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The bifurcation phenomena in a power system with three machines and four buses are investi-
gated by applying bifurcation theory and harmonic balance method. The existence of saddle-
node bifurcation and Hopf bifurcation is analyzed in time domain and in frequency domain,
respectively. The approach of the fourth-order harmonic balance is then applied to derive the
approximate expressions of periodic solutions bifurcated from Hopf bifurcations and predict their
frequencies and amplitudes. Since the approach is valid only in some neighborhood of a bifurca-
tion point, numerical simulations and the software Auto2007 are utilized to verify the predictions
and further study bifurcations of these periodic solutions. It is shown that the power system
may have various types of bifurcations, including period-doubling hifurcation, torus bifurcation,
cyclic fold bifurcation, and complex dynamical behaviors, including quasi-periodic oscillations
and chaotic behavior. These findings help to better understand the dynamics of the power system
and may provide insight into the instability of power systems.
Keywords: Bifurcation; frequency domain; harmonic balance; power system.
1. Introduction many researchers’ attention [Abed et al., 1993;

Kwatny et al., 1995; Jing et al., 2002; Ayasun et al.,

One major concern of power systems is about their
2004; Wang et al., 2014; Pirooz et al., 2015] and has

instability. The analysis of power system mod-

els demonstrates that instability of power systems
may be triggered by static bifurcation (saddle-
node bifurcation) and dynamic bifurcations (Hopf
bifurcation, torus bifurcation, cyclic fold bifurca-
tion, period-doubling bifurcation). Therefore, the
bifurcation analysis of power systems has attracted

been studied through different approaches. Harb
and Jabbar [2003] applied the global state feedback
linearization (GLC) to a small power system and
proposed a strategy to control the Hopf bifurcation
and chaos. Applying bifurcation theory, Li et al.
[2008] provided optimal placements of measurement
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devices for a power system load model. Rakshit
et al. [2010] developed a systematic approach to
analyze border collision bifurcations in a static VAR
compensator. Zhang and Chiang [2011] numerically
studied the local bifurcation bounding and steady-
state security boundary in large electric power
systems. Sangrody et al. [2012] utilized modified
Poincaré map, Lyapunov exponents and bifurca-
tion diagram to investigate the bifurcation and
chaos in scalar drives of induction machines. Huang
et al. [2013] reported a low-frequency oscillation
emerging from Hopf bifurcation in three-phase PFC
(power-factor-correction) power supplies, and fur-
ther developed a model of the grid-converter system
to illustrate the low-frequency instability. Through
multiparameter bifurcation analysis, the effect of
degenerate Hopf bifurcations on the voltage stabil-
ity was numerically studied by Mendoza-Armenta
et al. [2013].

This work considers a power system with three
machines and four buses. The system can be mod-
eled by swing equations [Kwatny & Yu, 1989]. The
structure of equilibria of the system without damp-
ing has been studied by Tavora and Smith [1972]
and Kwatny et al. [1995] through different methods.
In the case of no damping, Kwatny and Yu [1989]
studied the properties of energy functions near Hopf
bifurcation points and explained flutter instability
(one of typical instabilities in power systems). For
the system with damping, Kwatny and Piper [1990]
utilized the approach of frequency domain analy-
sis to analyze Hopf bifurcation. Chang [2002] pro-
vided the sufficient conditions for the existence of
the saddle-node bifurcation and Hopf bifurcation in
time domain, and numerically analyzed the bifurca-
tions and dynamical behaviors of the power system.

As mentioned by Kwatny and Piper [1990],
flutter instability of a power system is typically
accompanied by the occurrence of Hopf bifurcation,
and hence periodic oscillations resulting from Hopf
bifurcation deserve one’s careful attention. Follow-
ing previous works [Kwatny & Piper, 1990; Chang,
2002], this work investigates bifurcations of the
power system with three machines and four buses
intensively. More specifically, saddle-node bifurca-
tion is first analyzed and then the existence of Hopf
bifurcation is obtained through Hopf bifurcation
theorem in frequency domain. By the fourth-order
harmonic balance method [Moiola & Chen, 1993a,
1993b; Moiola & Chen, 1996; Jing et al., 2002], the
periodic oscillations from Hopf bifurcations are also

