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Abstract. Infectious diseases may have multiple infectious stages with very different epi-
demiological attributes, including infectivity and disease progression. These stages are often
assumed to have exponentially distributed durations in epidemiological models. However,
models that use the exponential distribution assumption (EDA) may generate biased and
even misleading results in some cases. This discrepancy is particularly damaging if the mod-
els are employed to assist policy-makers in disease control and interventions. This paper
studies a mathematical model that includes multiple infectious stages and general distribu-
tions for the stage durations (with the exponential distribution as a special case). Formulas
for the control reproductive number, Rc, and the basic reproductive number, R0, are de-
rived, which can be conveniently applied to models in which specific stage distributions are
assumed. It is also shown that the disease dynamics are determined by the reproductive
numbers.
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1 Introduction

One of the most common assumptions used in epidemiological models is that the disease
stages are exponentially distributed. That is, the probability that an individual will remain
in a disease stage s time units after entering the stage is described by an exponential function
of the form e−θs, where θ > 0 is a constant with 1/θ representing the mean period of staying
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in the stage (see [6] for a more detailed discussion on disease stage distributions). This
amounts to assuming that an individual transfers from one stage to the next at a constant
per capita rate and, consequently, the disease transmission process can be modeled using
ordinary differential equations. Although the exponential distribution assumption (EDA) is
very helpful to simplify the models and often provides a good approximation, it has been
shown that in some cases, models that use this assumption may produce misleading results
in assessing the effectiveness of various disease control strategies [1]. The influence of the
EDA in epidemiological models and the need to use more realistic distributions have also
been studied by other researchers (see, for example, [3, 4, 5, 7]).

The model considered in this paper is an extension of a model studied in [1], which is an
SEIR model with quarantine, isolation, and arbitrary distributions for the disease stages.
The standard SEIR model has the form:

dS/dt = µN − βS I
N
− µS,

dE/dt = βS I
N
− (α + µ)E,

dI/dt = αE − (δ + µ)I,

dR/dt = δI − µR.

(1.1)

The variables S (susceptible), E (exposed but not infectious), I (infectious), and R (recov-
ered) represent the numbers of individuals in the respective classes, and N = S + E + I + R
is the total population size. The parameters α and δ are the rates at which an individual
leaves the E and I classes, respectively. The per-capita birth and natural death rates are
equal denoted by µ, and β is the disease transmission rate.

µN- S
βI/N- E

α- I
δ- R

µ µ µ µ
?? ? ?

Fig.1 Disease transmission diagram for the SEIR model.

Several assumptions are made in Model (1.1). For the purpose of this paper, we will
focus on two of them. First, there are two disease classes, E and I. Only individuals in the
I class can transmit the disease, and all individuals in I have the same infectivity, which
is represented by the infection rate β. Second, the disease durations of the E and I stages
are exponentially distributed with the mean latent period 1/α and the mean infectious
period 1/δ, respectively. Other assumptions include the following. (i) The population is
homogeneous and the population size is large enough so that the force of infection takes the
standard incidence from, βSI/N . (ii) The disease is not vital so that the disease-induced
death rate is ignored (for example, childhood diseases such as chickenpox, scarlet fever, or
mild strains of influenza). (iii) The population size remains constant for all time so that the
per capita birth rate and per capita death rate are equal. (iv) The immunity obtained after
recovering from the infection is permanent.
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In some diseases, an infectious individual may have very different infectivities at various
disease stages due to the difference in viral load and/or activity level (e.g., HIV, TB, SARS),
which may also lead to the variation in disease progression. This may have important
implications for the questions to be considered using mathematical models, especially when
the infectious period is long. For such diseases, the study of questions associated with
disease intervention (e.g., treatment, isolation, etc.), it may be more appropriate to divide
the single infectious stage I, as in Model (1.1), into multiple infectious stages so that different
parameter values may be assigned to different stages. This is the main focus of this paper.

In this paper, we extend the model in [1] by including two infectious stages. Both
quarantine and isolation are considered and a general distribution is assumed for each of the
disease stages. Using the model, we derive an expression for the control reproductive number,
Rc, which reduces to the usual basic reproductive number, R0, when control measures are
absent. These formulas can be quite useful as they are obtained for arbitrary distributions of
the disease stages. When specific stage distributions are determined for a given disease, the
formulas for Rc and R0 can be obtained by replacing the general distributions by specific
ones. This is illustrated in an example in Section 3.2. We also show that Rc = 1 provides a
threshold condition for determining whether or not the disease will die out.

