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Abstract One of the fundamental goals of ecology is to examine how dispersal
affects the distribution and dynamics of insects across natural landscapes. These land-
scapes are frequently divided into patches of habitat embedded in a matrix of several
non-habitat regions, and dispersal behavior could vary within each landscape element
as well as the edges between elements. Reaction–diffusion models are a common
way of modeling dispersal and species interactions in such landscapes, but to apply
these models we also need methods of estimating the diffusion rate and any edge
behavior parameters. In this paper, we present a method of estimating the diffusion
rate using the mean occupancy time for a circular region. We also use mean occu-
pancy time to estimate a parameter (the crossing probability) that governs one type of
edge behavior often used in these models, a biased random walk. These new methods
have some advantages over other methods of estimating these parameters, including
reduced computational cost and ease of use in the field. They also provide a method
of estimating the diffusion rate for a particular location in space, compared to existing
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methods that represent averages over large areas. We further examine the statistical
properties of the new method through simulation, and discuss how mean occupancy
time could be estimated in field experiments.

Keywords Diffusion rate · Crossing probability · Edge behavior · Biased movement

Mathematics Subject Classification (2010) Primary 92B05 · 92D25; Secondary
92D40 · 92D50

1 Introduction

One of the fundamental goals of ecology is to determine how spatial complexity affects
the distribution and dynamics of populations, as well as interactions among species.
A number of studies clearly indicate that the movement and dispersal of insects may
depend critically on the spatial arrangement and composition of landscape elements
and the boundaries between them (Lawrence and Bach 1989; Roland et al. 2000;
Ricketts 2001; Ries and Debinski 2001; Ovaskainen 2004). For example, the plant-
hopper Prokelisia crocea inhabits a complex landscape composed of patches of its
host plant cordgrass (Spartina pectinata) embedded in a matrix of mudflat, other
native grasses, and the introduced grass smooth brome (Bromus inermis). Dispersal
rates vary radically between these different landscape elements, and these insects also
show differences in their movements for different boundary types. In particular, dis-
persal or diffusion rates for these insects are much higher on mudflat versus cordgrass
or brome, and they rarely emigrate across a cordgrass–mudflat boundary but exhibit
no such restraint for cordgrass–brome ones (Haynes and Cronin 2003, 2006; Reeve et
al. 2008). These differences in dispersal behavior are also reflected in the population
dynamics of this system. Patches of cordgrass surrounded by brome typically have
lower and more variable planthopper densities and populations that are very extinction
prone, relative to patches in mudflat (Cronin and Haynes 2004; Cronin 2007).

A common way to understand how such spatial complexity affects population
dynamics is through reaction–diffusion models, because this mathematical framework
can readily incorporate the movement of insects as well as species interactions (Karei-
va and Odell 1987; Cantrell and Cosner 2003; Okubo and Levin 2001). However, it can
be quite challenging to estimate the parameters for these models, especially for natural
systems where the landscape is a mosaic of different elements. The different landscape
elements could potentially have a different diffusion rates, dispersal behavior at edge
or boundaries could vary with boundary type, and spatial differences in mortality and
reproductive rates would also be expected. Estimates of all these parameters may be
needed to realistically model the dynamics of populations inhabiting such landscapes.

A number of estimation methods for the dispersal parameters in reaction–diffusion
models can be found in the literature. One method of estimating the diffusion rate is
to release a large number of marked individuals at a point in space, whose position is
then recorded over time across a grid of trapping or observation sites (Turchin 1998).
A diffusion model is then fitted to these observations using least squares or maxi-
mum likelihood, resulting in an estimate of the diffusion coefficient. A variant of this
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approach involves the release of marked individuals at points in space in different
habitat types as well as edges between types, then fitting models that incorporates
different diffusion rates for each habitat type. Edge behavior can also be modeled as
a biased random walk (Ovaskainen and Cornell 2003; Ovaskainen 2004; Reeve et al.
2008) or spatial differences in advection rates (Reeve and Cronin 2010). An alterna-
tive approach is the extended observation of the movements for individual insects,
and fitting a diffusion model to the resulting series of locations and times (Cain 1990;
Turchin 1998; Ovaskainen 2004). However, all these approaches require tracking the
location of a large number of insects, and can be computationally intensive when the
model equations are solved numerically. Another drawback of these methods is that
their estimates of the diffusion rate are essentially averages over a large area. For
example, Cronin et al. (2000) used a mark-recapture grid (square, 4 km on a side) to
examine the movements of the clerid beetle Thanasimus dubius, a common predator
of bark beetles. The diffusion rate might vary across space in this system, but this
variation would be difficult to detect using these methods.

Fagan (1997) proposed a complement of existing methods for estimating the diffu-
sion rate. The organisms are released within a square, and the cumulative proportion
reaching the edge recorded over time. The solution of a diffusion model predicting this
quantity is then fitted to the data using least squares, and an estimate of the diffusion
rate so obtained. This method avoids the problem of tracking individual insects or
observing their density on a grid, but does require that an absorbing barrier of traps
completely surround the square. Moreover, the solution to be fitted is complex in form
and extensive computation is required.

In this paper, we provide the mathematical means to estimate the diffusion rate, as
well as the mortality rate during dispersal, using the mean occupancy time for insects
released within a circular area. The rationale here is that mean occupancy time is a
function of the diffusion and mortality rates, and given an estimate of mean occupancy
time we should be able to solve for these parameters. Considering that many insects
themselves are much smaller than the size of patch they reside in, the patch will usu-
ally be larger in scale than the distances between their movement steps. For example,
one planthopper we have studied is under 1 cm in length and disperses by walking (or
hopping), while the observed area in the experiments is on the order of 50–100 cm
(Reeve et al. 2008). So, one would expect the diffusion approximation to hold in cases
where the circular area is significantly larger than the step length. In any event, this
assumption can be checked by comparing the cumulative distribution of occupancy
times with the theoretical ones generated by the models.

We further use this method to obtain parameter estimates for one kind of edge
behavior, a biased random walk (Ovaskainen 2004). This type of edge behavior is
governed by a single parameter, the crossing probability for an insect on the boundary
between two landscape elements. We show how this quantity can be estimated using
the mean occupancy time for a circular patch of habitat surrounded by a matrix of
non-habitat. We also examine the statistical properties of these estimation methods,
including the amount of bias, the effect of sample size, and the performance of con-
fidence intervals generated using the bootstrap percentile method. Although in this
paper we choose a circular shape as the landscape element for the exposition of our
approach, there is little restriction for the applications of the proposed method since
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many other type of areas can be transformed into a disk by means of various conformal
mappings from the mathematical point of view (Sharon and Mumford 2007). Similar
methods can also be applied to rectangular shapes (Min et al. 2012)

Our new method of estimation using mean occupancy time has a number of advan-
tages over other methods. Existing methods generally require locating the animal
precisely in space, either by following individual animals or sampling their spatial
distribution in detail. Mean occupancy time is potentially easier to estimate in general,
because we need only determine when an animal leaves (or dies in) an area. Another
advantage of this method is that estimates of the diffusion rate can be obtained for
a particular location in space, defined by a small circular region. This differs from
existing methods that likely yield parameter estimates that are averages over large
areas. We discuss how mean occupancy time might be estimated through experiments
later in the paper.

The paper is organized as follows. Section 2 provides a brief description of our
main findings and numerical examples of the estimation methods, for readers more
interested in applying these techniques. Section 3 illustrates the probability density
for a circular patch surrounded by matrix, for various strengths of edge behavior in
the form of a biased random walk, and expressions derived for mean occupancy time
under various scenarios. Some results on conditional probability density are also pre-
sented. In Sect. 4 we show how fundamental solutions to these diffusion systems can
be obtained using Bessel functions, and expressions derived for mean occupancy time
under various scenarios. Section 5 demonstrates some numerical examples in terms of
the probability density for a circular patch surrounded by matrix, for various strengths
of edge behavior in the form of a biased random walk. Section 6 examines the statisti-
cal properties of our estimation methods under several different scenarios. The paper
ends in concluding remarks that summarize the advantages of the method and outlines
possible methods of estimating mean occupancy time in the field.

