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Abstract SEIR epidemiological models with the inclusion of quarantine and isola-
tion are used to study the control and intervention of infectious diseases. A simple
ordinary differential equation (ODE) model that assumes exponential distribution
for the latent and infectious stages is shown to be inadequate for assessing disease
control strategies. By assuming arbitrarily distributed disease stages, a general in-
tegral equation model is developed, of which the simple ODE model is a special
case. Analysis of the general model shows that the qualitative disease dynamics are
determined by the reproductive number Rc, which is a function of control mea-
sures. The integral equation model is shown to reduce to an ODE model when
the disease stages are assumed to have a gamma distribution, which is more real-
istic than the exponential distribution. Outcomes of these models are compared
regarding the effectiveness of various intervention policies. Numerical simulations
suggest that models that assume exponential and non-exponential stage distribu-
tion can produce inconsistent predictions.

Keywords Epidemiological model · Distributed disease stage · Integral equation ·
Disease control strategies

1. Introduction

The mathematical theory of infectious diseases pioneered by Ross, MacDonald,
Kermack, McKendrick and others has played a major role in the study of the
control and prevention of infectious diseases (see, for example, Ross, 1911; Ker-
mack and McKendrick, 1927). More recently, mathematical models have been
used to investigate how to more effectively control SARS via various disease
control measures including vaccination, quarantine, and isolation (see, for
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example, Chowell et al., 2003; Lipsitch et al., 2003; Riley et al., 2003; McLean et al.,
2005).

Many of these studies have taken the approach of using simple ODE models to
draw conclusions regarding the effectiveness of various disease control programs.
The simplicity of these models is often achieved by making the assumption that the
disease stages are exponentially distributed. When the models do not include quar-
antine and/or isolation, or when the isolation is assumed to be perfect (i.e., isolated
individuals do not transmit the disease), the exponential distribution assumption
(EDA) and the models that use this assumption have been shown to provide valu-
able information and important insights into the disease dynamics. However, as
demonstrated in this article, the EDA may not be appropriate in models for dis-
eases with relatively long latent and/or infectious periods when isolation is not
completely effective.

Here, we discuss the problem by considering a simple ODE model that is a com-
monly used SEIR-type model. In a standard SEIR model, the whole population
N is divided into four sub-classes: susceptible (S), exposed but not yet infectious
(E), infectious (I), and immune or recovered (R) individuals. Susceptibles become
exposed (latent) at the rate λ1(t)S(t) = βS(t)I(t)/N where β is the disease trans-
mission coefficient in the absence of interventions and N is the total population
size. Latent individuals progress to the infectious stage at a constant rate α1 and
infectious individuals recover at a constant rate δ1. A transmission diagram for this
case is shown in Fig. 1a. All variables and parameters are listed in Table 1.

To incorporate control measures such as quarantine and isolation, additional
sub-classes can be included. For example, quarantine and isolation can be modeled
as follows. Let λ(t) denote the force of infection (a specific form is given below).
Assume that a fraction b of contacts (susceptible individuals who have had con-
tacts with an infectious person) are actually infected, and that the other fraction
(1 − b) of contacts remain susceptible who will be quarantined (SQ) and will return
to the S class at a rate r (see, e.g., Lipsitch et al., 2003). Among the infected indi-
viduals (bλ(t)S) a fraction γ will be quarantined (Q) at the time of infection (i.e.,
there is a rate, γ bλ(t)S, from S to Q directly). The fraction (1 − γ ) of the exposed
(and infected) individuals (E) who are not quarantined at the time of infection will
be quarantined at a constant rate χ throughout the latent period. (We remark that
although for most diseases quarantine is not considered as the exposed individuals
show no disease symptoms, the situation for SARS is different in which quaran-
tine was implemented in several places including Hong Kong, Taiwan, and China.)
The non-quarantined and quarantined (exposed) individuals will progress to the

Fig. 1 Disease transmission diagrams (birth and death omitted). (a) No disease control. (b)
Quarantine and isolation are included.
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Table 1 Definitions of frequently used symbols

Symbol Definition
S(t) Number of susceptible individuals at time t
SQ(t) Number of susceptible individuals quarantined at time t
E(t) Number of exposed (not yet infectious) individuals at time t
Q(t) Number of quarantined (exposed) individuals at time t
I(t) Number of susceptible individuals at time t
H(t) Number of isolated (infectious) individuals at time t
R(t) Number of recovered individuals at time t
N Total population size (constant)
C(t) Number of cumulative new infections at time t
λ(t) Force of infection at time t
β Transmission coefficient
α1, α2 Rate at which non-quarantined, quarantined individuals become infectious
α Same as α1
δ1, δ2 Rate at which non-isolated, isolated individuals become recovered
δ Same as δ1
µ Natural death rate
χ , φ Rate of quarantine, isolation
ρ Isolation efficiency (0 ≤ ρ ≤ 1)
b Fraction of contacts infected (b = 1 in this paper)
γ Fraction of infecteds quarantined at time of exposure (γ = 0 in this paper)
pi (s), Pi (s) Probability that disease stage i lasts longer than s time units (i = E, I)
k(s), l(s) Probability of not being quarantined, isolated at stage age s
TE, TI Mean of pE(s) = e−αs , pI (s) = e−δs (TE = 1/α, TI = 1/δ)

Mi (s), M Expected remaining sojourn at age s:
∫ ∞

0
Pi (t |s) dt (i = E, I), M = M(0)

TE Probability of surviving and becoming infectious:
∫ ∞

0
[−ṖE(s)] e−µs dt

TEk “Quarantine-adjusted” probability (similar to TE):
∫ ∞

0
[−ṖE(s)k(s)] e−µs dt

TI Probability an infectious person survives and recovers:
∫ ∞

0
[−ṖI (s)] e−µs dt

TIl “Isolation-adjusted” probability (similar to TI ):
∫ ∞

0
[−ṖI (s)l(s)] e−µs dt

DE Mean time in exposed stage (adjusted by death):
∫ ∞

0
PE(s) e−µs dt

DEk “Quarantine-adjusted” mean time in exposed stage:
∫ ∞

0
PE(s)k(s) e−µs dt

DI Mean time in infectious stage (adjusted by death):
∫ ∞

0
PI (s) e−µs dt

DIl “Isolation-adjusted” mean time in infectious stage:
∫ ∞

0
PI (s)l(s) e−µs dt

R0 The basic reproductive number
Rc The reproductive number under control measures
EDA, GDA Exponential distribution assumption, Gamma distribution assumption
EDM, GDM Exponential distribution model, Gamma distribution model

infectious stage at constant rates α1 and α2 respectively (the relationship between
α1 and α2 will be discussed later). Infectious individuals will be isolated (H) at
a rate φ and individuals in the H class will recover at a rate δ2 (the relationship
between δ1 and δ2 will be discussed later). Since we are considering the case of
imperfect isolation, the new infections are now produced at the rate λ(t)S(t) with
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λ(t) = β

[
I(t) + (1 − ρ)H(t)

N

]
, (1)

where ρ ∈ [0, 1] is the fraction of reduction in the transmission rate of isolated
individuals with ρ = 1, ρ = 0, and 0 < ρ < 1 representing a completely effective,
completely ineffective, and partially effective isolation, respectively. The corre-
sponding transmission diagram is shown in Fig. 1b.

