and only if for all k we have

d
(
σ �[2k−1,2k), τ �[2k−1,2k)

)
≤ ek.

We now define a sequence (εm : m ∈ N) ∈ E such that for all m we have

(1) lim
m→∞

εm = 0, and

(2) There is some τ ∈ P of length 2m with τ ∼ε0,...,εm X �2m .

We claim that for each m there is ν ∈ P of length 2m+1 such that

ν ∼(ε0,...,εm) X �2m+1 .

To this end, let A be the set of strings η of length 2m such that for some τ̂ ∈ P
we have

τ̂ ∼(ε0,...,εm−1) X �2m

and τ̂ η ∈ P. Since P is co-c.e., it follows that A is co-c.e. It can be shown that there
is some q < 1 such that if there are at most 2q2

m

strings π whose distance from A is
greater than εm. Call the computably enumerable set of all such strings B. Then,
conditioned on X �2m , each π ∈ B has a description of length q2m + m + O(1).
Consequently, for sufficiently large m, every π ∈ B will satisfy

dim(π|X �m2 ) < sm

so that X �[2m,2m+1) /∈ B. In that case, there must be some η ∈ A such that

d(η,X �[2m,2m+1)) ≤ εm.
Let τ̂ witness that η ∈ A, and take ν = τ̂ η.

We now take the set Qm of all such strings ν ∈ P of length 2m+1 such that

ν ∼(ε0,...,εm) X �2m+1 .

We have shown that these sets are nonempty, and every element of Qm has a
prefix from Qm−1. By compactness, there is Y ∈ P such that for all m, we have
Y �2m∈ Qm. Since the differences between X and Y on a sequence of intervals
whose length grows exponentially tends to 0, we have Y coarsely equivalent to
X. �

Again, as in the case of generic computability, one can loosen the requirement
of density 1 in the definition. Although the idea was implicit in [159], this was first
done explicitly in [256].

Definition 4.5.15. Let A ⊆ N, and r ∈ [0, 1]. We say that A is coarsely
computable at density r if there is a computable set B such that the lower density
of the set of all n on which A and B agree is at least r.
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Definition 4.5.16. Let A ⊆ N. Then the coarse computability bound of A,
denoted γ(A), is the supremum of all r such that A is coarsely computable at
density r.

As we will see in Theorem 4.5.20, there are sets A with γ(A) = 1 which are
nevertheless not coarsely computable.

4.5.3. Relationships between Generic and Coarse. It is natural to think
that generic and coarse computability might be closely related, although intuition,
by its nature, may vary from person to person. In fact, the two are nearly orthog-
onal. The first several results we consider in this area (as well as stronger forms of
some of them) are from [281].

Proposition 4.5.17. There is a computably enumerable set which is coarsely
computable but not generically computable.

Proof. Consider the simple set S of density 0 constructed in the proof of
Theorem 4.5.8. Since S has density 0, it is coarsely computable. However, if
machine T witnesses that S is generically computable, take Ci = {n : T (n) = i}, as
before, and note that C0∪C1 has density 1. Since C1 is contained in a set of density
0, it must also have density 0, leaving C0 an infinite computably enumerable subset
of the complement of S. �

Proposition 4.5.18. There is a generically computable computably enumerable
set which is not coarsely computable.

Proof. If A0, A1 are disjoint computably enumerable sets whose union has
density 1, both A0 and A1 are generically computable; indeed, a Turing machine
can enumerate each set, and can give output exactly on A0∪A1. If we can construct
such sets where A1 is not coarsely computable, then the theorem will hold.

We recall the definition of the sets Re from Proposition 4.5.4, and, as usual,
let We denote the domain of machine Te. We initialize A0,0 = A1,0 = ∅ and
r(e, 0) = min(Re). At stage s, for each e ≤ s, we check whether Re �r(e,s)⊆We,s+1.

If so, then we let
F = Re �r(e,s) − (A0,s ∪A1,s) .

