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Preface

In the late 19th and early 20th centuries, logic and probability were frequently
treated as closely related disciplines. Each has, in an important sense, gone its own
way, so that neither, in its modern form, is in any proper sense a systematization
of the “Laws of Thought,” as Boole called them.

However, the last four decades have seen a remarkable rapproachment. On the
most obvious level, the various probability logics have developed as formal systems
of reasoning in the modern sense of logic.

At a deeper level, though, attempts have been made to formulate logics in
which model theory of random variables, stochastic processes, and randomized
structures can be explored from the perspective of model theory. Continuous first-
order logic as a context for stability theory on metric structures is perhaps the most
conspicuous example, but others exist.

At the same time, algorithmic randomness in its various forms has come to play
a core role in computability theory, while probabilistic computation of various kinds
(randomized computation, interactive proofs, and others) has come to dominate
major parts of computational complexity. The older recursion-theoretic program of
machine learning, initiated by Gold in the 1960s, has become much more important
thanks to Valiant’s reformulation in probabilistic terms to allow for reasonable
errors.

The model theory of random objects, Fräıssé limits, and pseudofinite structures,
each of which embodies some important aspect of 0-1 laws, has been important for
longer, but advances in stability, simplicity, and the transition from finite to infinite
model theory have enriched this subject.

In set theory, too, the study of dynamics that respect probability measures has
played a central role in the study of equivalence relations. Probability is frequently
at the center of modern descriptive set theory.

Nor have these developments been independent. The PAC learning theory of
Valiant is inextricably linked to the model theory of NIP theories. The dynamics of
computable Polish spaces have become an important emerging area in computabil-
ity. Randomized computation is the natural computation on metric structures.
Notions of random structures have become intertwined with algorithmic random-
ness, and are naturally described in continuous first order logic.

Many of these developments have been adequately treated in isolation by vari-
ous books. Probability logic has been discussed at length from various perspectives
in [10, 239, 242, 394, 419]. Bayesian networks are well-covered, for instance,
in [219, 397, 398], and a monograph on adapted distributions also exists [180].
Randomized computation has a detailed treatment in [30]. Algorithmic random-
ness is the subject of three relatively recent books, [158, 387, 194]. Zero-one
laws are treated at length in [165, 230], and other places, and [266] includes an
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extended treatment of Fräıssé limits. Random graphs are extensively covered in
[74, 125, 338]. The definitive reference on PAC learning is [297]. In the field of
set-theoretic dynamics, there have been several treatments at several levels of de-
tail, among which [55, 260, 298, 303] merit special mention. There is no shortage
of book-length treatments of subjects within the range of this book.

However, a reader in a well-stocked library might well pass all these separate
books without knowing that they had anything substantive in common. Indeed,
one could read most of them in detail — in addition to the long papers that give
strong expositions on many related subjects (the seminal paper [61] on continuous
first-order logic comes to mind) — without finding a commonality.

It is true that [238] describes connections between probability logics and Bayesian
networks. However, it is silent on the rest of these issues.

The present book, then, attempts to take a unified — or, at least, unifying
— approach to this subject. The expanding literature in each of these fields has
seen more interaction between them, so that a model theorist might well want to
know more about the frontier of probabilistic work in set theory, or a computability
theorist more about the relevant work in model theory.

We focus here on mathematical logic and probability. Probability logic and
its relatives seem frequently to arise as works of philosophical logic, and this has
implications for the questions that are asked about it. Frequently it is seen in
connection with the theory of rational decision, as in [242]. Mathematical logic,
by contrast, asks about computability and undecidability; about theories and their
models; about reducibilities and regularity of sets. Alternate logics are of inter-
est to mathematical logic inasmuch as they provide the necessary infrastructure
for carrying out this program in interesting settings. Applications of logic to ar-
tificial intelligence and other modeling contexts are important, but they arise as
applications of the theory, not as its defining elements.

Chapter 1 begins to lay out the central thesis of the book: that all the other
chapters have something to say to one another. This is done by identifying several
important cross-cutting themes that come up in several of the other chapters.

In the next chapter, we begin the technical section of the book by describing
the various logics useful for probability. Continuous first-order logic has a central
role, not least because it generalizes many others. Probability logic is extensively
studied, and is explored here as well, as are some other approaches.

In a third chapter, we will consider the theory of algorithmic randomness, with
special attention to normal numbers, Martin-Löf randomness, and their relation
to computation. This treatment will not be complete, of course — the subject is
well-covered elsewhere. Rather, the focus will be on those aspects of algorithmic
randomness that interact with other areas of advance in the logic and probability
community.

The chapter on randomized computation involves the leap of reasoning that
computability and complexity still have something to say to one another. Recent
work on generic and coarse computability, as well as that on derandomization,
descriptive complexity, and continuous first-order logic support this hypothesis.

The following two chapters will take up the various approaches to random struc-
tures. The investigation of random structures seems to have arisen historically from
the study of random graphs, which invited generalization to 0-1 laws, and which
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connected with the earlier beginnings of Fräıssé limits. More recent approaches con-
sider the “random” structure as a single structure that somehow embodies the pos-
sible variation — graphons, Keisler randomizations, invariant random subgroups,
and the like. Others use algorithmic randomness to define the structure.

In taking up the problem of learning theory, there is a fair viewpoint from
which learning after the tradition of Gold, probably approximately correct (PAC)
learning after the tradition of Valiant, and the model theory of NIP structures are
wildly different fields. The chapter devoted to these topics takes the opposite view.
Valiant’s definition is a natural extension of Gold’s framework, and the theory of
Vapnik-Chervonenkis dimension governs both PAC learning and NIP theories.

The final chapter surveys the general area of dynamics. An introduction to
orbit equivalence relations and Borel cardinality is given, and several topics on
the relation of measure to equivalence relations are considered, including the im-
plications of ergodicity and Hjorth’s notion of turbulence. Recent model-theoretic
approaches to Szemeredi Regularity and Furstenberg Correspondence belong here,
too, as does the characterization of 1-randomness by the Ergodic Theorem and the
emerging theory of computable Polish spaces.

Of course, some limits must be set on the content of such a book. For instance,
a new line of thought has arisen in recent years over categorical treatments of
probability [199, 200, 395]. In view of traditional [350] and recent [119, 248,
247] work on connections between category theory and logic, this work is certainly
interesting and relevant, but it is hard, at this stage of the theory, to explain its
relationship to the other work.

The book is to be formally self-contained, but realistically anticipates a reader
who has completed a first course in logic at the graduate or upper undergradu-
ate level. Such a reader will, after reading the book, be prepared to understand
the frontier of the research literature in probability-related areas of computability,
model theory, set theory, and logical aspects of artificial intelligence. There is an
important place in the world for a reader equipped in this way: A major part of
logic in the coming years will involve connections between these fields, and those
who understand something of all of them will be well-poised to contribute.



CHAPTER 2

Formulating Probability

2.1. Axioms for Probability

2.1.1. The Prehistory of Probability. While there have certainly been
individual utterances related to probability from quite early on in recorded thought,
as well as hints of at least potential organized knowledge of the field, it is difficult
to avoid the impression that logic came first. Certainly mathematical logic came
before mathematical probability.

In its medieval usage, “probability” was not a mathematical or quantitative
concept at all. Some things, collectively called scientia, could be known certainly
by “demonstration,” a precursor of modern concepts of proof. Other kinds of
propositions, collectively called opino — and it was thought a genuinely different
category — were the subject of belief, including belief based on sense perception.
To say that an opinion was probable meant exactly that some trustworthy person
believed it. There was no paradox, then, when Gibbon said of a certain opinion,
“Such a fact is probable but undoubtedly false.”

This led to the common accusation, not unfamiliar in our times, that one’s
opponent had first settled on an opinion, and then found some learned worthy
whose words could be taken as acceptance. Such an approach, sometimes called
“probabilism,” was one that conscientious scholars would presumably take pains to
avoid.

Although various problems on the fair division of the stakes in an uncompleted
game of chance circulated in the years before it, the first accounts of probability in
anything like the modern sense appear to have arisen in the context of the Jansenist
controversey in theological circles. Pascal was a collaborator and correspondent
with several on the Jansenist side, including Antoine Arnauld and Pierre Nicole,
authors of the 1662 La Logique ou l’ard de penser, better known as the Port Royal
Logic.

The Port Royal Logic started in a relatively conventional way, treating in its
first part the problems around forming concepts; in the second part, deductive rea-
soning generally; in the third, syllogistic reasoning specifically. The fourth part
begins as an exposition of analysis and synthesis, the two traditional parts of geo-
metric reasoning, but the final four chapters take up a very different kind of rea-
soning. The matter under examination there is the application of reason to events
“which may or may not be, when we inquire about the future, but which cannot
be otherwise when we inquire about the past” [29]. It would be foolish to think,
in probabilist fashion, that something is false in general merely because it fails in
a particular case, or to think it true merely because it is possible. These uncertain
beliefs, though, are explicitly compared to games of chance, and the frequency of
the various outcomes of these games are used to reckon the degree of probability

3
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of the proposition — for the first time a quantity. This analysis ends with the first
published form of Pascal’s wager.

The history of probability, or the course by which Pascal, Fermat, Leibniz,
Huygens, and finally Bernoulli extended these observations into what we now rec-
ognize as mathematical probability is not the subject of the present book. However,
it is important to note two features regarding the first emergence of mathematical
probability. First, it is important to note that it emerged as a branch of logic in-
tended to deal with uncertain events. Second, we note that the genesis of modern
probability happens exactly with the merger of what are later called the Bayesian
and frequentist interpretations of probability.

In the frequentist interpretation, probability represents the proportion of one
outcome in a (perhaps large) class of indistinguishable trials. In the Bayesian
interpretation, the probability of a hypothesis reflects our degree of belief in a
hypothesis. The authors of the Port Royal Logic used the frequency of truth to
address the problem of assigning a degree of belief. Of course, the philosophy of
probability, including the Bayesian/frequentist debate, has a large literature of its
own. The explanation here of the early history of the subject was heavily influenced
by [236].

The Port Royal Logic was widely circulated, but by 1847 Augustus De Morgan
still felt a need to explain the inclusion of probability in his Formal Logic:

The old doctrine of modals is made to give place to the numer-
ical theory of probability. Many will object to this theory as
extralogical. But I cannot see on what definition, founded on
real distinction, the exclusion of it can be maintained. When I
am told that logic considers the validity of the inference, indpen-
dently of the truth or falsehood of the matter, or supplies the
conditions under which the hypothetical truth of the matter of
the premises gives hypothetical truth to the matter of the con-
clusion, I see a real definition, which propounds for consideration
the forms and laws of inferential thought. But when it is further
added that the only hypothetical truth shall be absolute truth,
certain knowledge, I begin to see arbitrary distinction, wanting
the reality of that which preceded.... Not however to dispute
upon names, I mean that I should maintain, against those who
would exclude the theory of probability from logic, that, call it by
what name they like, it should accompany logic as a study.[381]

In any case, De Morgan described probability in the context of logic, including
arithmetical calculations and the assignment of a scale of probability, offering the
Farenheit temperature scale as an example, but exploring in more detail the interval
[−1, 1].

When Boole undertook a general mathematicization of logic, he, too, included
probability in its scope. Significantly for our investigation of algorithmic random-
ness in Chapter 3 and of machine learning in Chapter 7, one of his first motivating
examples is the use of the fact that “the same characters and successions of char-
acters recur with determinate frequency” to interpret archaeological texts from
Ireland and the Near East. Boole sets out an axiomatic calculus of probabilities
that would be familiar today either to students of elementary probability or to the
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axiomatizers of the modern probability logics discussed in Section 2.2.2, as well as
a “general method for the solution of problems in the theory of probabilities” [75].

Keynes described probability in much more strictly logical terms, axiomatizing
an algebraic structure capable of serving as the possible values of probability [306].
For Keynes, too, probability was a kind of logic.

The tradition of interpreting probability as a generalization of logic continued
for some time afterward in philosophical circles in the hands of Popper, Carnap,
and others, and some of this work (in particular that of Popper) will be relevant for
algorithmic randomness. However, it is not primarily this philosophical tradition
that conerns us, but the communication of modern mathematical logic with modern
probability.

2.1.2. The Kolmogorov Axiomatization. I have broken some with the
standard scholarly delineation of the history. Most would place everything after
Pascal — and certainly everything after Bernoulli — in the history of probabil-
ity, not the prehistory. There is certainly fairness in this. However, the point I
want to emphasize is that all of the probability discussed in the previous section
belongs firmly to an age of the field at least as distant from the practice of modern
probability as De Morgan’s classification of syllogistic forms is from that of modern
logic.

A fair point of delineation in logic might be the Zermelo-Frankel formulation of
set theory, or, more likely, the quick succession in the 1930s of Gödel’s completeness
and incompleteness theorems, Tarski’s undefinability theorem, and Turing’s nega-
tive solution to the Entscheidungsproblem. That which came before is certainly not
modern logic. That which came afterward will generally be accepted by modern
logicians as being in continuity with modern research in the field. The analogous
demarcation point in probability is Kolmogorov’s measure-theoretic formulation of
probability.

