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Abstract. A metapopulation model with explicit local dynamics is studied.
Unlike many patch-based metapopulation models which assume that the lo-
cal population within each patch is at its equilibrium, our model incorporates
population changes in local patches that interact with metapopulation dynam-
ics. The model keeps track of the fractions of patches that have species 1
only, species 2 only, or both species. For patches with both species, the Lotka-
Volterra type of competition is assumed. It is shown that when the local
dynamics is coupled with the metapopulation dynamics the model outcomes
can be very different comparing with metapopulation models that do not ex-
plicitly include local population dynamics. The analysis of the coupled system
is carried out by using techniques in singular perturbation theory.

1. Introduction. In 1969, Levins considered the following single-species metapop-
ulation model which assumes that changes in patch occupancy are functions solely
of colonization rates of empty patches (c) and extinction rates of occupied patches
(e):

dp

dt
= cp(1− p)− ep, (1)

where p denotes the proportion of the occupied patches. This simple model captures
the basic fact that species persistence depends on the balance between local extinc-
tion and recolonization. Based on this framework, metapopulation models have
been used extensively to analyze the dynamics of species in fragmented landscapes
and to understand the potential implication of habitat fragmentation. For example,
[1, 7, 9, 10, 11, 22] studied the dynamics of single species in a network of habitat
fragments while [4, 15, 16, 17, 20] investigated the interaction of multispecies. Just
like model (1), all these works fail to account for the local population dynamics.
The colonization rate c in model (1) is directly related to migration rates. For
species with high emigration rates, the lack of incorporation of local dynamics may
lead to biased predictions (see, for example, [8]).
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Hanski and Zhang [6] first incorporated the local dynamics into Levins’ model (1)
to study a single species with high migration rates and demonstrated that models
with local dynamics can provide insights into conditions for metapopulation persis-
tence that can not be obtained from simple patch models. Let N be the average
size of existing local populations and p be the fraction of occupied habitat patches.
The model ([6]) with a local dynamics is given as follows:

N ′ = rN(1 − N
K
)−mN + �mNp,

p′ = ��mNp(1− p)− ep,
(2)

where r is the average growth rate due to local births and deaths, m is the per
capita emigration rate, K is the average local carrying capacity, � is the fraction
of migrating individuals that survived and landed a new patch, � is the probability
that an arriving individual gives rise to a new local population in an empty patch,
and e is the extinction rate of local populations.

The model (2) assumes that local populations are affected by migrations and that
changes in the metapulation size p occurs at a much slower time scale than those
in the local popopulation size N because of low colonization rate [6]. For a certain
range of parameter values, the model predicts an alternative stable equilibrium and
qualitatively different model behaviors from those of model (1). From model (2)
it was concluded that species with intermediate migration rates persist best in a
fragmented landscape, which is different from what have been suggested by simple
patch models.

Under the same assumptions of model (2), Feng et al ([2, 3]) incorporated Lotka-
Volterra type of competition into model (2) and weak competitions of two species
were studied through the following model

N ′

i = riNi(1− Ni

Ki
− aji

Nj

Ki
)−miNi + �imiNipi,

p′i = �i�imiNipi(1 − pi)− eipi, 1 ≤ i ∕= j ≤ 2,
(3)

where Ni denotes the typical population size of species i; pi denotes the fraction
of habitat patches occupied by species i (notice that p1 + p2 may be greater than
one here); ri is the average per capita growth rate due to local births and deaths;
aij model the intensities of the local competition between two species, which are
assumed to be weak, i.e., aij < 1; mi is the per capita emigration rate; Ki is the
average carrying capacity of species i; �i describes migration costs, the fraction of
migrating individuals that survived and reached a new patch; �i is the probability
that an arriving individual gives rise to a new local population in an empty patch;
ei is the extinction rate of local populations, which is assumed to be independent
of Ni. All parameters and their definitions are listed in Table 1. The generalized
model (3) displays much richer dynamics, varying from a unique global interior
attractor to multiple interior equilibria as well as bistable phenomena (two stable,
biologically feasible equilibria). These results imply that failure to account for com-
petition interactions within local patches may lead to biased predictions regarding
persistence of species.

For simplification purposes, the model (3) assumes that the competition between
the two species occur on all patches that are occupied by either one or two species. In
this paper, we modify this by assuming that the competition between the two species
occur only on patches that are occupied by both species and we explicitly model the
changes in the fraction of patches occupied by both species. Obviously, this is a more
realistic assumption, although the model becomes more complex and the analysis
will be more difficult. Following the same approach as in [2, 3, 6] which takes the
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Table 1. Definitions of parameters (i, j = 1, 2).

