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a b s t r a c t

Insect host–parasitoid systems are often modeled using delay-differential equations, with a fixed
development time for the juvenile host and parasitoid stages. We explore here the effects of distributed
development on the stability of these systems, for a random parasitism model incorporating an
invulnerable host stage, and a negative binomial model that displays generation cycles. A shifted gamma
distribution was used to model the distribution of development time for both host and parasitoid stages,
using the range of parameter values suggested by a literature survey. For the random parasitism model,
the addition of biologically plausible levels of developmental variability could potentially double the
area of stable parameter space beyond that generated by the invulnerable host stage. Only variability
in host development time was stabilizing in this model. For the negative binomial model, development
variability reduced the likelihood of generation cycles, and variability in host and parasitoid was equally
stabilizing. One source of stability in these models may be aggregation of risk, because hosts with varying
development times have different vulnerabilities. High levels of variability in development time occur in
many insects and so could be a common source of stability in host–parasitoid systems.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Insect host–parasitoid and predator–prey systems are often
modeled using delay-differential equations, because this frame-
work lends itself to the structure of insect life cycles and the
time delays inherent in insect development. For example, a
host–parasitoid system can often be represented by several host
equations representing vulnerable and invulnerable stages as well
as adult hosts with time delays associated with the development
of these stages, while the parasitoid has equations for immature
and adult parasitoids that also incorporate delays (e.g. Murdoch
et al., 1987; Godfray and Hassell, 1989; Gordon et al., 1991; Reeve
et al., 1994; Briggs et al., 2000;Wearing et al., 2004b). Among other
findings, these models have shown that invulnerable host stages
can be stabilizing and that parasitoids can induce generation cycles
(cycles with a period of one host generation) in the host as well as
longer period cycles. Also shown to be stabilizing are aggregation
(or heterogeneity) in the risk of parasitism and interference among
searching parasitoids.
A simplifying feature in many of these models is a fixed devel-

opment time for the immature host and parasitoid stages,meaning
that each individual takes the same time to complete development
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in a particular stage. A few studies have examined scenarios where
development time has a distribution. Smith and Mead (1974) sim-
ulated a model with two age classes for the host (prey), with host
developmentmodeled using a fixed time delay, or exponential and
gamma distributions. Persistence was most likely for an exponen-
tial development time in combination with an invulnerable host
stage. Hastings (1983, 1984) also found that exponential develop-
ment times were more stable than fixed delays in predator–prey
modelswith age structure and invulnerable periods. (In thesemod-
els, if predator or prey develops into the next stage at a fixed
rate this implies an exponential distribution of development time.)
Briggs et al. (1993) found that variability in host development in-
creased the likelihood of coexistence in a host–parasitoid model
with two competing parasitoid species. Wearing et al. (2004a)
found that generation cycles could be replaced by longer period
cycles in a model of the Plodia interpunctella–Venturia canescens
host–parasitoid system, as variability in host or parasitoid devel-
opment time (modeled using a gammadistribution)was increased.
The estimated values of the gamma shape parameter nwere quite
large, however, suggesting that natural variability in development
time was low for this system (as n → ∞ variability approaches
zero). Eurich et al. (2005) examined the effect of distributed
delays in prey development for Lotka–Volterra predator–prey
systems and similar food chains and webs. They found that stabil-
ity and persistence were strongly enhanced by distributed devel-
opment, approaching the results found for systems without time
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delays. Nakamichi et al. (2008) simulated the interaction between
the stored grain pest Callosobruchus maculatus and its parasitoid
Heterospilus prosopidis, and observed that persistence was en-
hanced by variability in host development. Variability was also rel-
atively low in this system (n was large), but was still sufficient
to influence the dynamics. These findings suggest that develop-
mental variability could have substantial effects on persistence and
stability in host–parasitoid models, but these effects also depend
on the level of variability, which was only quantified in two of
these studies. That these are predator—prey systems also appears
important—in contrast, Blythe et al. (1984) observed little effect
of distributed development on the stability of the single-species
system.
We explore here the effects of distributed development in host

and parasitoid stages on the stability of these systems, using as
a starting point the host–parasitoid model developed by Godfray
and Hassell (1989), for both random and negative binomial search
in the parasitoid. This model includes age structure in both host
and parasitoid as well as invulnerable host stages, with sufficient
detail to be representative of many natural systems. Parameter
values for this model were selected to be similar to those used in
Godfray and Hassell (1989) or in Murdoch et al. (1987), which in
turn were based on real host–parasitoid systems. A shifted gamma
distribution was used to model the distribution of development
time for both host and parasitoid stages. Previous theoretical
work indicates that stability often depends on the amount of
developmental variability, and so we also conducted a literature
survey of insect development studies. The results of this survey
provided a plausible range of parameter values for the gamma
distribution. Our results indicate that stability is enhanced by
distributed development in host or parasitoid, although the host
effect appears stronger. Both generation and longer-period cycles
are less likely when there is distributed development, relative to
models with a fixed development time. These results occur for
parameter values of the shifted gamma distribution that appear
common in nature.