2 The model

When quarantine and isolation are considered as measures for disease control, two additional
classes, Q (Quarantine) and H (Hospitalization or isolation), can be introduced to the SEIR
model, as was done in [1]. It is assumed that an individual in E can be quarantined and
an individual in I isolated according to certain distributions. The current model in this
paper introduces two sub-classes, I1 and I2, of the infectious class I, and two corresponding
sub-classes, H1 and H2, of the H class. An example of such disease is influenza. The
first infectious class, I1, may represent the prodrome phase, while the second class, I2, may
represent the acute respiratory phase. These two stages have several important differences.
For example, the average durations for these two stages are 4 and 8 days, respectively, and
the infectivity at the respiratory phase is much higher than that in the prodrome phase. In
addition, the probability of an individual in the I2 stage seeking medical care is much higher
that those in the I1 stage. In our model, we assume that the stage durations for I1 and I2 can
have different distributions, and the probabilities of being isolated from the two sub-stages
can be different. The corresponding disease transmission diagram is shown in Fig. 2, in which
the transition rates are described by general stage distribution functions whose definitions
are given below. The birth and death rates are omitted in the diagram but are included in
the model. As the focus of this model is on the role of arbitrarily distributed distributions
of the disease stages, the per capita rates for birth and natural death are assumed to be
constant, µ (i.e., the survival from natural death is given by an exponential function).
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S
λ(t)- E

−ṖE- I1
−ṖI1- I2

−ṖI2- R

Q
−ṖE- H1

−ṖI1- H2
−ṖI2

6−K̇E −K̇I1 −K̇I2

? ? ?

Fig. 2 Transmission diagram for two infectious stages and general stage distributions.

As in [1], let PE, PI1 , PI2 describe the durations of stages E, I1 and I2, respectively. That
is, Pi(s) (i = E, I1, I2) gives the probability of being still in the same stage at stage age s.
These functions satisfy the properties

Pi(0) = 1, Ṗi(s) ≤ 0,

∫ ∞

0

Pi(s)ds < ∞, i = E, I1, I2. (2.2)

A special case of (2.2) is when PE, PI1 , PI2 are all exponential distributions, for example,

PE(s) = e−αs, PI1(s) = e−δ1s, PI2(s) = e−δ2s. (2.3)

In this case, the constants α, δ1 and δ2 represent the respective rates at which individuals
move to the respective next stage (E → I1 → I2 → R), and the mean durations in these
stages are 1/α, 1/δ1 and 1/δ2, respectively.

Let KE(s), KI1(s), KI2(s) denote the probabilities of not being quarantined or isolated at
stage age s from stages E, I1, I2, respectively. Then

K̄i(s) = 1−Ki(s), i = E, I1, I2

gives the probability of being quarantined or isolated from stage i.
Following the transition diagram in Fig. 2, the number of individuals who became exposed

at some time s ∈ (0, t) and are still alive and in the E class at time t is given by

E(t) =

∫ t

0

λ(s)S(s)PE(t− s)KE(t− s)e−µ(t−s)ds + E0(t),

where λ(s) is the force of infection (to be given), and E0(t) denotes individuals initially
exposed who have moved into the E class and are still alive at time t. Differentiating the
above equation,

E ′(t) =

∫ t

0

λ(s)S(s)ṖE(t− s)KE(t− s)e−µ(t−s)ds

+

∫ t

0

λ(s)S(s)PE(t− s)K̇E(t− s)e−µ(t−s)ds + λ(t)S(t)− µE(t) + E ′
0(t)

The first and the second terms provide inputs for the I1 and the Q equations, respectively.
If an individual has entered the I1 stage then the probability that the person is still in the I1
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stage s time unite later is PI1(s)KI1(s), i.e., neither of the following has happened at stage
age s: 1) has progressed to the next disease stage, in which case the person would enter the
I2 stage; and 2) has been isolated, in which case the person would enter the H1 stage.