Ni the typical population size of species i on a habitat patch.
ri the average per capita growth rate due to local births and deaths.
aij the intensities of the local competition between two species.
Ki the average carrying capacity of species i.
�i the fraction of migrating individuals that survived

and reached a new patch.
�i the probability that an arriving individual gives rise to a new

local population in an empty patch.
ei the extinction rate of local populations.
�ij the reduction in the colonization rate of species i

due to the competition effect from species j.
"ij the addition to the extinction rate of species i

within doubly occupied patches via interaction with species j.

advantage of the fact that local dynamics occurs on a slower time scale than changes
in patch occupancy, we can study the local (fast) and regional (slow) dynamics
separately. Our analysis of slow dynamics shows that the model admits up to three
interior equilibria, one of which is stable. Bistability may occur between either two
boundary equilibria (representing only one species existing regionally) or boundary
and interior equilibria. Moreover, the new model is capable of producing triple
stable equilibria among boundary and interior equilibria. The bifurcation analysis
shows that the system has a saddle-node bifurcation point of interior equilibria
which lies in the parameter region where a boundary equilibrium is stable. This
may have an important ecological implication for the metapopulation dynamics.
That is, if the coexistence state is near the bifurcation point slight perturbations of
environmental conditions may cause a dramatic alteration of the metapopulation in
which the coexistence state may collapse into a state with only one species present.

2. The model. Let p0, p1, p2 and p3 be the fractions of empty habitat patches,
patches occupied by species 1 only , species 2 only and both species, respectively.
Then, p0 + p1 + p2 + p3 = 1. Let Ni (i = 1, 2) denote the typical population size of
species i existing on a habitat patch. Assume that the competition of two species on
doubly-occupied patches is of the Lotka-Volterra type. In addition, we restrict our
attention to the case in which the system does not stabilize at the metapopulation
extinction state. Our model which couples the metapopulation changes and local
population dynamics is as follows:

N ′

1 = r1N1(1− N1

K1

− a21p3
N2

K1

)−m1N1 + �1m1y1N1,

N ′

2 = r2N2(1− N2

K2

− a12p3
N1

K2

)−m2N2 + �2m2y2N2,

p′1 = �1�1m1N1y1p0 − e1p1 − �21�2�2m2N2y2p1 + (e2 + "21)p3,
p′2 = �2�2m2N2y2p0 − e2p2 − �12�1�1m1N1y1p2 + (e1 + "12)p3,
p′3 = �12�1�1m1N1y1p2 + �21�2�2m2N2y2p1 − (e1 + "12 + e2 + "21)p3,

(4)

where y1 = p1 + p3, y2 = p2 + p3. The parameter �ij ∈ (0, 1] models the reduction
in the colonization rate of species i due to the competition effect from species j; "ij
is the addition to the extinction rate of species i within doubly occupied patches via
interaction with species j [12]. All other parameters here admit the same meanings
as in model (3) (see Table 1). However, the emigration rate mi here is assumed to
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be less than the birth rate ri. In fact, as will be seen later, to ensure the persistence
of a metapopulation, the emigration rate needs to be less than a certain critical
value so that the size of local populations is large enough to generate emigration
and recolonization [6]. Some of the model structures in (4) are similar to that
considered in Taneyhill [21].

3. The fast and slow systems. Since changes in local population sizes occur at a
faster time scale than changes in patch occupancy, the rate of patch creation by one
migrating individual, �i�imi, the rate of patch extinction, ei, and the additional
extinction rate "ij are much smaller than those related to local population dynamics.
This allows us to study the system (4) by considering the two processes separately
using tools in dynamical systems theory as illustrated below. Assume that

�i = ��̄i, ei = �ēi, "ij = �"̄ij , � > 0,

where � is a small parameter. Then system (4) takes the following form:

N ′

i = NiFi(N1, N2, p1, p2, p3),
p′i = �Gi(N1, N2, p1, p2, p3), i = 1, 2,
p′3 = �G3(N1, N2, p1, p2, p3),

(5)

where

Fi(N1, N2, p1, p2, p3) = ri(1− Ni

Ki
− ajip3

Nj

Ki
)−mi + �imiyi,

Gi(N1, N2, p1, p2, p3) = biNiyip0 − ēipi − �jibjNjyjpi + Ejp3, 1 ≤ i ∕= j ≤ 2,
G3(N1, N2, p1, p2, p3) = �12b1N1y1p2 + �21b2N2y2p1 − (E1 + E2)p3,

and bi = �̄i�imi, Ei = ēi + "̄ij .
Using techniques in singular perturbation theory, we can analyze (5) by studying

the corresponding fast and slow systems. Setting � = 0, the fast dynamics of (5)
are given by