It is true that Kolmogorov’s measure-theoretic approach opened up significant
new vistas for the field, especially toward non-finite probability spaces, but his
motivation, it seems germane to state, was

. . . to give an axiomatic foundation for the theory of probability.
The author set himself the task of putting in their natural place,
among the general notions of modern mathematics, the basic
concepts of probability theory — concepts which until recently
were considered to be quite peculiar.[319]

Kolmogorov developed probability as a special case of Lebesgue’s measure the-
ory.

Definition 2.1.1. A probability space is a triple (Ω,B, P ) with the following
properties:

(1) Ω is a set.
(2) B is a σ-algebra of subsets of Ω.
(3) Ω ∈ B
(4) P : B → R≥0

(5) P (Ω) = 1
(6) If A,B ∈ B are disjoint, then P (A ∪B) = P (A) + P (B)
(7) If A1 ⊇ A2 ⊇ · · · is a decreasing sequence of elements of B with empty

intersection, we have lim
n∈N

P (An) = 0.
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It is routine to see that this last condition is equivalent to the assertion that P
is countably additive.

For any set S, an S-valued random variable is a function X : Ω→ S. Typically
the set S has some measure of its own and random variables are restricted to be
the measurable functions. From this perspective, for a measurable subset T ⊆ S,
we write P (X ∈ T ) = P

(
X−1(T )

)
.

Using this formalism, it is possible to generalize the probability known to
Bernoulli and Boole to contacts with what might be called a “completed infin-
ity” of possible outcomes, those involving infinite-dimensional distributions. We
express the expectation E(X) =

∫
X dP .

In this world, a large range of applications opens up. For instance, let G be a
graph, and equip G with a sequence of functions ηt : V → {0, 1} on its vertices, as
t ranges over N.

Example 2.1.2. Each vertex represents an individual in a population suscep-
tible in principle to an infectious disease. Those vertices v with ηt(v) = 1 are
said to be infected at time t and those with ηt(v) = 0 are said to be healthy. Of
course, many models could describe the dynamics of this system over time, perhaps
prescribing ηt+1(v) in terms of the values of ηt on the neighborhood of v. This
is called a contact process. Under specific models of the evolution of ηt, we could
ask questions about the probability that, for instance, there is some t̂ such that for
t > t̂ there is some v such that ηt(v) = 1.

There arises, of course, the question of the necessesity of this approach. In
a sense, this necessity is established by a theorem of de Finetti [143, 145, 144].
Given a measurable space (Ω,B) betting system is a function b : B′×Ω→ R, where
B′ ⊆ B is countable, such that for each S ∈ B′ there is a qS ∈ R such that

b(S, x) :=

{
1− qS if x ∈ S
−qS otherwise

That is, the gambler pays qS for a potential payoff of 1. In this sense, we can
interpret any function µ : B → R as a betting system bµ, by setting qS = µ(S). A
rational actor who, for each S ∈ B′, believes with strength µ(S) that x ∈ S will
expect value 0 from bµ(S, ·), and will accept any bet giving µ-expectation larger
than that.

If b is a betting system, a Dutch book on b is a set C ⊆ B′ such that for any
x ∈ Ω, we have ∑

S∈C
b(S, x) < 0.

A Dutch book, then, is a combination bet guaranteeing a loss for the agent who
adopts betting system b. The following result, variously attributed to [412] and
[144], shows that the axioms of probability are necessary, in the sense that a Dutch
book can be made on any betting system that violates them.

Theorem 2.1.3. Let (Ω,B) be a measurable space, and let µ be a function from
B to R≥0. If (Ω,B, µ) is not a probability space, then there is a Dutch book on bµ.

The proof consists of an elementary truth table construction, and is described
in detail in [495].
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A second result, which seems unequivocally attributed to de Finetti, suggests a
kind of uniqueness for the probability measure on particular events. It seems diffi-
cult to locate in de Finetti’s works an explicit statement of the theorem attributed
to him — or, indeed, any proofs or many theorems — but the sentiments expressed
by the theorem certainly arise in his work. A standard modern expression of the
theorem can be found in [285]. For the statement of this theorem, we define a
sequence (Xi : i ∈ N) of random variables to be excxhangeable if and only if for
any permutation σ ∈ S∞ of the natural numbers and for any j ∈ N, the joint
distribution of (Xσ(1), . . . , Xσ(j)) is equal to that of (X1, . . . , Xj).

Theorem 2.1.4 (de Finetti’s Theorem). Let (Xi : i ∈ N) be a sequence of
random variables over a Borel measure space, taking values in S, with probability
measure P . Then the following are equivalent:

(1) (Xi : i ∈ N) is exchangeable.
(2) There is some random variable ν taking values in the set of probability

measures on S so that P is the product measure ν∞ almost surely.

This “uniqueness” aspect of this theorem is explained, for instance, by Jeffrey in
[279]: de Finetti did not believe in objective values of probability. However, he was
able to give meaning to probability apart from any objective value by proving that
any two observers would eventually agree upon a subjective probability measure.
Dawid explains the impact of this theorem in some detail, including the observation
that a person believing only in the exchangeability of a sequence of coin tosses would
converge on a subjective probability distribution exactly matching that given by
the usual (objective) axiomatization of Bernoulli trials [142].

If we consider the sequence (Xi : i ∈ N) to be exchangeable, then as we observe
Xi for more and more i, the subjective probability measure we would all eventually
agree on is ν∞. In particular, if we write P (T ) = ν∞(T ) and take expected values,
then we obtain

P (T ) = Eν∞ =

∫
m∞P (ν ∈ dm),

where m in the integral ranges over all probability measures on S.

Proof. The implication from 2 to 1 is obvious from the definitions. To show
the opposite direction, let X = (Xi : i ∈ N) be an exchangeable sequence. Let I be
the shift-invariant σ-algebra in the natural probability space of sequences on which
X is a random variable, and let IX be the pre-image of this σ-algebra under X.

For a probability measure P , a random variable A and a σ-algebra C, we define
the conditional probability P (A|C) in the standard way [284]. That is, we first
define the conditional expectation first for the case where A ∈ L2, so that E(A|C) is
the orthogonal projection of A onto the subspace of C-measurable funcitons. This
can be extended, by continuity, to A ∈ L1. We then define P (A|C) := E(χA|C).
Thus, P (A|C) is not a constant, but a random element of the space of probability
measures. This specializes to the elementary conditioning on a single event when
C is the smallest σ-algebra containing that event. We now define ν = P (X1|IX).

To verify that this ν has the properties required, we take I ∈ I and let
f1, . . . , fm be bounded measurable functions, and with the dominated convergence
theorem (recalling that we have assumed X is exchangeable) we let n ∈ N and
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calculuate

E (χI(X))

m∏
i=1

fi(Xi) = lim
n→∞

1

nm

∑
j1,...,jm≤n

E (χI(X))

m∏
k=1

fk (Xkn+jk)

= lim
n→∞

E (χI(X))

m∏
k=1

n∑
j=1

fk (Xkn+j)

n
.

We now use the definition of conditional probability, combined with the mean

ergodic theorem, to find that this quantity converges to E (χI(X))
m∏
k=1

νfk. Now

for any product-measurable set B, we have P (X ∈ B|IX) = ν∞(B) almost surely,
as required. �

It is natural to ask about the effectiveness of the preceding proof: given a
sequence of random variables that is, in some appropriate sense, effective, can we
find a computable measure ν? This question has added significance in light of
Jeffrey’s interpretation. Following the reasoning of algorithmic game theory, if the
agents can’t effectively find the Nash equilibrium, then its power to predict their
behavior is limited. Similarly, if the so-called de Finetti measure is not computable,
we could not expect computable agents to agree on it.

Theorem 2.1.5 ([195]). Let FX be the distribution of a real-valued exchangeable
sequence X and Fν be the distribution of the measure whose existence is guaranteed
by Theorem 2.1.4. Then FX ≡T Fν in the sense of type-two functions.

Proof. Let X be an exchangeable sequence of real variables, and B a Borel
set. We hope to define a random variable YB by YB = Fν(B), and it suffices to
define it where B is an interval (a, b) with rational endpoints.

Now if β : N→ B is an enumeration of some Borel sets, by de Finetti’s theorem,

we have P

(
k⋂
i=1

{Xi ∈ β(i)}
)

= E

(
k∏
i=1

Yβ(i)

)
.

It can be shown that if R : N → B is an enumeration of finite unions of open
rectangles in Qk, then from a degree computing FX, we can enumerate all rational

lower bounds on P

(
k⋂
i=1

{Xi ∈ R(i)}
)

. By noting that almost surely Fν places no

mass on boundaries, an enumeration of upper bounds can at least be simulated.

Lemma 2.1.6. Let Y be a sequence of [0, 1] random variables with distribution

Fη. Then Fη is Turing equivalent to the sequence E

(
k∏
i=1

Yj(i)

)
as k ranges over N

and j ranges over Nk.

Proof. That the mixed moments E

(
k∏
i=1

Yj(i)

)
should be computable relative

to Fη is straightforward from the computability of polynomials and of integrals.
On the other hand, let B be a k-tuple of open intervals with rational endpoints,

and consider that Fη = E
(
χB(Ȳ )

)
. We can find a sequence of polynomials con-

verging pointwise to χB from below, completing the proof of the Lemma and the
Theorem. �

�
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In considering Kolmogorov’s axiomatization of probability, it is also interesting
to point out the recent formalization of a proof of the Central Limit Theorem in
[37] in the Isabelle proof assistant. Much of the work in this formalization included
formalization of the appropriate objects in measure theory.

2.2. Reasoning With Probability

2.2.1. The Primacy of Probability. If you want to compute the probability
of a conjunction, you could think of

P (A ∧B) = P (A|B) · P (B).

Even under some additional hypotheses, you could reckon

P (A ∧B|H) = P (A|B ∧H) · P (B|H).

Similarly, you could compute the probability of a a disjunction by

P (A ∨B|H) = P (A|H) + P (B|H)− P (A ∧B|H),

and that of a negation by P (¬A|H) = 1−P (A|H), and from there you’re off to all
propositional logic.

Probability is a natural enough way for us, as mathematicians to think about
events “which may or may not be,” and in fact it’s hard to think of a reason we
would do anything else. In fact, there’s a proof, due to Cox [139] that probability
is enough. There’s a bit of setup for it.

Let’s use L(A|B) to denote some R-valued “likelihood,” some credibility that we
assign to A under the assumption of B. Probability is certainly the key example,
but you could certainly think of others. One could certainly take any function
f : R → R and take L(A|B) = f(P (A|B)). In common language, one often sees
f(x) = 100x, or a “rareness” function like

f(x) =

{
1
x if x > 10−100

10100 otherwise.

A good start is to restrict what sorts of factors can be considered. One reason-
able restriction arises from an accounting of the things that “should be” relevant,
and restricting L to only considering those. In a US presidential election, the like-
lihood that a given candidate will win the votes of both Ohio and Georgia should
depend heavily on the likelihood of winning Georgia and the likelihood of winning
Ohio given the candidate wins Georgia. There may be other ways to calculate it,
but if you know those two, then everything else has either been accounted for or is
irrelevant. So we have the first axiom: There is some function F such that

L(C ∧B|A) = F (L(C|B ∧A), L(B|A)) .(1)

If L is probability, then we even know what this function is: it’s multiplication.
If we also believe that ∧ is associative, we get some restriction on F . If we start

with L(D ∧ C ∧B|A), then by our axiom, it must equal

F (F (L(D|C ∧B ∧A), L(C|B ∧A)) , L(B|A)) .

On the other hand, it must also equal

F (L(D|C ∧B ∧A), F (L(C|B ∧A), L(B|A))) .

Consequently, we have

F (F (x, y), z) = F (x, F (y, z)) .
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Lemma 2.2.1. For any solution F to the functional equation above, having
second derivatives, there must exist a unary function f and a constant C such that
Cf(x, y) = f(x)f(y).

Proof. We start with the given equation,

F [F (x, y), z] = F [x, F (y, z)],

and let F (x, y) = u and F (y, z) = v. Then our equation is

F (u, z) = F (x, v).

We differentiate with respect to x and get

F1(u, z)
∂u

∂x
= F1(x, v).

Differentiating this with respect to x gives

F11(u, z)
∂u

∂x

∂u

∂y
+ F1(u, z)

∂2u

∂x∂y
= F12(x, v)

∂v

∂y
.

If we differentiate each time with each of the three variables, we get

∂2u/∂x∂y

∂u/∂x
− ∂2u/∂y2

∂u/∂y
=
∂2v/∂y∂z

∂v
∂z − ∂2v/∂y2

∂v/∂y
.

Using logarithmic differentiation, we get

∂

∂y
ln

(
∂u/∂x

∂u/∂y

)
= − ∂

∂y
ln

(
∂v/∂y

∂v/∂z

)
.

By the definitions of u and v, we have

∂

∂y
ln

(
F1(x, y)

F2(x, y)

)
= − ∂

∂y
ln

(
F1(y, z)

F2(y, z)

)
.

Since the x’s only appear on one side and the z’s on the other, each side of the
equation must be determined entirely by y, so we set the left side equal to

d

dy
ln Φ(y),

and the right hand side equal to its negative. By renaming variables in the equation
for the right hand side, we can have

∂

∂x
ln

(
F1(x, y)

F2(x, y)

)
= − d

dx
ln Φ(x).

We can now combine these to get

∂

∂x
ln

(
F1(x, y)

F2(x, y)

)
dx+

∂

∂y
ln

(
F1(x, y)

F2(x, y)

)
dy = −d ln Φ(x) + d ln Φ(y).