In this paper, we consider only the case that γ = 0 by assuming that the fraction
of infected contacts that can be traced and quarantined at the time of infection
is very small, and hence most infected people are quarantined during the latency
period. In addition, we assume a large population size N (in comparison with the
size of the infected population), in which case the quarantine of susceptibles is
unlikely to have a significant impact on the disease transmission dynamics and
hence will be ignored. This is equivalent to assuming that b = 1. (It may not be
appropriate to ignore the SQ class if one is concerned with the cost associated
with quarantine, which is not the case in this paper.) For simplicity, the disease-
induced death is ignored and the per-capita birth rate and the natural death rate
are assumed to be equal. Hence, the total population size N remains constant.
Then the corresponding ODE model is given by the following system

S′ = µN − βS I+(1−ρ)H
N − µS,

E′ = βS I+(1−ρ)H
N − (χ + α1 + µ)E,

Q′ = χ E − (α2 + µ)Q,

I ′ = α1 E − (φ + δ1 + µ)I,

H′ = α2 Q + φ I − (δ2 + µ)H,

R′ = δ1 I + δ2 H − µR.

(2)

“ ′ ” denotes the derivative with respect to time t . All involved parameters are
nonnegative constants, and all variables and parameters are listed in Table 1.

In the next section, we discuss some of the drawbacks of the simple model (2)
when used to evaluate intervention policies. We argue that the main reason for
these problems is due to the simplifying assumption of exponential distributions
for the disease stages, which is used in the model. This provides a motivation for
using more realistic stage distributions. Non-exponential distributions have been
considered in epidemiological models (see, for example, Hethcote and Tudor,
1980; Hethcote et al., 1981; Plant and Wilson, 1986; Taylor and Karlin, 1998; Feng
and Thieme, 2000a,b; Feng et al., 2001; Lloyd, 2001a,b). However, none of these
studies focuses on the evaluation of intervention policies.

In this paper, we develop a general model with arbitrarily distributed disease
stages. The general setting allows us to identify new models that are improvements
to the simple model (2) while keeping the improved models as simple as possible.
We show that in the case of exponential distributions, the general model reduces
to the simple model (2) with appropriate constraints on model parameters. We
also consider a particular non-exponential stage distribution, the gamma distribu-
tion, in which case the general model reduces to another ODE model. Analysis
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for both the general model and the model with the gamma distribution assump-
tion (GDA) are provided. We demonstrate that the model under GDA is indeed
an improvement on the model under EDA.

2. Drawbacks of EDA and model (2)

One of the main roles of model (2) and its variants is to evaluate various disease
control measures. Relevant parameters that represent disease intervention are χ ,
φ, ρ, α2 and δ2. It is very important that these parameters have well-defined mean-
ings in order to connect them with epidemiological data and to determine their
appropriate values, and to ensure that the model predictions are reasonable re-
garding the effect of various control strategies. Otherwise, the results obtained
from the model might be misleading, as demonstrated below.

One of the quantities that can be used to assess the impact of various control
measures is the cumulative number, C(t), of infections determined by the equation

C′(t) = λ(t)S(t).

Let C(0) = 0 so that C(t) is the cumulative number of new infections at the end of
an epidemic (in the case that the disease is driven into extinction). One would ex-
pect that the C value will be reduced if we increase the value of any of the control
parameters. However, Fig. 2 (see (a) and (b)) shows that C increases with increas-
ing rates of quarantine (χ) and isolation (φ). The parameter values used in Fig. 2
are the following: α1 = 0.2 and δ1 = 0.15, which correspond to a latency period of
1/α1 = 5 days and an infectious period of 1/δ1 ≈ 7 days, respectively. These values
are in the realistic range of many infectious diseases. The transmission coefficient is
chosen to be β = 0.13 which corresponds to a reproductive number (calculated us-
ing the formula (43)) that is equal to approximately 0.9 (so that the disease will die
out). The isolation efficiency is ρ = 0.3 and other parameters have different val-
ues in Figs. 2a–d depending on the assumptions. In Figs. 2a and 2b, no additional
constraints are imposed on α2 and δ2 which have values 0.17 and 0.1, respectively.

The lack of constraints on α2 and δ2 may be responsible for the problem shown
in Figs. 2a and 2b. Our simulation results show that the problem can be avoided if
the following constraints are imposed

α2 = α1, δ2 = δ1. (3)

A more rigorous argument for constraint (3) will be provided in Section 3.2. Here,
we give only a heuristic argument. The ordinary differential equation model (2)
implicitly assumes the exponential distribution for the latent and infectious stages.
More precisely, the exponential functions

pE(s) = e−α1s and pI(s) = e−δ1s
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Fig. 2 Numerical simulations of the model (2). The number of cumulative new infections C(t)
is plotted for various values of the control parameters χ and φ. (a) and (b) are for the case of no
constraints on the parameter values. (c) and (d) are for the case when constraint (3) is used.

have been used to describe the probability of remaining in the latent stage and
the infectious stage, respectively, and the mean durations of latent and infectious
stages are

TE =
∫ ∞

0
pE(s) ds = 1

α1
and TI =

∫ ∞

0
pI(s) ds = 1

δ1
. (4)

Similarly, the mean sojourn times in the Q and H classes are respectively

TQ = 1
α2

and TH = 1
δ2

. (5)

A fundamental property of the exponential distribution is the memory-less prop-
erty, which requires that the remaining expected sojourn in the H (or Q) class is
independent of the time already elapsed before entering it. This property implies
that

TH = TI and TQ = TE,

which is equivalent to the condition given in (3) (see (4) and (5)).
Another argument for the use of (3) is the following. The average time indi-

viduals (both isolated and non-isolated individuals) stay in the I class is equal to
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1/(δ1 + φ), and the average time an isolated individual stays in the H class is 1/δ2.
Notice that φ/(δ1 + φ) and δ1/(δ1 + φ) are fractions of isolated and non-isolated
individuals, respectively. Then the weighted average time an individual stays in
the infectious stage is

φ

δ1 + φ

(
1

δ1 + φ
+ 1

δ2

)
+ δ1

δ1 + φ

(
1

δ1 + φ

)
, (6)

which is equal to 1
δ1

(i.e., the infectious period) only if we set δ2 = δ1 in accordance
with constraint (3). It follows from a similar argument that the weighted average
time an individual stays in the exposed stage (when quarantine is present) is equal
to the latency period only if α2 = α1. Figs. 2c and 2d illustrate that the value of C(t)
reduces as the values of control parameters increase, showing the improvement
compared to Figs. 2a and 2b. For Figs. 2c and 2d, all parameter values are the
same as in Figs. 2a and 2b except that the constraint (3) holds.