Following the above arguments and using the same approach as in [1], we can derive
equations for other variables and obtain the following model

S =

∫ t

0

µNe−µ(t−s)ds−
∫ t

0

λ(s)S(s)e−µ(t−s)ds + S0e
−µt,

E =

∫ t

0

λ(s)S(s)PE(t− s)KE(t− s)e−µ(t−s)ds + E0(t),

Q =

∫ t

0

λ(s)S(s)PE(t− s)K̄E(t− s)e−µ(t−s)ds + Q0(t),

I1 =

∫ t

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)KE(τ − s)]PI1(t− τ)KI1(t− τ)e−µ(t−s)dsdτ + I10(t),

H1 =

∫ t

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)KE(τ − s)]PI1(t− τ)K̄I1(t− τ)e−µ(t−s)dsdτ+
∫ t

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)K̄E(τ − s)]PI1(t− τ)e−µ(t−s)dsdτ + H10(t),

I2 =

∫ t

0

∫ u

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)KE(τ − s)][−ṖI1(u− τ)KI1(u− τ)]

×PI2(t− u)KI2(t− u)e−µ(t−s)dsdτdu + I20(t),

H2 =

∫ t

0

∫ u

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)KE(τ − s)][−ṖI1(u− τ)KI1(u− τ)]

×PI2(t− u)K̄I2(t− u)e−µ(t−s)dsdτdu

+

∫ t

0

∫ u

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)K̄E(τ − s)][−ṖI1(u− τ)]

×PI2(t− u)e−µ(t−s)dsdτdu

+

∫ t

0

∫ u

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)KE(τ − s)][−ṖI1(u− τ)K̄I1(u− τ)]

×PI2(t− u)e−µ(t−s)dsdτdu + H20(t),

R =

∫ t

0

∫ u

0

∫ τ

0

λ(s)S(s)[−ṖE(τ − s)][−ṖI1(u− τ)][1− PI2(t− u)]e−µ(t−s)dsdτdu,

(2.4)
where N = S + E + Q +

∑2
i=1(Ii + Hi) + R and λ(t) is the force of infection given by

λ(t) =
1

N

[
βE(E + (1− ρEQ)) +

2∑
i=1

βi(Ii + (1− ρi)Hi)

]
. (2.5)

Clearly, the contributions to λ(t) may come from all disease related variables: E, Q, Ii and
Hi (i = 1, 2), with possibly different transmission rates (βE and βi for i = 1, 2) and different
reduction in infectivity due to quarantine (ρE) and isolation (ρi, i = 1, 2). Here, we allow
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individuals in the E class to also be able to transmit the disease, possibly at a reduced
rate (i.e., βE ≤ βi, i = 1, 2). Of course, such transmission will not occur when βE = 0.
The constant ρE (0 ≤ ρE ≤ 1) represents the reduction in transmission from quarantine
individuals (Q), in comparison with non-quarantined (E). Similarly, ρi (i = 1, 2, 0 ≤ ρi ≤ 1)
is a measure for the efficiency of isolation, which reflects the difference in the transmission
rates between isolated individuals (Hi) and non-isolated (Ii). S0 is a constant and the term
X0(t) (X = E, Q, I1, etc.) at the end of the equations account for individuals who were
present initially (may be in a different class), and X0(t) → 0 as t → ∞. All variables and
parameters are listed in Table 1. We remark that, as illustrated in [1], the above system (2.4)
reduces to a system of ordinary differential equations when Pi(s) (i = E, I1, I2) are either
exponential or gamma distributions, with Ki(s) (i = E, I1, I2) being exponential functions.

To show that the model (2.4) is well-posed, we only need to show that S(t) and λ(t)
remain nonnegative for all t > 0 for positive initial conditions (as the parameter functions
satisfy 0 ≤ Pi ≤ 1, 0 ≤ Ki ≤ 1, and Ṗi ≤ 0 for i = E, I1, I2). Let S(0) > 0 and λ(0) > 0.
Suppose that t̂ is the time at which S(t̂) = 0 with

S(t) > 0, λ(t) > 0 for all 0 < t < t̂.

Then, from the equations in (2.4) we know that E(t̂) > 0, Q(t̂) > 0, Ii(t̂) > 0, Hi(t̂) > 0
(i = I1, I2). Hence, N(t̂) > 0. Differentiating the S equation in (2.4) we get

dS/dt = µN − µS − λS,

from which we know that dS(t̂)/dt = µN(t̂) > 0. It follows that S(t) will remain nonnegative
for all t > 0. Now suppose that t̃ is the time at which λ(t̃) = 0 with

S(t) > 0, λ(t) > 0 for all 0 < t < t̃.