= m e e —— -

carefully examined and their approximation formu-
las are given in order to predict the frequencies and
amplitudes of these oscillations. Numerical simula-
tions show that the approximations are highly con-
sistent with the numerical solutions of the model
system when the bifurcation parameter takes val-
ues close to the bifurcation points. Although the
approach of frequency domain is an efficient way
to approximate oscillations from Hopf bifurcation
and predict their frequencies and amplitudes, it
is valid only near the bifurcation point. There-
fore, numerical simulations are needed to study
bifurcations that these periodic oscillations may
experience as bifurcation parameter varies. Using
numerical methods and the software Auto2007
[Doedel & Oldeman, 2007], we found serval bifurca-
tions of these periodic solutions, including period-
doubling bifurcation, torus bifurcation and cyclic
fold, and complex dynamical behaviors, includ-
ing quasi-periodic oscillation and chaotic behav-
ior. These bifurcation points were continued in the
parameter space AP1—AP,. These continuations
separate the parameter space into six regions, three
of which are feasible operating regions. The bifur-
cation diagram also shows that increases in AP,
may inhibit the occurrence of Hopf bifurcation,
torus bifurcation and period-doubling bifurcation.
These results provide a better understanding of the
dynamics of the power system and also insights into
the collapse of power systems.

In the following we first introduce the power
system, followed by a conclusion on equilibrium
points and their stabilities. Saddle-node bifurcation
and Hopf bifurcation are then discussed in Secs. 2.2
and 2.3 separately. The approximation formulas of
periodic solutions generated from Hopf bifurcations
are given in Sec. 2.4. Our numerical simulations are
summarized in Sec. 3 and a conclusion section com-
pletes the article.

2. The Model and Bifurcation
Analysis

2.1.

The power system consisting of three machines and
four buses with combined constant admittance and
P-Q load is illustrated in Fig. 1. Denote the angle
and the net power of the ¢th machine by §; (i =
1,2,3) and P; (i = 1,2, 3), respectively. Taking the
first bus as a swing bus [Kwatny & Yu, 1989], the

The power system model
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Fig. 1. A four bus power system model.

system can be described by the following differential
equations:

'8

51 + ’)/0;1 + 2815 Sill(él)
+ Bog Sin(al — 92) + Bij Sin(F)Q)
)

J + Ca3 cos(ég —81) — Ci3 cos(fz) = AP,

52 + ’Yf;)g + 2B13 Sil’l(?)g) + Bogs Sill(ag - (_)1)
+ Bis sin(@l) 4+ Chs COS(‘éQ — 51)
- 012 COS(al) = APQ,

1)

where 91 e (52 — 51, 52 e (53 . (51, APl = P2 - Pl,
AP, = P3 — P1. By and Cj; are transfer con-
ductances. 7 is the damping factor. Set z; = 0,
Lo = 91, T3 = 92, T4 = 52, and rewrite the sys-
tem (1) as

o
T = T2

Iy = Apl — (’7.’1,'2 —+ 2312 sin
+ Bogsin(z1 — x3) + Bigsinzs
+ Caz cos(xg — x1) — Cq3 cos T3
4 ( 1) 1 ) (2)
T3 = T4
T4 = APy — (’\,/.7?4 + 2B13 sin x3

+ Bygsin(xs — z1) + Bipsin

L + Cazcos(zz — z1) — Crp cos x1).

In the following, the net power AP, is considered
as the bifurcation parameter while other parameters
are fixed: APy = 1.3, By = 0.61, B1z = Bag = 0.4,
Clg = 013 =S 0.1, 023 == 1.5, Y = 0.01.

By setting the right-hand side of the system (2)
equal to zero, we can solve for equilibrium points of

Bifurcation Analysis of a Power System Model

the system. Their stabilities are determined by the
eigenvalues of the Jacobian matrices at equilibria.
Here, we simply summarize our calculations as
follows.