Constraint (3) seems to provide a partial solution to the problem exhibited in
Figs. 2a and 2b. However, it creates a different problem. Since the isolated or quar-
antined individuals have already spent some time in the infectious or latent stage
before entering the H or the Q class, the condition (3) amounts to allowing for a
prolonged period of infectiousness for isolated individuals and a prolonged period
of latency for quarantined individuals. In reality, if an infectious person already
spent some time in the I class before being isolated, then the expected remain-
ing sojourn in the H class should be shorter than the infectious period. Therefore,
the model assumption (EDA) conflicts with biological constraints. A similar argu-
ment applies to quarantined individuals. In Section 5.2, we demonstrate how the
predictions of the model (2) constrained by (3) may be in disagreement with that
of models using more realistic stage distributions.

It should be pointed out that the purpose of this article is not to argue
which assumptions/constraints are more appropriate than others or whether
they are correct or not. Our goal is to point out the weakness of models
that assume exponential distributions for one or both disease stages and to
demonstrate possible problems with either constraints of type (3) or no con-
straint. Therefore, models with more realistic stage distributions may need to be
considered.

The above examples demonstrate some of the drawbacks of the EDA and
the simple model (2). Epidemiological models with non-exponential distributions
such as the gamma distribution have been previously studied (see, for example,
Hethcote and Tudor, 1980; Plant and Wilson, 1986; Taylor and Karlin, 1998; Lloyd,
2001a,b). In these studies, the authors discussed other objections to the EDA. For
example, it is pointed out that constant recovery is a poor description of real-world
infections, and they show that in models with more realistic distributions of dis-
ease stages, less stable behavior may be expected and disease persistence may be
diminished (see Hethcote et al., 1981; Lloyd, 2001a,b). However, these studies do
not focus on the impact of imperfect isolation. In the rest of the paper, we consider
models with more realistic disease stage distributions and study the properties of
these models.
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3. The general model

In this section, we derive an SEIR type of model which includes quarantine and
isolation and assumes that the disease stages are arbitrarily distributed. We show
that this model reduces to the simple model (2) when the disease stages are expo-
nentially distributed and the conditions in (3) are satisfied.

3.1. The model with arbitrarily distributed disease stages

Let S(t), E(t), Q(t), I(t), H(t), R(t), N be as defined in model (2), and let PE, PI :
[0,∞) → [0, 1] describe the durations of the exposed (or latent) and infectious
stages, respectively. More precisely, Pi (s) (i = E, I) gives the probability that the
disease stage i lasts longer than s time units (or the probability of being still in the
same stage at stage age s). Then, the derivative −Ṗi (s) (i = E, I) gives the rate of
removal from the stage i at stage age s by the natural progression of the disease.
These duration functions have the following properties

Pi (0) = 1, Ṗi (s) ≤ 0,

∫ ∞

0
Pi (s) ds < ∞, i = E, I.

Let k(s), l(s) : [0,∞) → [0, 1] denote, respectively, the probabilities that exposed
or infectious individuals have not been quarantined or isolated at stage age s.
Hence, 1 − k(s) =: k̄(s), 1 − l(s) =: l̄(s) give the respective probabilities of being
quarantined or isolated before reaching stage age s. Assume that k(0) = l(0) = 1,
k̇(s) ≤ 0 and l̇(s) ≤ 0. Since we are not focusing on vital dynamics, we use the sim-
plest function e−µt for the probability of surviving natural death. Let the num-
bers of initial susceptible and removed individuals be S0 > 0 and R0 > 0, respec-
tively. Let E0(t) e−µt , I0(t) e−µt , Q0(t) e−µt , and H0(t) e−µt be the non-increasing
functions that represent the numbers of individuals that were initially exposed,
infectious, quarantined and isolated, respectively, and are still alive and in the re-
spective classes at time t . For example, in the special case when PE and PI are
exponentially distributed with mean stage durations α and δ, denoted by P̃E and
P̃I , respectively:

P̃E(s) = e−αs, P̃I(s) = e−δs, (7)

and when the survivals from quarantine and isolation are described by the expo-
nential functions

k(s) = e−χs, l(s) = e−φs (8)

with χ and φ being constants, we have

E0(t) = E(0) e−(χ+α)t , I0(t) = I(0) e−(φ+δ)t , etc. (9)

where E(0) and I(0) are constants representing the number of individuals in the E
and I classes, respectively, at time t = 0. Let Ĩ0(t), Q̃0(t), H̃0(t), and R̃0(t) denote
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those initially infected who have moved into the I, Q, H, and R classes, respec-
tively, and are still alive at time t . For example, if we use (7) and (8), then

Ĩ0(t) =
∫ t

0
αE(0) e−(α+χ+µ)τ e−(δ+φ+µ)(t−τ ) dτ. (10)

The force of infection λ(t) is assumed to have the same form as in system (2) and
as it is given in (1). Then the number of individuals who became exposed at some
time s ∈ (0, t) and are still alive and in the E class at time t is

E(t) =
∫ t

0
λ(s)S(s)PE(t − s)k(t − s) e−µ(t−s) ds + E0(t) e−µt .

Differentiating the above equation,

E′(t) =
∫ t

0
λ(s)S(s)ṖE(t − s)k(t − s) e−µ(t−s) ds

+
∫ t

0
λ(s)S(s)PE(t − s)k̇(t − s) e−µ(t−s) ds

+ λ(t)S(t) − µE(t) + E′
0(t) e−µt . (11)

The first and second terms provide inputs for the I and the Q equations, respec-
tively. Hence,

I(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k(τ − s)]PI(t − τ )l(t − τ )

× e−µ(t−s) ds dτ + I0(t) e−µt + Ĩ0(t),

and

Q(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−PE(τ − s)k̇(τ − s)]PE

(
t − τ

∣∣τ − s
)

× e−µ(t−s) ds dτ + Q0(t) e−µt + Q̃0(t)

=
∫ t

0
λ(s)S(s)PE(t − s)k̄(t − s) e−µ(t−s) ds + Q0(t) e−µt + Q̃0(t).