2. Survey of distributed development

The great majority of studies that have examined the distribu-
tion of development time in insects use the Weibull distribution,
fitted by the method described in Wagner et al. (1984). The analy-
sis first normalizes the data by dividing development times by the
mean or median development time for each rearing temperature,
thus allowing the data for different temperatures to be combined
in a single analysis. A three-parameter version of the Weibull dis-
tribution is typically employed, involving shape, scale, and shift pa-
rameters (β , η, and γ , respectively), although some papers assume
that γ = 0. The probability density for the Weibull is given by the
equation

ef (t) =
β

η

(
t − γ
η

)β−1
e−[(t−γ )/η]

β
(1)

where β > 0, η > 0, and t > γ . Its corresponding distribution
function is

F(t) = 1− e−[(t−γ )/η]
β
, (2)

(Johnson et al., 1994). Nonlinear regression is then used to fit the
distribution function for the Weibull to the empirical distribution
of development times. We located a total of 32 studies that used
this methodology by searching for papers that cited Wagner et al.
(1984). For modeling purposes, we were most interested in the
amount of developmental variability in single immature stages,
not for combined stages such as egg-adult development. After
eliminating combined stages, wewere left withWeibull parameter

estimates for 23 species and 65 stages (usually several per species),
across 21 studies (Appendix A). Themajority of the estimates were
obtained from laboratory studies of development (59 of 65 stages).
We note that only two species (5 stages) involved natural enemies,
one predator (Calosoma sycophanta) and one parasitoid (Cotesia
melanoscela) of the gypsy moth, Lymantria dispar. The remainder
were typically pest species of some economic importance.
Continuous-time models that include developmental variabil-

ity often use the gamma distribution to model development times,
because it has a number ofmathematical advantages. However, the
gamma distribution is seldom used in empirical studies of devel-
opment time, the only examples we could find being Blythe et al.
(1984) and Nakamichi et al. (2008) (which examined total devel-
opment time, not single stages), and Wearing et al. (2004a). We
therefore developed a method of converting Weibull parameter
values to the analogous ones of the gamma distribution. For each
triplet of Weibull parameter values, we used the rand function
in SAS 9.1 (SAS Institute, Inc., 2003) to generate a data set with
n = 5000 observations from the Weibull distribution. We then
fitted the gamma distribution to the simulated data using max-
imum likelihood as implemented in PROC UNIVARIATE (SAS In-
stitute, Inc., 2003) The gamma distribution also has shape, scale,
and shift parameters (n, c , and τ ) and can take shapes similar to
theWeibull distribution. The probability distribution of the gamma
distribution is given by

f (t) =
cn+1

Γ (n+ 1)
(t − τ)ne−c(t−τ) (3)

where n > −1, c > 0, and t > τ . Note that for n = 0 the gamma
reduces to the exponential distribution. This parameterization of
the distribution is the one we employed in the host–parasitoid
models (see below). We assumed that the threshold parameter
for the gamma distribution was equal to the Weibull parameter
value to simplify the fitting process. The match between the
gamma distribution and the simulatedWeibull data was generally
quite close except for very large values of β (the Weibull shape
parameter), for which the Weibull distribution has a slightly left-
skewed shape that cannot be matched by the gamma distribution.
The net result was a triplet of gamma parameter values (n, c , and
τ ) corresponding to each triplet of Weibull parameter estimates.
The results of the literature survey suggest that small values of

the gamma shape parameter n are quite common (Fig. 1(A)). The
distribution had two peaks, with one at low values (2 < n < 4)
and a second smaller peak at large values (n > 18). Previously pub-
lished estimates of the gamma shape parameter (Wearing et al.,
2004a) were clustered around the second peak (Fig. 1(A)). The
shift parameter τ showed a broad spectrum of values (Fig. 1(B))
between 0 and 1. Note that τ in this case actually represents a
proportion of the total development time because the Wagner
et al. (1984) procedure uses normalized development time. Based
on our results, we felt justified in using some relatively small n
values, and a range of τ values, in the stability analyses discussed
below. One drawback of our survey is that it examines develop-
mental variability in general, not for particular host–parasitoid
systems and stages, but these were the data available.

3. Models and analyses

As in Godfray and Hassell (1989), we consider an idealized
host–parasitoid life cycle (Fig. 2). The life cycle of the host can
be divided into three juvenile stages and an adult stage, with
densities H1, H2, H3, and H4. Parasitism only occurs in the second
host stage while the rest are invulnerable, although there may
be density-independent mortality in all stages. The parasitoid life
cycle is divided into juvenile and adult stages with densities P1
and P2. Parasitism by adult parasitoids converts juvenile hosts
into juvenile parasitoids, which eventually mature into adult
parasitoids (Fig. 2).
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A

B

Fig. 1. Frequencies of the shape parameter n (A) and threshold τ (B) for the
shifted gamma distribution, in a survey of papers examining variability in insect
development time. Open bars are the results from Wearing et al. (2004a), which
directly fitted the gamma distribution, while the remainder were obtained from
studies using the Weibull distribution (see text for details).

Fig. 2. Idealized host–parasitoid life cycles as described in Godfray and Hassell
(1989). There are three juvenile stages in the host, with densities H1 , H2 , and H3 ,
while H4 is the adult host stage. The parasitoids have two stages (juvenile and
adult) with densities P1 and P2 . Parasitoid attack converts hosts in the H2 stage
into juvenile parasitoids, while adult hosts reproduce at rate λ and generate new
juvenile hosts. Density-independent mortality occurs in each host and parasitoid
stage at rate µ∗ (∗ equals H1,H2 , etc.)