Conclusion 1. Depending on the parameter AP,
the model system (2) may have

e 1no equilibrium point in the case of AP, € (0,
0.106459) U (2.36712, +00);

e two hyperbolic equilibrium points, either a sink
and a saddle or two saddles, in the case of
AP €(0.106459,1.10117) U (1.201861, 1.49080) U
(1.49080, 2.10269) U (2.10269, 2.36712);

e four hyperbolic equilibrium points, a sink and
three saddles, in the case of AP, € (1.10117,
1.201861);

e a nonhyperbolic equilibrium point O; = (a:il,xé,
x4, %) with eigenvalues having nonzero real parts
except one single zero eigenvalue in the case
of AP = AP}, i = 1,2,3,6, where APl =
0.106459, AP? = 1.10117, AP? = 1.201861,
APS = 2.36712;

e a nonhyperbolic equilibrium point O; = (w%,mg,
mé, z4) with eigenvalues having nonzero real parts
except a pair of purely imaginary eigenvalues in
the case of AP, = APY, i = 4,5, where AP} =
1.49080, APS = 2.10269.

Here,
01 = (—0.24298,0,0.98944, 0),

)
Oy = (2.92733,0, —2.68627, 0),
O3 = (1.93431,0, —3.04032, 0),
04 = (0.06608,0, —0.08168, 0),
Os = (0.65002, 0, 0.02903, 0),
Og = (1.38368,0,0.35942, 0).

2.2. Saddle-node bifurcation for
equtlibrium points

In this subsection, we analyze the existence of
saddle-node bifurcation using center manifold the-
orem and bifurcation theory in time domain.
Saddle-node bifurcation may occur if all eigenval-
ues associated with an equilibrium have nonzero
real parts except one simple zero eigenvalue. Con-
clusion 1 indicates that saddle-node bifurcation may
occur in four cases. In the following we discuss these
cases separately.
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Case I. AP = (0.106459. In this case, the system (2) admits the equilibrium Oy = (z},z}, 23, z}).

To calculate the center manifold of the system (2) at the equilibrium Oy, we transform O; to the origin
by setting y1 = 1 — z1, yo = 79 — 3, y3 = 23 — z, Y4 = x4 — ), and p = AP, — APi. Using the linear
transformation matrix T,

—1.772 x 10~% 0.48713 —0.41453 —0.41456

0.66952 0 4.145 x 1073 0
= -1.20 x 107%  0.32991  —0.90998  —0.91002
0.45344 0 9.10 x 1073 0
and setting

51 <1

Yo _T 22 ,

Ya z3

Ya 24

we can rewrite the system (2) into the following parameterized system:

5 —0.005 —1.37442 0 0\ [z fi(z1, 22, 23, 24, 1)
29 1.37442  —0.005 0 0|z fa(z1, 22, 23, 24, 1)
23 - 0 0 —-0.01 0 23 + fa(z1, 22, 23, 24, 1) ! @)
24 0 0 0 0 24 Ja(z1, 22, 23, 24, 1)

where
fi(z1, 22, 23, 24, 1) = 2.16000p — 0.0571423 + 0.0491329 23 — 0.1301222 + 2(4.16 x 102,
—1.79 x 10725 — 1.79 x 107%24) + 0.04913z5 24 — 0.260242324 — 0.130132% + - -,
folz1, 29, 23, 24, 1) = 7.858 x 10731 — 2.08 x 107422 + 1.79 x 10 %2523 — 4.73 x 107423 + 1.79 x 1042524
~—9.47 x 10 Y2324 — 4.73 x 107422 + ...
fa(21, 20, 23, 24, ) = —107.627781 + 6.4 x 107°27 + 4.8551625 — 11.6017525 23 + 46.4041422
+ 21(—0.0353325 + 0.0422123 + 0.0422124)
— 11.602332224 + 92.8129223 24 + 46.40878z22 + - - -,
fa(21, 22, 23, 24, ) = 107.622400 — 6.4 x 107°2% — 4.8549223 + 11.601172223 — 46.4018222 + 21(0.035322,
—0.04220z3 — 0.0422124) + 11.601752224 — 92.808282324 — 46.4064622 + - - - .