Here, PE(w|a) = PE(w+a)
PE(a) is the conditional remaining function which gives the

probability that an exposed individual remains non-infectious for w time units
longer given that the person was already exposed for a units of time. Individu-
als in the H class are from two sources, one from the I class via isolation at the
rate −PIl̇(t), and the other one from the Q class via disease progression at the rate



1520 Feng et al.

−ṖEk̄(t). This leads to

H(t) =
∫ t

0

∫ u

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k(τ − s)][−PI(u − τ )l̇(u − τ )]

× PI
(
t − u

∣∣u − τ
)

e−µ(t−s) ds dτ du

+
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k̄(τ − s)]PI(t − τ ) e−µ(t−s) ds dτ

+ H0(t) e−µt + H̃0(t),

where PI(w|a) = PI (w+a)
PI (a) is the conditional remaining function as PE(w|a). All in-

dividuals described by the three integrals in I and H will eventually enter the re-
covered class R. Individuals in the R class include those who became exposed at
time s ∈ (0, t), exited the latent stage by becoming infectious at time τ ∈ (s, t), ex-
ited the infectious stage by recovery at time u ∈ (τ, t) at the rate −ṖI(u − τ ), and
are still alive at time t . Adding the corresponding terms we can get the equation
for R

R(t) =
∫ t

0

∫ u

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)][−ṖI(u − τ )] e−µ(t−s) ds dτ du

+R0(t) e−µt + R̃0(t)

=
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)] e−µ(t−s)

∫ t

τ

[−ṖI(u − τ )] du ds dτ

+ R0(t) e−µt + R̃0(t)

=
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)][1 − PI(t − τ )] e−µ(t−s) ds dτ

+ R0(t) e−µt + R̃0(t).

Combining these equations we have the following integral equation model:

S(t) =
∫ t

0
µN e−µ(t−s) ds −

∫ t

0
λ(s)S(s) e−µ(t−s) ds + S0 e−µt ,

E(t) =
∫ t

0
λ(s)S(s)PE(t − s)k(t − s) e−µ(t−s) ds + E0(t) e−µt ,

Q(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−PE(τ − s)k̇(τ − s)]PE

(
t − τ

∣∣τ − s
)

e−µ(t−s) ds dτ + Q̃(t),

I(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k(τ − s)]PI(t − τ )l(t − τ ) e−µ(t−s) ds dτ + Ĩ(t),

H(t) =
∫ t

0

∫ u

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k(τ − s)][−PI(u − τ )l̇(u − τ )] (12)

×PI
(
t − u

∣∣u − τ
)

e−µ(t−s) ds dτ du
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+
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)k̄(τ − s)]PI(t − τ ) e−µ(t−s) ds dτ + H̃(t),

R(t) =
∫ t

0

∫ τ

0
λ(s)S(s)[−ṖE(τ − s)][1 − PI(t − τ )] e−µ(t−s) ds dτ + R̃(t),

with λ(t) = β
I(t) + (1 − ρ)H(t)

N
,

where X̃(t) = X0(t) e−µt + X̃0(t) (X = Q, I, H, R). Obviously X̃(t) → 0 as t → ∞.
It can be shown that under standard assumptions on initial data and parameter
functions the system (12) has a unique nonnegative solution defined for all positive
time.

The integral formulation of the model makes it possible to see the role of an
important quantity, the expected remaining sojourn at stage age s (see Thieme,
2003), which is defined by

Mi (s) =
∫ ∞

0
Pi

(
t
∣∣s) dt =

∫ ∞

0

Pi (t + s)
Pi (s)

dt, i = E, I (13)

with Mi (0) = ∫ ∞
0 Pi (s) ds = Mi being the mean sojourn time in stage i (Mi is the

latent period if i = E and is the infectious period if i = I). This quantity reflects
the key difference between various distributions. For example, for the exponential
distribution Mi (s) = Mi for all s > 0, and for many other distributions Mi (s) <

Mi , i = E, I.

3.2. The reduced model of (12) under EDA

In the special case when PE and PI are exponentially distributed with mean stage
durations α and δ respectively (see (7)), and when the survivals from quarantine
and isolation are described by the exponential functions given in (8), we can dif-
ferentiate the E equation in (12) and get (see (9) and (11))

E′(t) = λ(t)S(t) − (χ + α + µ)E(t).

Here we have used the fact from (9) that E′
0(t) = −(χ + α)E0(t). To get the I ′(t)

equation we notice from (9) and (10) that

[I0(t) e−µt ]′ = −(φ + δ + µ)I0(t) e−µt ,

Ĩ ′
0(t) = αE0(t) e−µt − (φ + δ + µ) Ĩ0(t),

[PI(t)l(t) e−µt ]′ = −(φ + δ + µ)PI(t)l(t) e−µt .

Hence, differentiating the I equation in (12) we get

I ′(t) = αE(t) − (φ + δ + µ)I(t).

Similarly we can differentiate other equations in (12) and get the following system
of ordinary differential equations
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S′ = µN − βS I+(1−ρ)H
N − µS,

E′ = βS I+(1−ρ)H
N − (χ + α + µ)E,

Q′ = χ E − (α + µ)Q,

I ′ = αE − (φ + δ + µ)I,

H′ = αQ + φ I − (δ + µ)H,

R′ = δI + δH − µR.

(14)

We observe that the simple model (2) is exactly the same as system (14) if we
let α1 = α2 = α and δ1 = δ2 = δ. This is in fact a consequence of the memory-less
property of the exponential distribution, which implies that Mi (s) = Mi (i = E, I)
for all s ≥ 0 (see (13)). This also confirms the condition (3) mentioned in the
introduction.

In the following section, we will explore the analytical properties of the general
model (12). We will also consider a specific non-exponential stage distribution, the
gamma distribution, and compare the results of the models that assume different
stage distributions.

4. Analysis of model (12)

As in most epidemic models, we compute the reproductive number Rc (c for con-
trol) and show that it determines whether or not the disease can be controlled.
We also discuss the relationship between Rc and the usual basic reproductive
number, R0, which is obtained when no control measures are implemented, i.e.,
k(s) = l(s) = 1.

4.1. The reproductive numbers Rc and R0

The expression for Rc given below is derived from the threshold conditions for the
stability of the disease-free equilibrium (see Section 4.2). It also has a clear biolog-
ical interpretation as the secondary number of infections produced by a typical
infectious individual during the entire period of infectiousness. Let

a1(τ ) = e−µτ

∫ τ

0
[−ṖE(τ − u)k(τ − u)]PI(u)l(u) du,

a2(τ ) = e−µτ

∫ τ

0
[−ṖE(τ − u)k(τ − u)]PI(u)l̄(u) du,

a3(τ ) = e−µτ

∫ τ

0
[−ṖE(τ − u)k̄(τ − u)]PI(u) du,

(15)

where k̄(s) = 1 − k(s), l̄(s) = 1 − l(s). Then the reproductive number Rc is given
by

Rc =
∫ ∞

0
βa1(τ ) dτ +

∫ ∞

0
(1 − ρ)β[a2(τ ) + a3(τ )] dτ. (16)

To see the biological meaning of the expression (16) and to simplify the notation
in the later sections, we introduce the following quantities:
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TE =
∫ ∞