We can integrate this, and get

F1(x, y)

F2(x, y)
= C0

Φ(y)

Φ(x)
.

When we combine this with all the first derivatives, we get

∂F (x, y)

∂·
=

Φ(F (x, y))

Φ(·)
.
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Now the equation comes up to be

dF

Φ(F )
=

dx

Φ(x)
+

dy

Φ(y)
,

and we can integrate that to get C1f(F ) = f(x)f(y), as was to be shown. �

As we already said, any f will do, so we’ll choose the identity. Then we have

C1F (p, q) = pq,

so that

F (p, q) =
1

C1
pq,

and, in particular,

L(C ∧B|A) =
1

C1
(L(C|B ∧A)) · (L(B|A)) .

We can also specify C1 based on convention and first principles. Let C = B.
Then this last equation is equivalent to

L(B|A) =
1

C1
(L(B|B ∧A)) · (L(B|A)) .

If we clear the denominator and divide both sides by L(B|A), we get

C = L(B|B ∧A).

So we have to pick what the likelihood of certainty is.
We’re ready for the second assumption: There is some function S such that

L(¬B|A) = S(L(B|A)).(2)

Intuitively, the likelihood of B failing is determined by that of B holding. Since we
probably want L(¬¬B|A) = L(B|A), we have S(S(x)) = x. Then by De Morgan’s
law (which we presumably also want),

S(L(C ∨B|A)) = L(¬C ∧ ¬B|A).

But then using the previous part, we have

S(L(C ∨B|A)) = S(C|¬B ∧A)S(B|A).

With another application of S and a little more work, we get

S(L(B|C ∧A))L(C|A)

S(L(B|A))
= S

(
S(L(C ∨B|A))

S(L(B|A))

)
.

We can rewrite this to have the same hypothesis in all cases.

S

(
L(C ∧B|A)

L(C|A)

)
L(C|A) = S

(
S(L(C ∨B|A))

S(L(B|A))

)
S(L(B|A)).

Now let B = C ∧D, so that

S

(
L(C ∧D|A
L(C|A)

)
L(C|A) = S

(
S(L(C|A))

S(L(C ∧D|A))

)
S(L(C ∧D|A)).

Now we have another functional equation, this time for S:

xS

(
S(y)

x

)
= yS

(
S(x)

y

)
.

Lemma 2.2.2. Let S be twice differentiable, and let it satisfy the previous equa-
tion. Then there is some m such that S(p) = (1− pm)1/m.
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Proof. Write u := S(y)
x and v := S(x)

y . Then the equation is

xS(u) = yS(v).

If we differentiate by x and then y, we get

uS′′(u)S′(y)

x
=
vS′′(v)S′(x)

y
.

Multiplying by the previous version, we get

uS′′(u)S(u)S′(y) = vS′′(v)S(v)S′(x).

With the first derivatives, we can get

uS′′(u)S(u)

(uS′(u)− S(u))S′(u)
=

vS′′(v)S(v)

(vS′(v)− S(v))S′(v)
.

Again, we have separated variables, so that the right hand side is equal to a constant
k. Then

uS′′(u)S(u) = k(uS′(u)− S(u))S′(u),

so that
dS′

S′
= k

(
dS

S
− du

u

)
.

We can integrate to get

S′ = A0

(
S

u
)k
)
.

We can integrate again to get

S1−k = A0u
1−k +A1.

For this to actually satisfy the equation, A0 = −1 and A1 = 1. The result follows,
with m = 1− k. �

Now, in particular, L(B|A)m+L(¬B|A)m = 1. We make another conventional
assumption and assume m = 1. If B = A, then we find that the likelihood of
impossibility is 0.

With these assumptions in place, and using the foregoing calculations, we also
can get the usual inclusion-exclusion formula.

Lemma 2.2.3. The following hold:

(1) L(C ∧B|A) + L(¬C ∧B|A) = L(B|A)
(2) L(C ∨B|A) = L(C|A) + L(B|A)− L(C ∧B|A).

Definition 2.2.4 ([242]). A conditional probability measure is a binary func-
tion µ : E × E → [0, 1] such that

(1) µ(U |U) = 1 for any U
(2) If V1 and V2 are disjoint, then µ(V1 ∪ V2) = µ(V1) + µ(V2)
(3) µ(V |U) = µ(V ∩ U |U)
(4) µ(U1|U3) = µ(U1|U2)× µ(U2|U3) whenever Ui ⊆ Ui+1.

For finite probability spaces, this agrees exactly with Kolmogorov’s definition
in the previous section, and for infinite spaces we need only extend the additivity
condition. We have shown that any function L, as described in the foregoing
discussion, is a conditional probability measure.
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Theorem 2.2.5 (Cox, 1946). Let L(·|·) be a binary R-valued function on events
such that

(1) ∧ is associative in the second argument,
(2) ¬ is a reflection in the first argument,
(3) For all B,C, De Morgan’s law ¬(C ∨ B) ⇔ ¬C ∧ ¬B holds in the first

argument.
(4) There is a twice-differentiable function F such that for all A,B,C, we

have

L(C ∧B|A) = F (L(C|B ∧A), L(B|A)),

(5) There is a twice-differentiable function S such that for all A,B, we have

L(¬B|A) = S(L(B|A)).

Then L is a conditional probability measure.

Halpern noted some issues with this proof. The big one is that the functional
equations are assumed to hold for all possible values. We could use continuity and
deal with only a dense set of values. This means, among other things, that for any
U and any x ∈ [0, 1], there is some V such that L(V |U) = x.

Also, it assumes that L is real-valued. This means that every event is compa-
rable in likelihood to every other event — even under any (different) conditions on
either of them.

Theorem 2.2.6 (Halpern 1999 [240]). There is a function L0, a finite domain
W , and functions S, F , and G such that

(1) L0(¬V |U) = S(L0(V |U))
(2) L0(V1 ∧ V2|U) = F (L0(V2|V1 ∧ U), L0(V1|U)
(3) L0(V |U) ∈ [0, 1]
(4) S(x) = 1− x
(5) G(x, y) = x+ y
(6) F is infinitely differentiable, strictly increasing in each argument, commu-

tative, F (x, 0) = 0 and F (x, 1) = x.
(7) L0(V1 ∨ V2|U) = G(L0(V1|U), L0(V2|U)).
(8) There is no function f making L a conditional probability measure.
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Proof. Let W = {w1, . . . , w12}, and weight each point as follows:

f(w1) = 3

f(w2) = 2

f(w3) = 6

f(w4) = 5× 104

f(w5) = 6× 104

f(w6) = 8× 104

f(w7) = 3× 108

f(w8) = 8× 108

f(w9) = 8× 108

f(w10) = 3× 1018

f(w11) = 2× 1018

f(w12) = 14× 1018

Define f(U) =
∑
w∈U

f(w), and define P (U) = f(U)/f(W ).

We will pick a certain δ, and define

f ′(w) =

 (3− δ)× 1018 if w = w10

(2 + δ)× 1018 if w = w11

f(w) otherwise
ll ,

and set W ′ = {w10, w11, w12}. For any nonempty U , define

L0(V |U) =

{
f ′(V ∩ U)/f(U) if W ′ ⊆ U
f(V ∩ U)/f(U) otherwise

.

Now pick ∆ > 0 so that whenever P (V1|U1) > P (V2|U2) we have L0(V1|U1) >
L0(V2|U |2)

The remainder of the proof of the counterexample can be found in [240]. Fur-
ther discussion of the conditions under which Cox’s theorem does hold is found in
[241]. �

Note that given an unconditional real-valued likelihood measure L, we can
always define a conditional version with

L(A|B) =
L(A ∧ ¬B)− L(¬B)

1− L(¬B)
.

Similarly, given a conditional likelihood measure, we can always define an uncon-
ditional version by conditioning on the entire sample space.

2.2.2. Probability Logic. In the most straightforward connection of prob-
ability to logic, and the one suggested by the preceding sections, we understand
classical logic to have truth values at the two ends of the spectrum: certainty and
impossibility. We then extend the possible truth values by assigning probabilities
to sentences. There are several systems of syntax and semantics for this task in
the literature. Although this interpretation goes back, as we have seen, deep in
the history of probability, the root of current work in the area seems to be in the
1960’s. At that time, Gaifman proposed assigning a measure to sentences.
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Throughout, we let L be a first-order signature, and L(U) be an expansion of
L by constants U .

Definition 2.2.7. If G is a set of sentences of L(U), then we say that µ : G→
R≥0, not everywhere zero, is a syntactic measure if and only if its domain is closed
under boolean combinations and for all ϕ,ψ ∈ G, we have

(1) If ` ϕ and ` ψ then µ(ϕ) = µ(ψ), and
(2) If ` ¬(ϕ ∧ ψ) then µ(ϕ ∨ ψ) = µ(ϕ) + µ(ψ).

We say that µ is a syntactic probability measure if and only if µ(ϕ) = 1 whenever
` ϕ.

Gaifmain notes that a first-order theory gives a syntactic measure mapping the
true sentences to 1 and the false ones to 0. It is natural to ask about the connection
to Kolmogorov’s continuity axiom (axiom 7 of the definition).

Lemma 2.2.8. Let µ be a syntactic measure on the quantifier-free sentences
of L(U). Let (ϕi : i ∈ N) be a sequence of quantifier-free sentences such that
ϕi+1 → ϕi for every i, with {ϕi : i ∈ N} inconsistent. Then lim

i→∞
µ(ϕi) = 0.

Proof. By compactness, there must either be an n for which {ϕi : i ≤ n} is
inconsistent, or else {ϕi : i ∈ N} is consistent. Consequently, there must be some n
such that for m > n we have µ(ϕm) = 0. �

For the semantics of this approach, Gaifman proposed probability models of the
following form.

Definition 2.2.9. A probability model for L is a pair (U, µ) where U is a set of
constants and µ is a syntactic probability measure on the quantifier-free formulas
of L(U).

There is, of course the problem of extending µ to sentences which are not
quantifier-free. Gaifman gave the following characterization

Theorem 2.2.10 ([207]). Let (U, µ) be a probability model. Then there is a
unique syntactic probability measure µ∗ on the full set of sentences of L(U) which
extends µ and satisfies

µ∗(∃xϕ(x)) = sup
ā⊆U

{
µ∗

(
n∨
i=1

ϕ(ai)

)}
.

Proof. We show how to construct µ∗ in the countable case. Let K be the
set of all L-structures with universe U . We take K0 to be the Boolean algebra of
subsets Bϕ of K defined by their satisfaction of a quantifer-free formula ϕ. We use
µ to define a measure µ1 on K0.

Since µ1 is continuous (as per Lemma 2.2.8), it can be extended to a countably
additive probability measure on the σ-algebra generated by K0. Since, for any
quantifier-free ϕ, the set of structures satisfying ∃xϕ(x) is a countable union of
elements of K0, we can define µ∗ by induction on the quantifier depth. �

An important class of probability measures that we will explore at length in
Chapter 6 consists of the exchangeable measures.

Theorem 2.2.11 ([207]). Let µ be a syntactic probability measure on L(U).
Then there is a set V ⊇ U and a probability model (V,m) agreeing with µ which is
invariant under permutations of V − U .
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Proof. Let V be a proper superset of U , and SD the set of permutations of
V −U . We denote by SD,0 the finitely supported elements of SD. For each σ ∈ SD,0
we define [σ] to be the set of functions τ ∈ SD such that τ �dom(σ)= σ.

We now construct a measure on SD under which the σ-algebra generated by
the sets [σ] is measurable. Let {ai : i ∈ N} be the distinct elements of V − U , and
let ν be a countably additive probability measure on V −U that gives each element
positive measure. We can now interpret the product measure on (V − U)ω as a
measure on SD by identifying σ ∈ F by σ(~a).

Let m be a syntactic probability measure on L(V ). We define a syntactic
measure mν on a sentence ϕ(b̄), with b̄ representing all members of V −U occuring
in it, by

mν(ϕ(b̄)) =
∑

σ∈SD,0

(
m
(
ϕ
(
σ(b̄)

))
ν[σ]

)
.

This “averaging” method achieves the necessary invariance, and also represents a
strategy that we will see several times in Chapter 6. �

Since Gaifman, many others have approached this topic. Indeed, Williamson
complains, “The problem is that the literature contains a plethora of new axioma-
tisations of probability on sentences, few of which bear a close resemblance [to] the
mathematical formulation of probability” [501]. One approach that does follow
mathematical probability closely is that of Adams, who requires the following for
all sentences:

(1) 0 ≤ P (ϕ) ≤ 1
(2) If ϕ is logically true, then P (ϕ) = 1.
(3) If ϕ logically implies ψ, then P (ϕ) ≤ P (ψ).
(4) If ϕ and ψ are logically inconsistent, then P (ϕ ∨ ψ) = P (ϕ) + P (ψ).

For obvious reasons, although carefully distinguishing his instantiation of the ax-
ioms by sentences, instead of sets, Adams calls these the Kolmogorov axioms. Fre-
quently, Adams treats the uncertainty of a sentence ϕ, defined as 1− P (ϕ), as the
more fundamental concept, and demonstrates the following

Theorem 2.2.12 ([10]). Let {ϕ1, . . . , ϕn} ` ψ.