When the parameter u = 0, system (3) admits the zero equilibrium, corresponding to the equilibrium
O of system (2). To handle this parameterized system (3), we consider the parameter u as a new dependent
variable, i.e.

f=0. (4)

Irom the existence theorem for center manifolds, the equilibrium point (21, 29, 23, 24, 1) = (0, 0,0, 0,0) of
systems (3) and (4) possesses a two-dimensional local center manifold:

foc(0) = {(21, 22, 23, 24, ) € R° | 21 = hy (24, 1), 22 = ha(24, 1), 23 = ha(24, ), |24] < 8,
|| < 8, 0:(0,0) = 0, Dhy(0,0) = 0,4 = 1,2,3)

1650082-4
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for & and & sufficiently small. The dynamics of the
systems (3) and (4) near (z1, 29, 23, 24, 1) = (0, 0,0,
0,0) can be determined by studying the vector field
reduced to the center manifold. We now calculate
the center manifold. The center manifold must sat-
isfy the following equation:

./\/(h(z;;,u))
= D, h(za, 1) - [Aza + fa(21, 22, 23, 24, )]

_Bh(z4nu') - f(21,22,23,24“u)

=0, (5)
where
h1(z4, 1)
Mg, ) = | ha(za i) |, A=0,
ha(z4, 1)
—0.005 —1.37442 0
B= 137442 —0.005 0 and
0 0 —0.01

fl(Zl,ZQ,Z3,Z4,,UJ)
fQ(Zl,ZQ, 23, 24,/14)

f3<21,2'2,2:3,24,,u)

21,22, 23, 24, 1) =

Assume the center manifold takes the form of
b1 (24, 1)
ho(z4, 1)
hs (24, 1)

h(z4, p) =

alz?l + agzap + agu2 + e
= b12£21—|-b224,u+53,u2—|--“ . (6)
125 + coazap 4 c3p® + -+

Substituting (6) into (5), and then equating terms
of like powers to zero yield

hi(za, 1) = —1.48273 x 10 24 + 8.447351% + - - -

ho(za, 1) = —9.468 x 107222 + 5.394 x 10 224
+1.161 x 1032 + - - -,

hs(z4, 1t) = 4.6408 x 10322 — 9.98889 x 107 zyp

+1.07501 x 10"%24% + - - -
(7)

Bifurcation Analysis of a Power System Model
Therefore, the vector field restricted to the center
manifold is given by
(24 = 1.07622 x 1021 — 4.64065 x 1022
+9.27052 x 10%z3u — 4.30705 x 10523
—9.97698 x 10131224 — 9.99360 x 10824
+ 4.30206 x 1013234 — 9.25977 x 1017223
+9.96540 x 102! 432, — 5.36241 x 10254
as. .
£F (24, 10)
L/ =0.

(8)

Irom the center manifold theory, the dynamics
in a neighborhood of (z1,z29,23,24) = (0,0,0,0)
near © = 0 for (3) can be determined by the
one-parameter ordinary differential equation z4 =
F(z4, 1) near p = 0. Recall that the sulficient condi-
tions for an equation & = G, p), £ € R pc R to
undergo a saddle-node bifurcation are G(0,0) = 0,

a6 02
52(0,0) = 0, §£(0,0) # 0, 56(0,0) # 0. These
conditions are satisfied by the z4 equation. In fact,

or

F =0, — =0
(0,0) =0, oo (0,0) =0,
OF
Z(0,0) = 1.07622 x 102
alu( H ) X H

O F

1
8z42(0’0) = —9.28129 x 10".
Therefore, (z4, 4) = (0,0) is a saddle-node, that is,
the system (2) undergoes a saddle-node bifurcation
at APl = AP%
Similarly we investigated the remaining cases:
AP} = 1.10117; AP} = 1201861 and APS =
2.36712, and summarized our results as follows:

Conclusion 2. As the bifurcation parameter AP,
increases, the power system (2) undergoes saddle-
node bifurcation at four points, (O;, APY), i = 1,
2,3,6.

2.3. Hopf bifurcation in frequency
domain
In this subsection, we analyze the existence of Hopf

bifurcation in frequency domain. Rewrite the sys-
tem (2) into the following form:

& = Az + Bg(y,v) (9)

1650082-5
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together with an output equation

B N e e St S i

y=e=—Cuz, (10)
where
1 e1 11 0 0 1 0 0 0
T = = , v=AP, e= ° , A= L , B=C= ooy and
T3 es 60 0 1 1 0 0 1
T4 €4 0 0 0 —v 0 0 0 1
€1
o) v+ 2B1gsine; + Bozsin(e; — e3) + Bigsineg — Caz cos(e; — e3) + Ci3 cos e3