2 Main results

2.1 Estimation of diffusion rate

The linear diffusion model used to quantify insect movements in a two dimensional
(homogenous) field is given by

∂u

∂t
= D

(
∂2u

∂x2 + ∂2u

∂y2

)
− c0u (2.1)

where u is the probability density of the insects which is subjected to the boundary con-
ditions and initial conditions, the parameter c0 is the disappearance rate of the insects
during the experiment. Disappearance can include mortality as well as dispersal not
captured by the experiment.

One important characterization of diffusion of insects in an area is the mean occu-
pancy time which measures the average time period that the insects stay until they
leave the area or die. Given an area �, the mathematical description of the insect mean
occupancy time T� in � can be seen as follows. Let u(x, y; t) be the insect probability
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density function for (x, y) ∈ � at time t , then the mean occupancy time for insects at
the location (x, y) is given by

∞∫
0

u(x, y; t)dt.

Thus the mean occupancy time over the entire � is given by

T� =
∫
�

⎛
⎝

∞∫
0

u(x, y; t)dt

⎞
⎠ d�, (2.2)

provided that the insect initial probability distribution is known.
In field experiments, it is quite common to observe that in a given area, the shorter

mean occupancy time the insects have, the higher diffusion rate is expected. Thus for
a given homogeneous area �, one may expect that there should be a (mathematical)
quantitative connection between the mean occupancy time T� and the diffusion rate D.
This motivates us to estimate the diffusion rate D by using the mean occupancy time.

We consider a circular patch �a := {(x, y) ∈ R
2 : x2+y2 ≤ a2} with radius a > 0,

composed of only one type of habitat, and assume that the boundary ∂�a := {(x, y) ∈
R

2 : x2 + y2 = a2} of �a is absorbing. For the convenience of the approach, the
initial distribution of the insects is set to be radically symmetric, that is, u|t=0 = f (r)

where 0 ≤ r ≤ a. Throughout the paper, we denote by Jν and Yν Bessel functions
of the first and the second kind of order ν, respectively (for more details about Bessel
functions, see, e.g, Pinsky 1998).

In the case c0 = 0, we obtain an explicit solution for D given by

D = 4πa2

T�a

∞∑
n=1

∫ a
0 r J0

( r
a μn

)
f (r)dr

μ3
n J1 (μn)

, (2.3)

where μn, n = 1, 2, . . . , are zeros of J0, and T�a is the mean occupancy time of the
insects staying in �a .

Suppose that an individual insect is initially located at r = 0 and the mean occu-
pancy time T�a for this individual is known. In this case f (r) = δ(r)

2π
, thus one has

D = 2a2

T�a

∞∑
n=1

1

μ3
n J1 (μn)

.

If we truncate the series to the tenth term, we have

D ≈ 2a2

T�a

10∑
n=1

1

μ3
n J1 (μn)

= 0.2498
a2

T�a

. (2.4)
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Fig. 1 A circular landscape with two different types of habitat

Here we pick terms up to the tenth since in this case one can show that the truncation
error is the order of 10−4, which is considered to meet the estimation requirement in
general.

If c0 also must be estimated, we need another mean occupancy time T�b , b �= a
with u|t=0 = g(r). Then D and c0 can be solved from the following two equations

T�a = 2πa4
∞∑

n=1

∫ a
0 r J0

( r
a μn

)
f (r)dr

μn(c0a2 + Dμ2
n)

J1 (μn)

T�b = 2πb4
∞∑

n=1

∫ b
0 r J0

( r
b μn

)
g(r)dr

μn(c0b2 + Dμ2
n)

J1 (μn) .

(2.5)

Section 6 will examine the statistical properties of the estimates obtained using (2.4)
and (2.5).

2.2 Estimation of edge crossing probabilities

We consider two circular patch shapes with the same center. The inside circular disk
�a is composed of single type of habitat, such as a patch of host plants, which is
surrounded by matrix or some other type of habitat �R−a (see Fig. 1). The insects
disperse away from a released location inside �R . The behavior on the edge ∂�a is
modeled as a biased random walk (Ovaskainen and Cornell 2003; Ovaskainen 2004).
In particular, a parameter k1 describes the probability of an individual moving to �a

upon encountering the edge, while k2 = 1 − k1 is the probability of entering �R−a .
The edge condition implies a discontinuity in densities as one traverses the edge ∂�a

when k1 �= k2. We further assume that there is no insect accumulation on the edge ∂�a ,
corresponding to general situation in reality. We denote by D1 and D2 the diffusion
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rates in �a and �R−a , respectively. The death rate in both habitats is assumed to be
c0. Then the diffusion model has the following mathematical representation:

∂2u1

∂r2 + 1

r

∂u1

∂r
− c0

D1
u1 = 1

D1

∂u1

∂t
, 0 < r < a, t > 0,

∂2u2

∂r2 + 1

r

∂u2

∂r
− c0

D2
u2 = 1

D2

∂u2

∂t
, a < r < R, t > 0,

u1(r; 0) = f1(r), 0 ≤ r < a; u2(r; 0) = f2(r), a ≤ r ≤ R

(2.6)

subject to absorbing boundary condition:

u2(R; t) = 0, (2.7)

and edge conditions

k1u2(a + 0; t) = k2u1(a − 0; t),

D1
∂u1

∂r
(a − 0; t) = D2

∂u2

∂r
(a + 0; t),

(2.8)

where u1(a − 0), u2(a + 0) stand for left-side and right-side limits, respectively, i.e.,

u1(a − 0; t) := lim
r<a,r→a

u1(r; t), u2(a + 0; t) := lim
r>a,r→a

u2(r; t),

and we assume the initial condition function

f (r) =
{

f1(r), if 0 ≤ r < a

f2(r), if a < r ≤ R

is an integrable function on 0 ≤ r ≤ R.
In the second part of the paper, we obtain the explicit mathematical expressions for

the mean occupancy time T�a and T�R−a for circular regions �a and �R−a , respec-
tively, in terms of the ratio k = k2/k1 where k1 (resp. k2) is the probability for insect to
move in �a (resp. �R−a) upon encountering the boundary of �a , assuming D1 and D2
estimated by the method presented in the Sect. 2.1. Here we denote two circular areas

�a =
{
(x, y) ∈ R

2 : x2 + y2 ≤ a
}

, �R−a =
{
(x, y) ∈ R

2 : a ≤ x2 + y2 ≤ R
}
.