For each n ∈ F , we include n in A0,s+1 if Te(n) = 1, and in A1,s+1 otherwise. We set
r(e, s+1) so that at most half of the elements of Re �r(e,s+1) are in A0,s+1∪A1,s+1.
Consequently, Te and A1,s+1 will differ on every element of F .

Otherwise, we find the least z in Re which is greater than r(e, s) with z /∈ A1,s.
We then set A1,s+1 = A1,s ∪ {z} and leave A0,s+1 = A0,s and r(e, s+ 1) = r(e, s).

Let Ai =
⋃
j∈N

Ai,j . Now if Te is total, then we have constructed a set of positive

measure on which Te and A1 disagree, so that A1 cannot be coarsely computable
by any Te. On the other hand, for each e, we will have almost every element of Re
enumerated into either A0 or A1 at some stage. Consequently, A0 ∪A1 has density
1, as required. �

Proposition 4.5.19. There is a computably enumerable set which is neither
coarsely computable nor generically computable.

Proof. Recall from Proposition 4.5.4 the definition of the sets Re, as before.
Now we define

A =
⋃
e∈N

(We ∩Re) .
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Now for each e, we know that A differs from the complement of We on all of Re.
Consequently, A cannot be coarsely computable, since if T witnesses that A is
coarsely computable, the set N = {n : T (n) = 0} is computably enumerable, and
A can differ from the complement of this set only with density 0.

Now, toward contradiction, let T witness that A is generically computable. Let
Ci = {n : T (n) = i}, and note, as usual, that C0 is contained in the complement
of A, that C1 is contained in A, and that C0 ∪ C1 has density 1. Then A can
differ from the complement of C0 only on elements outside C0∪C1, a set of density
0. However, C0 is computably enumerable, and A must differ from it on a set of
positive density. �

In view of these limitations, the following results on partial and coarse com-
putability bounds, from a paper of Hirschfeldt, Jockusch, McNicholl, and Schupp
[256], seem striking.

Theorem 4.5.20. For any A ⊆ N, we have α(A) ≤ γ(A).

Proof. Let ε > 0, and let T be a partial Turing machine such that T agrees
with A on its domain, and such that the domain of T has density α(A) − ε

2 . We
will find a computable computable C within the domain of T with lower density at
most ε

2 less than the lower density δ of the domain of T . Given such a C, we can
define a Turing machine U to accept those n for which n ∈ C and T (n) = 1, and
to reject all others. Now U agrees with T on all of C, but U is total, so that A is
coarsely computable at density α(A)− ε.

We now construct C. Let q be a rational between δ − ε
2 and δ. There is some

n0 so that the density of the domain of T up to n is at least q for all n > n0. Now
we define C to be the subset of the domain of T consisting of all elements k less
than the maximum over all n between n0 and k2 of the least s such that the density
up to n of the domain of Ts is greater than q. This set is computable. On the other
hand, ρn(B) ≥ q − 1

n , so that the lower density of C is at least δ − ε
2 . �

This inequality gives us, as a consequense, a set which has coarse computability
bound 1, but which is not coarsely computable, since we know that there is a set
which is generically computable but not coarsely computable. The two bounds
need not be close.

Proposition 4.5.21. There is a set whose partial computability bound is 0, but
whose coarse computability bound is 1

2 .

Proof. Let In = [n!, (n+ 1)!), and define I(A) =
⋃
n∈A

In. Now if T witnesses

that I(A) is coarsely computable at density greater than 1
2 , then we can compute A

in fhe following way: for some n0 and for all n > n0, the machine T must agree with
I(A) on more than half of the elements of In. In that case, a majority vote decides
whether n ∈ A. On the other hand, I(A) ≡T A, so I(A) is coarsely computable
just in case A was computable.