€3

AP, + 2Bq3siney — Bos Si11(€1 — 63) 4+ Bigsine; — Cog COS(81 - 63) + Cg cos ey

Take Laplace transforms on both sides of Eq. (9),
and separate its linear part with a transfer function

G(s)=C(sI — A)"'B (11)

and a memoryless nonlinear part

(12)

where s is the Laplace variable. Notice that sys-
tems (9) and (10) are equivalent to the feedback sys-
tem with (11) and (12), and the equilibrium point
é for feedback system with (11) and (12), i.e. the
solution é of G(0)g(e,v) + e = 0, is equivalent to
the equilibrium poinut & in Eq. (9). Let

u = gle,v) = g(y,v)

F(A s,v) = det(M — G(s)Dy), (13)
where Dy = %|e, Dy is the Jacobian matrix of the
equilibrium point €.

Mees and Chua [1979], Moiola and Chen [1996]
have shown that Hopf bifurcation can occur at the
equilibrium point é for v = vy if F(Ajiw,v) = 0
has a single root A(iwg) = —1 + 0i for (vg,wp),
and n!-‘(,f\.?,l:"-u;,u! DF(N,iw,v)

I(—l,iwo,uo) and i |(71,iw0,u0) are
nonzero and not parallel, where iwy is the pure
imaginary eigenvalue of equilibrium point % for
model (9) at v = 1.

Using the above criterion we can determine
Hopf bifurcation of system (2). Calculations show
that two of the equilibria in Conclusion 1 sat-
isfy the condition of the single root. They are
é; = (—0.06608,0,0.08167,0) at vy = AP] =
1.49080, and é; = (—0.65002,0,—0.02903,0) at
vo2 = APS = 2.10269. Further calculations show

T
that:

(1) TFor éq,
Ow (—1,iwo1,v01)
= —0.01637 — 2.99885 x 1033,
(A, iw, v)
o (—1,iwo1.v01)
~ 0.83890 x 107%  0.055184,
wor = 1.18447,
(2) For é,,

(N, iw, v)

Ow

(—1,iwo2,v02)
= —0.01798 — 1.97009 x 1073,

AF'(A, tw, 17)
2%

(—1,iwo2,v02)

~ —0.02349 + 0.153484,
woa = 1.10034.

Thus, we have the following conclusion:

Conclusion 3. As the bifurcation parameter varies,
the nonlinear system consisting of (9), (10) and (12)
undergoes Hopf bifurcation at v = vy (HB!) and
at v = 1o (HB?). So does the power system (2).

1650082-6
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2.4. The approxrimation of periodic
orbits in frequency domain

Near a Hopf bifurcation point, the frequency and
amplitude of periodic oscillations can be approxi-
mated by the harmonic balance approach. In order
to reach a high accuracy, we here apply the fourth-
order harmonic balance formula to approximate the
oscillations generated from Hopf bifurcation at an
equilibrium point é. The approximation formula is
given by

k=0

e(t) ~ é+ Re( E* exp(ikc&t)) ; (14)

where E® = Vip0? + Voaf?, B' = Virf + V130 +
Vigh®, B2 = Vopf® + Voul?, ES = Vas0® + Vis6°,
E' = V0% & and 6 denote the frequency and
amplitude of the periodic solution e(¢), respectively.
They can be obtained by the following equation:

Miw) = =1 = 02Z1(w) — 01 Z5(w). (15)

The explicit expressions of Vj;, Z1{(w) and Zy(w) can
be found in [Moiola & Chen, 1996; Jing et al., 2002].
Separating the real and imaginary parts of
Eg. (15) and eliminating 74, we have
Re[A(iw) + 1) Im[Zy(w)] — Re[Za(w)] Im[A(iw)]

= (Re[Z2(w)] Im[Z: (w)]

N Y e o e o o N g

Bifurcation Analysis of a Power System Model

Case (I). Re[Zy(w)]Im[Z1{(w)] - Re[Z1(w)] Im x
[Z2(w)] = 0. In this case, we have

Re[A(iw) + 1] Im[Z5(w))]

— Re[Zo(w)] Im[A(iw)] = 0. (17)

Set v to be a number in a small neighborhood of
the Hopf bifurcation point 1y in Eq. (17) and then
numerically solve the equation for @ values that are
close to wy. Substituting @ value for w in Eq. (15),
we can obtain a value for #2. If §2 is negative, we
choose a value for v to the other side of vy and
repeat the above procedure.