Using techniques for modeling age-structured populations (see
Nisbet andGurney, 1983; Gurney et al., 1983;Murdoch et al., 1987;
Godfray and Hassell, 1989), we obtain the following equations
describing the dynamics of the system:

dH2(t)
dt
= λH4(t − TH1)FH1 −MP1(t)−MH(t)− µH2H2(t),

dH4(t)
dt
= MH(t − TH3)FH3 − µH4H4,

dP1(t)
dt
= MP1(t)−MP2(t)− µP1P1,

dP2(t)
dt
= MP2(t)− µP2P2.

(4)

Note that the host can be modeled using equations for only
H2 and H4, because the host is assumed to pass through the H1
and H3 stages at fixed time periods during which there are no
interactions with the parasitoid or reproduction. In this model, the
instantaneous death rate for each stageµ∗ (∗ stands forH1,H2, etc.)
is assumed to be constant. T∗ represents the mean time period of
the stage (see Fig. 2) and F∗ is the probability of surviving until
the end of the stage given by F∗ = e−µ∗T∗ . The instantaneous per
capita birth rate of adult insects is λ, and hence the number of
insects entering H2 stage per unit time is the product of the rate
of egg laying TH1 time units ago, which is equal to λH4(t − TH1),
and the survival probability FH1 fromH1 stage. The insects entering
H2 may die due to the instantaneous mortalityµH2 , be attacked by
parasitoids at rateMP1(t), ormature into theH3 stage at rateMH(t).
The recruitment rate of the H4 stage (host adults) is the number
of insects which enter H3 stage TH3 time units ago and survive
until the end of the stage. These insects die at rate µH4 , whose
reciprocal 1/µH4 is assumed to be the mean lifespan TH4 of adult
hosts. The first termMP1(t) in the equation for P1 is the recruitment
rate of parasitoids into the P1 stage. The juvenile parasitoids die at
rate µP1 or mature into adult parasitoids at rate MP2(t). The adult
parasitoids die at rate µP2 , with TP2 = 1/µP2 their mean lifespan.
Our formulation for adult lifespandiffers in onedetail fromGodfray
and Hassell (1989), who assumed a finite lifespan for adult hosts
and parasitoids. All model parameters are listed in Table 1.
In this paper, we consider two variants of the abovemodel with

different types of parasitoid search and stabilizing mechanisms:
(1) random search with a long and stabilizing invulnerable host
adult stage (H4), similar toMurdoch et al. (1987), and (2) parasitoid
search according to the negative binomial model (May, 1978;
Chesson and Murdoch, 1986), which is also stabilizing if the level
of parasitoid aggregation is sufficiently high. Negative binomial
search in combination with a ratio of parasitoid to host generation
times of approximately 0.5 or 1.5 can also lead to generation cycles
(Godfray and Hassell, 1989). For each variant, we study the effect
of distributed development in both host and parasitoid on the
stability of the system.

3.1. Random search and an invulnerable host stage

We begin by assuming that parasitoids search for hosts ran-
domly and independently at rate a so that

MP1(t) = aP2(t)H2(t). (5)

We now specify the forms ofMH andMP2 for fixed development
times in both host and parasitoid, and then gamma distributions of
development time. An insect from H1 stage will stay in H2 stage for
a fixed time period TH2 and then enter H3 stage. Therefore,

MH(t) = λH4(t − TH1 − TH2)FH1e
−
∫ t
t−TH2

(aP2(x)+µH2 )dx. (6)

Similarly,MP2(t) takes the following form:

MP2(t) = aP2(t − TP1)H2(t − TP1)FP1 . (7)

The model system thus consists of Eqs. (4)–(7). Under these classic
assumptions, similarmodels have beenwell-studied (seeMurdoch
et al., 1987). Setting the right side of the equations in (4) equal to
zero and solving for equilibrium yield
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Table 1
Parameter values used in the stability analyses and numerical simulations. The values for the random search are similar to those used by Murdoch et al. (1987), including
a long and stabilizing invulnerable adult host stage. Parameter values for the negative binomial search are patterned after Godfray and Hassell (1989). Note that CH and CP
are functions of other parameters.

Parameter Definition Random search Negative binomial search

TH1 Development time of H1 3 3
TH2 Development time of H2 varies 2
TH3 Development time of H3 3 3
TH4 Longevity of H4 1/µH4 = 16 1/µH4 = 1
TP1 Development time of P1 varies varies
TP2 Longevity of P2 1/µP2 = 1 1/µP2 = 0.4

µH1 Mortality rate for H1 0 0
µH2 Mortality rate for H2 0 0
µH3 Mortality rate for H3 0 0
µH4 Mortality rate for H4 1/16 1
µP1 Mortality rate for P1 0 0
µP2 Mortality rate for P2 1 2.5

a Parasitoid attack rate 1 1
λ Host oviposition rate 33/16 15
k Parasitoid aggregation – varies

n Gamma shape (host) varies varies
m Gamma shape (parasitoid) varies varies
τ1 Gamma shift (host) varies varies
χ1 Gamma shift (parasitoid) varies varies

CH CH = (n+ 1)/(TH2 − τ1) varies varies
CP CP = (m+ 1)/(TP1 − χ1) varies varies

H∗2 =
µP2

aFP1
, H∗4 =

FH3H
∗

2 ln θ
TH2µH4(θ − 1)

,

P∗1 = aH
∗

2P
∗

2
1− FP1
µP1

, P∗2 =
1
a

(
ln θ
TH2
− µH2

)
,

(8)

where θ = λFH1FH3/µH4 . If we set R0 = θFH2 , then R0
represents the number of offspring produced by a typical adult
host that successfully survived the H1, H2 and H3 stages and was
assumed to be greater than 1 to ensure the existence of the positive
equilibrium. The equilibrium (8) is locally stable when all roots of
the characteristic equation given in Box I (see Appendix B) have
negative real parts. Murdoch et al. (1987) examined the stability
properties of this model when TH1 = TH3 = 0. We use it here
as a reference case for comparison with a model incorporating
distributed delays in development.