Next we compute the mean occupancy time T�a and T�R−a for a set of preselect-
ed k values by the results obtained in this paper. For example, in the case that an
individual insect is initially located at r = 0, T�a and T�R for k = k2/k1 =
1/9, 1/6, 1/3, 1, 3, 6, 9 can be calculated below (see Table 1) by using (3.15) and
(3.17). Observing that both T�a and T�R−a are monotonic (as expected), we then apply
the piecewise cubic Hermite interpolation (PCHIP) to compute the unknown k’s for a
given T�a or T�R−a . For example, suppose that we have obtained the mean occupancy
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Table 1 Mean occupancy time for an individual located in the patch center initially

a = 1, R = 3 k = 1/9 k = 1/6 k = 1/3 k = 1 k = 3 k = 6 k = 9

T�a 1.7122 1.3334 0.8556 0.4607 0.3115 0.2724 0.2597

T�R−a 0.4340 0.4847 0.5491 0.6035 0.6247 0.6306 0.6320

Table 2 Numerical estimation of crossing probability k1 (i.e., the probability for insect to enter to �a )

T�a 1.5950 1.1869 0.6672 0.3498 0.2922

Estimated value k∗
1 k∗

1 = 0.8913 k∗
1 = 0.8333 k∗

1 = 0.6602 k∗
1 = 0.3187 k∗

1 = 0.2004

True value k1 k1 = 0.8889 k1 = 0.8333 k1 = 0.6667 k1 = 0.3333 k1 = 0.2

Error |k∗
1 − k1| 0.0024 0 0.0065 0.0146 0.0004

time T�a = 0.6672 through an experiment. Then by applying PCHIP (matlab com-
mand ’inperp1’) to the data given in Table 1, we obtain the estimate k∗ = 0.5146,
which yields the crossing probability k∗

1 = 0.2004. In other words, the estimated prob-
ability for the insect to enter �a is 0.2004 and thus the probability for entering �R−a

is 1 − 0.2004 = 0.7996. The actual crossing probability k1 = 0.2 since T�a (k1 =
0.2) = 0.6672 according to our obtained mathematical expression (3.15). We provide
some numerical estimations in Table 2 for the purpose of comparisons. The estimation
of k∗

2 can be obtained by the relation k∗
2 = 1 − k∗

1 . The main outcomes in this paper
help us to study how environmental heterogeneity affects an insect population. The
computation of mean occupancy time in terms of crossing probability requires quite
subtle analysis. The technical approach will be presented in the following sections.

3 Mean occupancy time in terms of conditional probability density

3.1 Homogeneous landscape

We consider here the case that insects are located inside a disk �a of radius a on
a homogeneous landscape. Assume that the insect initial distribution is independent
of the polar angle, that is, u(r; 0) = f (r). Then the mean occupancy time on the
circumference of circle with radius r < a is given by

2πr

∞∫
0

u(r; t)dt, for 0 ≤ r ≤ a,

and the mean occupancy time in the disk centered at the origin with radius a can be
obtained by

T�a = 2π

a∫
0

∞∫
0

ru(r; t)dtdr.

We further assume that the boundary of �a is absorbing.
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Theorem 3.1 Let u := u(x, y; t) be the probability density function satisfying the
two dimensional diffusion model (2.1) on �a with absorbing boundary condition. The
insect initial distribution is independent of the polar angle. Then the mean occupancy
time for insects to be in �a is given by

T�a = 2πa4
∞∑

n=1

An J1 (μn)

μn(c0a2 + Dμ2
n)

,

where a is the radius of the disk �a, μn is the nth-zero of J0, the Bessel functions of
the first kind of order zero, and

An = 2
∫ a

0 r J0
( r

a μn
)

f (r)dr

a2 J1(μn)2 n = 1, 2, 3, . . . ,

in which f is the insect initial distribution.

Proof By using polar coordinates, the diffusion model (2.1) takes the form

∂2u

∂r2 + 1

r

∂u

∂r
− c0

D
u = 1

D

∂u

∂t
, 0 < r < a, t > 0,

u(a; t) = 0, t > 0,

u(r; 0) = f (r), 0 ≤ r ≤ a.

(3.9)

We will show later that the solution of (3.9) can be expressed in terms of the Bessel
function J0 of the first kind of order 0 as follows:

u(r; t) =
∞∑

n=1

An J0

( r

a
μn

)
e−(c0+Dμ2

n/a2)t , (3.10)

where μn, n = 1, 2, . . . , are zeros of J0, and An is given by

An =
∫ a

0 r J0
( r

a μn
)

f (r)dr∫ a
0 r J0

( r
a μn

)2
dr

=
∫ a

0 r J0
( r

a μn
)

f (r)dr
a2

2 J1(μn)2
.

Note that the mean occupancy time for the circumference of a circle with radius r is
given by

2πr

∞∫
0

u(r; t)dt, for 0 ≤ r ≤ a,
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and the mean occupancy time in a disk centered at the origin with radius a can be
obtained by

T�a = 2π

a∫
0

∞∫
0

ru(r; t)dtdr.

According to the Bessel function properties, one has

a∫
0

r J0

( r

a
μn

)
dr = a2

μn
J1 (μn) ,

and thus we have

T�a = 2π

a∫
0

∞∫
0

ru(r; t)dtdr = 2πa2
∞∑

n=1

An

(c0a2 + Dμ2
n)

a∫
0

r J0

( r

a
μn

)
dr

= 2πa4
∞∑

n=1

An

μn(c0a2 + Dμ2
n)

J1 (μn) ,

which gives the expression of the insect mean occupancy time in �a .

In general, in order to obtain c0 and D, we need another mean occupancy time
T�b with b �= a. Usually, we may be able to choose a small radius a so that the
disappearance rate c0 = 0 inside �a . In such a case, one can have

D = 2πa4

T�a

∞∑
n=1

An

μ3
n

J1 (μn) .

Suppose that an individual insect is located at r = 0 and the mean occupancy time
T�a is known. Note that in this case f (r) = δ(r)

2π
and

An =
∫ a

0 r J0
( r

a μn
)

f (r)dr
a2

2 J1(μn)2
= 1

πa2 J1(μn)2

thus we have

D = 2a2

T�a

∞∑
n=1

1

μ3
n J1 (μn)

.

Recall that {μn} is a set of zeros of J0, which is known. Hence the diffusion rate D
can be approximated to an arbitrary given accuracy. We here list the first ten μn’s,

μ1 = 2.405, μ2 = 5.520, μ3 = 8.654, μ4 = 11.792, μ5 = 14.931

μ6 = 18.071, μ7 = 21.212, μ8 = 24.352, μ9 = 27.493, μ10 = 30.635.
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Using these ten terms we have

D ≈ 2a2

T�a

10∑
n=1

1

μ3
n J1 (μn)

= 0.2498
a2

T�a

3.2 Non-homogeneous landscapes

As in the previous section, we denote by �a the circular area of radius a, that is,

�a =
{
(x, y) : where x2 + y2 ≤ a

}
.

We also denote by �R−a the annual area between �a and �R with a < R, that is,

�R−a =
{
(x, y) : where a ≤ x2 + y2 ≤ R

}
.

Now we assume that �a is one type of habitat, while �R−a is another type of habitat.
We assume that insects’ initial distribution is radically symmetric. Let’s consider the
following diffusion equation:

D1

(
∂2u1

∂r2 + 1

r

∂u1

∂r

)
− c0u1 = ∂u1

∂t
, r2 = x2 + y2, (x, y) ∈ �a, t > 0,

D2

(
∂2u2

∂r2 + 1

r

∂u2

∂r

)
− c0u2 = ∂u2

∂t
, r2 = x2 + y2, (x, y) ∈ �R−a, t > 0.

(3.11)

subject to absorbing boundary condition:

u2(R; t) = 0, (3.12)

and edge conditions

k1u2(a + 0; t) = k2u1(a − 0; t),

D1
∂u1

∂r
(a − 0; t) = D2

∂u2

∂r
(a + 0; t).

(3.13)

In next section, we will show the following theorem which is a direct result of
Theorem 4.4.

Theorem 3.2 The probability density before the insect will hit ∂�a or die at time t is
given by

u1(r; t) =
∞∑

n=1

Anzλn (a)

yλn (a)
J0

(
r

√
λn

D1

)
for 0 ≤ r < a;
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and the probability density that the insect will hit ∂�a before it hit ∂�R or die at the
time t is given by

u2(r; t) =
∞∑

n=1

k Anzλn (r)e−(c0+λn)t for a < r < R;

where yλn and zλn are given by

yλn (r) = J0

(
r
√

λn
D1

)

zλn (r) = J0

(
r
√

λn
D2

)
Y0

(
R
√

λn
D2

)
− J0

(
R
√

λn
D2

)
Y0

(
r
√

λn
D2

)
,

(3.14)

and λn is determined by (4.28).