Case (II). Re[Za(w)]Im[Z; (w)] — Re[Z1(w)] Im X
[Z2(w)] # 0. In this case, it follows

g2 Re[A(iw) 4 1] Tm[Zs(w)] — Re[Za(w))] Im[A(iw)]

Re[Za(w)] Im[Z) (w)] — Re[Z) (w)] Im[Zy(w)]

(18)

Similarly, we substitute the formula (18) and a value
for v into Eq. (15) and calculate & and §2.

Following the above procedure, we obtain the
following results:

(1) At HB!, periodic solutions exist for v > vy =
1.49080. When v = 1.49081, the fourth-order har-
monic balance approximation to the periodic solu-
tion with (@, (5) = (1.18436,0.07696) is given by

4
— Re[Z1 (w)] Im[Zo (w))) 62, (16) e(t) = é+ Re (Z E* exp(ik&;t)) . (19)
k=0
There are two cases to be discussed.
| where
—0.06609 —0.56621
0 0
é = EY =103 x
0.08167 —0.53247
0 0
—0.00050 — 4.951007 —0.22176 — 0.025781'\
5.86374 — 0.000597 0.06105 — 0.52528:
El'=1072 x E?2=10"%x
—0.27167 — 0.25304% —0.17781 — 0.022657
0.29969 — 0.321767 0.05366 — 0.42119: )
—0.00136 — 0.04355¢ —0.06878 — 0.010482'\
0.15474 — 0.004857% 0.04964 — 0.325851
E3=107% x EY=10"" x
—0.00562 + 0.00578: —0.04018 — 0.006897
—0.02055 — 0.01996¢ 0.03262 — 0.19036: /
1650082-7
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(2) At HB?, periodic solutions exist for v < Vg = 2.10269. When v = 2.10266, the fourth-order harmonic
balance approximation to the periodic solution with (&, 8) = (1.10033,0.03151) is given by

4
e(t) ~ é+ Re (Z E* exp(ik@t)) ) (20)

k=0

where
—0.64998
0
E_ EY=10""x
—0.02902
0
(—0.00033 - 1.632042’\
1 ) 1.79578 — 0.000362
FE =107° x
—0.01917 — 1.351774
1.48740 — 0.02110:
(—0.00402 — 0.141404\
s e 0.46676 — 0.013274
F 10 X )
—0.00477 — 0.14875¢

\ 0.49101 — 0.01575; /

3. Numerical Simulations

The approximate formulas (19) and (20) are valid
only in some neighborhoods of the Hopf bifur-
cation points HB! and HB?. Therefore, in this
section, we first illustrate that the bifurcated peri-
odic solutions can be well-approximated near the
bifurcation points and then utilize numerical simu-
lations of the system (2) and the software Auto2007
to further study bifurcations that the periodic

-0.076 -
-0.078 -
—0.08 -

N
-0.082 |

-0.084 -

~0.086 4_
01 e

0.05 " 02
A - e .
0o e 0.15

—0.50953
0
—0.27786
0
/—0.11948 — 0.001841'\
0.00405 — 0.26294i
E?=10"% x :
—0.05090 — 0.000767
0.00166 — 0.11200i /
/—0.03910 — 0.000261
0.00115 — 0.172114
E*=10"° x
—0.02305 — 0.000013

\ 0.00006 — 0.10145;

|
solutions may undergo. We use the abbreviations:
X (21), Y (x2), Z (z3), MAX(X) (maximum of z7),
SNB (saddle-node bifurcation), HB (Hopf bifurca-
tion), CFB (cyclic fold bifurcation), PDB (period-
doubling bifurcation), TR (torus bifurcation).