3.1.1. Distributed development time
We incorporate developmental variability in the model by

using a distribution function for development time in the H2 and
P1 stages, because variability in these stages (as well as their
mean length) seem likely to influence stability and persistence
(e.g. Murdoch et al., 1987; Godfray and Hassell, 1989; Tuda and
Shimada, 1995; Wearing et al., 2004a; Nakamichi et al., 2008).
Assume that the maturation of insects in stage H2 follows a
distribution function G(t). Therefore, the rate at which hosts
survive parasitism and other mortality is given by

MH(t) =
∫ t

−∞

λH4(s− TH1)FH1G(t − s)e
−
∫ t
s (aP2(x)+µH2 )dxds

=

∫
∞

0
λH4(t − s− TH1)FH1G(s)e

−
∫ t
t−s(aP2(x)+µH2 )dxds.

A natural choice of G(t) is the gamma distribution:

gn(t) =
Cn+1H

n!
tne−CH t , CH ≥ 0.

The gamma distribution reduces to the exponential if n = 0. As
suggested by our literature survey, however, there should be a
minimum period for which an insect must stay in H2 stage before
maturing into the next stage. To incorporate this minimum period,
we consider a shift of the distribution:
G(t) = u(t − τ1)gn(t − τ1),

where u(r) = 0 for r < 0 while u(r) = 1 for r ≥ 0. Therefore the
mean period of insects in H2 is

TH2 = τ1 + τ2, where τ2 =
n+ 1
CH

,

andMH(t) has the form of

MH(t) =
∫
∞

0
λH4(t − s− TH1)FH1u(s− τ1)

× gn(s− τ1)e−
∫ t
t−s(aP2(x)+µH2 )dxds. (9)

Taking the same assumptions on parasitoid maturation we have

MP2(t) =
∫
∞

0
aP2(t − s)H2(t − s)u(s− χ1)

× gm(s− χ1)e−µP1 sds, (10)
where χ1 is the minimum maturation period for parasitoids and
gm(t) is the gamma distribution of order m with the mean time
χ2 =

m+1
CP
. Therefore, the mean juvenile period is

TP1 = χ1 + χ2, where χ2 =
m+ 1
CP

.

The model for distributed development consists of Eqs. (4), (5),
(9) and (10). Setting the right side of the model system equal to
zero and solving for equilibrium yields

H∗2 =
µP2

a
eµP1χ1

(
CP + µP1
CP

)m+1
,

H∗4 =
FH3(aP

∗

2 + µH2)H
∗

2

µH4(θ − 1)
,

P∗1 =
aP∗2H

∗

2

µP1

(
1−

(
CP

CP + µP1

)m+1
e−µP1χ1

)
,

(11)

and P∗2 = x
∗/a, where x∗ is the unique solution of the equation:

(θe−µH2 τ1)
1
n+1 e−

xτ1
n+1 = 1+

µH2

CH
+
x
CH
. (12)

Here θ = λFH1FH3/µH4 . It was assumed that

(θe−µH2 τ1)
1
n+1 −

µH2

CH
> 1

so that the Eq. (12) admits a unique positive solution and hence the
equilibrium (11) is biologically meaningful. In the case of τ1 = 0,
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i.e., no minimum development time in H2 stage, Eq. (12) can be
analytically solved and P∗2 is given by

P∗2 = (CHθ
1
n+1 − CH − µH2)/a.

The local stability is governed by the roots of the characteristic
equation in Box II given in Appendix B.
For both models (with fixed and distributed development

times), we see that an increase in parasitoid search efficiency (a)
reduces the equilibrium values of both adult host and parasitoid,
but variation in a does not affect local stability. Moreover, the
durations of host stagesH1 andH3 are involved in the characteristic
equations only through their sum TH1 + TH3 in the case of no
mortality in the stages (i.e., µH1 = µH3 = 0) (see also Godfray
and Hassell, 1989).

3.1.2. Stability boundaries
Themodels described above are locally stable at the equilibrium

pointswhen all roots of the corresponding characteristic equations
have negative real parts [see Box I or Box II in Appendix B]. Due to
the complexity of these equations,wewere forced to use numerical
methods to locate the relevant roots of the equations, tracing the
pure imaginary roots as the model parameters were varied. These
roots determine the boundaries of stable vs. unstable areas in the
parameter space, which were checked using numerical simulation
of the model (4).
For the stability analysis, we used parameter values similar

to Murdoch et al. (1987), who modeled the California red scale
Aonidiella aurantii (Hemiptera: Diaspididae) and its parasitoid
Aphytis melinus (Hymenoptera: Aphelinidae). We chose TH4 =
1/µH4 = 16 so that there was a long stabilizing invulnerable adult
host stage relative to the duration of the other stages. We also
chose λ so that the adult reproductive output (λTH4 = 33/16 ×
1/16 = 33) was the same as Murdoch et al. (1987) for their
parameter ρ (Table 1). We then varied TH2 and TP1 because these
parameters were important to stability in their model. The model
structures are not identical, however, because we used four rather
than two host stages as in Murdoch et al. (1987).
Fig. 3 shows the boundary of the stable area in the TH2 − TP1 pa-