This implies that E(t̃) > 0, Q(t̃) > 0, Ii(t̃) > 0, Hi(t̃) > 0 (i = I1, I2). Since at least one
of transmission rates, βE and βi (i = 1, 2), is not zero, we know from (2.5) that λ(t̃) > 0.
This contradicts to λ(t̃) = 0. Thus, λ(t) > 0 for all t > 0. It follows that the model (2.4) is
well-posed.

3 Analysis of the model

In this section, the equilibria of (2.4) and their stability are studied. The threshold condition
for the stability of the disease-free equilibrium can be used to derive the control reproductive
number Rc and the basic reproductive number R0.

3.1 Equilibria and stability

The system of integral equations (2.4) can have up to two equilibria. One is the disease-free
equilibrium

U = (S,E, Q, I1, H1, I2, H2) = (N, 0, 0, 0, 0, 0, 0),
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Table 1: Definitions of frequently used symbols

Symbol Definition (i = E, I1, I2)
S(t) Number of susceptible individuals at time t
E(t) Number of exposed individuals at time t
Q(t) Number of quarantined (exposed) individuals at time t
I1(t), I2(t) Number of infectious individuals at time t
H1(t), H2(t) Number of hospitalized (or isolated) infectious individuals at time t
R(t) Number of recovered individuals at time t
N Total population size (constant)
λ(t) Force of infection at time t
β, βi Transmission coefficient
α Per capita rate at which latent individuals become infectious under the EDA
δ1, δ2 Per capita rates of leaving the infectious stages 1 and 2 under the EDA
µ Per capita natural death rate
ρi Efficiency of quarantine and isolation (0 ≤ ρi ≤ 1)
Pi(s) Probability that disease stage i lasts longer than s time units
Ki(s) Probability of not being quarantined or isolated at stage age s

Ti Probability of surviving stage i and entering next stage:

∫ ∞

0

[−Ṗi(s)]e
−µsdt

Ti Quarantine- or isolation-adjusted probability (similar to Ti):∫ ∞

0

[−Ṗi(s)Ki(s)]e
−µsdt

Di Mean duration of stage i (adjusted by death):

∫ ∞

0

Pi(s)e
−µsdt

Di Quarantine- or isolation-adjusted mean duration of stage i:∫ ∞

0

Pi(s)Ki(s)e
−µsdt

R0 The basic reproductive number
Rc The reproductive number under control measures
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which always exists. The other one is the endemic equilibrium which exists only under
certain conditions as shown later in this section.

To study the stability of U , we introduce the following notation for ease of presentation:

a1(s) = e−µsPE(s)KE(s), a2(s) = e−µsPE(s)K̄E(s), a3(s) = e−µs

∫ s

0

[−ṖE(s − τ)KE(s −

τ)]PI1(τ)KI1(τ)dτ,

a4(s) = e−µs

∫ s

0

[−ṖE(s− τ)KE(s− τ)]PI1(τ)K̄I1(τ)dτ,

a5(s) = e−µs

∫ s

0

[−ṖE(s− τ)K̄E(s− τ)]PI1(τ)dτ,

a6(s) = e−µs

∫ s

0

∫ s−u

0

[−ṖE(s− τ − u)KE(s− τ − u)][−ṖI1(τ)KI1(τ)]PI2(u)KI2(u)dτdu,

a7(s) = e−µs

∫ s

0

∫ s−u

0

[−ṖE(s− τ − u)KE(s− τ − u)][−ṖI1(τ)KI1(τ)]PI2(u)K̄I2(u)dτdu,

a8(s) = e−µs

∫ s

0

∫ s−u

0

[−ṖE(s− τ − u)KE(s− τ − u)][−ṖI1(τ)K̄I1(τ)]PI2(u)dτdu,

a9(s) = e−µs

∫ s

0

∫ s−u

0

[−ṖE(s− τ − u)K̄E(s− τ − u)][−ṖI1(τ)]PI2(u)dτdu.

Recall that the X0(t) (X = S, E,Q, I1, etc.) terms go to zero as time increases, and
hence, can be ignored for the stability analysis. By interchanging the orders of integrations
we can rewrite the equations for E, Q, I1, H1, I2, H2 in (2.4) as

E =

∫ t

0

λ(s)S(s)a1(t− s)ds, Q =

∫ t

0

λ(s)S(s)a2(t− s)ds,

I1 =

∫ t

0

λ(s)S(s)a3(t− s)ds,

H1 =

∫ t

0

λ(s)S(s)(a4(t− s) + a5(t− s))ds,

I2 =

∫ t

0

λ(s)S(s)a6(t− s)ds,

H2 =

∫ t

0

λ(s)S(s)(a7(t− s) + a8(t− s) + a9(t− s))ds.