On the other hand, any set of positive lower density must intersect almost all
of the sets In, so that if I(A) is partially computable at density r > 0, we again
have A computable. �

Moreover, below either a 1-generic or a weak 2-random, the inequality of The-
orem 4.5.20 becomes equality, so that all generically computable sets become par-
tially computable. More exactly,
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Theorem 4.5.22. Let A ⊆ N, and r ∈ [0, 1]. Let B ≤T A. If A is either
1-generic or weakly 2-random, then if B is partially computable at density r, then
B is coarsely computable at density r.

Proof. We first let B = ΦA, with T witnessing that B is partially computable
at density r.

Consider first the case that A is 1-generic. We define a notion of forcing

P =
{
σ ∈ 2<ω : Φσ ⊥ T

}
.

Note that P is computably enumerable. If there is n such that A �n∈ P , then B
disagrees with T somewhere. Otherwise, since A is 1-generic, we have some n such
that all τ extending A �n are outside P . In that case, we will define a total Turing
machine U that agrees with B on a set of density at least r.

To define the behavior of U on input m, find σ ⊇ A �n such that Φσ(m) ↓, and
set U(m) = Φσ(m). Since A ⊇ A �n, some such σ can always be found. However,
since σ was not in S, we know that U(m) must be compatible with B, so that U
agrees with B thoughout the domain of T , which has density at least r.

Now if A is weakly 2-random, we define a Π0
2 class P so that A ∈ A. We set

P =
{
X : ΦX is total and compatible with T

}
.

Since A is weakly 2-random and included in P , we know that P must have positive
measure. The Lebesgue density theorem provides that there is some string γ such
that P includes at least relative measure .8 of the extensions of γ, so that for each
n there is some in ∈ {0, 1} so that

µ
({
X : ΦX(n) = in

})
≥ .4.

Then we define U so that U(n) = in. Now U is a total Turing machine that agrees
with B throughout the domain of T , so that B is coarsely computable at density
r. �

4.5.4. Beginnings of Generically and Coarsely Computable Structure
Theory. The origin of dense computability is in structure theory; in particular,
in word problems for groups. It is natural, then, that its further application to
structure theory be explored. This study is ongoing, but some recent work by the
present author with Cenzer, Harizanov, and Gonzalez shows some promise in the
field.

There is an initial issue of how to handle the dense computability of a set with
arity greater than one, which are necessary to represent structures with functions, or
with binary relations. The following result represents straightforward calculations.

Lemma 4.5.23 ([96]). (1) Let A ⊆ ω. Then A has asymptotic density δ
if and only if Ar has asymptotic density δr in ωr. In particular, A is
asymptotically dense in ω iff Ar is asymptotically dense in ωr.

(2) There is a computable dese C ⊆ ω2 such that for any infinite c.e. set
A ⊆ ω, the product A×A is not a subset of C.

These observations inform the definition of densely computable structures. In
particular, we define them by density in the (one-dimensional) domain.

Definition 4.5.24 ([96]). (1) A structure A is said to be generically
computable if and only if there is a substructure D whose universe is a c.e.
dense set D, where for every k-ary function f and every k-ary relation R,
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both f �Dk and χR �Dk are restrictions to Dk of some partial computable
function.

(2) A structure A is said to be coarsely computable if and only if there are
a computable structure E and a dense set D such that the structure D
with universe D is a substructure of both A and E , and all relations and
functions of A and E agree on D.

The first observation about these notions is concerning.

Theorem 4.5.25 ([96]). Every countable equivalence structure has a generically
computable copy.

The proof of this theorem arises from the fact that it is only necessary for
the structure to have an infinite substructure simple enough to have a computable
copy. An early approach to rectifying this was to demand that D be closed under
equivalence, but this eventually gave way to the much more productive application
of graduated elementarity conditions.

Definition 4.5.26. Let n ≥ 0, and A a structure. Then a substructure B is a
Σn elementary substructure of A if and only if for any infinitary Σn formula ϕ(x̄)
and any b̄ ∈ B, we have

A |= ϕ(b̄)⇔ B |= ϕ(b̄).