rameter plane for the random parasitism model with both fixed
and distributed delays. Below each curve is the area where the
corresponding model is stable, while periodically oscillating solu-
tions occur above the curves. Fig. 3(A) indicates that the stable re-
gion for the distributed delay model is much larger than that for
the fixed delay model, particularly for small (but still biologically
plausible) values of the gamma shape parameters n and m. As the
shape parameters n for the host and m for the parasitoid are in-
creased the stability boundaries for the distributed delay model
approach the fixed delay one. The inclusion of minimum develop-
ment times τ1 and χ1 in both host and parasitoid reduces the area
of stability, although it is still much larger than the fixed delay area
(Fig. 3(B)). (Note that τ1 and χ1 are expressed as proportions of TH2
and TP1 , matching the way minimum development was expressed
in the literature survey.) It also appears that variability in host, not
parasitoid, development is important for stability. The stability
boundaries change significantly for different n values, whilem has
virtually no effect on stability (Fig. 3(B)). Fig. 4 explores the effects
of different minimum development times in the host and para-
sitoid. Increasing the minimum host development time τ1 reduces
the area of stability (Fig. 4(A)), while varying the minimum para-
sitoid development time χ1 has no effect (Fig. 4(B)).

3.2. Negative binomial search and generation cycles

We now assume that the instantaneous risk of parasitism is of
the form k ln(1 + aP2/k), which is derived from the discrete-time

negative binomial model (Godfray and Hassell, 1989). That is, the
termMP1 takes the form of

MP1(t) = k ln
(
1+

aP2(t)
k

)
H2(t). (13)

3.2.1. Fixed development time
Using this model for parasitoid search, Godfray and Hassell

(1989) developed a fixed delay model where hosts and parasitoids
in all stages mature into next stages at fixed time periods. From
their work, the termsMH(t) andMP2(t) take the following forms:

MH(t) = λH4(t − TH1 − TH2)FH1

× e
−
∫ t
t−TH2

(k ln(1+aP2(x)/k)+µH2 )dx,

MP2(t) = k ln
(
1+

aP2(t − TP1)
k

)
H2(t − TP1)FP1 .

(14)

The equilibriumof themodel consisting of Eqs. (4), (13) and (14)
is given by

H∗2 =
µP2P

∗

2

FP1K ∗
, H∗4 =

FH3H
∗

2 (K
∗
+ µH2)

µH4(θ − 1)
,

P∗1 = K
∗H∗2 (1− FP1)/µP1 ,

P∗2 = k
[
(θFH2)

1
kTH2 − 1

]
/a,

(15)

where K ∗ = k ln(1+ aP∗2 /k), θ = λFH1FH3/µH4 . The local stability
of the equilibrium is determined by its characteristic equation
given in Box III in Appendix B.
Our model formulation differs slightly from that in Godfray

and Hassell (1989), in that Eq. (4) implies that lifespans for
adult hosts and parasitoids follow exponential distributions while
they assumed fixed finite adult lifespans. However, the stability
boundaries for the two models proved to be quite similar (see
below).

3.2.2. Distributed development time
Similar to the case for random parasitism, we assume that the

maturation periods in stageH2 and P1 follow a gamma distribution
instead of a fixed development time. As before but in combination
with negative binomial parasitism, the terms MH(t) and MP2(t)
have the following forms:

MH(t) =
∫
∞

0
λH4(t − s− TH1)FH1u(s− τ1)gn(s− τ1)

× e−
∫ t
t−s(k ln(1+aP2(x)/k)+µH2 )dxds,

MP2(t) =
∫
∞

0
k ln

(
1+

aP2(t − s)
k

)
H2(t − s)u(s− χ1)

× gm(s− χ1)e−µP1 sds.

(16)

Then the mean period of hosts in stage H2 is TH2 = τ1 + τ2, where
τ1 is the minimum time period in the stage τ2 = (n+1)/CH , while
the mean period of parasitoids in stage P1 is TP1 = χ1 + χ2 where
χ1 is the minimum time period in the stage χ2 = (m+ 1)/CP .
The equilibrium values of the variables in the model consisting

of (4), (13) and (16) are

H∗2 =
µP2P

∗

2

K ∗
eµP1χ1

(
CP + µP1
CP

)m+1
,

H∗4 =
FH3 [K

∗
+ µH2 ]H

∗

2

µH4(θ − 1)
,

P∗1 =
1
µP1

(
1−

(
CP

CP + µP1

)m+1
E−χ1µP1

)
H∗2K

∗,

P∗2 = k(e
x∗/k
− 1)/a,

(17)
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Fig. 3. Local stability boundaries for the random search plus invulnerable host stagemodel. The stability boundaries are plotted in the TH2–TP1 plane, themean development
times of the vulnerable host (H2) and parasitoid juvenile (P1) stages, for either a fixed delay or a gamma distribution of development with different values of the shape
parameters for the H2 stage (n) and P1 stage (m). (A) Nominimum development time in H2 or P1 (τ1 = 0, χ1 = 0). (B) Minimum development times half of the development
time in H2 or P1 (τ1 = 0.5TH2 , χ1 = 0.5TP1 ). Other parameter values are listed in Table 1. Stable and unstable regions are labeled.