Now we are ready to state the following result:

Theorem 3.3 Suppose that in �R insect initial distribution satisfies

f (r) =
⎧⎨
⎩

f1(r), if 0 ≤ r < a

f2(r), if a < r ≤ R

which is an integrable function on 0 ≤ r ≤ R. Then the mean occupancy time for
insects to be in �a is

T�a = 2πa
√

D1

∞∑
n=1

Anzλn (a)√
λn(c0 + λn)yλn (a)

J1

(
a

√
λn

D1

)
(3.15)

where yλn , zλn are defined by (3.14), and An satisfies

a∫
0

f1(r)rwλn (r)dr + 1

k

R∫
a

f2(r)rwλn (r)dr

= An

⎛
⎝

a∫
0

rw2
λn

(r)dr + 1

k

R∫
a

rw2
λn

(r)dr

⎞
⎠. (3.16)

Proof According to theorem 4.4 of next section, the solution of (3.11)–(3.13) on �a

is given by

u(r; t) =
∞∑

n=1

An
zλn (a)

yλn (a)
J0

(
r

√
λn

D1

)
e−(c0+λn),
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where An satisfies (3.16). From the property of Bessel function, we know that
(d/dr)(r J1) = (r J0), and we thus have

a∫
0

r J0

(
r

√
λn

D1

)
dr = a

√
D1

λn
J1

(
a

√
λn

D1

)
.

Now we can calculate the mean occupancy time as follows:

T�a = 2π

a∫
0

∞∫
0

ru(r; t)dtdr = 2π

∞∑
n=1

Anzλn (a)

(c0 + λn)yλn (a)

a∫
0

yλn (r)dr

= 2π

∞∑
n=1

Anzλn (a)

(c0 + λn)yλn (a)

a∫
0

r J0

(
r

√
λn

D1

)
dr

= 2π

∞∑
n=1

a An
√

D1zλn (a)√
λn(c0 + λn)yλn (a)

J1

(
a

√
λn

D1

)

which yields the result.

Corollary 3.4 Suppose that an individual insect is located at r = 0 initially. Then
the mean occupancy time in �a is given by

T�a = a
√

D1

∞∑
n=1

z2
λn

(a)

�n
√

λn(c0 + λn)y2
λn

(a)
J1

(
a

√
λn

D1

)
,

where �n is given by (4.37).

Similarly, for the domain �R−a , we have

Theorem 3.5 Under the assumption of Theorem 3.3, the mean occupancy time for
insects to be in �R−a is

T�R−a = 2πk
√

D2

∞∑
n=1

An√
λn(c0 + λn)

∣∣∣∣∣∣∣∣∣

0 J0

(
R
√

λn
D2

)
Y0

(
R
√

λn
D2

)
R J1

(
a
√

λn
D2

)
Y1

(
a
√

λn
D2

)
a J1

(
R
√

λn
D2

)
Y1

(
R
√

λn
D2

)

∣∣∣∣∣∣∣∣∣
(3.17)

where zλn is defined by (3.14).

Proof Again according to Theorem 4.4, the solution of (3.11)–(3.13) on �R−a has a
form:

u(r; t) =
∞∑

n=1

k Anzλn (r)J0

(
r

√
λn

D1

)
e−(c0+λn),
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By applying the properties of Bessel function (d/dr)(r J1) = (r J0) and (d/dr)(rY1) =
(rY0), we have

R∫
a

r J0

(
r

√
λn

D2

)
dr =

√
D2

λn

(
R J1

(
R

√
λn

D2

)
− a J1

(
a

√
λn

D2

))
(3.18)

and

R∫
a

rY0

(
r

√
λn

D2

)
dr =

√
D2

λn

(
RY1

(
R

√
λn

D2

)
− aY1

(
a

√
λn

D2

))
. (3.19)

Therefore, the mean occupancy time for insects to be in �R−a is

T�R−a = 2π

R∫
a

∞∫
0

ru(r; t)dtdr = 2π

∞∑
n=1

k An

c0 + λn

R∫
a

r zλn (r)dr,

= 2π

∞∑
n=1

k An

c0 + λn

⎛
⎝

R∫
a

r J0

(
r

√
λn

D2

)
dr Y0

(
R

√
λn

D2

)

− J0

(
R

√
λn

D2

) R∫
a

rY0

(
r

√
λn

D2

)
dr

⎞
⎠ .

Applying (3.18) and (3.19) leads to the desired result.

Corollary 3.6 Suppose that an individual insect is located at r = 0 initially. Then
the mean occupancy time in �R−a is given by

T�R−a = k
√

D2

∞∑
n=1

1

�n
√

λn(c0 + λn)

∣∣∣∣∣∣∣∣∣∣

0 J0

(
R
√

λn
D2

)
Y0

(
R
√

λn
D2

)

R J1

(
a
√

λn
D2

)
Y1

(
a
√

λn
D2

)

a J1

(
R
√

λn
D2

)
Y1

(
R
√

λn
D2

)

∣∣∣∣∣∣∣∣∣∣
,

where �n is given by (4.37).

4 Probability density functions

In this section we are going to develop the expressions of probability density functions
used in previous sections. Again recall that throughout the paper, we denote by Jν and
Yν the Bessel functions of the first and the second kind of order ν, respectively.
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We first solve the diffusion equation (3.9) to get the probability density function u.
The approach for this case is to seek a separated solution in the form of

u(r; t) = R(r)T (t).

Substituting into (3.9), we have

T ′(t) + c0T (t)

DT (t)
= R′′(r) + (1/r)R′(r)

R(r)
.

Hence, each side equals to the same constant, which we denote −ν. Then we arrive at
the following two differential equations:

T ′(t) + (c0 + Dμ)T (t) = 0

R′′(r) + (1/r)R′(r) + μR(r) = 0.

The solution must be finite at r = 0, so the required separated solutions are
J0(r

√
ν)e−(c0+Dνt). The boundary condition of (3.9) u(a; t) = 0 requires J0(a

√
ν) =

0; thus r
√

ν = μn , a positive zero of the Bessel function J0. The solution takes the
form

u(r; t) =
∞∑

n=1

An J0

( r

a
μn

)
e−(c0+Dμ2

n/a2)t

where An is determined by the initial distribution.
Next we will find the probability density function on a nonhomogeneous landscape

�R . This case is much more complicated and we will present the solution in terms
of a sequence of lemmas and theorems. For the convenience of later discussion, we
denote k = k2/k1. To begin, we look for separations of the diffusion equations

∂2ūi

∂r2 + 1

r

∂ ūi

∂r
= 1

Di

∂ ūi

∂t
, (4.20)

where i = 1, 2. We let ūi (r; t) = Ri (r)Ti (t) and substitute it into the equations. We
obtain

T ′
i (t)

Ti (t)
= Di

R′′
i + (1/r R′

i )

Ri
.

The right side depends on r , whereas the left side depends on t . Therefore each is a
constant, which we call −λ for both i = 1 and i = 2. Thus
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T ′
i (t) + λTi (t) = 0, (4.21)

and

R′′
i + 1

r R′
i + λ

Di
Ri = 0. (4.22)

Equation (4.22) is a Bessel’s equation with angular index ν = 0. Its general solution
is given by

Ri (r) = Ai J0

(
r

√
λ

Di

)
+ Bi Y0

(
r

√
λ

Di

)

where Ai and Bi are arbitrary constants. Therefore, a solution of (4.20) has a form of

ūi (r; t) =
(

Ai J0

(
r

√
λ

Di

)
+ Bi Y0

(
r

√
λ

Di

))
e−λt . (4.23)

It is easy to see that the relationship between ūi and the solution ui of

∂2ui

∂r2 + 1

r

∂ui

∂r
− c0ui = 1

Di

∂ui

∂t

is given by

ui (r; t) = e−c0t ūi (r; t). (4.24)

Thus we have

ui (r; t) =
(

Ai J0

(
r

√
λ

Di

)
+ Bi Y0

(
r

√
λ

Di

))
e−(c0+λ)t .