(1) 1− P (ψ) ≤
n∑
i=1

(1− P (ϕi))

(2) Let u1, . . . , un be nonnegative numbers with
n∑
i=1

ui ≤ 1. Assume also

(a) {ϕ1, . . . , ϕn} is consistent, and
(b) For any T ( {ϕ1, . . . , ϕn} we have T 0 ψ.

Then there is a probability measure P such that for all i we have

1− P (ϕi) = u1

and

1− P (ψ) =

n∑
i=1

ui.

Adams develops the theory in some detail, including a theory to recognize a
change in probability assigned in the face of new informaiton. Hailperin proposed
another probability logic similar in some ways to Gaifman’s, and others have given a
definition of probabilistic logic sufficient to interpret many of these attempts. In the



2.2. REASONING WITH PROBABILITY 17

framework of [238], we consider premises and conclusions of the form P (ϕ) ∈ X,
where X ⊆ [0, 1]. Then in the logic of Gaifman, for instance, or in the logic
proposed in [239], if S is a set of sentences and ψ is a sentence, then the entailment
relation S |= P (ψ) ∈ Y holds if every probability measure P satisfying S, we have
P (ψ) ∈ Y . The key enhancement in Hailperin’s treatment is that the probabilities
need not have sharp values.

Definition 2.2.13 ([238]). A probabilistic argumentation system is a triple
A = (V,W,Φ, P ), where

(1) V is a set of propositional atoms, with W ⊆ V
(2) Φ is a set of sentences in V
(3) P is a probability measure defined on subsets of the space 2W of joint

values for the elements of W .

In this context, for each propositional formula ψ, we define the set AA(ψ) to
be the set of σ ∈ 2V such that if the values of σ are instantiated for the atoms V ,
then the formula ψ is satisfied. We further define the degree of support for ψ by

ds,A(ψ) =
P (AA(ψ))− P (AA(⊥))

1− P (AA(⊥))
,

and the degree of possibility for ψ by

dp,A(ψ) =
1− P (AA(¬ψ))

1− P (AA(⊥))
.

This approach is equivalent to the belief functions of Dempster and Shafer.

Definition 2.2.14 ([149, 439]). Let Ω be a set. Consider a partial function
B : P(Ω) → [0, 1]. We say that B is a belief function if and only if the following
conditions hold:

(1) B(∅) = 0
(2) B(Ω) = 1

(3) B

(
n⋃
i=1

)
≥

n∑
i=1

(−1)i+1
∑
|I|=i

B

(⋂
j∈I

Uj

)
.

The connection arises from the following result.

Theorem 2.2.15 ([237, 238]). For any probabilistic argumentation system A
there exists an equivalent Dempster-Shafer belief function B such that ds,A = B,
and conversely.

It is worth repeating: there are many probability logics in the literature, many
of them with similar names and many with very similar (but seldom identical)
formulations. Much of the work around them appears to happen in the literature
of philosophical logic and artificial intelligence, and somewhat less, to date, in the
literature of mathematical logic. While these boundaries are, of course, imprecise,
a notable exception in recent years has been Paris and Vencovská’s recent volume
merging the more recent probability logics with the work on first-order predicate
logic by Gaifman, with which this section started [394].
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2.3. Axiomatizing and Computing Conditionality

2.3.1. Independence and Bayesian Networks. Kolmogorov identified in-
dependence as the central feature to distinguish probability in particular from mea-
sure theory in general, pointing out that the major theorems of probability known
at his time generally either assumed independence as a hypothesis or introduced
some weaker condition similar to it. In practical terms, too, dependence and in-
dependence have a special place. Much of the applicability of probability turns on
the question of predicting one event with greater certainty than would otherwise
be possible, using information about another event. For this reason, there has been
substantial work in the artificial intelligence community to formalize this notion.

A major direction of this work has been Pearl’s concept of Bayesian networks,
which are intended to simplify conditional probability computations by representing
the dependence relations efficiently [397]. A full table of the joint distribution even
of n binary variables would be rather large for computation, and even with that
distribution represented, the computation of even a simple conditional probability
would be slow.

The first thing to typically do, then, is to compute whether things are indepen-
dent, and ignore irrelevant information. Since computing the full joint distribution,
and then computing from it the conditional and unconditional probabilities, as
in the traditional definitions of independence, is computationally unfeasible (for
instance, the full joint distribution table for n Boolean variables would have 2n

entries), there must, Pearl reasoned, be some other approach.

Definition 2.3.1. We say that a ternary relation I(X,Y, Z) on sets is an
independence relation if and only if the following conditions hold:

(1) I(X,Z, Y ) if and only if I(Y,Z,X).
(2) If I(X,Z, Y ∪W ), then I(X,Z, Y ) and I(X,Z,W ).
(3) If I(X,Z ∪W,Y ) and I(X,Z ∪ Y,W ), then I(X,Z, Y ∪W ).
(4) If I(X,Z, Y ∪W ), then I(X,Z ∪W,Y ).
(5) If I(X,Z, Y ) and I(X,Z ∪ Y,W ), then I(X,Z, Y ∪W ).

It is routine to verify that for any probability measure P , the relation IP (X,Y, Z)
defined by P (X|Y, Z) = P (X|Z) is an idependence relation. It should be noted
that this differs from the definition of independence relation in model theory; in ad-
dition to the concepts like invariance that would require additional context even to
formulate, transitivity is lacking. The first critical issue is the question of whether
this characterization precisely captures the notion of conditional independence.

The following “Completeness Conjecture” was initially put forward, and would
settle the matter were it true.

Conjecture 2.3.2 ([399]). Let I be an independence relation. Then there is
a probability space (Ω,B, P ) such that I is a relation on B3 and coincides exactly
with probabilistic independence on (Ω,B, P ).

As we will see, this conjecture is not quite true, but some important variants of

it are true. A basic Horn formula is a first-order formula of the form

(
n∧
i=0

θi

)
→ ψ,

where each θi is atomic and ψ is atomic. A Horn formula is a basic Horn formula,
perhaps bound by some global quantifiers. All of the clauses in Definition 2.3.1 are
(or can be expressed by) universal Horn formulas in the language with one ternary
relation I.
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Theorem 2.3.3 ([469]). There is no finite Horn axiomatization satisfied ex-
actly by the ternary relations arising as the conditional independence relation of
some probability space.

Proof. Let N ∈ N, and 3 ≤ k < N . Let

S(j) :=

{
j + 1 if j ∈ {1, . . . , n− 1}
n if j = n

,

and Iµ the conditional independence relation given by probability measure µ on
{0, . . . , N}. Then we can show that the following conditions are equivalent:

(1) For all j ∈ {1, . . . , k}, we have Iµ ({0}, {j}, {S(j)}).
(2) For all j ∈ {1, . . . , k}, we have Iµ ({0}, {S(j)}, {j}).

Now let ϕ1, . . . , ϕ` be Horn formulas. Then we will find some independence
relation I∗ satisfying ϕ̄ but not arising as Iµ for any µ. Pick n large enough to exceed
the number of θi conjuncts in the antecedents of all ϕj . We define I∗(A,B,C) to
hold of a triple (A,B,C) of subsets of {1, . . . , n} in exactly the following cases:

(1) (A,B,C) = ({0}, {S(j)}, {j}) for some j ∈ {1, . . . , n}.
(2) (A,B,C) = ({j}, {S(j)}, {0}) for some j ∈ {1, . . . , n}.
(3) A,B, and C are pairwise disjoint and nonempty.

This I∗ does not satisfy the conditions above, but most satisfy ϕ1, . . . , ϕ`. �

There are some partial recoveries froom this obstruction, however. The follow-
ing two results constitute a sort of completeness theorem with respect to a slightly
exotic logic based on graphs.

Definition 2.3.4. Let G = (V,E) be an undirected graph, and I : B3 → {0, 1}
an independence relation on a measurable space (Ω,B).

(1) We say that G is a dependency map of I if and only if there is a bijection
f : Ω → V such that if I(X,Z, Y ) then all paths in G from elements of
f(X) to elements of f(Y ) pass through elements of f(Z).

(2) We say that G is an independency map of I if and only if there is a
bijection f : Ω→ V such that if all paths in G from elements of f(X) to
elements of f(Y ) pass through elements of f(Z), then I(X,Y, Z).

(3) We say that G is a perfect map of I if and only if it is both a dependency
map and an independency map.

In this sense, a graph which is a perfect map of I constitutes a syntactic repre-
sentation of the independence relation I. The completeness result for this logic is
as follows.

Theorem 2.3.5 ([399]). Let (Ω,B) be a measurable space, and let I : B3 →
{0, 1}. Then the following are equivalent:

(1) There is an undericted graph that is a perfect map of I.
(2) I satisfies the following conditions:

(a) I(X,Z, Y ) if and only if I(Y,Z,X)
(b) If I(X,Z, Y ∪W ), then I(X,Z, Y ) and I(X,Z,W ).
(c) If I(X,Z ∪W,Y ) and I(X,Z ∪ Y,W ), then I(X,Z, Y ∪W ).
(d) If I(X,Z, Y ), then I(X,Z ∪W,Y ).
(e) If I(X,Z, Y ) then either I(X,Z,W ) or I(W,Z, Y )
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Proof. Vertex separation in any graph satisfies the stated condition, so one
direction of implication is clear. In the other direction, we construct a graph. To
do this, we start with a complete graph with a vertex for each element of B, and
delete each edge (X,Y ) where there is some Z ∈ B with I(X,Z, Y ). �

This gives rise to a representation of independence relations as graphs, and even
a notion of maximal parsimony — avoiding the computational complexity explosion
inherent in working with a full joint distribution table.

Definition 2.3.6. A Markov Network for I is an independency map G of I
with the property that deleting any edge would result in a graph which is not an
independency map.

Theorem 2.3.7 ([399]). Every function I satisfying the equivalent conditions
of Theorm 2.3.5 has a unique Markov network.

Proof. For each element x ∈ Ω, a Markov blanket of x is a subset S ⊆ Ω
such that I ({x}, S, U − (S ∪ {x})). A Markov boundary of x is a minimal Markov
blanket. We can show that the Markov boundary of an element is unique. We then
set exactly the elements of the Markov boundary of x adjacent to x. �

The difficulty with Markov netwoks is that the transitivity condition is too
strong. Of course, Theorem 2.3.7 does not assume transitivity, but a form of it
comes back in when a graph is a perfect map of I. If A occurs exactly when
unconditionally independent events B1 and B2 occur, then an independence map
will require an edge between B1 and B2, introducing a spurious dependency. This
issue can be addressed by replacing undirected graphs by directed acyclic graphs.

Definition 2.3.8. Let G = (V,E) be a directed acyclic graph.

(1) We say that G to be an independency map of an independence relation I
if and only if there is a bijection f : Ω→ V such that for any disjoint sets
X,Y, Z, if all paths in G from elements of f(X) to elements of f(Y ) pass
through elements of f(Z), then I(X,Y, Z).

(2) We say that G to be a dependency map of an independence relation I
if and only if there is a bijection f : Ω → V such that for any disjoint
sets X,Y, Z, if I(X,Y, Z) then all paths in G from elements of f(X) to
elements of f(Y ) pass through elements of f(Z).

(3) We say that G is a perfect map of I, if and only if it is both a dependency
map and in independency map.

(4) We say that G is a minimal independency map of I if and only if it is
an independency map and no edge can be deleted without losing this
property.

(5) We say that G is a Bayesian network of a probability measure P if and
only if it is a minimal independency map of the conditional independence
relation IP .

Theorem 2.3.9. Let (Ω,B, P ) be a probability space. Then the following con-
ditions on a directed acyclic graph G are equivalent:

(1) G is a Bayesian network of P .
(2) Each measurable set X ∈ B is conditionally independent of its non-descendents

given its parents, and no proper subset of the parent relation satisfies this
property.



2.3. AXIOMATIZING AND COMPUTING CONDITIONALITY 21

We now arrive at the canonical completeness result for Bayesian networks.

Theorem 2.3.10 ([212]). For any directed acyclic graph G = (V,E) there exists
a probability space (Ω,B, P ) such that D is a perfect map of P .

Proof. For any particular sets X,Y, Z of vertices of G, with some path from
X to Y not passing through Z. Then there is a probability measure on the vertices
of G such that IP (X,Z, Y ) fails. We describe how to do this in the case of a
finite graph. We associate with each element of V a binary random variable, and
partition V as V1 ∪ V2 where V1 contains exactly the n1 vertices on the path from
X to Y avoiding Z and V2 has cardinality n2. Preliminary to describing the full
joint distribution we construct, set

f(x, y) =


1
2 if x = y = 0
3
4 if x = y = 1
1
4 if x = 1 and y = 0
1
2 if x = 0 and y = 1

.

We now set

P (x̄) =

(
1

2

)(n2+1)
(
n1−1∏
i=1

f(xi, xi+1)

)
.

We take the product of all such probability spaces (V,F , P ) to obtain a single
probability space satisfying exactly the desired independence relation. �

A Bayesian network does not require computation or storage of the full joint
distribution, but only of the conditional distribution of each vertex conditioned on
its parents. There are standard algorithms for constructing Bayesian networks, but
their results depend on the ordering of the variables. Informally, it appears that
the most compact (i.e. sparse) representations are achieved when causes precede
effects.