Fig. 4. Local stability boundaries for the random search plus invulnerable host stagemodel. The stability boundaries are plotted in TH2–TP1 plane, for either a fixed delay or a
gamma distribution of development in H2 and P1 across a range of τ1 and χ1 values, the minimum development times of the H2 and P1 stages. The gamma shape parameters
for these stages were fixed at m = n = 10. (A) Minimum development time τ1 varies while χ1 is fixed. (B) Minimum development time χ1 varies while τ1 is fixed. Other
parameter values are listed in Table 1. Stable and unstable regions are labeled.

where x∗ is the unique solution of the Eq. (12) and K ∗ = k ln(1 +
aP∗2 /k). In the case of τ1 = 0, i.e., no minimum time period for the
H2 stage, the Eq. (12) can be solved analytically and P∗2 is given by

P∗2 = k[e
(CH θ

1
n+1 −CH−µH2 )/k − 1]/a.

The characteristic equation for the equilibrium is given in Box IV in
Appendix B.

3.2.3. Stability boundaries
As in previous models, we numerically determined the local

stability boundaries for the fixed and distributed development
versions of the negative binomial model. The boundaries are
plotted in terms of the negative binomial parameter k and the
ratio of parasitoid to host life cycle length, similar to the treatment
in Godfray and Hassell (1989). In particular, we used the ratio of
parasitoid to host generation time, namely (TP1+TP2)/(TH1+TH2+
TH3 + TH4). The parameter values we used in the stability analysis
were similar to Godfray and Hassell (1989), and so representative

of tropical host–parasitoid systems where the vulnerable H2 stage
is relatively brief compared to other stages, and P1 can be quite
short relative to the total host generation time, conducive to
generation cycles (Table 1). We also selected a value of λ that gives
nearly the same adult reproductive output (λTH4 = 15) as used by
Godfray and Hassell (1989).
Fig. 5(A) shows the stability boundaries for the fixed delay

version of the model, which are similar to those found by Godfray
and Hassell (1989). In the figure, three ‘‘∪’’-shaped curves near the
ratios equal to 0.5, 1.5 and 2.5 are associatedwith stable population
fluctuations of a period about a single generation of the host. The
addition (Fig. 5(B)) of variability in development time for host and
parasitoid not only significantly increases the overall stability of
the system, but also eliminates single-generation cycles near the
ratios equal to 1.5 and 2.5, which exist for the fixed delay version
of the model. Even though there is a ‘‘∪’’-shaped curve near the
ratio equal to 0.5 in Fig. 5(A) and (B), representing population
fluctuations, the periods of fluctuations are different (see Fig. 5(C)).
Increasing the level of variability in development time for host and
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Fig. 5. Local stability boundaries for the negative binomial search plus generation cyclesmodelwith fixed or gammadistributed development times. The stability boundaries
are plotted with respect to the ratio of parasitoid to host generation times (see text) and the search aggregation parameter k. (A) Fixed development times in H2 and P1 . (B)
Gamma distributed development in H2 and P1 for a range of values of the gamma shape parameters n and m, with no minimum development time (τ1 = χ1 = 0). Stable
and unstable regions are labeled, with GC denoting parameter space that may produce stable population fluctuations on the order of one host generation. (C) The periods of
the fluctuations represented by the ‘‘U’’ shaped stability boundaries in (A) and (B) for fixed and gamma distributed development times. Other parameter values are listed in
Table 1.

parasitoid (i.e., decreasing values ofm and n) decreases the period
of single-generation cycles whenever they exist.
In contrast to the random parasitism model, variability in host

and parasitoid development seem to contribute in roughly equal
amounts to system stability (Fig. 6). The contribution decreases as
the prescribed minimum development times increase (Fig. 6(B)).
Fig. 7 shows that increasing the minimum development times τ1
for the host and χ1 for the parasitoid reduces stability.

4. Discussion

Our results suggest that developmental variability could be a
significant source of stability in continuous-time, age-structured
host–parasitoid systems. First, it appears that the level of devel-
opmental variability is quite high for some insects, even under
the laboratory conditions for which most studies were conducted.
Second, the area of stable parameter space was significantly in-
creased by the addition of developmental variability to classic
models and systems (Murdoch et al., 1987; Godfray and Hassell,
1989). For the random parasitismmodel with an invulnerable host
stage, the addition of biologically plausible levels of developmen-
tal variability could potentially double the area of stable parameter
space beyond that generated by an invulnerable adult host stage.
Only variability in host development time was stabilizing in this

model. For the negative binomial model, however, developmental
variability in both host and parasitoid was stabilizing to approxi-
mately the same degree. Themost obvious effect in this model was
to reduce the area of parameter space for which generation cycles
occur relative to the fixed delay model (and eliminating them for
ratios of the parasitoid to host life cycle of 1.5 or higher), but the
overall area of stable parameter space was also increased.
What are the mechanisms underlying the enhanced stability