The numerical solutions of the system (2) near
two Hopf bifurcations are illustrated in Figs. 2(a)
and 2(b) (green circles), respectively. The cor-
responding approximations by the formulas (19)

0.045.]
0.04- \
o I\I
0.035 - \
N 0.08 /
\l f
0.025 -
| [l /
0.02.) | /
0.0154 //
002 T
. Z
0.01 o - 0.68
> 067
0 <~ 066
—(E}\‘x‘ " 065
~ 0.64
v -0.02 063 ¥
(b)

Fig. 2. The projections of periodic solutions near two Hopf bifurcation points HB' and HB2. (a) APy = 1.49081 and (b)

AP, = 2.10266.
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Fig. 3. Biturcation diagram of AP; versus MAX(X).
and (20) are also shown in the figures (black circles).
One can see that the approximations are quite close
to the numerical solutions, indicating the validness
of the formulas. The frequencies predicted by the
frequency domain approach are also highly consis-
tent with those obtained through Auto2007. Pre-
dicted frequencies of the solutions are 1.18436 for
AP, = 1.49081 and 1.10033 for AP; = 2.10266
while the frequencies given by Auto2007 are 1.18435
and 1.10033, respectively.

To further study the bifurcations of periodic
solutions, we use Auto2007 to draw the bifurca-
tion diagram in the AP;-MAX(X) plane. Figure 3
demonstrates the diagram and the bifurcation
points are summarized in Table 1. The solid and the
dashed curves in Fig. 3 represent the stable and the
unstable equilibrium points or periodic solutions,
respectively.

From Fig. 3 one can see that the power system
first undergoes six bifurcations labeled as SNB!,
HB?, HB?, SNB*, SNB® and SNBS. For 0.106459 <
AP < 1.49080, there is a stable equilibrium point
(lower left in Fig. 3). As AP increases, the equi-
librium point loses its stability through a super-
critical Hopf bifurcation at HB? and a family of
stable periodic solutions emerges. With a further
increase in AP, the equilibrium point regains its

Table 1.
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stability at AP, = 2.10269 through a supercriti-
cal Hopf bifurcation HB®, and remains stable until
SNB* at AP; = 2.36712.

The branches of periodic solutions emerging
from Hopf bifurcations are also illustrated in Fig. 3.
The branch of periodic solutions bifurcated from
HB? finally coincides with that from HB3. Between
HB? and HB?, ie. in the “Hopf window”, peri-
odic solutions undergo seven types of bifurcations:
CFB’, CFB®, TR?, PDB'?, CFB'!, CFB2, PDB!3.

On the branch emerging from HB?, the stable
periodic solution bifurcated from HB? loses its sta-
bility through a cyclic fold bifurcation CFB” and
remains unstable till another cyclic fold bifurcation
CFB?® is met at AP, = 1.27511. As the bifurcation
parameter AP increases, a pair of complex con-
jugate Floquet multipliers associated to the peri-
odic solution, 0.85045 + 0.52607%, crosses the unit
circle from the inside, so that a torus bifurcation
TRY occurs at AP} = 1.27545, and a quasi-periodic
solution arises from TR®. Figure 4 shows the projec-
tion of the quasi-periodic solution at AP; = 1.276.
Our calculations show that there are bistable ranges
for AP} € (1.27511,1.27545) where a stable equi-
librium and a stable periodic solution coexist, and
AP € (1.27545,1.49080) where a stable equilib-
rium point coexists with a quasi-periodic solution.
Further numerical simulations show that chaotic
oscillations exist for APy € (1.2763,1.278). At
AP} = 1.2778, the chaotic attractor with Lyapunov
exponents {0.02391,0, —0.016285, —0.027097} is
illustrated in Fig. 5. From TR to PDB'3, the peri-
odic solution remains unstable, and has no qualita-
tive change.

Due to supercritical Hopf bifurcation HB?, the
stable periodic solutions generate from HB®. With
a decrease in AP, one of the multipliers crosses
the unit circle at —1 from the inside to the outside
for AP, = 1.89672, so that a period-doubling bifur-
cation PDB'? occurs, and the stable periodic solu-
tion loses its stability. Figures 6(a) and 6(b) show
the stable period-one orbit for AP} = 1.9 and the
period-two orbit for AP, = 1.896.

To further study the impact of the parame-
ters AP; and APy on the dynamics of the power

Bifurcation points and AP; values in Fig. 3.

SNB! HB? HB?> SNB? SNB® SNBS

CFB”

crB®  TRY PDBY CFB! CFB!2 ppp!