To generate a Bayesian network for a finite system of variables, we first order the
variables X1, . . . , Xn. Then at each stage s, choose, from X1, . . . , Xs−1 a minimal
set Πs of variables such that Xs is conditionally independent of X1, . . . , Xs−1 given
Πs. For each j with Xj ∈ Πs, we make an edge from Xj to Xs, and no other edges
to Xs. While the traditional applications involve finite sets of variables [425],
this algorithm would still produce a computable Bayesian network on a countably
infinite set of variables, provided the necessary conditional probability computations
could be made — which, as we will see, is not always the case, even for finite sets
of variables.

Pearl observed that the method of Bayesian networks could be extended to
systems involving continuous random variables. His system, treated only in outline
in [397] does not seem to have attracted as much further study as the similar mod-
els arising from contemporary work on conditional Gaussian distributions [330].
Instead of Boolean-valued random variables with distribution conditioned on the
parent vertices, each vertex has a continuous (in Pearl’s early examples, normal)
distribution conditioned on a linear combination of the parent vertices.

There is, in fact, a difficulty in computing conditional probabilities. To express
this difficulty, we introduce some terminology. If Ω and X are computable Polish
spaces (in the sense that there is a computably enumerable dense subset, called the
ideal points, on which the distance function produces uniformly computable real
numbers), then f : Ω → X is said to be computable on a set S ⊆ Ω exactly when
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there is a compuable sequence (Un : n ∈ N) of computably enumerable open sets in
X such that for any ideal point q of X, any rational r > 0, and any n ∈ N, we have
f−1 (Br(q))∩S = Un ∩S. We say that a function is almost computable if and only
if it is computable on a set of full measure in Ω, and almost continuous if and only
if it is continuous on such a set. In that sense, the following result demonstrates
in a fairly strong sense that having all information we might wish about random
variables does not allow us to compute the conditional distribution.

Theorem 2.3.11 ([8]). There are P -almost computable [0, 1]-random variables
X and Z such that the conditional distribution map z 7→ P (X|Z = z) is PZ-almost
continuous but not PZ-almost computable.

Proof. Let N,C,X,U , and V be independent computable random variables
with the following distributions:

N : geometric distribution with parameter p = 1
5

C: Bernoulli distribution with parameter p = 1
3

X,U, V : each with uniform distribution taking values in [0, 1].

We produce the random variable Y as follows. Define

Yk =
2b2kV c+ C + U

2k+1
,

and note that lim
k→∞

Yk = V almost surely. Call this limit Y∞. We compose the

variable Y as a random mixture (depending on the random variable N) of the
variables {Yi : i ∈ N ∪ {∞}} by setting hn to be the time by which the nth Turing
machine halts on input 0, or ∞ if it does not halt, and setting Y = YhN , so that
Y is equal to V almost surely if ϕN diverges, and an approximation to V (whose
closeness depends on t, if ϕN,t ↓. We can show that this Y is almost continuous.

As usual, we can simulate a geometric random variable M with parameter 1
2

by

M :=

⌊
logX

log
(
1− 1

2

)⌋ .
We define Z by P (Z|Y )(x) = P (X|N = M(x)).

Now P
(
X ∈ (2−n−1, 2−n)|Z = x

)
= P (N = n|Y = x). From computing this,

even on a set of full measure, we could compute ∅′. �

Finally, we observe a connection of Bayesian networks with the probabilistic
argumentation systems of Section 2.2.2. To determine P (ψ) from assumptions on
the values of P (ϕi) for each i, we construct a Bayesian network whose vertices
are the propositional atoms V of the probabilistic argumentation system. It is
customary to assume that the independence relation on the propositional atoms is
known a priori.

To compute the conditional probabilities represented by the network from the
assumptions on P (ϕi), we rewrite each ϕi in disjunctive normal form as ϕi =∨
m

∧
n
A±si(n), where si(n) enumerates propositional atoms of increasing rank (taking,

as usual, the vertices with no edges in to have rank zero, and each other vertex to
have the least rank strictly greater than that of any of its parents).

Now we have
P (ϕi) =

∑
m

∏
n

γn,m,



2.3. AXIOMATIZING AND COMPUTING CONDITIONALITY 23

where γn,m is the probability of A±si(n) given its parents in the networks. These

equations, as i ranges over the set of assumptions, give constraints on the variables
γn,m. By reversing the procedure, these constraints can be used to give constraints
on P (ψ). The full computation can be laborious, and is explained in full detail in
[238].

2.3.2. Nonmonotonic Logic and Conditionality. It is perhaps not sur-
prising that conditional probability can interpret certain nonmonotonic reasoning,
since the standard examples generally refer to probabilistic judgments. Most peo-
ple are willing, in general, given that x is a bird, to deduce that x can fly. On the
other hand, if afterward informed that x is one of the critically endangered kakapo,
they would (perhaps after looking the matter up) not make that deduction. Such
reasoning is called “nonmonotonic” because an increase in the information available
may cause a recision of deductions that were valid from a smaller set of information.

There are well-documented logics to describe such reasoning. The subject in
general is beyond the scope of the present book, but is treated in some detail in
[354]. What will concern us here is Pearl’s development of default logic through a
semantics of conditional probability, and some exposition of the background theory
of nonmonotonic reasoning and default logic will be given in service of that goal.

The syntax of (propositional) default logic has two types. One type consists
of the well-formed formulas of the propositional language. The other consists of
defaults. A default is a triple 〈α, J, γ〉, where α and γ are formulas and J is a finite
set of formulas. We then define the appropriate proof system.

Definition 2.3.12. Let T be a classical propositional theory, W a set of propo-
sitional sentences, and D be a set of defaults. A proof of ϕ from W relative to T
consists of a finite sequence ϕ1, . . . , ϕn such that ϕn = ϕ and such that for every i,
one of the following holds:

(1) ϕi ∈W
(2) ϕi follows from {ϕ1, . . . , ϕi−1} by the usual rules of propositional logic
(3) There is a default 〈α, J, ϕi〉 ∈ D such that α ∈ {ϕ1, . . . , ϕi−1} and J∩T =
∅.

Of course, the semantics for such a system will be a good deal more subtle than
for classical propositional logic itself. In the example of the bird, we might express
the “default” by saying that “Typically, birds are able to fly, unless they are either
of a flightless species or wounded.” (The problems of expressing these assertions
exactly in propositional, as opposed to predicate, logic are well-understood, and
need not detain us here; in any case, the example is standard.) This expresses
the matter well enough in the sense that as the contextual theory T changes we
might go from concluding that x can fly to not drawing that conclusion if T grows
to include the statement “x is a kakapo.” But to put semantics on this deductive
system, we have to put a more concrete meaning to “Typically.”

Since the goal for Marek and Truszczyński was logic programming, semantics
were not an essential feature of their treatment. In Reiter’s seminal paper on default
logic, he also devotes primary place to the syntactical realm [414], although in a
later survey he does explicitly warn against an exclusively “statistical” reading of
defaults [415]. Indeed, it is not fair to interpret “Typically A” unequivocally as a
mere statement that the probability of A is high.
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Pearl nevertheless gives a semantics for defaults in terms of limiting conditional
probabilities. We introduce formulas of the form P (A|B) ≥ r, where A,B are
sentences and r ∈ [0, 1]. For default set D whose defaults are all of the form
〈A, ∅, B〉, we compose the set

Dε := {P (B|A) ≥ 1− ε : 〈A, ∅, B〉 ∈ D} .

The semantic notion of entailment is then given by writing (T,D) |= ϕ if and
only if for every probability measure P satisfying all conditions in Dε also satisfies
P (ϕ|T ) ≥ 1 − O(ε). We likewise say that a probability measure P is a model of
(T,D) if and only if P (ϕ) = 1 for all ϕ ∈ T and P satisfies Dε for every ε ≥ 0.

The calculation including our kakapo now goes in the following way. We will
make reference to a bird named “Lisa” by researchers, who has played a pivotal
role in the conservation of her species. We set

D := {〈bird, ∅,fly〉, 〈kakapo, ∅,¬fly〉} ,

and

T := {kakapo→ bird} .
Now from the axiom “Lisa is a bird,” we can certainly write a proof in default logic
of “Lisa can fly.” We will denote “Lisa can fly” by “fly,” and similarly for other
properties. For any model P |= (T,D), we have P (fly|bird) ≥ 1− ε for each ε > 0.
On the other hand,

P (fly|bird, kakapo) =
P (fly|kakapo)

P (bird|kakapo)
≤ ε.

The system of derivations proposed here by Geffner and Pearl is not trans-
parently identical to that of Reiter, Marek, and Truszczyński. Nevertheless, he
does state a derivation system which is sound and complete with respect to this
semantics, and which has some similarities to theirs.

Theorem 2.3.13 ([211]). Let (T,D) be a default theory, where every element
of D is of the form 〈a, ∅, b, 〉. Then for any sentence ϕ, we have (T,D) |= ϕ if and
only if ϕ is derivable from (T,D) using the following rules of inference:

(1) If p→ q, then from p we can derive q.
(2) For each default 〈p, ∅, q〉, from p, we can derive q.
(3) If from p we can derive each of q, r, then from p ∧ q we can derive r.
(4) If from p we can derive q and from p∧ q we can derive r, then from p we

can derive r.
(5) If from each of p,q we can derive r, then from p ∨ q we can derive r.

The default rule of this system certainly matches the appropriate special case
of that from Definition 2.3.12, and the remaining rules are all sound derivations of
propositional calculus. Conversely, by clause 1, all propositional calculus deriva-
tions are valid here. Thus, the Geffner-Pearl system coincides with the special case
of Definition 2.3.12 in which D consists of elements of the form 〈a, ∅, b, 〉. The
connection to Pearl’s graph semantics for conditional probability is made by the
following result.

Theorem 2.3.14 ([9, 396]). Let D be a set of defaults of the form 〈a, ∅, b〉 with
a and b atomic or negation atomic propositions. Then the following are equivalent.

(1) For each ε, the set of P such that P |= D is non-empty.
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(2) For every nonempty subset D0 ⊆ D, there is a truth assignment σ such
that for some 〈a, ∅, b, 〉 ∈ D0 we have σ |= a→ b, and for no such element
do we have σ |= a ∧ ¬b.

(3) For every pair 〈a1, ∅, b〉, 〈a2, ∅,¬b〉, the following hold:
(a) a1 6= a2

(b) There is no cycle of the form 〈k1, ∅, k2〉, 〈k2, ∅, k3〉 · · · 〈kn∅k1〉 in which
both a1 and a2 are among the ki.

The final clause of this last result justifies the representation of D as a directed
graph that forbids certain kinds of cycles.

2.4. Adapted Spaces and Distributions

We now begin to consider a different logical approach to probability. It repre-
sents a significant departure from classical syntax, in exchange for modeling random
variables and stochastic processes in a way that it much more tightly connected to
the modern view of probability. In addition to being interesting in its own right,
it is also an important precurser to the continuous first-order logic of Seciton 2.6.
Fajardo and Keisler considered stochastic processes, with a focus on results that
can be established in nonstandard analysis. Their process considers stochastic pro-
cesses in an appropriate structure, and then passes to a saturated structure. Much
of this work is accumulated in [180].

Exactly what sort of structure is appropriate is perhaps a natural logical ques-
tion, but depends, of course, on the objects under study.

Definition 2.4.1. Let (Ω,F , P ) be a probability space.

(1) An X-valued stochastic process is a function x : Ω× [0, 1]→ X, where for
each t, the function x(·, t) : Ω→ X is measurable.

(2) We say that a stochastic process x is measurable if it is measurable with
respect to the product σ-algebra (using the Borel σ-algebra on [0, 1]).

It is also standard in modern investigations of stochastic processes to consider
the probability space with a sequence of σ-algebras, (Ft : t ∈ [0, 1]) with Ft1 ⊆ Ft2
whenever t1 < t2. This is often said to capture the notion of added information over
time, in the sense that the conditional distribution P (x|Ft2) caries more information
than P (x|Ft1).

Definition 2.4.2. An adapted space is a triple (Ω, (Ft : t ∈ [0, 1]) , P ), where

(1) For each t < 1, we have Ft =
⋂
s>t
Fs,

(2) F0 contains all subsets of measure-zero sets.

It is these structures that constitute the structures of the logic to be described.
The next step is to describe the formulas of the appropriate logic. The definition
arises from the observation that two random variables x, y are equidistributed if
and only if for every bounded continuous function ϕ, we have E(ϕ(x)) = E(ϕ(y)),
where E denotes the expectation.

Definition 2.4.3. Let x be a stochastic process defined on an adapted space
(Ω, (Ft : t ∈ [0, 1]) , P ). We define the set of adapted functions by induction as
follows.
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(1) Every bounded continuous function ϕ from Rn to R, in conjunction with
an n-tuple of check-points t̄ ∈ [0, 1]n, gives rise to an adapted function
ϕt̄. We evaluate ϕt̄ on x by the random variable ϕt̄(x) which arises from
evaluating x at each of the check-points, and then evaluating ϕ on that
n-tuple.

(2) If ψ is a bounded continuous function from Rn to R, and f1, . . . , fn are
adapted functions, then ψ(f̄) is an adapted function, evaluated in the
obvious way.

(3) If f is an adapted function and t ∈ [0, 1], then the expression E(f |t) is an
adapted function, defined (up to almost everywhere equivalence) by

E(f |t)(x)(ω) = E(f(x)|Ft)(ω).

Now we define a fundamental equivalence relation.