seen in our models? This is difficult to directly ascertain from the
stability analyses because of the complexity of the characteristic
equations. However, it seems likely that two distinct stabilizing
factors are operating in these models. One is that our models with
distributed development are intermediate between models with
fixed delays and ones where development time has an exponential
distribution with no minimum development time, which are often
more stable (Hastings, 1983, 1984; May, 1974; Eurich et al., 2005).
Wewould therefore expectmodels with developmental variability
to be more stable than their fixed delay counterparts, although
not as stable as the exponential models. A second factor could
be aggregation of risk (Chesson and Murdoch, 1986) generated
by variability in host development time. To see this, consider
the equation describing the host maturation rate for the random
parasitism model:
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Fig. 6. Local stability boundaries for the negative binomial search plus generation cycles model for gamma distributed development times. The stability boundaries are
plotted with respect to the ratio of parasitoid to host generation times (see text) and the search aggregation parameter k. (A) Effect of different values of the gamma shape
parameter n for the H2 stage vs. m for the P1 stage, for no minimum development time (τ1 = χ1 = 0). (B) Effect of different values of the gamma shape parameter n for
the H2 stage vs. m for the P1 stage, for τ1 = 0.5TH2 and χ1 = 0.5TP2 . Stable and unstable regions are labeled, with GC denoting parameter space that may produce stable
population fluctuations on the order of one host generation. Other parameter values are listed in Table 1.

Fig. 7. Local stability boundaries for the negative binomial search plus generation cycles model for gamma distributed development times. The stability boundaries are
plotted with respect to the ratio of parasitoid to host generation times (see text) and the search aggregation parameter k. (A) Effect of different values of the minimum
development time τ1 for theH2 stage, form = n = 2 and χ1 = 0.5TP1 . (B) Effect of different values of theminimum development time χ1 for the P1 stage, form = n = 2 and
τ1 = 0.5TH2 . Stable and unstable regions are labeled, with GC denoting parameter space thatmay produce stable population fluctuations on the order of one host generation.
Other parameter values are listed in Table 1.

MH(t) =
∫
∞

0
λH4(t − s− TH1)FH1G(s)e

−
∫ t
t−s(aP2(x)+µH2 )dxds.

If we suppose that G has a gamma distribution with shape
parameter n, µH2 = 0, and P2 and H4 are constant over time, this
equation reduces to

MH = λH4FH1 (1+ aP2/n)
−n .

The term in parentheses is the zero probability of the negative
binomial distribution, i.e., the probability of surviving parasitism,
and so themodel reduces to a form of the negative binomial model
under these conditions (May, 1978; Godfray and Hassell, 1989).
This type of parasitoid search is stabilizing because it incorporates
density-dependence in the overall attack rate of the parasitoid.
The underlying mechanism usually cited for the negative binomial
model is a spatially aggregated distribution of parasitoids, or
differences in the vulnerability of individual hosts to parasitism
such as refugia (Bailey et al., 1962; May, 1978; Chesson and
Murdoch, 1986). In models with distributed host development,

however, hosts could differ in vulnerability because of natural
variability in development time, which exposes them to parasitoid
attack for different periods of time.
Our findings suggest some avenues for further research. One

would be an examination of how host–parasitoid dynamics are
influenced by developmental variability in other stages of the host
life cycle, or variability in fecundity or mortality schedules with
age. Anotherwould be a comparison of the differentmethodologies
used to quantify variability in development time. Themost popular
method uses nonlinear regression to fit the Weibull distribution
function to the distribution of development times (Wagner et al.,
1984), but maximum likelihood methods are available for both
the Weibull and gamma distributions (such as PROC UNIVARIATE,
SAS Institute, Inc. (2003)) andmay have advantages. Our literature
survey indicates that variability in the development time of natural
enemies is seldomquantified, although this could potentially affect
stability. There are also relatively few studies of developmental
variability under field conditions. This would seem to require
following the development of juveniles hosts and parasitoids in
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∣∣∣∣∣∣∣∣∣∣
η + ln(θ)/TH2 −λFH1e

−TH1η(1− e−TH2η/θ) aH∗2 −
aµH4H

∗

4 (1− e
−TH2η)

FH3η

0 η + µH4(1− e
−(TH1+TH2+TH3 )η) aµH4H

∗

4 e
−TH3η

1− e−TH2η

η
−aP∗2 FP1e

−TP1η 0 η + µP2(1− e
−TP1η)

∣∣∣∣∣∣∣∣∣∣
= 0

Box I.

the field, but for systems where these stages are sessile this
should be feasible. It seems likely that developmental variability
would be greater under field conditions, where local differences
in microclimate could operate. It would also be useful to follow
the fate of individual hosts with respect to parasitism—do hosts
with longer development times actually have a higher risk of
parasitism? There are also laboratory systems where it may be
possible to experimentally manipulate variability in development
time and observe its effect on host–parasitoid dynamics. For
example, Tuda (1996) manipulated the length of the vulnerable
period in the bruchid beetle C. maculatus by rearing them on
different bean species, and so mixtures of different bean species
might be used to manipulate variability in development time. We
further suggest that empirical investigations of host–parasitoid
dynamics should take into account variability in development
time, because this variability could significantly affect stability or
persistence and is likely present to some extent in any such system.
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Appendix B. Local stability analysis for the models

Let us first consider the model system (4)–(7) with random
parasitism and fixed development times. Since the equations for
the variables H2,H4, and P2 do not involve the variable P1 in the
system, the local stability of the equilibrium (8) can be determined
by the three-dimensional system involving H2,H4, and P2. Let
h2, h4, p2 be the deviation of the variables H2,H4, P2 from their
equilibrium values, that is,

h2(t) = H2(t)− H∗2 , h4(t) = H4(t)− H∗4 ,
p2(t) = P2(t)− P∗2 .