Next we apply the boundary condition (2.7) and edge condition (2.8) to above solution
for i = 1, 2 respectively. Note when i = 1, the solution u1 should be well-defined in
the disk 0 ≤ r < a, while r = 0 is a singular point for Y0. Hence we have B1 = 0.
Thus

u1(r; t) = A1 J0

(
r

√
λ

D1

)
e−(c0+λ)t . (4.25)

When i = 2, by noticing u2(R; t) = 0, the solution u2 can be written as

u2(r; t) = C̄
(

J0

(
r
√

λ
D2

)
Y0

(
R
√

λ
D2

)
− J0

(
R
√

λ
D2

)
Y0

(
r
√

λ
D2

) )
e−(c0+λ)t ,

(4.26)
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where C̄ is an arbitrary constant. Now by applying edge condition (2.8), we have

k A1 J0

(
a

√
λ

D1

)
= C̄

(
J0

(
a

√
λ

D2

)
Y0

(
R

√
λ

D2

)

− J0

(
R

√
λ

D2

)
Y0

(
a

√
λ

D2

))
− A1

√
D1λJ1

(
a

√
λ

D1

)

= C̄
√

D2λ

(
−J1

(
a

√
λ

D2

)
Y0

(
R

√
λ

D2

)
− J0

(
R

√
λ

D2

)
Y ′

0

(
a

√
λ

D2

))
.

(4.27)

These two algebraic equations yield a simultaneous homogeneous linear system for
A1 and C̄ . As we require a nonzero solution, the determinant of the coefficients must
vanish. This gives

k
√

λD2 J0

(
a

√
λ

D1

) (
J1

(
a

√
λ

D2

)
Y0

(
R

√
λ

D2

)
− J0

(
R

√
λ

D2

)
Y1

(
a

√
λ

D2

))

= √
λD1 J1

(
a

√
λ

D1

)(
J0

(
a

√
λ

D2

)
Y0

(
R

√
λ

D2

)

−J0

(
R

√
λ

D2

)
Y0

(
a

√
λ

D2

))
(4.28)

by applying Y ′
0(x) = −Y1(x). We denote by g1(λ) the left-handed side function of

(4.28) and by g2(λ) the right handed side function. Then the solution λ of (4.28) is
given by g1(λ) = g2(λ) (see Fig. 2).

We list the first five solutions of (4.28) corresponding k2/k1 = 1/9, 1/3, 1/6, 1, 3,

6, 9 in Table 3. From the table, one can see that the principle eigenvalue λ1 increases
as k increases. This, in turn, implies that insect population in �R decreases faster as
k increases.

Let us denote {λn}∞n=1 the positive solution of the above equation. According to
classical theory, u1 can be expressed by Fourier–Bessel expression:

u1(r; t) =
∞∑

n=1

An J0

(
r

√
λn

D1

)
e−(c0+λn)t (4.29)

for 0 ≤ r < a. Note initial condition u1(r; 0) = f (r), we then have

1

2
[ f (r + 0) + f (r − 0)] =

∞∑
n=1

An J0

(
r

√
λn

D1

)
.
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Fig. 2 Plots g1 and g2 with D1 = 1, D2 = 2, k1 = 0.75, k2 = 0.25, a = 1, R = 3

Table 3 The first five solutions of (4.28) corresponding to different k’s

k = k2/k1 λ1 λ2 λ3 λ4 λ5

1/9 0.3349 4.8923 14.0503 20.8472 41.9914

1/6 0.4621 4.9344 13.8455 21.3192 41.3256

1/3 0.7440 5.0410 13.4279 22.3973 39.9581

1 1.2446 5.2928 12.7410 24.6328 37.4814

3 1.5924 5.5421 12.2568 26.8464 35.2369

6 1.7089 5.6466 12.0851 27.9491 34.1461

9 1.7512 5.6880 12.0209 28.4684 33.6340

Unfortunately, the set of functions {J0(r
√

λn
D1

)}∞n=1, where the eigenvalues {λn}∞n=1

are obtained from (4.28), is not orthogonal in L2(0, a). Thus in order to solve the
problem, we have to look for a set of orthogonal functions. Let us denote

yλ(r) = J0

(
r

√
λ

D1

)
(4.30)

zλ(r) = J0

(
r

√
λ

D2

)
Y0

(
R

√
λ

D2

)
− J0

(
R

√
λ

D2

)
Y0

(
r

√
λ

D2

)
,

and define a function w in [0, R] as

wλ(r) =

⎧⎪⎪⎨
⎪⎪⎩

zλ(a)

yλ(a)
yλ(r), if 0 ≤ r < a

k zλ(r), if a ≤ r ≤ R

(4.31)
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1
=0.3349

Fig. 3 wλ1 function with D1 = 1, D2 = 2, k1 = 0.9, k2 = 0.1, a = 1, R = 3

The motivation for introducing w is given by following lemmas (Fig. 3).

Lemma 4.1 The function u(r; t) := wλ(r)e−(c0+λ)t satisfies the diffusion equations
appeared in (2.6) as well as the edge condition (2.8) and boundary condition (2.7).

Proof It is straightforward to see that u(r; t) satisfies both diffusion equations
appeared in (2.6) as well as the boundary condition (2.7). We now verify that u(r; t)
also satisfies the edge condition (2.8). Notice that

u(a − 0; t) = lim
r→a−0

wλ(r)e−(c0+λ)t = zλ(a)

yλ(a)
yλ(a)e−(c0+λ)t = zλ(a)e−(c0+λ)t

and

u(a + 0; t) = lim
r→a−0

wλ(r)e−(c0+λ)t = k zλ(a)e−(c0+λ)t .

Thus u(a + 0; t) = ku(a − 0; t). This verifies the first edge condition. For the second
edge condition, one can see

D1
∂u1

∂r
(a − 0; t) = D1

zλ(a)

yλ(a)
y′
λ(a)e−(c0+λ)t

and

D2
∂u2

∂r
(a + 0; t) = D2k z′

λ(a)e−(c0+λ)t .
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The choice of λ obtained from (4.28) leads to

D1
zλ(a)

yλ(a)
y′
λ(a) = D2k z′

λ(a).

Hence the proof is complete.

We denote by L2
a,k(0, R) the space which consists of all square integrable functions

in (0, R) with an inner product

〈·, ·〉 := 〈·, ·〉L2(0,a) + 1

k
〈·, ·〉L2(a,R).

Lemma 4.2 Let {λn}∞n=1 be a sequence obtained from (4.28). Then the set of function
{√r wλn (r)}∞n=1 is orthogonal in L2

a,k(0, R).

Proof Notice that wλn (r) satisfies the Bessel equations

(rw′
λn

(r))′ + rλn
D1

wλn (r) = 0, 0 ≤ r < a

(rw′
λn

(r))′ + rλn
D2

wλn (r) = 0, a ≤ r < R.
(4.32)

Taking λn = λn1 and multiplying by wλn2
, we obtain, after integration by parts,

aw′
λn1

(a − 0)wλn2
(a − 0) −

a∫
0

rw′
λn1

w′
λn2

dr + λn1

D1

a∫
0

wλn1
(r)wλn2

(r)dr

= 0 for 0 ≤ r < a − aw′
λn1

(a + 0)wλn2
(a + 0) −

R∫
a

rw′
λn1

(r)w′
λn2

(r)dr

+λn1

D2

R∫
a

wλn1
(r)wλn2

(r)dr = 0 for a ≤ r < R.