N ′

i = NiFi(N1, N2, p1, p2, p3), i = 1, 2. (6)

Setting the right sides of (6) equal to zero, we can obtain the unique equilibrium
N∗ = (N∗

1 , N
∗

2 ) (regarding p1, p2, p3 as parameters in this stage), which is charac-
terized by

N∗

1 = 1
1−a12a21p

2

3

[k10 + k11y1 − (k20 + k21y2)a21p3],

N∗

2 = 1
1−a12a21p

2

3

[k20 + k21y2 − (k10 + k11y1)a12p3],
(7)

where
ki0 = Ki(1−mi/ri), ki1 = Ki�imi/ri. (8)

We are only concerned with the case where the coexistence of two species is possible,
which is expected if and only if the competition intensity is weak, i.e, a12, a21 < 1.
For biological feasible scenarios, parameter values are chosen such that N∗

i ≥ 0.
Direct calculations show that the Jacobian of system (6) at the equilibrium N∗

admits two negative eigenvalues. Therefore, N∗ is locally asymptotically stable.
That is, on the fast time scale, all positive solutions of (5) are hyperbolically as-
ymptotic to the equilibrium N∗. Rescaling the time by letting � = t/�, and denoting
d/d� by “′”, we obtain the slow system which governs the dynamics on the slow
manifold N∗:

p′i = Gi(N
∗

1 , N
∗

2 , p1, p2, p3), i = 1, 2, 3. (9)

Since the long-term behavior of the system (5) is actually governed by the slow
system (9) for small �, we next focus on the dynamics of (9). It is worthwhile to
point out that the system (9) is formally the same as Slatkin’s model [19] and its
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variation models in [4, 18, 21] except that here the system involves in the local
dynamics. Therefore, the effect of the local dynamics on the regional dynamics
which was studies in [4, 18, 19, 21] can be examined by studying system (9).

It is very difficult to solve the slow system (9) for interior equilibria. Nonetheless,
the stability of the boundary equilibria can be obtained. Although the probability
of simultaneous local extinctions of the two species can be biologically assumed to
be zero, the investigation of stability of the trivial solution Q0 = (0, 0, 0) provides
useful information for the study of other possible boundary equilibria. The Jacobian
of the system (9) at Q0 takes the from of

⎛

⎝

�1 0 b1k10 + E2

0 �2 b2k20 + E1

0 0 −E1 − E2

⎞

⎠ ,

where
�i = biki0 − ēi (10)

are the essential colonization rate of populations on a patch. The stability of Q0

is determined by the signs of �i. Q0 is stable if both �i are negative, and unstable
otherwise. Note that biki0 = �̄i�imiKi(1−mi/ri) describes the colonization ability
of species i in the absence of other species. The condition �i > 0, or equivalently,
ēi < �̄i�imiki0 implies that the patch colonization rate needs to be greater than the
patch extinction rate in order for the metapopulation to persist, which is consistent
with the condition obtained form the Levin’s model.

4. Boundary equilibria of the slow system. A boundary equilibrium here
refers to an equilibrium at which at least one of the coordinates is zero and others
are in [0, 1]. For the slow system (9), the only possible boundary equilibrium lies
on the p1 and p2 axes. On the pi axis (i = 1, 2), the nonzero coordinate p∗ij of the
equilibrium Qij (j = 1, 2) satisfies

bi(ki0 + ki1pi)(1− pi)− ēi = 0. (11)

Hence, if
Δi = �2i + 4biki1�i ≥ 0,

then

p∗i1 =
�i −

√
Δi

2biki1
, p∗i2 =

�i +
√
Δi

2biki1
,

where
�i = bi(ki1 − ki0). (12)

Note that equation (11) can be written as

bi(ki0 + ki1pi)−
ēi

1− pi
= 0.

If regarding the left side of the equation as a function of pi, then pi = 1 is an
asymptote of the function, and hence we have p∗ij < 1. There are three possibilities
for the solutions:

Case Cia: �i > 0, or �i = 0 but �i > 0 (where �i and �i are respectively given in
(10) and (12)). In this case, the equation (11) has a unique positive root p∗i2,
which corresponds to the unique equilibrium Qi2 on the positive pi axis.