(3.6)

Let

Rc =

∫ ∞

0

A(s)ds, (3.7)

where

A(s) = βE

(
a1(s) + (1− ρE)a2(s)

)
+ β1

(
a3(s) + (1− ρ1)[a4(s) + a5(s)]

)

+β2

(
a6(s) + (1− ρ2)[a7(s) + a8(s) + a9(s)]

)
.

(3.8)

187



Y. Yang et al. Analysis of a model with multiple infectious stages

It turns out that this quantity, Rc, derived from mathematical analysis is actually the usual
reproductive number for the disease in the presence of control. In the current notation as
given by (3.7) and (3.8), the formula for Rc seems very complicated especially with the
long expressions of ai(s) (i = 1, · · · , 9). In the following section, we will provide another
formulation of Rc using biologically meaningful notations, which will make it more useful in
the discussion of disease control strategies.

As in most epidemiological models, the reproductive number Rc provides a threshold
quantity which determines the disease dynamics, as shown in the following result for the
global stability of the equilibrium U .

Theorem 1. The disease-free equilibrium U is a global attractor if Rc < 1.

A proof of this result can be found in the appendix. Result 1 implies that the disease
will die out under a control program for which Rc < 1. Another representation of Rc with
a more clear biological interpretation is given in Section 3.2.

To find an endemic equilibrium, we first use the ai(s) (i = 1, 2, · · · , 9) expressions to
rewrite λ(t) (see (2.5)) as

λ(t) =
1

N

∫ t

0

λ(s)S(s)A(t− s)ds, (3.9)

where the function A(s) is given in (3.8). Integrating the S equation in (2.4), we have

S(t) = N −
∫ t

0

λ(s)S(s)e−µ(t−s)ds. (3.10)

Observe that the two equations, (3.9) and (3.10), are independent of variables other than λ
and S (N is consistent). From the equations in (2.4) we see that all disease variables will go
to zero if λ(t) → 0 as t → ∞. Thus, the variable λ can be used to determine whether the
disease will die out or becomes endemic. This allows us to reduce the problem to the study
of the system of two equations involving only λ and S given in (3.9) and (3.10), respectively.

Let (S∗, λ∗) denote an endemic equilibrium (λ∗ > 0) of the (S, λ) system. Then S∗ and
λ∗ satisfy the equations

S∗ = N −
∫ ∞

0

λ∗S∗e−µsds,

λ∗ =
1

N

∫ ∞

0

λ∗S∗A(s)ds,

from which we can obtain the unique endemic equilibrium:

(S∗, λ∗) =
( N

Rc

, µ(Rc − 1)
)
.

Following the same arguments as in [1], we can prove the following result.

Theorem 2. If Rc > 1, then the unique endemic equilibrium (S∗, λ∗) exists and is locally
asymptotically stable. In this case, the disease-free equilibrium is unstable.
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We omit the proof of Result 2 as it is fairly similar to the proof for the same result in
[1]. Results 1 and 2 suggest that the quantity Rc can be very helpful for evaluating disease
control strategies.

3.2 The reproductive numbers Rc and R0

As shown in Section 3.1, the quantity Rc provides a threshold condition for disease control.
We now provide an interpretation of the quantity to show that Rc is indeed the reproductive
number for the disease in the presence of disease control.

Note that the integrals

TE =

∫ ∞

0

[−ṖE(s)]e−µsds, TI1 =

∫ ∞

0

[−ṖI1(s)]e
−µsds (3.11)

represent the probabilities that an individual survives natural death in the stages E and I1,
respectively, and enters the next stage (i.e., E → I1 → I2); whereas the integrals

TE =

∫ ∞

0

[−ṖE(s)KE(s)]e−µsds, TI1 =

∫ ∞

0

[−ṖI1(s)KI1(s)]e
−µsds (3.12)

represent the probabilities that an individual survives natural death and is not quarantined
or isolated in the stages E and I1, respectively, and enters the next stage (E → I1 → I2).
Let Di denote the mean duration that an individual stays in the stage i, and let Di denote
the control-adjusted (i.e., quarantine or isolation) mean duration that an individual stays in
the stage i (i = E, I1, I2). Then

DE =

∫ ∞

0

PE(s)e−µsds, DE =

∫ ∞

0

PE(s)KE(s)e−µsds,

DI1 =

∫ ∞

0

PI1(s)e
−µsds, DI1 =

∫ ∞

0

PI1(s)KI1(s)e
−µsds,

DI2 =

∫ ∞

0

PI2(s)e
−µsds, DI2 =

∫ ∞

0

PI2(s)KI2(s)e
−µsds.