0
[−ṖE(s)] e−µs ds, TEk =

∫ ∞

0
[−ṖE(s)k(s)] e−µs ds,

TI =
∫ ∞

0
[−ṖI(s)] e−µs ds, TIl =

∫ ∞

0
[−ṖI(s)l(s)] e−µs ds,

DE =
∫ ∞

0
PE(s) e−µs ds, DEk =

∫ ∞

0
PE(s)k(s) e−µs ds,

DI =
∫ ∞

0
PI(s) e−µs ds, DIl =

∫ ∞

0
PI(s)l(s) e−µs ds

(17)

TE and TEk represent, respectively, the probability and the “quarantine-adjusted”
probability that exposed individuals survive and become infectious. TI and TIl rep-
resent, respectively, the probability and the “isolation-adjusted” probability that
infectious individuals survive and become recovered. DE and DEk represent, re-
spectively, the mean sojourn time (death-adjusted) and the “quarantine-adjusted”
mean sojourn time (death-adjusted as well) in the exposed stage. DI and DIl rep-
resent, respectively, the mean sojourn time (death-adjusted) and the “isolation-
adjusted” mean sojourn time (death-adjusted as well) in the infectious stage. Using
(17), we can rewrite Rc in (16) as

Rc = RI + RI H + RQH,

where

RI = β

∫ ∞

0
a1(τ ) dτ = βTEkDIl ,

RI H = (1 − ρ)β
∫ ∞

0
a2(τ ) dτ = (1 − ρ)βTEk(DI − DIl ),

RQH = (1 − ρ)β
∫ ∞

0
a3(τ ) dτ = (1 − ρ)β(TE − TEk)DI .

(18)

The three components, RI ,RI H, and RQH in Rc represent contributions from the
I class and from the H class through isolation and quarantine, respectively. From
0 ≤ k, l ≤ 1, we know that

TEk ≤ TE, DIl ≤ DI . (19)

Hence, RI H and RQH are both positive. Clearly, each Ri (i = I, I H, QH) is a
product of the transmission rate β (or (1 − ρ)β), the probability of surviving the
exposed stage and entering the infectious stage, and the average sojourn time be-
ing infectious in the corresponding class (adjusted by natural death).

In the absence of control, i.e., k(s) = l(s) ≡ 1, Rc gives the basic reproductive
number:

R0 = β

∫ ∞

0
[−ṖE(s)] e−µs ds

∫ ∞

0
PI(s) e−µsds = βTEDI . (20)
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We can express Rc in terms of R0 as follows. Notice from (18) that Rc can be
simplified to (1 − ρ)βTEDI + ρβTEkDIl . Hence, from (20), we get

Rc = R0

[
1 − ρ

(
1 − TEkDIl

TEDI

)]
. (21)

From (19) it is easy to see that Rc < R0. The impact of various (single or com-
bined) control measures represented by ρ, χ , or φ on the reduction of R0 can be
evaluated using (21).

4.2. Equilibria and their stability

System (12) always has the disease-free equilibrium (DFE) U1 = (S1, E1,

Q1, I1, H1, R1) = (N, 0, 0, 0, 0, 0). If Rc > 1, then there is a unique endemic
equilibrium

U∗ = (S∗, E∗, Q∗, I∗, H∗, R∗) (22)

with

S∗ = N
Rc

, E∗ = DEkλ
∗S∗, Q∗ = (DE − DEk)λ∗S∗,

I∗ = TEkDIkλ
∗S∗, H∗ = (TEDI − TEkDIl )λ

∗S∗, R∗ = 1
µ
TETIλ

∗S∗, (23)

where λ∗ = µ(Rc − 1). Obviously, U∗ exists if and only if Rc > 1.

Theorem 1. The DFE, U1, is a global attractor if Rc < 1.

Proof: We first show that λ(t) → 0 as t → ∞. Since we are considering the large
time behavior of the solutions, without loss of generality, we let X̃ = 0. Let

A(τ ) = a1(τ ) + (1 − ρ) [a2(τ ) + a3(τ )] ,

where a1, a2, a3 are given in (15). Then the reproductive number Rc can be written
as

Rc = β

∫ ∞

0
A(τ ) dτ, (24)

and the I and H equations (for large t) can be rewritten as (see (12))

I(t) =
∫ t

0
λ(s)S(s)

∫ t−s

0
[−ṖE(t − s − u)k(t − s − u)]PI(u)l(u) e−µ(t−s) du ds

=
∫ t

0
λ(s)S(s)a1(t − s) ds, (25)



Epidemiological Models with Non-Exponentially Distributed Disease Stages 1525

and

H(t) =
∫ t

0
λ(s)S(s)

∫ t−s

0
[−ṖE(t − s − u)k(t − s − u)]PI(u)l̄(u) e−µ(t−s) du ds

+
∫ t

0
λ(s)S(s)

∫ t−s

0
[−ṖE(t − s − u)k̄(t − s − u)]PI(u) e−µ(t−s) du ds

=
∫ t

0
λ(s)S(s) [a2(t − s) + a3(t − s)] ds. (26)

Since S(s) ≤ N for all s > 0, using (15), (25) and (26), we know that λ(t) satisfies

λ(t) = β (I(t) + (1 − ρ)H(t))
N

≤ β

∫ t

0
λ(s)A(t − s) ds. (27)

Let λ∞ = lim supt→∞ λ(t), i.e.,

λ∞ = lim
t→∞ 
(t) with 
(t) = sup

s≥t
λ(s). (28)

By definition, there exists a sequence tn → ∞ as n → ∞ such that λ(tn) → λ∞ as
n → ∞. Assume that (otherwise we can choose a subsequence)

tn+1 − tn → ∞ as n → ∞. (29)

Then from (27)

λ(tn+1) ≤ β

∫ tn

0
λ(s)A(tn+1 − s) ds + β

∫ tn+1

tn
λ(s)A(tn+1 − s) ds. (30)

Obviously λ(t) is bounded by β on [0,∞). The convergence of
∫ ∞

0 A(τ ) dτ and
(29) imply that

∫ tn

0
λ(s)A(tn+1 − s) ds ≤ β

∫ tn+1

tn+1−tn
A(τ ) dτ

≤ β

∫ ∞

tn+1−tn
A(τ ) dτ → 0 as n → ∞.

(31)

Using (24) and (28), we have

∫ tn+1

tn
λ(s)A(tn+1 − s) ds ≤ β
(tn)

∫ ∞

0
A(τ ) dτ = 
(tn)Rc (32)

and (28), (30), (31) and (32) yield that

λ∞ ≤ λ∞Rc.
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Since Rc < 1, the above inequality implies that λ∞ = 0, i.e., limt→∞ λ(t) = 0.

Hence,

lim
t→∞ I(t) = 0, lim

t→∞ H(t) = 0.