Case Cib: �i < 0, Δi ≥ 0, �i > 0. In this case, the equation (11) has two positive
roots (counting multiplicity) p∗i1 ≤ p∗i2, which correspond to two equilibria
Qi1, Qi2, on the positive pi axis.
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Case Cic: �i < 0, �i < 0, Δi ≥ 0 or Δi < 0. In this case, there are no roots of (11)
in (0, 1]. Therefore, there are no equilibria on the positive pi axis.

We now discuss the stabilities of these possible equilibria.

4.1. Stability of boundary equilibria on the p1-axis. At Q1j(j = 1, 2), the
Jacobian matrix of the show system (9) is given by

J1(Q1j) =

⎛

⎝

v11 v12 v13
0 v22 v23
0 v32 v33

⎞

⎠ ,

where
v11 = (−1)j+1p∗1j

√
Δ1,

v22 = b2N
∗

2 (p
∗

1j)(1− p∗1j)− ē2 − �12b1N
∗

1 (p
∗

1j)p
∗

1j ,
v23 = b2N

∗

2 (p
∗

1j)(1− p∗1j) + E1,
v32 = �12b1N

∗

1 (p
∗

1j)p
∗

1j + �21b2N
∗

2 (p
∗

1j)p
∗

1j ,
v33 = �21b2N

∗

2 (p
∗

1j)p
∗

1j − (E1 + E2).

Here,

N∗

1 (p
∗

1j) = k10 + k11p
∗

1j, N∗

2 (p
∗

1j) = k20,

and kij are given in (8). v12 and v13 are of no interests. From the expression of
v11, we can see that in the case where two distinct equilibria Q11, Q12 exist, Q11

is always unstable. The local stability of Q12 depends on the signs of A1(p
∗

12) and
B1(p

∗

12), where

A1(p
∗

12) = v22 + v33, B1(p
∗

12) = v23v32 − v22v33.

A straight forward calculation yields

A1(p
∗

12) = b2N
∗

2 (p
∗

12)[1− (1 − �21)p
∗

12]− ē2 − �12b1N
∗

1 (p
∗

12)p
∗

12 − E1 − ē2 − "21,

B1(p
∗

12) = [b2N
∗

2 (p
∗

12)(1 − (1− �21)p
∗

12)− ē2][�12b1N
∗

1 (p
∗

12)p
∗

12 + E1 + ē2]

+"21[b2N
∗

2 (p
∗

12)(1− p∗12)− �12b1N
∗

1 (p
∗

12)p
∗

12 − ē2]. (13)

Note that if A1(p
∗

12) ≥ 0, then B1(p
∗

12) > 0. Therefore, the boundary equilibrium
Q12 is stable if B1(p

∗

12) < 0 and unstable if B1(p
∗

12) > 0. From the expression of
B1(p

∗

12), a sufficient condition for the stability of Q12 can be obtained as

b2N
∗

2 (p
∗

12)[1− (1 − �21)p
∗

12] < ē2, (14)

or equivalently,

�2 < b2N
∗

2 (p
∗

12)(1 − �21)p
∗

12. (15)

Therefore, Q12 is always stable if �2 < 0. In pure migration competition (i.e.
"12 = "21 = 0), the sufficient condition (15) is also a necessary condition for the
stability of Q12. In summary, we have the following result:

Result 1 The boundary equilibrium Q11 is a saddle point as long as it exists and
Q12 is a saddle point if B1(p

∗

12) > 0 and a stable node if one of the inequalities (15),
�2 < 0 and B1(p

∗

12) < 0 holds.

Note that b2N
∗

2 (p
∗

12) = �̄2�2m2K2(1−m2/r2) describes the colonization ability
of species 2. As in [4], the condition (15) has a clear ecological interpretation. That
is, species 2 cannot invade a region occupied by species 1 if p∗12 is large and the
colonization ability of species 2 is weak. This implies that a successful invasion is
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unlikely when the original resident species is common and the invading species is
rare.

4.2. Stability of boundary equilibria on the p2-axis. Similar to the equilib-
rium Q1j , the Jacobian matrix of the slow system (9) at Q2j(j = 1, 2) reads

J2(Q2j) =

⎛

⎝

w11 0 w13

w21 w22 w23

w31 0 w33

⎞

⎠ ,

where

w11 = b1N
∗

1 (p
∗

2j)(1 − p∗2j)− �21b2N
∗

2 (p
∗

2j)p
∗

2j − ē1,

w13 = b1N
∗

1 (p
∗

2j)(1 − p∗2j) + E2,

w22 = (−1)j+1p∗2j
√

Δ2,

w31 = �12b1N
∗

1 (p
∗

2j)p
∗

2j + �21b2N
∗

2 (p
∗

2j)p
∗

2j ,

w33 = �12b1N
∗

1 (p
∗

2j)p
∗

2j − (E1 + E2).