(3.13)

Using the integrals in (3.11)–(3.13) and their biological meanings, we know that the
quantities

RE = βE

∫ ∞

0

a1(s)ds = βEDE,

RI1 = β1

∫ ∞

0

a3(s)ds = β1TEDI1 ,

RI2 = β2

∫ ∞

0

a6(s)ds = β2TETI1DI2

(3.14)

give the numbers of secondary infections by an individual in the E, I1 and I2 stages, respec-
tively, who did not become quarantined or isolated.
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Similarly, for an individual who is in H1 by isolation, and an individual who is in H2 by
isolation, and an individual who entered H2 from H1, the numbers of secondary infections
are given respectively by

RI1H1 = β1(1− ρ1)

∫ ∞

0

a4(s)ds = β1(1− ρ1)TE(DI1 −DI1),

RI2H2 = β2(1− ρ2)

∫ ∞

0

a7(s)ds = β2(1− ρ2)TETI1(DI2 −DI2),

RH1H2 = β2(1− ρ2)

∫ ∞

0

(a8(s) + a9(s))ds = β2(1− ρ2)(TETI1 − TETI1)DI2 .

(3.15)

Finally, for an individual in the Q class and an individual who entered H1 from Q, the
numbers of secondary infections are given respectively by

RQ = βE(1− ρE)

∫ ∞

0

a2(s)ds = βE(1− ρE)(DE −DE),

RQH1 = β1(1− ρ1)

∫ ∞

0

a5(s)ds = β1(1− ρ1)(TE − TE)DI1 .

(3.16)

Since Di ≥ Di and Ti ≥ Ti for i = E, I1, I2, we have Rj ≥ 0 for all j = E, Q, I1, I2, I1H1,
I2H2, H1H2. Then, the sum of these quantities gives the overall reproductive number, which
is exactly the quantity Rc given in (3.7). Thus, we can rewrite Rc as

Rc = RE +RQ +RI1 +RI2 +RQH1 +RI1H1 +RI2H2 +RH1H2 . (3.17)

It is clear that Rc is indeed the control reproductive number.
If control measures are absent, then Ki(s) = 1 for all s and i = E, I1, I2. In this case,

Di = Di and Ti = Ti for i = E, I1, I2. Hence, Rc reduces to the usual basic reproductive
number

R0 = βEDE + β1TEDI1 + β2TETI1DI2 . (3.18)

Next, we use an example to illustrate the use of the formulas for Rc andR0. The example
is for the case when the distributions Pi (i = E, I1, I2) are exponential.

Example. Let Pi be exponential distributions as given in (2.3) for i = E, I1, and I2. In
this case, the positive constants, α, δ1 and δ2, represent respectively the rates at which
individuals leave the E, I1 and I2 classes. Let the functions Ki (i = E, I1, I2) be given in the
forms: KE(s) = e−qs, KI1(s) = e−h1s, KI2(s) = e−h2s, where q, h1, h2 are positive constants
representing the rates of quarantine, isolation from I1, and isolation from I2, respectively. In
this case, the eight components of Rc, given in (3.14)–(3.16), can be written as the following:

RE =
βE

q + α + µ
, RQ =

βE(1− ρE)q

(α + µ)(q + α + µ)
, RQH1 =

β1(1− ρ1)αq

(α + µ)(q + α + µ)(δ1 + µ)
,

RI1 =
β1α

(q + α + µ)(h1 + δ1 + µ)
, RI2 =

β2αδ1

(q + α + µ)(h1 + δ1 + µ)(h2 + δ2 + µ)
,
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RI1H1 =
β1(1− ρ1)αh1

(q + α + µ)(h1 + δ1 + µ)(δ1 + µ)
,

RI2H2 =
β2(1− ρ2)αδ1h2

(q + α + µ)(h1 + δ1 + µ)(h2 + δ2 + µ)(δ2 + µ)
,

RH1H2 =
β2(1− ρ2)αδ1(qh1 + q(δ1 + µ) + h1(α + µ))

(q + α + µ)(h1 + δ1 + µ)(α + µ)(δ1 + µ)(δ2 + µ)
.