It also follows from λ∞ = 0 that E(t) → 0, Q(t) → 0, and R(t) → 0 as t →
∞. Hence, S(t) = N − (E(t) + Q(t) + I(t) + H(t) + R(t)) → N as t → ∞. This
shows that U1 is a global attractor. This finishes the proof of Theorem 1.

The following observation allows us to study the disease persistence by consid-
ering only two equations. Again, to study the large time behavior of solutions, we
ignore those individuals who are initially in the population. From equations (15),
(25), and (26), we have

λ(t) = β

N

∫ t

0
λ(s)S(s)A(t − s) ds. (33)

Integrating the S equation in (12), we obtain

S(t) = N −
∫ t

0
λ(s)S(s) e−µ(t−s) ds. (34)

We observe that equations (33) and (34) can be studied independently of other
variables, and that the behavior of λ(t) determines whether or not the disease will
die out. Let (S∗, λ∗) denote an equilibrium of (33) and (34). Then S∗ and λ∗ are
constant solutions of the equations

S(t) = N −
∫ t

−∞
λ(t)S(t) e−µ(t−s) ds,

λ(t) = β

N

∫ t

−∞
λ(t)S(t)A(t − s) ds,

or satisfy the equations

S∗ = N −
∫ 0

−∞
λ∗S∗ eµu du,

λ∗ = β

N

∫ 0

−∞
λ∗S∗ A(−u) du. (35)

The equations (35) have two solutions (equilibria)

(S∗
1 , λ∗

1) = (N, 0), (S∗
2 , λ∗

2) = (N/Rc, µ(Rc − 1)).

Clearly, the non-trivial equilibrium (S∗
2 , λ∗

2) is feasible only if Rc > 1. To study the
stability of (S∗, λ∗), following the approach used in Feng et al. (2001) and Hethcote
and Tudor (1980), we translate the equilibrium (S∗, λ∗) to the origin by letting
Ŝ = S − S∗, λ̂ = λ − λ∗. Then the system in terms of Ŝ and λ̂ can be written in the
following matrix form of a Volterra integral equation
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X(t) = F(t) +
∫ t

0
K(t − s)G(X(s)) ds (36)

with

F(t) =

⎛
⎜⎜⎜⎝

−
∫ 0

−∞
λ∗S∗ e−µ(t−s) ds

β

N

∫ 0

−∞
λ∗S∗ A(t − s) ds

⎞
⎟⎟⎟⎠ , K(τ ) =

(
0 − e−µ(τ )

0 β A(τ )
N

)
,

G(X) =
(

Ŝ

λ̂(Ŝ + S∗) + λ∗ Ŝ

)
, X =

(
Ŝ

λ̂

)
.

The following Lemma from Hethcote and Tudor (1980) can be used to study the
stability of the origin for the system (36).

Lemma 1. If solutions of (36) exist on [0,∞) and are bounded, F(t) ∈
C[0,∞), F(t) → 0 as t → ∞, K(t) ∈ L1[0,∞), G(0) = 0, the Jacobian J = DG(0)
of G is nonsingular and all roots w of the characteristic equation det

(
I −∫ ∞

0 e−wτ K(τ )J dτ
) = 0 have negative real parts, then the origin is locally asymp-

totically stable (l.a.s.) for (36).

Theorem 2. If Rc > 1, then the DFE (S∗
1 , λ∗

1) is unstable and the endemic equilib-
rium (S∗

2 , λ∗
2) is l.a.s.

Proof: The stability of the trivial equilibrium (Ŝ, λ̂) = (0, 0) of the system (36) de-
termines the stability of the equilibrium (S∗, λ∗) of the system consisting of (33)
and (34). It is easy to verify that F(t) → 0 as t → ∞. Since S∗ �= 0, we have

det(J ) = det

(
1 0

λ∗ S∗

)
= S∗ �= 0,

and hence J is nonsingular. Noticing that

∫ ∞

0
e−wτ K(τ )J dτ =

⎛
⎜⎜⎝

− λ∗

w + µ
− S∗

w+µ

λ∗

N
L(w) S∗

N L(w)

⎞
⎟⎟⎠ ,

where

L(w) = β

∫ ∞

0
e−wτ A(τ ) dτ,

we obtain the characteristic equation
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H(w) = det
(

I −
∫ ∞

0
e−wτ K(τ )J dτ

)
= 1 + λ∗

w + µ
− S∗

N
L(w) = 0. (37)

At the DFE (S∗
1 , λ∗

1) = (N, 0), the characteristic equation (37) reduces to

L(w) = 1.

From the fact that L(0) = Rc and that L′(w) < 0 for any real number w, we con-
clude that H(w) = 0 has a positive real root if Rc > 1. Therefore, the DFE (S∗

1 , λ∗
1)

is unstable if Rc > 1.
At the endemic equilibrium (S∗

2 , λ∗
2), the characteristic equation (37) simplifies

to

w + µRc

w + µ
= L(w)

Rc
. (38)

Let w = a + ib with a ≥ 0. Then the real part of the left-hand side of (38) is

�
(

w + µRc

w + µ

)
= (a + µ)(a + µRc) + b2

(a + µ)2 + b2
> 1

since Rc > 1. The real part of the right-hand side of (38) is

�
(

L(w)
Rc

)
= β

∫ ∞
0 e−aτ cos bτ A(τ ) dτ

Rc
<

β
∫ ∞

0 A(τ ) dτ

Rc
= 1

(see (24)). This shows that w cannot be a root of (38) if �w ≥ 0. Therefore, the
endemic equilibrium (S∗

2 , λ∗
2) is l.a.s. when Rc > 1. This finishes the proof of The-

orem 2.
The asymptotical stability for the system (12) follows immediately from the re-

sult of Theorem 2. That is, we have the following result.

Theorem 3. If Rc > 1, then the endemic equilibrium U∗ given by (22) is l.a.s. for
the system (12).

Proof: Note that the components S∗ and λ∗ of U∗ (see (23)) are exactly the same as
S∗

2 and λ∗
2, the endemic equilibrium of the system (33) and (34). Since Rc > 1, from

Theorem 2 we know that λ(t) → λ∗ and S(t) → S∗ as t → ∞ for all solutions with
initial data closed to the endemic equilibrium. By the convergence of the integrals
in the E, Q, I, H, and R equations of the system (12), we know that solutions of
the system (12) approach U∗ as t → ∞. The proof of Theorem 3 is completed.

5. Applications

The integral formulation of the model (12) enables the comparison between both
models which differ in their distributions of disease stages and the examination of
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their consequent epidemiological implications. In this section, we apply the results
obtained for the general model (12) to simplified models that use specific, non-
exponential disease stage distributions such as the gamma distribution.