Here,

N∗

1 (p
∗

2j) = k10, N∗

2 (p
∗

2j) = k20 + k21p
∗

2j ,

and kij are given in (8). w21 and w23 are of no interests. Due to the expression
of w22, Q21 is always unstable as long as it exists. ¿From the same analysis of the
stability of Q12, it follows that the equilibrium Q22 is stable if

B2(p
∗

22) = w13w31 − w11w33

= [b1N
∗

1 (p
∗

22)(1 − (1− �12)p
∗

22)− ē1](�21b2N
∗

2 (p
∗

22)p
∗

22 + E2 + ē1)

+"̄12[b1N
∗

1 (p
∗

22)(1− p∗22)− �21b2N
∗

2 (p
∗

22)p
∗

22 − ē1] < 0. (16)

Therefore, we have the stability result for boundary equilibria on p2-axis.

Result 2 The boundary equilibrium Q21 is a saddle point as long as it exists and
Q22 is a saddle point if B2(p

∗

22) > 0 and a stable node if B2(p
∗

22) < 0.

The existence and stability results of boundary equilibria are summarized in Table
2.

Table 2. Existence and stability of boundary equilibria (i = 1, 2).

Existence Stability
Qi1 Qi2 Qi1 Qi2

Cia No Yes N/A Stable if Bi(p
∗

i2) < 0, un-
stable if Bi(p

∗

i2) > 0
Cib Yes Yes Unstable Stable if Bi(p

∗

i2) < 0, un-
stable if Bi(p

∗

i2) > 0
Cic No N/A
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4.3. Bifurcations of boundary equilibria in a special case. In the case where
only pure migration competition ("12 = "21 = 0) and pure extinction competition
(�12 = �21 = 1) exist, the stability of Qi2 is determined by the sign of �j (i ∕= j).
Table 3 illustrates the existence and local stabilities of boundary equilibria in this
special case. Some phase portraits of the slow system (9) in the three cases (C1a-
C2a, C1b-C2b and C1c-C2c in Table 3) are shown in Figure 1, which demonstrates
some global properties of these equilibria.

Table 3. The existence and stability of boundary equilibria in the
special case.

C1a C1b C1c

C2a

6

-

p2

p1
q

Q12

q
Q22q
O
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?
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p1
q

Q11

q
Q12

q
Q22q
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Q22q
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I
�
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q
O

?

?

?
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6
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p2

p1
q

Q12

q
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q
O

?

?

?

� - �?R	������

6

-

p2

p1
q

O

?

?

?

� � �������

In [4], a simpler patch model is analyzed which does not include the local popula-
tion changes explicitly. The unique positive equilibrium on each pi-axis (i = 1, 2) is
obtained and it is showed that if the competition effect of species reduces the colo-
nization rate of the opposite species sufficiently, both boundary equilibria are stable
and hence the outcome of regional competition depends on the initial abundance
of the two species (priority effect). Priority effects exist in the slow system (9) as
well. For example, in the case of C1b-C2b (see Table 3), three boundary equilibria
Q0, Q12 and Q22 are stable nodes, and hence the initial conditions determine where
the solutions converge (see the middle panel in Figure 1). Priority effects are also
present in model (3) ([2, 3]).

5. Coexistence. It is impossible to obtain analytical results for the slow system (9)
for coexistence states (interior equilibria). However, some insights can be gained by
studying the bifurcation of its boundary equilibria. Given a parameter space under
consideration, the conditions listed in cases Cia and Cib provide the boundary of
the region for the existence of the boundary equilibria Qi1 and/or Qi2 on the pi
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Figure 1. Typical phase portraits (in two and three dimensional
phase spaces) of the slow system (9) in the cases of C1a-C2a (the
left), C1b-C2b (the middle) and C1c-C2c (the right) in Table 3.

axis (i = 1, 2). The boundary equilibrium Qi1 is always unstable whenever it
exists. Qi2 is stable if Bi(p

∗

i2) < 0, where Bi(p
∗

i2) are given by (13) and (16). If
Bi(p

∗

i2) = 0, then the Jacobian matrix of the slow system (9) at Qi2 has one zero and
two nonzero eigenvalues. Therefore, a transcritical bifurcation occurs and hence an
interior equilibrium may appear when parameter values vary and change the sign
of Bi(p

∗

i2).
For the bifurcation analysis in this section, we regard ē2 and "̄21 as bifurcation

parameters for the slow system (9). From the conditions �2 < 0 and Δ2 > 0 in the
case Cib, it follows that the boundary equilibria Q21 and Q22 exist if

b2k20 < ē2 < ē2sn =
b2
4k21

(k20 + k21)
2.