AP; 0.106459 1.49080 2.10269 2.36712 1.10117 1.20186 1.49085 1.27511 1.27545 1.65211 1.66579 1.57931 1.89672

1650082-9

TA~e D i AL o



afrmae gy —wm P

Y. Chang et al.

15.
14
N 05
0
-0.5
14
2 \\
0 - //‘f;/ 3
-2 0 1
-1
Y -4 -2 X
Fig. 4. The projection of a quasi-periodic trajectory for
AP =1.276.

system (2), we utilize the software Auto2007 again
to continue the above bifurcation points and obtain
bifurcation loci in the AP1—AP, plane. These bifur-
cation loci are illustrated in Fig. 7. The saddle-node
bifurcation points SNB!, SNB%, SNB® and SNB®
are on the curves L1 and L2, and the Hopf bifurca-
tion points HB? and HB? are on the curve L3. The
curves L4 and L5 are the loci of torus bifurcation
and period-doubling bifurcation, respectively.

The bifurcation loci in Fig. 7 simply sepa-
rate the parameter space into six regions, where
the dynamical behavior of the power system (2)
is numerically examined. Region I, surrounded by
L2 and the APj-axis, is an operation region of the
power system and the system has a stable cqui-
librium point. Region II, enclosed by L3, L4 and
the APj-axis, is the second operation region. The
dynamical behavior of the power system in this
region is complicated. A stable equilibrium point
and quasi-periodic solution exist simultaneously.
Chaotic behavior can be observed in this region too.

[Fig. 5. The projection of a chaotic trajectory for APy =

1.2778.
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Tig. 6. Deriodic orbits. (a) Period-one orbit for A% — 1.9
and (b) period-two orbit for APy = 1.896.
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Continuation of bifurcation points in the parameter
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Fig. 8. Bifurcation diagrams. (a) AP, = 2.2 with SNB!, HB? HB?, SNB*, CFB® and TR® and (b) AP, = 2.7 with SNB!

and SNB?, in which there is no dynamic bifurcation.

Region Il is enclosed by 1.5 and the horizontal axis.
In the region, all equilibrium points are unstable
and period-two solutions can be found. The power
system exhibits periodic oscillations in the region
between L3 and L5 (Region IV in Fig. 7) and equi-
libria are unstable. Region V (see Fig. 7) is the
third operation region of the system, where a stable
equilibrium and stable periodic solution can coexist.
There is no equilibrium point in Region VI.

One can see from Fig. 7 that AP, can inhibit
the occurrences of dynamic bifurcations, i.e. Hopf
bifurcation, torus bifurcation and period-doubling
bifurcation. Let AP; be a constant. With an
increase in AP, the period-doubling bifurcation
first is prevented to occur, then the torus bifur-
cation and the Hopf bifurcation are also inhibited
by increasing AP,. In addition, the unstable region
of the equilibrium point between two saddle-node
bifurcations becomes smaller when AP, increases,
which are illustrated in Figs. 8(a) and 8(b). Thus
the increase in AP, contributes to the stable region
of the equilibrium point and the feasible region of
the system.

4. Conclusions

For the power system (2), the existence of saddle-
node bifurcation and Hopf bifurcation was analyt-
ically studied in time domain and in frequency
domain, respectively. Fourth-order harmonic bal-
ance method allowed us to obtain highly accurate

predictions on frequencies, amplitudes and the
explicit approximation expressions for periodic
solutions emerging from Hopf bifurcation. Our
numerical simulations indicate the method is valid
in some neighborhoods of the bifurcation points.
To further study possible bifurcation of periodic
solutions away from bifurcation points, we utilized
the software Auto2007 to draw bifurcation diagrams
and performed extensive numerical simulations. It
was found that the periodic solutions undergo
various type of bifurcations, including cyclic fold
bifurcation, period-doubling bifurcation and torus
bifurcation. We also found complex dynamical
behaviors, including quasi-periodic orbits, period-
one orbit and period-two orbit, and chaotic behav-
ior. By continuing bifurcation points in parameter
space AP and AP, (see Fig. 7), we noticed that an
increase in AP, contributes to the feasible region
of the power system. All the results improve our
understanding to the dynamics of the power sys-
tem and provide insight into the instability of power
systems.
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