Substitution of the above expressions for Rj in (3.17) yields the expression of Rc. In the
absent of control, q = h1 = h2 = 0, and the basic reproductive number is

R0 =
βE

α + µ
+

β1α

(α + µ)(δ1 + µ)
+

β2αδ1

(α + µ)(δ1 + µ)(δ2 + µ)
.

Since the formula for Rc contains all the parameters representing disease control (χ, φi,
ρi, i = 1, 2), it can be used to explore the effect of the corresponding control measures in the
reduction of the reproductive number from R0. It is shown in [1] that models with exponen-
tially distributed disease durations may generate misleading results when used to compare
the effectiveness of control strategies. One way to improve the models is to replace the expo-
nential distribution by more realistic distributions, one of which is the gamma distribution.
We have considered in [2] the case when Pi (i = E, I1, I2) are gamma distributions.

4 Discussion

In this paper, we extended the model in [1] by including multiple infectious stages. The
current model allows the durations of disease stages to be arbitrarily distributed, which
includes the exponential distribution as a special case. The model also includes quarantine
and isolation for infected individuals so that it can be used for the study of disease control
strategies. The derivation of the reproductive number in the presence of disease control (Rc)
and in the absence of control (R0) provides formulas for general stage distributions. We
have also established that the disease will die out if and only if Rc < 1.

As the formulas for Rc and R0 in (3.17) and (3.18) are derived for arbitrarily distributed
stage durations, they provide immediate expressions of the reproductive numbers for models
in which specific stage distributions are known (exponential, gamma, etc.), as illustrated in
the example in Section 3.2.

5 Appendix

In this Appendix, we provide a proof of Result 1. First we notice that the X0 (X = S,E, Q, I1

etc.) terms in the equations in (2.4) can be ignored. Note also that the R equation in the
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system (2.4) can be rewritten as

R =

∫ t

0

∫ t−s

0

∫ t−s−u

0

λ(s)S(s)[−ṖE(t− s− u− τ)][−ṖI1(τ)][1− PI2(u)]dτduds.

Then using the above equation, together with the S equation in (2.4) and the equations in
(3.6) we can show that the total population N satisfies the equation

N(t) =

∫ t

0

µN(s)e−µ(t−s)ds, (5.19)

from which we get
dN/dt = −µN(t) + µN(t) = 0.

Thus, N remains constant for all t > 0. Then, using (2.5), (3.6), and S(t) ≤ N(t), we can
rewrite λ(t) as follows

λ(t) =
1

N

∫ t

0

λ(s)S(s)A(t− s)ds ≤
∫ t

0

λ(s)A(t− s)ds, (5.20)

where A(s) is given in (3.8). Notice that λ(t) is bounded by β = max{βE, β1, β2} on [0,∞).
Let λ∞ = limt→∞ Λ(t) with Λ(t) = sups≥t λ(s). Then, there exists a sequence tn → ∞ as
n → ∞, such that limn→∞ λ(tn) = λ∞. Assume that tn+1 − tn → ∞ as n → ∞ (otherwise
we can choose a subsequence). Then from (5.20) we have

λ(tn+1) ≤
∫ tn

0

λ(s)A(tn+1 − s)ds +

∫ tn+1

tn

λ(s)A(tn+1 − s)ds

≤ β

∫ tn+1

tn+1−tn

A(s)ds + Λ(tn)

∫ tn+1

tn

A(tn+1 − s)ds

≤ β

∫ tn+1

tn+1−tn

A(s)ds + Λ(tn)

∫ tn+1−tn

0

A(s)ds. (5.21)

From the convergence of
∫∞
0

A(s)ds, we know that the first integral in (5.21) goes to zero
as n → ∞, and hence the inequality (5.21) reduces to λ∞ ≤ λ∞Rc as n → ∞. Therefore,
if Rc < 1 then λ∞ = 0. That is, limt→∞ λ(t) = 0. Hence E(t), Q(t), I1(t), H1(t), I2(t) and
H2(t) converge to zero while S(t) goes to N as t goes to infinity. The global attractivity of
U is obtained.
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