As the value of the parameter ē2 decreases, Q21 moves toward the trivial equilibrium
Q0 along the p2-axis, and coincides with the trivial equilibrium at ē2 = b2k20 (i.e.,
�2 = 0). Therefore, when ē2 = b2k20, a transcritical bifurcation happens and
the boundary equilibrium Q21 is bifurcated from the origin. For ē2 < b2k20, the
equilibrium Q22 is the unique equilibrium on the positive p2-axis (which falls into
the case Cia).

From the stability condition B2(p
∗

22) < 0 it follows that Q22 is stable if "̄21 <
"̄21tr1(ē2), where

"̄21tr1(ē2) =− ē2 − ē1 − �21b2N2(p
∗

22)p
∗

22

− "̄12
b1N1(p

∗

22)(1− p∗22)− �21b2N2(p
∗

22)p
∗

22 − ē1
b1N1(p∗22)[1− (1− �12)p∗22]− ē1

.

On the curve "̄21 = "̄21tr1(ē2), B2(p
∗

22) = 0 and a transcritical bifurcation occurs,
in which case an interior equilibrium bifurcates from the boundary equilibrium Q22

either for "̄21 < "̄21tr1(ē2) or for "̄21 > "̄21tr1(ē2). Similarly, from the stability
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condition B1(p
∗

12) < 0 it follows that Q12 is stable if "̄21 > "̄21tr2(ē2), where

"̄21tr2(ē2) = − [b2N2(p
∗

12)(1− (1 − �21)p
∗

12)− ē2][�12b1N1(p
∗

12)p
∗

12 + ē1 + ē2 + "̄12]

b2N2(p∗12)(1 − p∗12)− �12b1N1(p∗12)p
∗

12 − ē2
.

Q12 loses its stability through a transcritical bifurcation when the parameter "̄21 de-
creases and passes through the curve "̄21 = "̄21tr2(ē2). These results are summarized
below.

Result 3 In the parameter plane (ē2, "̄21), a transcritical bifurcation occurs along
the following curves:

(i) ē2 = b2k20. The equilibrium Q21 bifurcates from the origin for b2k20 < ē2.
The equilibrium Q21 exists for b2k20 < ē2 < ē2sn while Q22 exists for 0 < ē2 < ē2sn.

(ii) "̄21 = "̄21tr1(ē2). An interior equilibrium is bifurcated from Q22, which loses
its stability for "̄21 > "̄21tr1(ē2).

(iii) "̄21 = "̄21tr2(ē2). An interior equilibrium is bifurcated from Q12, which loses
its stability for "̄21 < "̄21tr2(ē2).

In Figure 2, the lines ē2 = ē2sn and ē2 = b2k20 are respectively illustrated as
L1 and L2, which are vertical lines in the ē2-"̄21 plane. For parameter values in
the domain between the lines L1 and L2, two boundary equilibria Q21 and Q22

exist while in the domain to the left side of L2 only Q22 exists on the positive
p2-axis. In the figure, the curves C1 and C2 represent the curves "̄21 = "̄21tr1(ē2)
and "̄21 = "̄21tr2(ē2), respectively. Thus, Q22 is stable when parameters are in the
region below C1 and unstable above the curve while the stable region for Q12 lies
above C2.

The curves C1 and C2 intersect and form two regions in the ē2-"̄21 plane: the
region I, unstable region for both boundary equilibria Q12 and Q22, and the region
II where both equilibria are stable. Thus priority effect exists when parameters
lie in the region II, that is, the initial population sizes of two species determine
the outcome of the competition. In both regions I and II, interior equilibria are
expected to exist due to transcritical bifurcations. The typical phase portraits for
parameters in Regions I and II are illustrated in Figure 3.