We can then say that A is Σn-generically c.e. if and only if the subset D
can be chosen to be Σn elementary. At this point the trivialization disappears,
and one frequently (now across several classes of structures) sees a progression
from all countable structures having generically computable copies to some α at
which exactly the structures with computable copies have Σα-generically c.e. copies.
Similar situations hold for coarsely computable structures. Ongoing work in this
area, including densely computable morphisms and application to several classes of
structures, can be found in [96, 97, 98, 95].
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48. L. Bartholdi, Counting paths in groups, L’Enseignement Mathématique 45 (1999), 83–131.
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163. M. Džamonja and I. Tomašić, Graphons arising from graphs definable over finite fields,

Colloquium Mathematicum 169 (2022), 269–305.
164. P. D. Eastman, Are you my mother?, Random House, 1960.

165. H.-D. Ebbinghaus and J. Flum, Finite model theory, 2nd ed., Springer Monographs in Math-
ematics, Springer, 2006.

166. G. Edgar, Measure, topology, and fractal geometry, second ed., Undergraduate Texts in

Mathematics, Springer, 2008.

167. H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number
theory, Proceedings of the London Mathematical Society 54 (1952), 42–93.

168. K. Eickmeyer and M. Grohe, Randomisation and derandomisation in descriptive complexity
theory, Logical Methods in Computer Science 7 (2011), 1–24.

169. G. Elek and B. Szegedy, A measure-theoretica approach to the theory of dense hypergraphs,

Advances in Mathematics 231 (2012), 1731–1772.
170. R. Elwes, Asymptotic classes of finite structures, Journal of Symbolic Logic 72 (2007), 418–

438.



BIBLIOGRAPHY 275

171. H. B. Enderton, A mathematical introduction to logic, Academic Press, 1972.

172. I. Epstein, Orbit inequivalent actions of non-amenable groups, preprint, 2008.
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Cayley graph, 95

cellular automaton, 223, 228

CFO, see also continuous first order logic

Chebyshev inequality, see also

Markov-Chebyshev inequality

Choquet’s Theorem, 146

Church Stochastic, see also stochastic,

Church

Church Thesis, 56

Church-Turing Thesis, see also Church

Thesis

circuit complexity, 83

class

asymptotic, see also asymptotic class

classification, 184, 191, 216

CNF expressions, 191, 200

coarsely computable, 99

at density r, 100, 103

cocycle, 233, 238

Collapsing Uncertainty Condition, 185

Collatz Conjecture, 227–229

completeness, 32

effective, see also effective completeness

Completeness conjecture (Pearl-Paz), 18

complexity

average case, 91

descriptive, 73–74

space, 87

time, 71, 72, 78

computable

coarsely, see also coarsely computable

generically, see also generically

computable

concentrate, 142

concentration inequality, 79

concept class, 189

effective, 200

conditional distribution, 21–22

conjugacy problem, 91

connected, 105

continualization of classical structures, 32

continuous first-order logic, 30

continuous structure, 31

continuum hypothesis, 72

control

quantum, 147

statistical, 147

Cox’s theorem, 9

exceptions, 13

de Finetti’s theorem, 7

De Morgan, Augustus, 4
decision boundary, 191

decomposition

paradoxical, 224
default, 23

definability

in continuous logic, 33
definable closure, 143, 155

degree distribution, 108
Dempster-Shafer belief function , see belief

function17

density, 96, 188
asymptotic, 93

VC, 206

diagram
continuous, 81

continuous atomic, 81

dimension
box, 65

box counting, see also dimension, box

effective Hausdorff, 63, 99
Hausdorff, 42, 61–63

Littlestone, 209
Minkowski, see also dimension, box

packing, 65

Vapnik-Chervonenkis, 194, 202–203, 205
disease, 6

distance

cut, 138
edit, 138

distortion function, 227

distribution
Poisson, 108

power law, 108

uniform, 142
duplicatoin model, see also random graph,

duplication

Dutch book, 6, 53

effective completeness

continuous first-order, 80–82
effective completness, 80

entropy, 48, 64, 148, 147–152
equivalence relation
≤B-incomparable, 235
computably enumerable, 239–242