Definition 2.4.4. Let xi be a stochastic process on an adpated space Ωi. We
say that (Ω1, x1) ≡ (Ω2, x2) if and only if for each adapted function f , we have
E(f(x1)) = E(f(x2)). Where the context is obvious, we sometimes write x1 ≡ x2.

As the notation suggests, this relation will serve in the place of elementary
equivalence. It does, indeed, preserve many important properties.

A martingale, which we will see in a few contexts over the course of the present
volume, is a stochastic process x with the following two additional properties:

(1) For any fixed t ∈ [0, 1], we have E(x((t)) <∞, and
(2) For any t ∈ [0, 1] and any s < t, we have E (x(t)|Fs) = x(s).

Proposition 2.4.5. If x is a martingale and x ≡ y, then y is a martingale.

Proof. Note that the truncated absolute value function

|x|n =

{
|x| if |x| ≤ n
n otherwise

gives rise to an adapted function | · |n,t. Thus,

lim
n→∞

∫
|x|n,tdP = lim

n→∞

∫
|yn,t|dP

since x ≡ y, making the individual terms in the limit equal. By the dominated
convergence theorem, E(y(t)) <∞ for every t.

Using a similar truncation strategy, we can reason from∫
|E (x(t)|Fs)− x(s)| dP = 0

to the corresponding equation for y. �

This shows that ≡ preserves at least some of the important properties. Simi-
larly, we have the following.

Proposition 2.4.6. If, for all t and almost all ω, we have x(ω, t) = y(ω, t),
then x ≡ y.

The definition of equivalence can be adapted to consider pairs of stochastic
processes. If x1, x2 both take values in X, then we can consider the pair (x1, x2)
as a stochastic process taking values in X2. If X is a Polish space, then X2 is, as
well, so that the formulation of adapted functions in terms of continuous bounded
functions still makes sense.
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Definition 2.4.7. An adapted space Ω is said to be saturated if for any adapted
space Λ and any pair of stochastic processes x1, x2 on Λ, the following holds:

• For every y1 on Ω with y1 ≡ x1, there is a process y2 on Ω such that
(x1, x2) ≡ (y1, y2).

A notion of homogeneity can be defined in a similar way (with almost sure
bijections which preserve measure and Ft for all t taking the role of automorphisms),
as well as a back-and-forth relation and an appropriate version of Ehrenfeucht-
Fräıssé games. Saturated adapted spaces exist, but the most obvious adapted
spaces are not saturated.

Proposition 2.4.8. Let (Ω, (Ft : t ∈ [0, 1]), P ) be an adapted space with Ω a
Polish space and P the completion of a probability measure on the family of Borel
sets. Then Ω is not saturated.

It will be noticed that the set of adapted functions is unusually large for the
set of formulas of a logic. Fortunately, it is not always necessary to consider the
full set of such functions.

Definition 2.4.9. We say that a set F of adapted functions is dense if for any
stochastic processes x and sequence (xn : n ∈ N) of stochastic processes, then if
E(f(xn)) → E(x) for every f ∈ F , then the convergence holds for every adapted
function f .

We can always take a countable set of bounded continuous functions that gen-
erate a dense set of adapted functions.

In considerations of definability, the base notion in classical model is the de-
finable set. It is probably less natural to think of definable subsets of an adapted
space, and, in any event, farther from the motivating examples of stochastic pro-
cesses. Instead, we say what it means for one stochastic process to be definable
from another.

Definition 2.4.10. Let (Ω, (Ft : t ∈ [0, 1]) , P ) be an adapted space and x a
stochastic process on x.

(1) The intrinsic σ-algebra of x on Ω, denoted Ix is the σ-algebra generated
by the null sets and the sets of the form f(x) where f ranges over all
adapted functions.

(2) We say that y is definable from x if and only if Iy ⊆ Ix.

An important property of definable stochastic processes is the following argu-
ment that facilitates some back-and-forth arguments.

Theorem 2.4.11. Let xi be a stochastic process on Ωi. If x1 ≡ x2 and y1 is a
stochastic process on Ω1 definable from x1, then there is a stochastic process y2 on
Ω2, definable from x2, such that (x1, y1) ≡ (x2, y2).

2.5. Approximate Measure Logic

Motivated by several disparate attempts to incorporate measure and probabil-
ity into model theory, including the work of [305, 270], Goldbring and Towsner
proposed a logic that extended first-order logic to accommodate measure as a logical
primitive.



28 2. FORMULATING PROBABILITY

Definition 2.5.1 ([223]). Let L be a first-order signature. Then the AML
L-formulas are defined by induction:

(1) Every atomic L-formula is an AML L-formula.
(2) If ϕ,ψ are AML L-formulas, then the following are AML L-formulas:

(a) ¬ϕ
(b) ϕ ∧ ψ
(c) ϕ ∨ ψ
(d) ∃xϕ
(e) ∀xϕ

(3) If x̄ is a sequence of distinct variables, q is a non-negative rational, and ϕ
is an AML L-formula, then the following are AML L-formulas:
(a) mx̄ ≤ q.ϕ
(b) mx̄ < q.ϕ

It is clear how to interpret the formulas generated by most clauses of this
definition, but the final clause requires some comment. First, a variable of x̄ that
is free in ϕ is bound in mx̄ ≤ q.ϕ or mx̄ < q.ϕ, making this clause something like
a quantifier. We interpret mx̄ < q.ϕ (for instance) as the statement that the set
defined by ϕ has measure less than q.

Toward formalizing this semantic ideology, we inductively define a rank on the
formulas. A classical L-formula has rank 0, and for any ϕ, we have

rk(ϕ) = rk(¬ϕ) = rk(∀ϕ) = rk(∃ϕ).

Further, we set

rk(ϕ ∧ ψ) = rk(ϕ ∨ ψ) = max(rk(ϕ), rk(ψ).

On the other hand, we let

rk (mx̄ ≤ q.ϕ) = rk (mx̄ < q.ϕ) = rk(ϕ) + 1.

Definition 2.5.2. Let L be a first-order signature.

(1) An AML L-quasistructure is a first-order L-structureM, with the follow-
ing additional data:
(a) For each n ≥ 1, an algebra Bn of subsets of Mn, and a finitely

additive measure µn on Bn, with the property that for any n,m,
the measure space (Mn+m,Bn+m, µn+m) extends the product space
(Mn,Bn, µn)× (Mm,Bm, µm).

(b) For each n ≥ 1, a function vn : Bn → {⊕,	,�} such that vn(X) = �
whenever µn(X) /∈ Q.

(2) An AML L-structure is an AML L-quasistructure satisfying, for each n ≥
1, the condition that for any formula ϕ(x̄, ȳ) of rank n, and for all ȳ, we
have ϕ(M, b̄) ∈ B|x̄|.

Again, most clauses are intuitive. The assignments vn will designate when
the structure determines the measure of a set exactly. In particular, we will say
that M |= mx̄ < r.ϕ(x̄, b̄) if and only if either µ(ϕ(M), b̄) < r or µ(ϕ(M), b̄) = r
and v(ϕ(M), b̄) = 	, and we say that M |= mx̄ ≤ r.ϕ(x̄, b̄) if and only if either
µ(ϕ(M), b̄) ≤ r or µ(ϕ(M), b̄) = r and v(ϕ(M), b̄) = ⊕.

We can define much of the usual model-theoretic apparatus (e.g. substructures,
definable sets, types) in the usual way. Indeed, Goldbring and Towsner were able
to prove the following compactness theorem for AML.
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Theorem 2.5.3 ([223]). Let T be an AML theory. If every finite subset of T
has a model, then T has a model.

Proof. Let I be the set of all finite subsets of T , and for each Ti ∈ I, let
Mi |= Ti. We will construct an ultrafilter D over I such that

∏
D

Mi |= T .

To this end, for each ϕ ∈ T , we define Jϕ ⊆ I to be the set of all members
of I containing ϕ. The set {Jϕ : ϕ ∈ T} is closed under finite intersection. Thus,
it can be extended to a set D /∈ {∅, I} which is closed upwards, closed under
finite intersection, and cannot be properly extended to another set having these
properties (that is, D is an ultrafilter).

We now construct a new structure in the following way. We let M0 =
∏
i∈I
Mi,

and letM be the quotient ofM0 by the relation identifying two functions f, g ∈M0

if and only if the set on which they agree is an element of D, and define a measure
µMn on M as the product measure of the measures on the Mi, modulo D. We
claim that M |= T .

Observe that, by definition, for each ϕ ∈ T , the set Jϕ is in D. We will show
that M |= ϕ if and only if Jϕ ∈ D, which would complete the proof. This would
be quite true in classical first-order logic by the so-called  Loś Theorem, a standard
result, whose proof proceeds by induction on the formation of formulas. If the
result holds for ϕ(x̄, ȳ), we consider mx̄ < q.ϕ(x̄, ȳ).

If µMi (ϕ(Mi, ȳ)) < r on an element of D, then it follows that µM (ϕ(Mi, ȳ)) <
r, so that M |= mx̄ < q.ϕ(x̄, ȳ). The other cases are similar. �

It is important to note that this result includes a proof of the  Loś theorem for
AML: a sentence is true in the ultraproduct if it is true on an element of the corre-
sponding ultrafilter. Significant results from classical first-order model theory are
possible here; the Tarski-Vaught test and the downward Löwenheim-Skolem theo-
rem both hold. In the context of approximate measure logic, a substructure should,
in addition to preserving the first-order signature, also preserves the algebras Bn.
A substructure is said to be elementary in the usual case, except that satisfaction
of all AML formulas must be preserved.

Theorem 2.5.4 ([223]). Suppose that M is an AML substructure of N . Then
M is an AML-elementary substructure if and only if the following conditions hold:

(1) For all formulas ϕ(x̄, y) and all ā ∈ M, if N |= ϕ(ā, b), then there is
b′ ∈M with M |= ϕ(ā, b′), and

(2) For all formulas ϕ(x, ȳ) and all ā ∈M, measure is preserved in the sense
that µ (ϕ(N, ā) ∩M) = µ (ϕ(N, ā)) and v (ϕ(N, ā) ∩M) = v (ϕ(N, ā))

Proof. IfM is an elemtnary substructure of N . Then both conditions follow.
The opposite implication follows by the usual induction. �

Theorem 2.5.5 ([223]). Let M be an L structure, with X ⊆ N . Then there
is an elementary substructure of M of cardinality at most max (|X|, |L|,ℵ0).

Proof. We start with X and iteratively close under the functions of L, as
usual. The set Xω obtained in this way respects the cardinality bound. We define
M0 on Xω by defining the measurable sets according to intersection with Xω. By
the Tarski-Vaught test (Theorem 2.5.4), this is an elementary substructure. �
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Goldbring and Towsner develop a significant theory of types in approximate
measure logic. One significant additional observation is the notion of approximation
by definable stable sets. A set S is said to be approximated by definable stable sets
if for every ε > 0 there is a definable stable set whose symmetric difference from S
is less than ε. Here, as in the previous section on adapted spaces, approximation
of formulas has its place.

2.6. Continuous First-Order Logic and Metric Structures

2.6.1. Continuous First-Order Logic. Perhaps the great counterexample
in applications of stability theory is the Hilbert space L2(C). This structure has
a well-behaved (and important) independence theory. On the other hand, the
norm guarantees the interpretability of an infinite linear ordering, guaranteeing
instability. While we could, of course, pursue the matter from the perspective of
thorn forking, another approach has proved productive.

The idea of this approach is that for many structures, collectively called metric
structures, there is a metric (expressed or implied) that could import instability,
even when the combinatorics of the structure otherwise act like a stable structure.

A seminal 2008 paper of Ben Yaacov, Berenstein, Henson, and Usvyatsov
merged several approaches current at the time, including compact abstract theories.
The approach here is to absorb the metric into the logic, so that the definable sets
of stable theories work like those in first-order stable theories, without interference
from the metric.

A metric structure is a many-sorted structure in which each sort is a com-
plete metric space of finite diameter. Key examples include Hilbert spaces, Banach
spaces, probability spaces, and probability spaces with a distinguished automor-
phism. Those which do not natively have finite diameter may be treated as in-
creasing sequences of balls. Probability spaces lend themselves naturally to this
treatment, as we will see shortly, as do several more involved random structures,
as we will see in Chapter 6.

The logic for metric structures, called continuous first-order logic, an extension
of  Lukasiewicz propositoinal logic, takes truth values in [0, 1]. Indeed, it is some-
times more conventional to shy away from calling these “truth” values at all; many
authors would interpret the values in a geometrical sense, and not a credal one —
an interesting contrast with the humble Jansenist origins of probability.

To the extent that the values do represent truth, they follow the slightly unusual
convention of using 0 as a numerical value for True (or acceptance) and 1 as a
numerical value for False (or rejection). The authors of [64] chose this convention
to emphasize the metric nature of their logic.

Continuous first-order logic builds on work of Keisler and Henson (see [61] for
a more detailed history). The following definitions are from [63].

Definition 2.6.1. A continuous signature is an object of the form L = (R,F ,G, n, d)
where

(1) R (which we will call the set of predicate symbols) and F (which we will
call the function symbols) are disjoint and R is nonempty, and

(2) n is a function associating to each member of R∪ F its arity
(3) G has the form {δs,i : (0, 1]→ (0, 1] : s ∈ R ∪ F and i < ns}, and
(4) d is a special symbol.
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Because of the context, we will use the notation nS = n(S) for the arity func-
tion. We now define the class of structures. The similarity to the AML structures
of the previous section will be evident.