To get more detailed information about coexistence states, we traced interior
equilibria bifurcated from Q12 and Q22 using AUTO. In order to study the interior
equilibria in the unstable region I as shown in Figure 2, we fix all parameters except
ē2. Figure 4 illustrates how interior equilibria of system (9) and their stabilities may
vary with the parameter ē2. Solid curves in the figure represent stable equilibria
and dashed ones denote unstable equilibria. A branch of stable interior equilibria
is bifurcated from Q12 when ē2 decreases and crosses the curve C2: "̄21 = "̄21tr2(ē2)
while another branch of unstable interior ones is bifurcated from Q22 as ē2 de-
creasingly passes through the curve C1: "̄21 = "̄21tr1(ē2). These two branches of
equilibria coincide with each other through a saddle-node bifurcation at a point ly-
ing below both C1 and C2 in the ē2-"̄21 plane. Thus, in the region I there is a stable
coexistence state. To confirm and extend the bifurcation diagram shown in Figure 4
and to see how the stabilities of equilibria vary, we numerically computed solutions
of the slow system (9) for different values of ē2. Figure 5 shows that two solutions
in the left panel converge to the boundary equilibrium Q22 when ē2 = 0.5. As ē2
increases, one of these two solutions goes to a stable interior equilibrium while the
another one still goes to Q22 (see the middle panel in the figure). As ē2 is further
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Figure 2. An example to illustrate the stability regions of bound-
ary equilibria Q12 and Q22. The stable region for Q22 lies below
the curve C1 while the region for Q12 lies above C2. The curves
C1 and C2 intersect and form two regions: the bi-unstable region
I, the bi-stable region II. Q22 exists to the left of L1 while Q21,
which is a saddle point, exists in the domain between L1 and L2.
The curve C3 represents the critical curve on which a saddle-node
bifurcation of interior equilibria occurs (see text). In the region
III enclosed by the curves C1, C2 and C3, there are a stable and
an unstable interior equilibria. Typical phase portraits of the slow
system (9) in the regions I, II and III are shown in Figure 3. Here
the parameters take the following values: r1 = 1, r2 = 1.5,m1 =
0.8,m2 = 1, a12 = a21 = 0.5, �1 = �2 = 1, �̄1 = �̄2 = 0.05,K1 =
K2 = 150, �12 = �21 = 1, ē1 = 0.57, "̄12 = 1.

increased, both solutions converge to the boundary equilibrium Q12 (see the right
panel). These simulations are consistent with our bifurcation diagram.

It is worthwhile to notice that the saddle-node bifurcation of interior equilibria
occurs at a point in the region where the boundary equilibrium Q22 is stable and Q12

is unstable. Therefore, when the stable coexistence state of two species is around
the saddle-node bifurcation point (i.e., when ē2 is near 0.86 in Figure 4), species
1 may suddenly disappear regionally and only species 2 exists in the landscape
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Figure 3. The phase portraits (in two- and three-dimensional
spaces) of the slow system (9) when (ē2, "̄21) = (2.1, 0.2) (the left),
(0.85, 1.2) (the middle) and (0.4, 3) (the right), respectively corre-
sponding to the disc in Region I, the rectangle in Region II and the
star in Region III shown in Figure 2. Other parameters take the
same values as in Figure 2.
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Figure 4. An example to show the transcritical bifurcations oc-
curring at boundary equilibria Q12 and Q22 as the parameter ē2
varies. Here "̄21 is set to be 0.2 to investigate interior equilibria in
the region I. Other parameters take the same values as in Figure
2.

if parameter values are slightly changed. This is important especially from the
viewpoint of conservation. It is necessary to determine the critical boundary in the
ē2-"̄21 plane where a saddle-node bifurcation occurs. Using AUTO, we traced the
saddle-node bifurcation point of interior equilibria when both ē2 and "̄21 vary. The
critical boundary on which a saddle-node bifurcation occurs is shown as a dotted
curve C3 in Figure 2. Therefore, in the region (III) enclosed by the curves C1,
C2 and C3 there are two interior equilibria (stable and unstable). A typical phase
portrait of the system in the region III is shown in the right panel of Figure 3.
Since Q22 is also stable in the region III, priority effect exists and the outcome of
the competition may be coexistence or species 2 only.

We regard "̄21 as the bifurcation parameter and fix all other parameters to study
interior equilibria in the bistable region II for the boundary equilibria Q12 and Q22.
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Figure 5. The time plots of two solutions of the slow system (9)
for different values of ē2. In the left panel where ē2 = 0.5, both
solutions converge to the boundary equilibrium Q22. In the middle
panel where ē2 = 1.5, one of these two solutions goes to an interior
equilibrium and another one still converges to Q22. In the right
panel where ē2 = 2.6, both solutions converge to the boundary
equilibrium Q12. These results are consistent with the bifurcation
diagram Figure 4. All parameters except ē2 take the same values
as in Figure 4.