Interchanging the roles of wλn1
and wλn2

and subtracting the resulting equations lead
to

a
(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a−0

+ λn1 − λn2

D1

a∫
0

rwλn1
(r)wλn2

(r)dr = 0,

0 ≤ r < a

−a
(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a+0

+ λn1 − λn2

D2

R∫
a

rwλn1
(r)wλn2

(r)dr = 0,

a ≤ r < R. (4.33)
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We next claim

D1

(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a−0

= 1

k
D2

(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a+0

According to (4.31), we have

(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a−0

= zλn1
(a)zλn2

(a)

yλn1
(a)yλn2

(a)

(
y′
λn1

(a)yλn2
(a) − yλn1

(a)y′
λn2

(a)
)

= zλn1
(a)zλn2

(a)

(
y′
λn1

(a)

yλn1
(a)

−
y′
λn2

(a)

yλn2
(a)

)
.

Edge condition (2.8) implies

y′
λn1

(a)

yλn1
(a)

= k
D2

D1

z′
λn1

(a)

zλn1
(a)

y′
λn2

(a)

yλn2
(a)

= k
D2

D1

z′
λn2

(a)

zλn2
(a)

.

Hence we have

D1

(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a−0

= k D2

(
z′
λn1

(a)zλn2
(a) − zλn1

(a)z′
λn2

(a)
)

= 1

k
D2

(
w′

λn1
wλn2

− w′
λn2

wλn1

) ∣∣∣
r=a+0

.

Adding two equations in (4.33), we are ready to see

a∫
0

rwλn1
(r)wλn2

(r)dr + 1

k

R∫
a

rwλn1
(r)wλn2

(r)dr = 0

since λn1 �= λn2 . We thus complete the proof.

Lemma 4.3 Let {λn}∞n=1 be a sequence obtained from (4.28). Then

a∫
0

rw2
λn

(r)dr + 1

k

R∫
a

rw2
λn

(r)dr = 1

2
a2(1 − k)z2

λn
(a) + D2

2λn
k R2 (

z′
λn

(R)
)2

+a2k2 D2

2λn

(
D2

D1
− 1

k

) (
z′
λn

(a)
)2
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= a2(1 − k)

2

∣∣∣∣∣∣∣
J0

(
a
√

λn
D2

)
Y0

(
a
√

λn
D2

)

J0

(
R
√

λn
D2

)
Y0

(
R
√

λn
D2

)
∣∣∣∣∣∣∣

2

+ k R2

2

∣∣∣∣∣∣∣
J0

(
R
√

λn
D2

)
Y0

(
R
√

λn
D2

)

J1

(
R
√

λn
D2

)
Y1

(
R
√

λn
D2

)
∣∣∣∣∣∣∣

2

+a2k2

2

(
D2

D1
− 1

k

) ∣∣∣∣∣∣∣
J0

(
R
√

λn
D2

)
Y0

(
R
√

λn
D2

)

J1

(
a
√

λn
D2

)
Y1

(
a
√

λn
D2

)
∣∣∣∣∣∣∣

2

where zλ is defined in (4.30).

Proof We multiply (4.32) by rw′
λn

to obtain

[
(rw′

λn
)2

]′ + r2λn
D1

[w2
λn

]′ = 0, 0 ≤ r < a

[
(rw′

λn
)2

]′ + r2λn
D2

[w2
λn

]′ = 0, a ≤ r < R.

(4.34)

Integrating the first equation for 0 < r < a and second one for a < r < R with
respect to r , then applying integration by parts, we have

(aw′
λn

(a − 0))2 + λn

D1
(awλn (a − 0))2 − 2λn

D1

a∫
0

rw2
λn

(r)dr = 0 (4.35)

(Rw′
λn

(R))2 − (aw′
λn

(a + 0))2 − λn

D2
(awλn (a + 0))2 − 2λn

D2

R∫
a

rw2
λn

(r)dr = 0.

According to (4.28), we have

D1(aw′
λn

(a − 0))2− 1

k
D2(aw′

λn
(a + 0))2 = D1

(
a

zλ(a)

yλ(a)
y′
λ(a)

)2

− 1

k
D2(akz′

λ(a))2

= a2k2 D2

(
D2

D1
− 1

k

) (
z′
λn

(a)
)2

.

Thus, by multiplying the first equation by D1 in (4.35) and the second one by D2/k,
respectively, and adding to the first one in (4.35), we obtain

a∫
0

rw2
λn

(r)dr + 1

k

R∫
a

rw2
λn

(r)dr = 1

2

[
(awλn (a − 0))2 − (awλn (a + 0))2

]

+ D2

2kλn
(Rw′

λn
(R))2+ a2k2 D2

2λn

(
D2

D1
− 1

k

) (
z′
λn

(a)
)2

.
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According to the definition of wλ given by (4.31), one can see that

wλn (a − 0) = zλn (a), wλn (a + 0) = kzλn (a), wλn (R) = kzλn (R)

which leads to the desired result.

The orthogonality relation allows us to compute the coefficients in the expansion
of a piecewise smooth function f (r) : 0 < r < R, in a series of the form

f (r) =
∞∑

n=1

Anwλn (r)

where {λn} are the positive solutions of (4.28). To obtain {An}, we multiply the expan-
sion by wλn (r) and integrate with respect to the weight rdr from 0 to R. This gives
the formula

a∫
0

f (r)rwλn (r)dr + 1

k

R∫
a

f (r)rwλn (r)dr

= An

⎛
⎝

a∫
0

rw2
λn

(r)dr + 1

k

R∫
a

rw2
λn

(r)dr

⎞
⎠ (4.36)

for n = 1, 2, . . .. According to Lemmas 4.1 and 4.2, we have obtained:

Theorem 4.4 Let f be a piecewise smooth function defined on [0, R]. Then the solu-
tion for the diffusion system (2.6) subject to edge conditions (2.8) and boundary con-
dition (2.7) with a given initial condition f (r) is given by

u(r; t) =
∞∑

n=1

Anwλn (r)e−(c0+λn)t

where {λn : n ≥ 1} are obtained from (4.28) and {An : n ≥ 1} are defined by (4.36).

Let us consider the case in which an individual insect is located at the origin r = 0.
In such a case f (r) = δ(r)

2πr . Then the solution v(r; t) of (2.6)–(2.8) is the fundamental
solution.

Corollary 4.5 The fundamental solution for the diffusion system (2.6) subject to edge
conditions (2.8) and boundary condition (2.7) is

v(r; t) = 1

2π

∞∑
n=1

zλn (a)

�n yλn (a)
wλn (r)e−(c0+λn)t
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where {λn : n ≥ 1} are obtained from (4.28) and

�n = a2(1 + k)
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. (4.37)

5 Numerical simulations

We consider the case that insect has uniform density distribution in a disk inside �a

initially. Thus we let

f (r) =
{

M, if 0 ≤ r < a/2
0, if a/2 ≤ r ≤ R

Then An, n = 1, 2, . . . . can be obtained from

An = M
∫ a/2

0 rwλn (r)dr∫ R
0 rw2

λn
(r)dr

= aM
√

D1zλn (a)

2
√

λn�n yλn (a)
J1

(
a

2

√
λn

D1

)
.

In simulations, we set M = 10, D1 = 1, D2 = 2, a = 1, and R = 3. We here demon-
strate three cases: (i) k1 = 0.1, k2 = 0.9; (ii) k1 = k2 = 0.5; (iii) k1 = 0.9, k2 = 0.1
(Fig. 4).

Figure 5 shows that the probability distribution on (0, a) has much higher den-
sity than the one on (a, R) due to the high return rate (k1 = 0.9) of the insect upon
encountering the edge ∂�a . When k1 = k2 = 0.5, the distribution on (0, a) drops
significantly as shown in Fig. 6. As the return rate continues to decrease (k1 = 0.1), the
distribution on (0, a) drops further (Fig. 7). From these three cases, the distributions
on (a, R) change only slightly comparing to those on (0, a). The mean occupancy
time on �a and �R−a are listed in Table 4, which shows that T�a is more sensitive
than T�R−a with respect to the return rate k1, in particular, when k1 >> k2. We also
calculate the mean occupancy time for an individual located in the patch center initially
(see Table 5).