5.1. Models with GDA

One possibility to replace the exponential stage duration function p(s) = e−θs , or
equivalently the probability density function (PDF) f (s) = θ e−θs , is to consider
the gamma distribution with parameter θ for which the stage duration function
is pn(s, θ) = e−nθs ∑n−1

k=0
(nθs)k

k! where n ≥ 1. We remark that the exponential dis-
tribution is a special case of the gamma distribution when n = 1. To see the role
of n, the graph of the PDF, fn(s), is shown in Fig. 3 for n = 1, 3, 20. Notice that
when n → ∞, it corresponds to a fixed duration. The appropriate value of n may
be determined by epidemiological data.

Under the gamma distribution pn(s, θ) (or simply denoted by pn(s)) with n ≥ 2,
the expected remaining sojourn at stage age s is from (13)

Mn(s) =
∫ ∞

0

pn(t + s)
pn(s)

dt = 1
pn(s)

∫ ∞

s
pn(t) dt = 1

nθ

∑n−1
k=0

∑k
j=0

(nθs) j

j!∑n−1
k=0

(nθs)k

k!

.

After checking M′
n(s) < 0 and lims→∞ Mn(s) → T/n where T = 1/θ , we know

that Mn(s) strictly decreases with stage age s, and that when s is large the expected
remaining sojourn can be as small as T/n. Hence, the expected remaining sojourn
in a stage is indeed dependent on the time already spent in the stage. Therefore,
the gamma distribution pn(s) for n ≥ 2 provides a more realistic description than
the exponential distribution p1(s) for which M1(s) = T for all s.

We now consider the model (12). If both PE(s) and PI(s) are chosen to be
gamma distributions and k(s) and l(s) are the same as in (8), then the integral
equation model (12) can be reduced to an ordinary differential equation model. It
has been noted that the use of the gamma distribution pn(s, θ) for a disease stage,
e.g., the exposed stage, is equivalent to assuming that the entire stage is replaced by
a series of n sub-stages, and each of the sub-stages is exponentially distributed with
the removal rate nθ and the mean sojourn time T/n, where T = 1/θ is the mean
sojourn time of the entire stage (see, for example, MacDonald, 1978; Hethcote and

2 4 6 8
s

0.5

1

1.5
fn s Gamma Distribution PDF

n 20

n 3

n 1

Fig. 3 The probability density function of gamma distribution.
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Tudor, 1980; Lloyd, 2001a). This approach of converting a gamma distribution to
a sequence of exponential distributions is known as the “linear chain trick.”

For the purposes of demonstration and comparison, we adopt the same notation
as in (2) and denote α2 = α1 by α and δ2 = δ1 by δ. Let PE and PI be the gamma
distributions with the duration functions PE(s) = pm(s, α) and PI(s) = pn(s, δ),
respectively. Then using the functions k(s) and l(s) given in (8), we can differ-
entiate the equations in system (12) and obtain the following system of ordinary
differential equations

S′ = µN − βS
I + (1 − ρ)H

N
− µS,

E′
1 = βS

I + (1 − ρ)H
N

− (χ + mα + µ)E1,

E′
j = mαEj−1 − (χ + mα + µ)Ej , j = 2, . . . , m,

Q′
1 = χ E1 − (mα + µ)Q1,

Q′
j = χ Ej + mαQj−1 − (mα + µ)Qj , j = 2, . . . , m,

I ′
1 = mαEm − (φ + nδ + µ)I1,

I ′
j = nδIj−1 − (φ + nδ + µ)Ij , j = 2, . . . , n,

H′
1 = mαQm + φ I1 − (nδ + µ)H1,

H′
j = nδHj−1 + φ Ij − (nδ + µ)Hj , j = 2, . . . , n,

R′ = nδIn + nδHn − µR,

with I =
n∑

j=1

Ij , H =
n∑

j=1

Hj . (39)

From the formula (21), we get the reproductive number for system (39):

Rc = (mα)m

(µ + mα)m

β

µ + nδ

n−1∑
j=0

(nδ) j

(µ + nδ) j

×
⎡
⎣1 − ρ

⎛
⎝1 − (µ + mα)m

(µ + mα + χ)m

µ + nδ

µ + nδ + φ

∑n−1
j=0

(nδ) j

(µ+nδ+φ) j∑n−1
j=0

(nδ) j

(µ+nδ) j

⎞
⎠

⎤
⎦ , (40)

with the derivatives

∂Rc

∂χ
= −βρ

m(mα)m

(µ + mα + χ)m+1

n−1∑
j=0

(nδ) j

(µ + nδ + φ) j+1
< 0, (41)
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Fig. 4 Numerical simulations of the model (39). It shows that the number of new infections C(t)
continuously reduces as the control parameters (χ and φ) increase.

∂Rc

∂φ
= −βρ

(mα)m

(µ + mα + χ)m

n−1∑
j=0

( j + 1)(nδ) j

(µ + nδ + φ) j+2
< 0. (42)

From (41) and (42), we see that the reproductive number decreases as the dis-
ease control parameters χ and φ increase. Our simulation results show that the
cumulative number C(t) of new infections also decreases with increasing χ and
φ (see Fig. 4), which appears to be similar to Figs. 2c and 2d. This is not surpris-
ing since Figs. 2c and 2d are for model (2) under constraint (3), which is actually
a special case of system (39) when m = n = 1, whereas Fig. 4 is for system (39)
with m = n = 3. All parameter values used in Fig. 4 are the same as in Figs. 2c and
2d. However, we observe from Figs. 4b and 4d that for smaller φ (e.g., φ = 0) the
C value is lower in the GDM than in the EDM (C = 330 vs. C = 350), whereas
for larger φ (e.g., φ = 0.08), the C value is higher in the GDM than in the EDM
(C = 262 vs. C = 254). More detailed comparisons between the EDM and the
GDM are given in the next section.

5.2. Comparison of EDM and GDM

In this section, we show that when the GDA is used to replace the EDA, model
predictions regarding the effectiveness of disease intervention policies may be dif-
ferent both quantitatively and qualitatively. We illustrate this by comparing the
two models, EDM (14) and GDM (39). Two criteria are used in the comparison.
One is the impact of control measures described by χ and φ on the reduction in the
magnitude of Rc and the other one is the reduction in the number of cumulative
infections C at the end of an epidemic (the final epidemic size).

From (40)–(42), we know that the reproductive number Rc for the GDM de-
creases with increasing χ and φ. Similarly, using formula (18), we get the repro-
ductive number for the EDM, Rc = RI + RI H + RQH, where

RI = βα

(µ + α + χ)(µ + δ + φ)
,
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RI H = (1 − ρ)βα

µ + α + χ

(
1

µ + δ
− 1

µ + δ + φ

)
,

RQH = (1 − ρ)β
(

α

µ + α
− α

µ + α + χ

)
1

µ + δ
,

which can be written in a simpler form by using (21):

Rc = α

µ + α

β

µ + δ

[
1 − ρ

(
1 − µ + α

µ + α + χ

µ + δ

µ + δ + φ

)]
. (43)

The derivatives of Rc with respect to the control parameters are

∂Rc

∂χ
= −βρ

α

(µ + α + χ)2

1
µ + δ + φ

< 0,

∂Rc

∂φ
= −βρ

α

µ + α + χ

1
(µ + δ + φ)2

< 0.