Figure 6 shows the bifurcation diagram as the parameter "̄21 varies while in Figure
7 two solutions of the slow system (9) are plotted for different values of "̄21. The
diagram in Figure 6 is a little different from the one in Figure 4. An unstable interior
equilibria is bifurcated from Q12 as "̄21 increasingly passes through a critical value
(on the curve C2). When "̄21 is slightly greater than the critical value, the branch
of unstable interior equilibria gains its stability through a saddle-node bifurcation
point, whose corresponding values of ē2 and "̄21 lie in the bistable region II. After the
branch of unstable equilibria becomes stable, it meets with the branch of unstable
ones bifurcated from Q22 as "̄21 decreases and crosses the saddle-node bifurcation
curve C3 (in Figure 2). Therefore, in the bistable region II, there is a small region
near the curve C2, where three interior equilibria exist (with one being stable and
the other two unstable). Away from the above mentioned small region in the region
II, system (9) has two stable boundary and one unstable equilibria. Therefore, in
the bistable region II, two species are unlikely to coexist.

We summarize the existence and stability of equilibria of the slow system (9) in
Table 4. In short, we can conclude that either two species are expected to coexist
or only species 2 exists in region III (where priority effect exists) and two species
coexist in region I. In the most part of the bistable region II, only one species exists
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regionally (priority effect determines which species exists) while in a small region of
II there may be species 1 only, or species 2 only, or both species regionally (priority
effect determines the final state).
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Figure 6. An example to show the transcritical bifurcations oc-
curring at boundary equilibria Q12 and Q22 regarding "̄21 as the
bifurcation parameter. Here ē2 is set to be 0.4 to study interior
equilibria in the bistable region II. Other parameters values are
the same as in Figure 2.
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Figure 7. The time plots of two solutions of the slow system
(9) for different values of "̄21. In the left panel where "̄21 = 0.5,
both solutions converge to the boundary equilibrium Q22. In the
middle panel where "̄21 = 1.5, one of these two solutions goes to
an interior equilibrium and another one still converges to Q22. In
the right panel where "̄21 = 3.2, both solutions converge to the
boundary equilibrium Q12. These results are consistent with the
bifurcation diagram Figure 6. All parameters except "̄21 take the
same values as in Figure 6.
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Table 4. Existence and stability of equilibria for system (9).

Region in Figure 2 Interior equilibria Q12 Q22

I One, stable Unstable Unstable
II At least one, unstable Stable Stable
III One stable and one unstable Unstable Stable

6. Discussion. We generalized the mean-field competitive metapopulation model
(3) studied in [2, 3] by including a more detailed description of the model with regard
to singly and doubly occupied patches. The generalized model inherits the main
characteristics of the original model, i.e., the presence of multiple coexistence states.
Our bifurcation analysis shows that as parameter values vary, the current model may
display dramatically different dynamics including only one stable coexistence state
(the region I), one stable and two unstable coexistence states (a small region in the
region II), bistability (one stable boundary equilibrium and one stable coexistence
state in the region III) and tri-stability (two stable boundary and one stable interior
equilibria, e.g., in the region II). The boundary equilibria Q12 and Q22 of the slow
system (9) are either stable nodes or saddle points and hence they always have
stable manifolds. Thus, even if both Q12 and Q22 are unstable (e.g., in the region I),
stable interior equilibria can not be globally stable and the system (9) cannot have
uniform persistence. Therefore priority effect always exists due to competitions.
This illustrates a main difference in model outcomes comparing with model (3),
which is resulted from the inclusion of the doubly occupied patches, p3.

The existence of the equilibria Qij on the positive pi axis is determined by the
intrinsic colonization rate �i of species i, and hence, it depends on the balance
between the colonization rate at the trivial equilibrium Q0 and the extinction rate.
Therefore, our model inherits the main characteristics of Levins’ model.

The slow system (9) is formally the same as Slatkin’s model [19] and its variations
in [4, 18, 21] except that parameters of the local dynamics are included. Therefore,
the model (4) and the system (9) are generalizations of these simple patch models,
and the effects of the local dynamics on the regional dynamics can be examined by
studying system (9) in the same way as done in the last section. Compared with the
simple patch models, model (4) generates much richer dynamics including bistability
and multiple interior equilibria. It also inherits some of the results obtained from
patch models such as those in [4]. The condition (15) for the stability of Q12 is
formally similar to the condition (5) in [4] except the parameters used to describe
the local dynamics, and hence, it generates the similar biological explanations.
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