6 Statistical properties

In this section, we briefly examine the statistical properties of these new estimators.
The first step in this analysis is to determine the cumulative distribution function for
occupancy time within a circle under various scenarios. We can then use this func-
tion to generate random variates with the appropriate distribution for occupancy time
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Fig. 4 Plot for mean occupancy time with M = 10, c0 = 0.2
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Fig. 5 Case 1: t = 0.5, D1 = 1, D2 = 2, k1 = 0.9, k2 = 0.1, a = 1, R = 3, and c0 = 0.2. The truncation
of the series is N = 5

using its inverse (Mood et al. 1974). We then examine the statistical behavior of our
estimators using samples of these observations.

6.1 Cumulative distribution functions

Consider an insect initially located at r = 0 within a circle of radius a. The probability
distribution u(r, t) for its position at time t is given by (3.10). Using this distribution
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Fig. 6 Case 2: t = 0.5, D1 = 1, D2 = 2, k1 = k2, a = 1, R = 3, and c0 = 0.2. The truncation of the
series is N = 5
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Fig. 7 Case 3: t = 0.5, D1 = 1, D2 = 2, k1 = 0.1, k2 = 0.9, a = 1, R = 3, and c0 = 0.2. The truncation
of the series is N = 5

Table 4 Mean occupancy time with uniform distribution initially, where M = 10, c0 = 0.2

k = k2/k1 k = 1/9 k = 1/6 k = 1/3 k = 1 k = 3 k = 6 k = 9

T�a 13.3069 10.3184 6.5519 3.4456 2.2755 1.9697 1.8695

T�R−a 3.3809 3.7707 4.2610 4.6646 4.8160 4.8569 4.8671
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Table 5 Mean occupancy time for individual located in the patch center initially

k = k2/k1 k = 1/9 k = 1/6 k = 1/3 k = 1 k = 3 k = 6 k = 9

T�a 1.7122 1.3334 0.8556 0.4607 0.3115 0.2724 0.2597

T�R−a 0.4340 0.4847 0.5491 0.6035 0.6247 0.6306 0.6320

we can calculate the cumulative distribution function F(t), which is defined as the
probability the insect has dispersed from the circle or died inside the patch by time t .
We have

F(t) = 1 −
a∫

0

2πru(r, t)dr

= 1 −
a∫

0

∞∑
n=1

2πr

πa2 J1(μn)
J0(

r

a
μn)e−(c0+Dμ2

n/a2)t dr

= 1 −
∞∑

n=1

2

a2 J1(μn)2 e−(c0+Dμ2
n/a2)t

a∫
0

r J0(
r

a
μn)dr

= 1 −
∞∑

n=1

2

a2 J1(μn)2 e−(c0+Dμ2
n/a2)t a2

μn
J1(μn)

= 1 −
∞∑

n=1

2

μn J1(μn)
e−(c0+Dμ2

n/a2)t . (6.38)

We can regard F(t) as the cumulative distribution function for a random variable T ,
the occupancy time of the insect within the circle. Random variables with this distri-
bution can be generated using the inverse of F(t) and a source of uniform random
variables. In particular, if U is a random variable with a uniform distribution on the
interval (0, 1), then T = F−1(U ) is a random variable with distribution function F(t)
(Mood et al. 1974). Because F−1 cannot be found explicitly, we generated random
variates by numerically solving the equation F(t) − u for t where u is a uniform
random variate. We truncated the series for F(t) at n = 50 terms in our simulations.

We can also calculate the mean occupancy time T�a for an insect released at r = 0
within a circle of radius a using previous results, obtaining

T�a = 2a2
∞∑

n=1

1

J1(μn)μn(c0a2 + Dμ2
n)

. (6.39)

This result is used below to estimate D and c0. It also provides a way of determining
whether the random numbers generated using F(t) have the appropriate mean.

We now consider an insect initially located at r = 0 within two concentric circles
of radius a and R, with biased movement across the circle boundary at r = a, and
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different diffusion rates D1 and D2 for the two circles as well as mortality during dis-
persal at rate c0. Suppose that k1 describes the probability of an individual returning
to �a upon encountering the edge, while k2 = 1 − k1 is the probability of leaving
�a . Denote k = k2/k1. The probability distribution for its position at time t inside
the disk r ≤ a is given by (see Corollary 4.5)

v(r; t) = 1

2π

∞∑
n=1

z2
λn

(a)

�n y2
λn

(a)
yλn (r)e−(c0+λn)t , (6.40)

where yλn , zλn are defined in (3.19), and �n by (4.37). Using this distribution, the
probability that the insect has dispersed from the disk or died inside the patch is given
by

G(t) = 1 −
a∫

0

2πrv(r, t)dr

= 1 −
∞∑

n=1

z2
λn

(a)

�n y2
λn

(a)
e−(c0+λn)t

a∫
0

r yλn (r)dr

= 1 − a
√

D1

∞∑
n=1

z2
λn

(a)

�n
√

λn y2
λn

(a)
J1

(
a

√
λn

D1

)
e−(c0+λn)t

G(t) can be regarded as the cumulative distribution function for a random variable
T , defined as the occupancy time of an insect released within the circle of radius a.
Random variates can also be generated using the same method as for F(t) above. We
truncated the series at n = 50 terms in our simulations.

The mean occupancy time for the disk r ≤ a is given by

T�a = a
√

D1

∞∑
n=1

z2
λn

(a)

�n
√

λn(c0 + λn)y2
λn

(a)
J1

(
a

√
λn

D1

)
. (6.41)

We will use this result below to estimate k.

6.2 Means, standard deviations, and confidence intervals

We used the above results to generate random samples for three scenarios. The first
involves the dispersal of insects released at the center of a circle of radius a = 1,
with no mortality during dispersal (c0 = 0). We generated random samples of size
m = 100 and 500 for known D = 1 using F(t). These sample sizes are typical of the
ones found in studies of insect dispersal (see Turchin 1998). For each sample, we then
estimated D using the formula
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Table 6 Mean and standard deviation of D̂ for 1,000 random samples of occupancy time generated using
F(t), assuming D = 1, c0 = 0, and a circle of radius a = 1

m Mean D̂ SD D̂ % coverage (D)

100 1.004 0.070 93.6

500 1.000 0.030 94.5

Also listed is the percentage of 95 % confidence intervals obtained through bootstrapping that actually
include D (% coverage)

D̂ = 0.2498
a2

T
. (6.42)

Here T = 1
m

∑m
i=1 Ti , where Ti is the i th occupancy time in the sample. This pro-

cess was repeated 1,000 times, and the overall mean and standard deviation of D̂
was calculated. Confidence intervals (95 %) were also calculated for each sample
using bootstrapping and the percentile method (Manly 1997), and whether the inter-
val included D = 1 noted. Our results suggest that D̂ is an unbiased estimator of
D, because its mean value lies close to D itself (Table 6). As would be expected,
increased sample size reduce the variability of D̂ because it decreases variability in T .
Confidence intervals obtained using bootstrapping had close to the correct coverage,
containing D slightly less than 95 % of the time.

The second scenario involves the dispersal of insects released at the center of two
circles, with radius a = 1 and b = 2, with mortality occurring during dispersal. We
generated samples of occupancy times for each circle of size m = 100 and 500, setting
D = 1 and c0 = 0.5. The observations for each circle were separately generated and
so were independent. We then estimated D and c0 by numerically solving the two
equations

T �a = 2a2
∞∑

n=1

1

J1(μn)μn(ĉ0a2 + D̂μ2
n)

T �b = 2b2
∞∑

n=1

1

J1(μn)μn(ĉ0b2 + D̂μ2
n)

.