Definition 2.6.2. Let L = (R,F ,G, n, d) be a continuous signature. A con-
tinuous L-pre-structure is an ordered pair M = (M,ρ), where M is a non-empty
set, and ρ is a function on R ∪ F ∪ {d} taking values in sets of maps defined on
Cartesian powers of M , such that

(1) To each function symbol f , the function ρ assigns a mapping fM : Mnf →
M

(2) To each predicate symbol P , the function ρ assigns a mapping PM :
MnP → [0, 1].

(3) The function ρ assigns d to a pseudo-metric dM : M×M → [0, 1]. (Note: a
pseudo-metric is a symmetric nonnegative function into the reals satisfying
the triangle inequality.)

(4) For each f ∈ F for each i < nf , the element δf,i ∈ G is a modulus of
continuity for f in the ith argument; that is, for each ε ∈ (0, 1], we have

∀ā, b̄, c, e
[
dM(c, e) < δf,i(ε)⇒ dM

(
fM(ā, c, b̄), fM(ā, e, b̄)

)
< ε
]

where lh(ā) = i and lh(ā) + lh(b̄) = nf − 1.
(5) For each P ∈ R for each i < nP , the element δP,i ∈ G is a modulus of

continuity for P in the ith argument; that is, for each ε ∈ (0, 1], we have

∀ā, b̄, c, e
[
dM(c, e) < δf,i(ε)⇒ |PM(ā, c, b̄)− PM(ā, e, b̄)| < ε

]
where lh(ā) = i and lh(ā) + lh(b̄) = nP − 1.

Definition 2.6.3. A continuous weak L-structure is a continuous L-pre-structure
such that ρ assigns to d a metric.

Since we are concerned here with countable structures, we will not use the
stronger notion of a continuous L-structure common in the literature, which requires
that d be assigned to a complete metric. However, it is possible, given a continuous
weak structure (even a pre-structure), to pass to a completion [63].

We now proceed to define formulas and their evaluation. The following defini-
tion may be found in [61], and is, in some ways similar to the adapted functions of
Section 2.4.

Definition 2.6.4. Let L be a continuous signature.

(1) The L-terms are defined inductively as follows:
(a) Every variable is a term.
(b) If t1, . . . , tn are terms and f is an n-ary function symbol, then f(t1, . . . , tn)

is a term.
(2) The atomic L-formulas are the expressions P (t1, . . . , tn), where P is an

n-ary predicate symbol, and the expressions d(t1, t2), where ti are terms.
(3) The quantifier-free L-formulas are the smallest class containing all atomic
L-formulas and satisfying the following closure condition:
• If u : [0, 1]n → [0, 1] is continuous and ϕi are formulas, then u(ϕ1, . . . , ϕn)

is a formula.
(4) The L-formulas are the smallest class containing all the atomic L-formulas

and closed under both the previous condition and the following one:
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• If ϕ is an L-formula and x is a variable, then supx ϕ and infx ϕ are
both L-formulas.

In practice, a much smaller set of formulas is entirely adequate — exactly as
we saw for adapted spaces and approximate measure logic. Any L-formula may be
approximated to arbitrary accuracy, for instance, by a formula where u is taken from
.−, x 7→ 1−x, and x 7→ 1

2x. This result, and many others like it, are documented in
[61]. Throughout the rest of the present paper, then, we will work only with this
reduced set of formulas.

Definition 2.6.5. Let V denote the set of variables, and let σ : V → M . Let
ϕ be a formula.

(1) The interpretation under σ of a term t (written tM,σ) is defined by replac-
ing each variable x in t by σ(x).

(2) Let ϕ be a formula. We then define the value of ϕ in M under σ (written
M(ϕ, σ)) as follows:

(a) M(P (t̄), σ) := PM(tM,σ)
(b) M(α .− β, σ) := max (M(α, σ)−M(β, σ), 0)
(c) M(¬α, σ) := 1−M(α, σ)
(d) M( 1

2α, σ) := 1
2M(α, σ)

(e) M(supx α, σ) := sup
a∈M

M(α, σax), where σax is equal to σ except that

σax(x) = a.
(3) We write (M, σ) |= ϕ exactly when M(ϕ, σ) = 0.

Of course, if ϕ has no free variables, then the value of M(ϕ, σ) is independent
of σ.

A sound and complete proof system has been described for continous first-order
logic. Of course, it is only complete up to approximation. The following axiom
system was given in [63], and soundness and completeness results were proved
there. The axioms are stated here for completeness, since they are not well-known.

(A1) (ϕ .− ψ) .− ϕ
(A2) ((χ .− ϕ) .− (χ .− ψ)) .− (ψ .− ϕ)
(A3) (ϕ .− (ϕ .− ψ)) .− (ψ .− (ψ .− ϕ))
(A4) (ϕ .− ψ) .− (¬ψ .− ¬ϕ)
(A5) 1

2ϕ
.− (ϕ .− 1

2ϕ)

(A6) (ϕ .− 1
2ϕ) .− 1

2ϕ.
(A7) (supx ψ

.− supx ϕ) .− supx (ψ .− ϕ)
(A8) ϕ[t/x] .− supx ϕ where no variable in t is bound by a quantifier in ϕ.
(A9) supx ϕ

.− ϕ, wherever x is not free in ϕ.
(A10) d(x, x)
(A11) d(x, y) .− d(y, x)
(A12) (d(x, z) .− d(x, y)) .− d(y, z)
(A13) For each f ∈ F , each ε ∈ (0, 1], and each r, q ∈ D with r > ε and

q < δf,i(ε), the axiom (q .− d(z, w))∧ (d (f(x̄, z, ȳ), f(x̄, w, ȳ)) .− r), where
lh(x̄) + lh(ȳ) = nf − 1.

(A14) For each P ∈ R, each ε ∈ (0, 1], and each r, q ∈ D with r > ε and
q < δP,i(ε), the axiom (q .− d(z, w))∧((P (x̄, z, ȳ) .− P (x̄, w, ȳ)) .− r), where
lh(x̄) + lh(ȳ) = nP − 1.
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Axioms A1–A4 are those of  Lukasiewicz propositional logic, and axioms A5–
A6 complete the propositional part of continuous logic (primarily prescribing the
behavior of 1

2 . Axioms A7–A9 describe the role of the quantifiers. Axioms A10–
A12 guarantee that d is a pseudo-metric, and axioms A13–A14 guarantee uniform
continuity of functions and predicates. We write Γ `Q ϕ whenever ϕ is provable
from Γ in continuous first-order logic, as axiomatized above. Where no confusion
is likely, we will write Γ ` ϕ.

Theorem 2.6.6 ([63]). Let L be a continuous signature, and Γ a set of L-
formulas.

(1) For every formula ϕ, if Γ ` ϕ then Γ |= ϕ.
(2) If Γ is satisfiable, then Γ is consistent.
(3) If Γ is consistent, then Γ is satisfiable.

Every classical first-order structure can be considered as a metric structure. We
take the discrete metric on the elements of the structure, and modulus of continuity
D(ε) = ε. As usual, it is very easy to be continuous in a discrete topology. As a
technicality, we consider the natural continuous versions of first-order formulas.

Definition 2.6.7. Let L be a classical first-order signature, and ϕ(x̄) an L-
formula. We define a continuous first-order formula ϕ̃ by induction on the form of
ϕ.

(1) If P is a relation symbol of L and ϕ(x̄) is of the form P (t1(x̄), t2(x̄), . . . , tn(x̄)),
for L-terms ti, then ϕ̃(x) is ϕ(x).

(2) If ϕ(x̄) is of the form t1(x̄) = t2(x̄), then ϕ̃(x̄) is d (t1(x̄), t2(x̄)).

(3) If ϕ(x̄) is of the form ¬ψ(x̄), then ϕ̃(x̄) is 1 .− ψ̃(x̄).

(4) If ϕ(x̄) is of the form (ψ1 ∧ ψ2)(x̄), then ϕ̃(x̄) is max
{
ψ̃1(x̄), ψ̃2(x̄)

}
.

(5) If ϕ(x̄) is of the form ∃yψ(x̄, y), then ϕ̃(x̄) is inf
y
ψ̃(x̄, y).

This transformation preserves truth values in the following sense.

Lemma 2.6.8. Let M be a classical first-order L-structure, with ā ∈ M, and
ϕ(x̄) an L-formula. Then if M |= ϕ(ā), then ϕ̃(ā)M = 0.

The truth preservation also works at the scale of structures.

Proposition 2.6.9 ([222]). LetM,N be a classical first-order structure. Then
if M ≡ N as classical first-order structures, then M ≡ N as discrete metric
structures.

Proof. We may assume without loss of generality that N � M as classical
structures. Now we may show by induction on a CFO formula ϕ that there is only
a finite set R ⊆ [0, 1] of values it may have on the classical structureM. Moreover,
for any r ∈ R, there is a classical formula ψr such that ϕ(ā) has value r on a
classical structure A if and only if A |= ψ(ā). From this, the result follows. �

Definability of elements is understood in metric structures in the sense of ap-
proximation.

Definition 2.6.10. Let M be a metric structure, A ⊆ M, and b ∈ M. We
say that b is definable over A if and only if there is a sequence (ān : n ∈ N) and
a sequence of CFO formulas ϕn such that the sequence (M (ϕn(x, ān)) : n ∈ N)
converges to d(x, b).
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2.6.2. Some Metric Structures. Now let H be a Hilbert space with inner
product 〈·, ·〉. We treat H as a many-sorted structure where the sorts are balls of in-
creasing radius, and where the signature includes function symbolsfor the inclusions
among these balls, scaling, addition, subtraction, and the inner product.

In this signature, we can formulate continuous first-order formulas which have
value zero if and only if the structure satisfies the axioms (other than completeness)
of a Hilbert space. For instance, the axiom that

∀x∀y 〈x, y〉 = 〈y, x〉

can be written as

sup
x

sup
y
〈x, y〉 .− 〈y, x〉

sup
x

sup
y
〈y, x〉 .− 〈x, y〉.

We interpret distance on this structure in the usual way, by d(x, y) =
√
〈x− y, x− y〉.

At this point, a CFO structure in which all of the relevant axioms evaluate to zero
will also be a complete metric space, and so will be a Hilbert space. We could also
axiomatize infinite dimension by requiring, for each n, the condition

inf
x1,...,xn

max
1≤i,j≤n

|〉xi, xj〉 − δij | .

The CFO theory of infinite-dimensional Hilbert spaces is κ-categorical for every
infinite cardinal κ.

Returning to the original quesiton, we sketch the stability theory on Hilbert
spaces. A (complete) n-type p over a set A is a set of CFO formulas in free variables
x1, . . . , xn, with parameters from A, such that there is some structureM and some
n-tuple b̄ such that p is the set of all formulas whose value in M on b̄ is zero. The
set of all such types we denote by Sn(A).

For a theory T and set A, let MS be a model of T realizing every type in
Sn(A) for every n. Now the metric d on MS induces a natural metric on Sn(A)
in the following way. For any p, q ∈ Sn(A), and for tuples b̄, c̄ realizing p and q
respectively, we set d(p, q, b̄, c̄) to be the maximum of d(bi, ci) as i ranges from 1 to
n. We define d(p, q) = inf

b̄,c̄
d(p, q, b̄, c̄).

Definition 2.6.11. Let T be a CFO theory. We say that T is λ-stable if for any
M |= T and any set A with cardinality at most λ, there is a d-dense set D ⊆ S1(A)
with cardinality at most λ.

From this perspective, the following result shows that the transition to contin-
uous logic has resolved the difficulty with which the present section started.

Proposition 2.6.12 ([61]). The CFO theory of infinite-dimensional Hilbert
spaces is ω-stable.

One can also observe that the notion of stability here does generalize stability
for classical first-order structures. As we have seen, any first-order theory can be
viewed as a continuous first-order theory, and its models viewed as metric struc-
tures, by giving the structures the discrete metric.

Theorem 2.6.13. If T is a classical theory, then T is stable iff T is stable as
a discrete metric theory.
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Up to this point in the exposition, the connection of continuous first-order logic
and metric structures to probability may seem distant, or, at most, contrived. The
next example, however, will begin to show the applicability. Let (Ω,B, P ) be a
probability space. We say that S ∈ B is an atom if it has positive measure and no
subset has properly smaller nonzero measure. Further assume that (Ω,B, P ) has
no atoms (that is, it is atomless).

Let B̂ be the quotient of B by the equivalence relation that makes A1 and A2

equivalent if and only if they have symmetric difference of measure zero. We can
then consider a metric structure with universe B̂, with metric given by d(A1, A2) =
P (A14A2), and with functions ∩,∪, complement, and a predicate for P . This
structure satisfies the axioms of Boolean algebras, the Kolmogorov axioms for P ,
and the additional axiom

sup
x

sup
y
|d(x, y)− P (x4y)| .

Moreover, because Ω is atomless, the structure also satisfies the axiom

sup
x

inf
y
|P (x ∩ y)− P (x ∩ yc)| .

Conversely, any metric structure satisfying all of these axioms arises from an atom-
less probability space in this way.

Proposition 2.6.14 ([61]). Let M1,M2 be separable models of the axioms of
atomless probability algebras as above. Then M1

∼=M2.