countable, 220
finite, 220

hyperfinite, 220
projectively separable, 238

treeable, 238
ergodic, 51, 145, 166, 229

generically, 230

properly, 173
with respect to equivalence relation, 230

Ergodic Theorem
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Birkhoff, 146

ergodic theorem

Birkhoff, 51, 226, 229
Kingman, 226

mean, 8

pointwise, 175, 176
estimator, 151

exchangeable, 7, 6–9

expander, 95, 107, 107
expectation

conditional, 7

Fatou set, 211

field

perfect, 119
pseudo algebraically closed, 119

pseudofinite, 121

valued, 208
Finite State Automaton, 41

finite-state compressor, 45

flow, 164
disjoint, 232

minimal, 243
universal minimal, 165, 242

Ford-Fulkerson algorithm, 138

Fräıssé limit, 114, 143, 167, 243–244

Galois group, 119, 168

Galton-Watson process, 134

Hausdorff dimension of, 62
game

Ehrenfeucht-Fräıssé, 26, 116–118
game semantics, 89

games, 89

semantics, see also game semantics
generically computable, 94

at density r, 97

geometries, 127
giant component, 147

gradient descent, 191

grammar, 184
graph

Cayley, 171, 225

definable, 142
expander, 225
Henson, 142, 144, 244
Henson graph, 115
random, see also random graph