Here T a = 1
m

∑m
i=1 Tai , where Tai is the i th occupancy time for the circle of radius

a, with T bi similarly defined for second circle. We truncated the series in each equa-
tion at n = 50 terms. This process was repeated 1,000 times, and the overall mean
and standard deviation of D̂ and ĉ0 was calculated. Bootstrap confidence intervals
were also calculated for both parameters. The simulations suggest that D̂ and ĉ0 are
unbiased estimates of D and c0, while the bootstrap confidence intervals had coverage
close to the nominal 95 % level (Table 7).

In the third scenario, an insect is released at r = 0 within two concentric cir-
cles of radius a = 1 and R = 5, with biased movement across the circle boundary
at r = a. We are interested in estimating k = k2/k1, given that the other model
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Table 7 Mean and standard deviation of D̂ and ĉ0 for 1,000 random samples of occupancy time generated
using F(t), assuming D = 1, c0 = 0.5, and concentric circles of radius a = 1 and b = 2

m Mean D̂ SD D̂ % coverage (D) Mean ĉ0 SD ĉ0 % coverage (c0)

100 1.007 0.107 94.7 0.495 0.220 94.0

500 1.000 0.048 94.5 0.503 0.098 94.8

Also listed is the percentage of 95 % confidence intervals obtained through bootstrapping that actually
include D or c0 (% coverage)

Table 8 Mean and standard
deviation of k̂ for 1,000 random
samples of occupancy time
generated using G(t), assuming
D1 = 1, D2 = 2, c0 = 0.5, and
concentric circles of radius
a = 1 and R = 5

Also listed is the percentage of
95 % confidence intervals
obtained through bootstrapping
that actually include k
(% coverage)

k m Mean k̂ SD k̂ % coverage (k)

0.2 100 0.211 0.057 94.5

0.2 500 0.202 0.022 94.6

0.5 100 0.533 0.147 92.2

0.5 500 0.506 0.059 94.9

1.0 100 1.113 0.386 92.9

1.0 500 1.022 0.143 92.9

2.0 100 2.444 1.630 90.5

2.0 500 2.074 0.408 94.5

5.0 100 7.441 5.538 90.8

5.0 500 5.612 2.098 93.0

parameters (D1, D2, and c0) are known or estimated from prior studies. We generated
samples of occupancy time (m = 100 or 500) for the inner circle using G(t), setting
D1 = 1, D2 = 2, and c0 = 0.5, for k = 0.2, 0.5, 1, 2, and 5. We then used the method
discussed in the text to find an estimate k̂ using the sample mean T a of occupancy
times for the inner circle. We first generated values of the mean occupancy time T�a

for a broad range of k values, ranging from k = 0.05 to k = 20. We then used piece-
wise cubic hermite interpolation to find k̂ for the value of T a for each sample. This
process was repeated 1,000 times, and the overall mean and standard deviation found
for k̂ as well as bootstrap confidence intervals. For small values of k the estimates
were close to the true parameter value, but for larger k there was increasing bias in
the estimate (Table 8). The amount of bias was clearly less for the larger sample size,
but the estimated values of k were always larger than the true parameter values. The
confidence intervals had lower coverage than the nominal 95 % but were still adequate,
with the lowest value being 90.5 %.

It is likely that the source of this bias is the nonlinear relationship between k and T�a

combined with the fact that T is a random variable. Let g be the function describing
the relationship k and T�a . Our method essentially uses k̂ = g(T ) to estimate k. By
Jensen’s inequality, we have E[k̂] = E[g(T )] ≥ g(E[T ]) = g(T�a ) because g is a
convex function (Mood et al. 1974). We would therefore expect the estimated values
of k to exceed the true parameter values, which is the pattern observed in Table 8.
The amount of bias decreases with sample size because T is less variable under these
circumstances.
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7 Concluding remarks

In this paper, we present a new approach for the estimation of the diffusion rate as well
as the crossing probability for one type of edge behavior, a biased random walk. The
system is not a classical diffusion system and the dynamical behaviors are coupled
at the interface boundaries, which present mathematical challenges in seeking solu-
tions, either analytical expressions or numerical computational schemes. We studied
the solvability of the diffusion system using Bessel functions and obtain mathematical
expressions for the mean occupancy times and conditional probability densities across
different types of habitat.

The expression obtained for the diffusion rate D given by (2.3) has two major
advantages over the traditional maximum likelihood approach. The first is that occu-
pancy time is not a difficult quantity to be measured (see below). The second is that
the proposed approach has a low computational cost. These two features make the
approach quite attractive. Furthermore, notice that the method allows us to choose a
relatively small patch, so that even if a nonlinear term appears in the diffusion process
(such as in Fisher PDE model, Kolmogorov et al. 1991) we can still use a linear model
to approximate it, and thus use (2.3) for estimation.

The crossing probability for biased edge movement between two different habitat
types usually is difficult to obtain since the model in such a case is no longer a standard
diffusion model, and the currently used maximum likelihood approach is computa-
tionally intensive. The mathematical expressions for the mean occupancy time given
by (3.15) and (3.17) allow us to compute a set of mean occupancy times by preselect-
ing a set of values k = k2/k1 with k1 + k2 = 1. Then the ratio k = k2/k1 can be
estimated by piecewise cubic Hermite interpolation. The accuracy can be improved
by simply increasing the size of the preselected set appropriately. This approach is
mainly to avoid to solve a highly nonlinear equation to obtain k under our framework.

Our analyses using simulated data sets suggests these new estimation methods yield
unbiased estimates of the diffusion rate as well as mortality during dispersal. Confi-
dence intervals for these estimates can also be obtained through bootstrapping. We did
observe some bias in the estimation of the k = k2/k1, which was greatest for large
values of this parameter and small data sets. Large values of k would seem unlikely
in nature, because they imply the insects would flee a patch of habitat upon reaching
the edge.

Mean occupancy time can be estimated in a number of ways through field experi-
ments or observations. We first suppose that mortality during dispersal is negligible,
either because it is truly low, or the circular region under consideration is sufficiently
small that the insects are unlikely to die before they exit. To estimate the mean occu-
pancy time, we need only observe when a number of insects or organisms leave a
circular region, and take the average of these values. Such data might be obtained by
releasing the insects within the circle, or we may be able to initially locate an insect
and then determine when it leaves a circle surrounding the initial position. The insects
could be directly observed leaving the circle, or traps deployed that indicate the direc-
tion of insect movement. For example, a common type of insect trap is a flat panel
coated with a sticky substance, and these could be deployed facing inward at the edge
of the circle. Insects trapped on the inward side of the trap would be considered to

123



566 M. Xiao et al.

have left the circle. The traps would be checked at regular intervals and the time of
arrival (the occupancy time) recorded for each insect. We would then use (2.4) and
the average of these occupancy times to obtain an estimate of D, and bootstrapping
to obtain a confidence interval.

We next suppose there is significant mortality during dispersal, and that one can
determine when an insect dies as well as exits the circle. The mean occupancy time
can still be calculated in this case, but now includes the time of death for some indi-
viduals, in particular those that die before exiting the circle. One would then observed
the occupancy times for insects for two circles of different radius, and solve for D
and the mortality rate c0 using (2.5). These extra observations and calculations may
be avoidable in some systems by choosing a sufficiently small circle that mortality is
negligible during the course of the experiment, because most insects would exit the
circle before dying. Once we have estimated the diffusion rates for different types
of habitat or matrix (D1 and D2) and any mortality (c0), we would then apply the
same experimental protocols to estimate the boundary parameter k1. Insects would be
released within a circle of habitat, and the time when they leave the circle as well as
the time of death recorded. We would then estimate the edge crossing probability k1
using the methods in Sect. 2.2, which make use of the relationship between k1 and
mean occupancy time. We are currently developing software programs that automate
these calculations, and applying them to real data sets, to make these procedures more
practical and useful to field ecologists.
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