Hence, the reproductive number Rc for the EDM also decreases as the control
parameters χ and φ increase. Therefore, both models seem to work well when the
impact of each individual control measure is considered. When we try to compare
model predictions of combined control strategies, however, inconsistent predic-
tions by the two models are observed. For example, in Figs. 5a and 5b, Rc for both
models is plotted either as a function of φ for a fixed value of χ = 0.1, or as a func-
tion of χ for a fixed value φ = 0.1, or as a function of both χ and φ with χ = φ. For
any vertical line except the one at 0.1, the three curves intersect the vertical line
at three points that represent three control strategies. The order of these points
(from top to bottom) determines the order of effectiveness (from low to high) of
the corresponding control strategies since a larger Rc value will most likely lead to
a higher disease prevalence. The order of these three points (labeled by a circle,
a triangle, and a square) predicted by the EDM and the GDM is clearly different
for the selected parameter sets, suggesting conflicting assessments of interventions
between the two models. These conflicting assessments are also shown when we
compare the C values. For example, Figs. 5c and 5d plot the function C(t) at the
end of epidemics (at which time the number of new infection is zero). Obviously,
they show the same problem as that shown in Figs. 5a and 5b in which the Rc

values are compared. The parameter values used in Figs. 5 are β = 0.2, ρ = 0.8,

α = 1/7, and δ = 1/10, corresponding to a disease with a latency period of 1/α = 7
days and an infectious period of 1/δ = 10 days (e.g., SARS).

To examine in more detail the quantitative differences between the two models,
we conducted intensive simulations of the EDM and the GDM for various control
measures, some of which are illustrated in Fig. 6. For demonstration purposes, we
have used a different α value, α = 1/10. All other parameter values are the same
as before. Figs. 6a and 6b are for the case in which there is no control (χ = φ = 0).
We observe that both models predict the same value of C (see the C curve).
Figs. 6c and 6d are for Strategy I, which implements quarantine alone with χ =
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Fig. 5 Comparision of the EDM and the GDM on the impact of various control measures. (a)
and (b) are plots of the reproductive number Rc . (c) and (d) are plots of the number of cumulative
infections C.

0.08, and Figs. 6e and 6f are for Strategy II, which implements isolation alone with
φ = 0.1. The effectiveness of these control measures are reflected by the corre-
sponding C(t) values. According to Figs. 6c and 6e, the EDM predicts that Strat-
egy II, is more effective than Strategy I, as the number C of cumulative infec-
tions under Strategy II, is 25% lower than the C value under Strategy I, (notice
that C = 2095 and C = 1570 under Strategies I and II, respectively). However,
according to Figs. 6d and 6f, the GDM predicts that Strategy II, is less effective
than Strategy I, as the number C of cumulative infections under Strategy I is 30%
lower than the C value under Strategy II (notice that C = 1540 and C = 2270 un-
der Strategies I and II, respectively). Obviously, in this example, the predictions
by the EDM and by the GDM are inconsistent.

6. Conclusion

The goal of this paper is to develop more appropriate epidemiological models
for the study of disease control via quarantine and isolation. We first demon-
strated that the simple ODE model which assumes exponentially distributed dis-
ease stages is not appropriate for the disease control problems under investigation.
We then developed a general integral equation model that assumes an arbitrary
distribution for each of the disease stages, PE(s) and PI(s) (see the model (12)).
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(e) EDM
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(f) GDM

Fig. 6 Numerical simulations of the EDM and the GDM under no control (see (a) and (b)),
Strategy I (see (c) and (d)) and Strategy II (see (e) and (f)). The number of cumulative infections
C(t) as well as other disease variables E(t), I(t), Q(t), and H(t) are plotted.

One of the key advantages of this general model is that it allows us to compare
simplified models obtained by using specific disease stage distributions, including
the simple ODE model (14). Consequently, it provides theoretical evidence that
simple (and commonly used) ODE models such as (2) or (14) may be generating
misleading information regarding disease control strategies. It also suggests that
more realistic assumptions on disease stage distribution must be considered when
using these models to assess the effectiveness of disease intervention policies.

Many modifications to the simple model (14) can be obtained by using specific
and more realistic disease stage distributions. We considered one non-exponential
stage distribution, the gamma distribution, and derived the GDM (gamma distri-
bution model) for the case of n = 3, which is also an ODE model (see (39)). We
argued that this GDM provides a better description of the disease transmission
process than the EDM (which is, in fact, a GDM in the extreme case of n = 1) by
comparing the expected remaining stay at stage age s and the mean sojourn time in
the stage for the two stage distributions. It should be pointed out that the GDM is
not the complete answer to the problem of discrepancy described in Section 2 for
the EDM because the distribution within each sub-stage of the GDM is still expo-
nential. However, the discrepancy is expected to be smaller (especially for larger
n values) than it would be in the EDM.

We computed the reproductive number Rc for the general model (12) and
proved that the existence and stability of the equilibria of the model depends
on the magnitude of Rc. These results are used to determine another criterion
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for the evaluation of control measures. The detailed description of Rc obtained
from the general model (12) also provides important information about the role
of the model parameters in the disease transmission dynamics. The comparison
of reproductive numbers for the two models under different intervention policies
indicate that the EDM again may generate outcomes which conflicts with that of
the GDM (see Fig. 5). disease control policies (described by χ and φ) using the
number of cumulative infections C. Our simulation results from the models (14)
and (39) suggest that for many sets of parameter values, the two models predict
contradictory outcomes (see Figs. 5 and 6).

To summarize, the results of our study in this article suggest that standard SEIR-
type ODE models (such as models (2) and (14)), while capable of capturing many
essential features of the disease transmission dynamics in the absence of quar-
antine and isolation, may produce results that are inconsistent with those from
models with non-exponentially distributed disease stages. We considered one such
model (39) by using the gamma distribution with n = 3. Obviously, other types
of more realistic stage distributions (PE and PI) can be used to derive different
improved models. In addition to the choice of PE and PI , modifications on the
model (14) can be obtained by making different assumptions on k(s) and l(s) as
well. These functions obviously play a very important role for the study of disease
intervention as these are the parameters (or parameter functions) that reflect the
control measures.

Finally, it should be pointed out that the biology of the infection ultimately de-
termines the most appropriate forms for the latent and infectious periods. For
some infections it might well be that an n (n > 1) stage gamma distribution is a
better choice, for others it might even be that an exponential distribution provides
a reasonable approximation. In order to determine which model is more appro-
priate for the problem under investigation, we need to have a deep understanding
of the advantages and limitations of these models, as well as the biology of the
disease.
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