signed, 139
triangle-free, 115

graph parameter, 139, 140
graphon, 142, 139–142, 144, 150
group

Abelian, 207, 208

amenable, 220–226, 232
definable, 122
extremely amenable, 244

finitely generated, 219
free, 177, 220, 221

Lie, 171–173

of Lie type, 124

pseudofinite, 124, 208

random, 170

root, 125

SDS, 174

torsion-free Abelian, 236–237

halting problem, 228

height function, 161

hereditary property, 242

Hilbert space, 29, 33–34

Hindman’s theorem, 134

homogeneous, 146

Horn formula, 18

Hrushovski fusion, 130

hyperbolic, 212

hyperfinite

measure, 238

hypergraphon, 151

incompressibility, 49–50

independence property, see also NIP, 205

Independence relation, 18

Information Bottleneck, 194

invariant random subgroup, 171, 224

irrational number, 110

isomorphism problem, 91

isomrophism problem, 85

Jansenist controversey, 3, 30

joint embedding property, 242

Julia set, 211

Keisler measure, see also measure, Keisler

Keynes, John Maynard, 5

Kolmogorov complexity, 197

conditional, 47

plain, 47

prefix-free, 49, 63

Kolmogorov Extension Theorem, 145

Kolmogorov, Andrey, 5

Kolmogorov-Loveland stochastic, see also
sochastic, Kolmogorov-Loveland60

Löwenheim-Skolem theorem, 29

language

E- vs. I-, 184

language learning, 184–189

lattice, 170, 171

learning

deep, 193

explanatory, 186

InfTxtEx, 187

language, 4

Occam, 197

online, 209

PAC, 187, 190, 189–191, 195, 202–203,

208, 209
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TxtBC, 201

TxtBc, 188

TxtBCa, 188
TxtEx, 186, 201

TxtEx∗, 201

TxtExω , 188
TxtExa, 188

TxtFin, 187, 201

left-c.e. real number, 76
Lie coordinatizeable, 128

linear separator, 191

Liouville, 247
locking sequence, 186

logic action, 142, 145, 164, 215, 231
universal, 214

logic topology, 142, 214

logistic regression, 192
Lovász Local Lemma, 131

Markov network, 19

Markov-Chebyshev inequality, 79, 133
Martin-Löf null, 50

Martin-Löf random, 50
Martin-Löf test, 50

martingale, 25, 52

success, 53
martingale indicator, 52

martingale process, 53

measure, 5–9, 77, 82
ergodic, 219

generalized Bernoulli, 60

Glasner-Weiss, 166
Haar, 168, 171, 229

Haar-compatible, 169

Hausdorff outer, 61
invariant, 115, 142, 142–147

Keisler, 130, 207, 207
Lebesgue, 169

smooth, 217

Wiener, 68
measure model, 36

measure models, 14–16, 145

metric space, 211
metric structure, 29

Millar-Rabin test, 74
Miller-Rabin test, 78
moments, 8
mutual information, 48–49

network, 107

gene regulatory, 178

neural, 193–194
probabilistic boolean, 180

social, 107
NIP, 111, 125, 159, 193, 205, 205–209
normal, 41, 39–47, 247

absolutely, 247
absolutely normal, 44
simply, 41

o-minimal, 207, 208
order class, 242

oscillation

complex, 247, 248
overfitting, 194

parabolic, 212
Pascal, Blaise, 4

perceptron, 193

permanent, 86
phase transitions, 147

Polish Space, 214

polynomial hierarchy, 72, 86
Post’s problem, 163

Poulsen simplex, 176

preferential attachment, see also random
graph, preferential attachment

prefix-free machine, 77
probabilistic argumentation system, 16, 22

probabilistic method, 107, 132

probabilistic strategy, 54, 54–56
probability algebra, 34–35

probability model, 15

Probability space, 5
proof, 71, 84

interactive, 85

pseudocompact structure, 154
pseudofinite

field, see also field, pseudofinite

pseudofinite group, see also group,
pseudofinite

pseudofinite structure, 126, 154, 157

pseudorandom, 83, 83
purity, 160

Ramsey degree, 244
Ramsey number, 132

random

Kurtz, 169
pseudo-, see also pseudorandom

Schnorr, 169

string random, 160
random bits, 75, 83

random graph, 122, see also graphon, 147,
177

automorphisms, 244

construction, 106
duplication, 108

model, 137, 140

model, countable, 138, 140
preferential attachment, 107

process, 106

random hypergraph, 122–124, 244
random walk, 95

randomization, 154, 152–159

randomized Turing machine, see also
Turing machine, randomized

randomizer, 167
Randomness deficiency, 47
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randomness deficiency, 47–48

rank

dp, 206

rational actor, 6

reachability problem, 228

real

computable, 227

reducibility

measure, 237

resampling, 182

resamplings, 133

robust chain, 129

root group, see also group, root

root predicate, 168

samplable, see also structure, samplable

sampling, 181

Schnorr random, 58

semantics

game, 248

sentence

pithy, 144

Sierpiński carpet, 62

simplex algorithm, 91

simulation, 151

soundness, 32

stable, 34, 111, 159, 206

stochastic

Church, 59

Kolmogorov-Loveland, 60, 60–61

von Mises-Wald-Church, 59

stochastic process, 24

strict order property, 206

structure

Borel, 143, 145

measurable, 130

non-redundant, 151

samplable, 143

subflow, 164

success, 53

Syracuse Problem, see also Collatz

Conjecture

Szemeredi Regularity Lemma, 130, 142

Tarski-Vaught test, 29

theory

randomization, 152–159

transversal, 241

turbulent, 231, 231–232

Turing machine

probabilistic, see also Turing machine,

randomized

randomized, 75

Turing machines

randomized, 78

types, 143

Ulam Conjecutre, see also Collatz
Conjecture

ultrafilter, 119

ultrahomogeneous, 115

ultraproduct, 119, 130
uniform distribution modulo 1, 46

Urysohn space, 244

Vaught Conjecture, 215

VC dimension, see also dimension,

Vapnik-Chervonenkis
verifier, 71, 84

von Mises-Wald-Church stochastic, see also

stochastic,von Mises-Wald-Church

wandering, 211

weak 2-random, 102
weak n-random, 57

Wiener process, see also brownian motion

word problem, 91, 91–95, 99, 242