This result is proved by a routine back-and-forth argument. Ben Yaacov [58]
proved that in a sufficiently saturated, sufficiently homogeneous atomless probabil-
ity algebra, tp(ā/C) = tp(b̄/C) if and only if for every function u : B̂n → B̂ mapping
x̄ to an intersection of literals of x̄, we have P (u(ā)|C) = P

(
u(b̄)|C

)
.

With this in mind, we can show the following.

Theorem 2.6.15 ([61]). The CFO theory of atomless probability algebras is
ω-stable.

Proof. Let U be a large saturated model, and let (XM,BM, PM) be the
corresponding probability space. Let C ⊆ M be a countable set, closed under
Boolean combinations, and let C be a countable Boolean algebra of subsets of XM

corresponding to C.
We describe a dense set of 1-types over C. Let F be the set of types of form

tp(a/C) where P (a|〈C〉) is an integrable step function on (X, C, P ). �

An important element in modern probability is the theory of measure-preserving
functions on probability spaces. We formalize this in the following way. An au-
tomorphism of the probability space (X,B, P ) consists of an invertible measure-
preserving transformation Φ : C1 → C2, where Ci ∈ B with P (Ci) = 1. Such a map

induces a map Φ̂ : B̂ → B̂ preserving both the measure and the algebra structure.
For any atomless probability algebra A and any automorphism τ induced by

an automorphism of the probability space, the following formulas will have value 0.

(1) sup
x
|P (x)− P (τ(x))|

(2) sup
x

inf
y
|P (x4y)|

(3) sup
x

sup
y
|P (τ(x ∪ y)4 (τ(x) ∪ τ(y)))|
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(4) sup
x

sup
y
|P (τ(x ∩ y)4 (τ(x) ∩ τ(y)))|

We add the following condition: an automorphism τ of probability spaces is
said to be aperiodic if and only if for every n ∈ N and every y ∈ B, we have
P (y ∩ τn(y)) = 0. Rokhlin’s lemma allows this to be translated to a condition
on automorphisms of a probability algebra. This condition, as a CFO formula, is
written

inf
y

max

{∣∣∣∣ 1n − P (y)

∣∣∣∣ , P (y ∩ τ i(y)
)

: i ≤ n
}

for each n ≥ 1. The theory of atomless probability algebras with an aperiodic
automorphism is complete.

Theorem 2.6.16 ([61]). The CFO theory of atomless probability algebras with
a generic automorphism is stable, but not ω-stable.

2.7. Continuous First Order Logic as a Generalization

To a great extent, many of the systems described here can be expressed in
continuous first-order logic. We have already seen that the ω-stable theory of
atomless probability algebras includes the Kolmogorov axioms as CFO formulas.

Toward formulating Gaifman’s measure models, let (U, µ) be a measure model
in signature L. We will construct a metric structure in a metric signature L′,
using a technique that will be developed further in Section 6.2. The structure will
have one sort, and B. For each first-order L-sentence ϕ, we will have an constant
symbol JϕK ∈ B. We will also have a unary predicate P , and function symbols for
the classical Boolean connectives on B, and Boolean operations on B, and a metric
on B.

We arrange that for all quantifier-free ϕ, we have P (JϕK) = µ(ϕ). We will also
axiomatize (hopefully the formalism is familiar by now) that every element x ∈ B
has some ϕx such that P (x4JϕxK) = 0 and that the Boolean connectives in B
correspond to Boolean connectives in L. Further, we require that

P (∃xϕ(x)) = sup
ā⊆U

{
P

(
n∧
i=1

ϕ(ai)

)}
.

We define a metric on B, as usual, by the P -measure of the symmetric difference.
Gaifman does not seem to have defined a notion of morphism of measure mod-

els, but it seems reasonable that a homomorphism f : (U1, µ1) → (U2, µ2) would
be a function f : U1 → U2 that respects the measure of quantifier-free formulas.
Under this definition, the morphisms of measure models would exactly correspond
to the morphisms of the metric structures representing them.

It seems difficulty to believe that the reverse interpretability could be true: that
there is a uniform transformation from metric structures to measure models such
that the morphisms of the metric structures correspond exactly to the morphisms
of the measure models. Probabilistic argumentation systems could be encoded as
metric structures in much the same way, with the prospects of a reverse encoding
even more daunting.

The same technique used to create metric structures to encode measure models
also give metric structures for structures in approximate measure logic. This pair
is interesting, because a significant fragment of type theory and stability has been
worked out in both approximate measure logic and continuous first order logic. It
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seems unknown at present to what extent these agree: Do the types of the CFO
theory correspond to those of the AML theory? Are forking, dividing, and stability
conserved?

The challenge to incorporate Bayesian networks into metric structures arises
from their hybrid nature — the underlying probability space and the events on it are
continuous, while the graph structure is discrete. To address this, let (Ω,B, P ) be a
probability space, and let G be a Bayesian network of P . Let A be the probability
algebra (atomless or not) corresponding to (Ω,B, P ). We add another sort V of

vertices with a discrete metric, along with a function ν : B̂ → V , which we will
prescribe to be a bijection, and a symmetric irreflexive binary relation on V . In
this signature, we can, excepting probability zero events, write CFO specifications
for P

(
ν−1(x)|ν−1(y1, . . . , yn)

)
. In this way, all necessary data about a Bayesian

network is encoded in a metric structure.
In the other direction, we recall the use of Bayesian networks to compute infer-

ence in probabilistic argumentation systems, so that Bayesian networks can encode
at least any metric structure arising as a representation of a probabilistic argumen-
tation system.

Despite the obvious similarities, continuous first-order logic does not appear to
generalize the logic of adapted spaces in an immediately meaningful way. Certainly
there are bounded continuous functions which are not uniformly continuous. Likely
some interesting cases on bounded adapted spaces can be formalized in continous
first-order logic, but this does not seem to have been explored in the literature.
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countable, 220
finite, 220

hyperfinite, 220
projectively separable, 238

treeable, 238
ergodic, 51, 145, 166, 229

generically, 230

properly, 173
with respect to equivalence relation, 230

Ergodic Theorem
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Birkhoff, 146

ergodic theorem

Birkhoff, 51, 226, 229
Kingman, 226

mean, 8

pointwise, 175, 176
estimator, 151

exchangeable, 7, 6–9

expander, 95, 107, 107
expectation

conditional, 7

Fatou set, 211

field

perfect, 119
pseudo algebraically closed, 119

pseudofinite, 121

valued, 208
Finite State Automaton, 41

finite-state compressor, 45

flow, 164
disjoint, 232

minimal, 243
universal minimal, 165, 242

Ford-Fulkerson algorithm, 138

Fräıssé limit, 114, 143, 167, 243–244

Galois group, 119, 168

Galton-Watson process, 134

Hausdorff dimension of, 62
game

Ehrenfeucht-Fräıssé, 26, 116–118
game semantics, 89

games, 89

semantics, see also game semantics
generically computable, 94

at density r, 97

geometries, 127
giant component, 147

gradient descent, 191

grammar, 184
graph

Cayley, 171, 225

definable, 142
expander, 225
Henson, 142, 144, 244
Henson graph, 115
random, see also random graph

signed, 139
triangle-free, 115

graph parameter, 139, 140
graphon, 142, 139–142, 144, 150
group

Abelian, 207, 208

amenable, 220–226, 232
definable, 122
extremely amenable, 244

finitely generated, 219
free, 177, 220, 221

Lie, 171–173

of Lie type, 124

pseudofinite, 124, 208

random, 170

root, 125

SDS, 174

torsion-free Abelian, 236–237

halting problem, 228

height function, 161

hereditary property, 242

Hilbert space, 29, 33–34

Hindman’s theorem, 134

homogeneous, 146

Horn formula, 18

Hrushovski fusion, 130

hyperbolic, 212

hyperfinite

measure, 238

hypergraphon, 151

incompressibility, 49–50

independence property, see also NIP, 205

Independence relation, 18

Information Bottleneck, 194

invariant random subgroup, 171, 224

irrational number, 110

isomorphism problem, 91

isomrophism problem, 85

Jansenist controversey, 3, 30

joint embedding property, 242

Julia set, 211

Keisler measure, see also measure, Keisler

Keynes, John Maynard, 5

Kolmogorov complexity, 197

conditional, 47

plain, 47

prefix-free, 49, 63

Kolmogorov Extension Theorem, 145

Kolmogorov, Andrey, 5

Kolmogorov-Loveland stochastic, see also
sochastic, Kolmogorov-Loveland60

Löwenheim-Skolem theorem, 29

language

E- vs. I-, 184

language learning, 184–189

lattice, 170, 171

learning

deep, 193

explanatory, 186

InfTxtEx, 187

language, 4

Occam, 197

online, 209

PAC, 187, 190, 189–191, 195, 202–203,

208, 209
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TxtBC, 201

TxtBc, 188

TxtBCa, 188
TxtEx, 186, 201

TxtEx∗, 201

TxtExω , 188
TxtExa, 188

TxtFin, 187, 201

left-c.e. real number, 76
Lie coordinatizeable, 128

linear separator, 191

Liouville, 247
locking sequence, 186

logic action, 142, 145, 164, 215, 231
universal, 214

logic topology, 142, 214

logistic regression, 192
Lovász Local Lemma, 131

Markov network, 19

Markov-Chebyshev inequality, 79, 133
Martin-Löf null, 50

Martin-Löf random, 50
Martin-Löf test, 50

martingale, 25, 52

success, 53
martingale indicator, 52

martingale process, 53

measure, 5–9, 77, 82
ergodic, 219

generalized Bernoulli, 60

Glasner-Weiss, 166
Haar, 168, 171, 229

Haar-compatible, 169

Hausdorff outer, 61
invariant, 115, 142, 142–147

Keisler, 130, 207, 207
Lebesgue, 169

smooth, 217

Wiener, 68
measure model, 36

measure models, 14–16, 145

metric space, 211
metric structure, 29

Millar-Rabin test, 74
Miller-Rabin test, 78
moments, 8
mutual information, 48–49

network, 107

gene regulatory, 178

neural, 193–194
probabilistic boolean, 180

social, 107
NIP, 111, 125, 159, 193, 205, 205–209
normal, 41, 39–47, 247

absolutely, 247
absolutely normal, 44
simply, 41

o-minimal, 207, 208
order class, 242

oscillation

complex, 247, 248
overfitting, 194

parabolic, 212
Pascal, Blaise, 4

perceptron, 193

permanent, 86
phase transitions, 147

Polish Space, 214

polynomial hierarchy, 72, 86
Post’s problem, 163

Poulsen simplex, 176

preferential attachment, see also random
graph, preferential attachment

prefix-free machine, 77
probabilistic argumentation system, 16, 22

probabilistic method, 107, 132

probabilistic strategy, 54, 54–56
probability algebra, 34–35

probability model, 15

Probability space, 5
proof, 71, 84

interactive, 85

pseudocompact structure, 154
pseudofinite

field, see also field, pseudofinite

pseudofinite group, see also group,
pseudofinite

pseudofinite structure, 126, 154, 157

pseudorandom, 83, 83
purity, 160

Ramsey degree, 244
Ramsey number, 132

random

Kurtz, 169
pseudo-, see also pseudorandom

Schnorr, 169

string random, 160
random bits, 75, 83

random graph, 122, see also graphon, 147,
177

automorphisms, 244

construction, 106
duplication, 108

model, 137, 140

model, countable, 138, 140
preferential attachment, 107

process, 106

random hypergraph, 122–124, 244
random walk, 95

randomization, 154, 152–159

randomized Turing machine, see also
Turing machine, randomized

randomizer, 167
Randomness deficiency, 47
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randomness deficiency, 47–48

rank

dp, 206

rational actor, 6

reachability problem, 228

real

computable, 227

reducibility

measure, 237

resampling, 182

resamplings, 133

robust chain, 129

root group, see also group, root

root predicate, 168

samplable, see also structure, samplable

sampling, 181

Schnorr random, 58

semantics

game, 248

sentence

pithy, 144

Sierpiński carpet, 62

simplex algorithm, 91

simulation, 151

soundness, 32

stable, 34, 111, 159, 206

stochastic

Church, 59

Kolmogorov-Loveland, 60, 60–61

von Mises-Wald-Church, 59

stochastic process, 24

strict order property, 206

structure

Borel, 143, 145

measurable, 130

non-redundant, 151

samplable, 143

subflow, 164

success, 53

Syracuse Problem, see also Collatz

Conjecture

Szemeredi Regularity Lemma, 130, 142

Tarski-Vaught test, 29

theory

randomization, 152–159

transversal, 241

turbulent, 231, 231–232

Turing machine

probabilistic, see also Turing machine,

randomized

randomized, 75

Turing machines

randomized, 78

types, 143

Ulam Conjecutre, see also Collatz
Conjecture

ultrafilter, 119

ultrahomogeneous, 115

ultraproduct, 119, 130
uniform distribution modulo 1, 46

Urysohn space, 244

Vaught Conjecture, 215

VC dimension, see also dimension,

Vapnik-Chervonenkis
verifier, 71, 84

von Mises-Wald-Church stochastic, see also

stochastic,von Mises-Wald-Church

wandering, 211

weak 2-random, 102
weak n-random, 57

Wiener process, see also brownian motion

word problem, 91, 91–95, 99, 242