Substituting the deviations into the system (4)–(7) and linearizing
the resulted system yields the following linear system, which
governs the dynamics of the deviations to the first order.
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where η is the variable of the equation and∣∣∣∣∣∣
η + aP∗2 + µH2 −λFH1(1− B1)e

−TH1η aH∗2 − aλFH1H
∗

4B2
0 η + µH4 − λFH1FH3B1e

−(TH1+TH3 )η aλFH1FH3H
∗

4 e
−TH3ηB2

−aP∗2B3 0 η + µP2 − aH
∗

2B3

∣∣∣∣∣∣ = 0
Box II.

∣∣∣∣∣∣∣∣∣∣∣∣

η +
ln θ
TH2

−λFH1e
−TH1η(1− e−TH2η/θ)

A∗1
FP1
− A∗2

1− e−TH2η

FH3η

0 η + µH4(1− e
−(TH1+TH2+TH3 )η) A∗2

1− e−TH2η

η
e−TH3η

−
FP1 ln(θFH2)e

−TP1η

TH2
0 η + µP2 − A

∗

1e
−TP1η

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

where

A∗1 =
aFP1H

∗

2

1+ aP∗2 /k
, A∗2 =

aµH4H
∗

4

1+ aP∗2 /k

Box III.

∣∣∣∣∣∣
η + K ∗ + µH2 −λFH1(1− C1)e

−TH1η A∗H∗2 − A
∗H∗4C2

0 η + µH4 − λFH1FH3C1e
−(TH1+TH3 )η A∗H∗4 FH3C2e

−TH3η

−K ∗C3 0 η + µP2 − A
∗H∗2C3

∣∣∣∣∣∣ = 0,
where

A∗ =
ka

k+ aP∗2
, C1 =

1
θ

(
K ∗ + µH2 + CH

η + K ∗ + µH2 + CH

)n+1
e−τ1η,

C2 =
λFH1
θη

[
1−

(
K ∗ + µH2 + CH

η + K ∗ + µH2 + CH

)n+1
e−τ1η

]
,

C3 =
(

CP
η + µP1 + CP

)m+1
e−(η+µP1 )χ1

Box IV.

dh2(t)
dt
= λh4(t − TH1)FH1 −mP1(t)−mH(t)− µH2h2(t),

dh4(t)
dt
= mH(t − TH3)FH3 − µH4h4(t),

dp2(t)
dt
= mP2(t)− µP2p2(t).

(18)

Here,mP1(t) = aP
∗

2h2(t)+ aH
∗

2p2(t) and

mH(t) = λh4(t − TH1 − TH2)D
∗

− λH∗4D
∗

∫ t

t−TH2

ap2(x)dxds,

mP2(t) = mP1(t − TP1)FP1 , D∗ = FH1e
−(aP∗2+µH2 )TH2 .

Taking the Laplace transforms of the Eqs. (18) yields a system of
algebraic equations whose characteristic equation is given in Box I,
where θ = λFH1FH3/µH4 and η is the variable of the equation.
The roots of this characteristic equation must have negative real
parts for the local stability of the equilibrium. We use this model
as a reference case for comparison with a model incorporating
distributed delays in development.
For the random parasitism model with distributed develop-

ment times consisting of Eqs. (4), (5), (9) and (10), the stability
of the equilibrium (11) is governed by a characteristic equation.

Similarly, consider the deviations of the variables H2,H4 and P2
from their equilibrium values given by (11). The dynamics of these
deviations is controlled by system (18) with

mH(t) =
∫
∞

0
λh4(t − s− TH1)FH1u(s− τ1)

× gn(s− τ1)e−(aP
∗
2+µH2 )sds

−

∫
∞

0
λH∗4 FH1u(s− τ1)gn(s− τ1)

× e−(aP
∗
2+µH2 )s

∫ t

t−s
ap2(x)dxds,

mP2(t) =
∫
∞

0
ap2(t − s)H∗2u(s− χ1)gm(s− χ1)e

−µP1 sds

+

∫
∞

0
aP∗2h2(t − s)u(s− χ1)gm(s− χ1)e

−µP1 sds.

By taking the Laplace transforms of the linearized system, we can
obtain the characteristic equation in this case, given in Box II,

B1 =
(

CH
η + aP∗2 + µH2 + CH

)n+1
e−(aP

∗
2+µH2+η)τ1

=
1
θ

(
aP∗2 + µH2 + CH

η + aP∗2 + µH2 + CH

)n+1
e−τ1η,
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B2 =
1
η

[(
CH

aP∗2 + µH2 + CH

)n+1
−

(
CH

η + aP∗2 + µH2 + CH

)n+1
e−τ1η

]
e−(aP

∗
2+µH2 )τ1

=
1
θη

[
1−

(
aP∗2 + µH2 + CH

η + aP∗2 + µH2 + CH

)n+1
e−τ1η

]
,

B3 =
(

CP
η + µP1 + CP

)m+1
e−(η+µP1 )χ1 .

In the case of negative binomial parasitism, the equilibrium for
themodel with fixed development time (consisting of Eqs. (4), (13)
and (14)) is given by (15). Following the same procedures as before,
we can obtain the corresponding characteristic equation given in
Box III. However, if the model system consists of Eqs. (4), (13) and
(16) including distributed development times, the corresponding
characteristic equation is given by the equation in Box IV. Here
the equilibrium values are given by (17).
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