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Abstract

A system of homogeneous equations with a time delay is used to model the population dynamics of schistosomes. The model includes
the parasite’s mating structure, multiple resistant schistosome strains, and biological complexity associated with the parasite’s life cycle.
Invasion criteria of resistant strains and coexistence threshold conditions are derived. These results are used to explore the impact of drug
treatment on resistant strain survival. Numerical simulations indicate that the dynamical behaviors of the current model are not qual-
itatively different from those derived from an earlier model that ignores the impact of time delays associated with the multiple stages in
parasite’s life cycle. However, quantitatively the time delays make it more likely for drug-resistant strains to invade in a parasite
population.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The expansion of agricultural and water resources that
come hand in hand with population and economic growth
in developing nations have facilitated the growth and evo-
lution of schistosomiasis. Recent estimates suggest that
there are 200 million individuals are infected worldwide
and 600 million at risk worldwide [4]. Children are espe-
cially vulnerable to infection, which develops into chronic
disease if not treated [17]. Current control programs pri-
marily focus on chemotherapy with praziquantel (PZQ),
a chemical that reduces morbidity by killing adult worms
and halting the deposition of parasite eggs within treated
human hosts. Not surprisingly, systematic efforts to control
schistosomiasis in human populations through drug treat-
ment establishes an additional selective force that impacts
genetic variation within the parasite population. Current
evidence supports the view that natural schistosome strains

exhibit varying resistance to treatment with PZQ [5,7,14].
Nevertheless, the subject of schistosome resistance to che-
motherapy has just begun to receive attention. In fact, most
mathematical models of schistosomiasis do not consider
drug resistance of the parasites. In this article we expand
our initial efforts to address the role of treatment on the
genetic variation of schistosomiasis.

The impact of alternative host treatment rates can affect,
as it was shown in earlier work, the range of strains that
may be selected by the schistosome population [8,18]. In
these modeling efforts, it was assumed that strains with
higher resistance levels pay higher costs which reduce
transmission. It was also shown that increasing treatment
rates favors not only strains with higher levels of resistance
(despite the costs) but also strain variability. The model in
[8] considered definitive (human) and intermediate (snail)
hosts while allowing for an aggregated distribution of par-
asites in the definitive host population. In order to keep the
model manageable, schistosome mating behaviors were
ignored in [8]. Previous studies have suggested that mating
structure may play an important role in the study of pop-
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ulation dynamics [2,3,6,10,12,15]. Since the resistance level
of a parasite pair is determined by the male’s (because male
schistosomes protect and nourish their female partners
while holding them in a copulatory groove), models that
incorporate mating need also to be explored [18]. The
introduction of the schistosome’s mating structure in a
multi-strain system greatly increases model complexity
even without considering explicit host population dynam-
ics. As a starting point, the model in [18] ignored several
stages of the parasite’s complex life cycle (see Fig. 1). It
considers only the adult parasite populations while assum-
ing that the recruitment rate of single adult parasites at
time t depends instantaneously on the total number of par-
asite pairs at time t.

In this paper, we relax this assumption on the parasite’s
life history by introducing a time delay that accounts for
the average time that must elapse between two adult gener-
ations. The life cycle of schistosomes includes several stages
as shown in Fig. 1: schistosomulum (larval stage), adult
schistosome, egg, free-swimming miracidium, sporocyst
and cercaria. It is about 5 weeks from the time of cercaria
penetration through skins of human hosts to the time when
embrionated eggs are discharged, and cercariae are pro-
duced about 4 weeks after the miracidium penetration in
snail hosts. The free-living stages are short (1–2 days) but

miracidia and cercariae have very high death rates due to
the small probability of getting in contact and successful
penetration of a host. In this paper we incorporate these pro-
cesses by considering the probability of survival in each stage
and the times required to complete these stages. The goal of
this study is to determine whether addition of details on the
parasite’s life-history influences the impact of drug treat-
ment on the dynamics of multiple stains of schistosomes.

The model in this paper maintains the mating system,
the parasite’s drug resistance assumption and the repro-
ductive costs from resistance [18]. Here, first we consider
a one-strain model with a time delay, and existence and
stability results are obtained. These results are used to
analyze a two-strain model. Numerical simulations that
confirm the analytic results and examine the impact of
the time delay are conducted. The overall results in this
paper are similar to those given in previous research. That
is, drug treatments affect the variety of strains that can
coexist in the parasite population. It may even lead to
the exclusion of susceptible strains. Numerical observa-
tions suggest that the parameter region for invasion and
persistence of resistant strains increase as the magnitude
of the time delay increases and the time delay makes it
more likely for resistant strains to invade and persist in
a parasite population.

1. Schistosomulum 

6. Free-living cercaria 

Water 

Definitive 
hosts (Man)

2.Adult male and  
female parasites paired 
and produce eggs 

5. A sexual generation  
of of sporocyst Snail hosts 

Water 

4. Free-swiming miracidium 

3. Egg pass into water 

Fig. 1. The life cycle of Schistosoma mansoni. (1) Schistosomula (larval stage) are formed after cercariae penetrate the skins of definitive human hosts. (2)
After about 5 weeks paired adult male and female parasites start producing eggs some of which become mature and pass into the environment (water). (3)
Miracidia hatch from the egg in water and penetrate the intermediate snail hosts. (4) Sporocyst is developed from the miracidium after the penetration. (5)
After about 4 weeks, sporocyst begins its asexual multiplication and thousands of cercariae are released into water. (6) In water cercariae infect the
definitive hosts by penetrating the skins of human hosts, and after the penetration the larval stage of schistosome begins. This figure is a modification of
figures published by WHO [17].
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2. The models and their analysis

The models presented here generalize those considered
in [18]. The two-strain non-delay model is given by the fol-
lowing system:

_mi ¼ BiðtÞ � lm þ
r
hi

� �
mi �

X2

j¼1

uijðm; f Þ;

_f i ¼ BiðtÞ � lf þ
r
hi

� �
fi �

X2

j¼1

ujiðm; f Þ;

_pij ¼ uijðm; f Þ � lp þ
r
hi

� �
pij;

BiðtÞ ¼ kiipiiðtÞ þ k12p12ðtÞ þ k21p21ðtÞ; i; j ¼ 1; 2:

ð2:1Þ
From this system we see that the adult schistosome popu-
lation is divided into eight subgroups where

mi density of single males of Strain i,
fi density of single females of Strain i,
pij density of pairs with Strain i male and Strain j

female,
uij the mating function of Strain i male and Strain j

female, i, j=1, 2.

m ¼ ðm1;m2Þ, f ¼ ðf1; f2Þ, Bi denotes the recruitment rate of
type i single parasites and kij is related to the reproduction
rate by pairs pij. It is assumed that kij 6 b=4 for i 6¼ j and

kii 6 b=2, where b represents a background per capita birth
rate of pairs with sensitive strains; lm, lf and lp denote the

per capita death rates of single male, female worms and
worms in a mated pair, respectively. In reality, mated pairs
can live for a few years while single parasites may live only
for a few months [1]. Thus, we assume lm; lf > lp. The

drug-sensitive parasite strain has an additional per capita
death rate, r, due to treatment. For a parasite strain that
has developed drug resistance with a resistance level
hðh > 1Þ, this treatment-related death rate is assumed to be
reduced by the factor h to r=h. As in [18], the resistance level
of a parasite pair is again assumed to be determined by that
of the male parasite due to the biology of the parasites. uij

describes the rate of pair formation and it is taken to be of

the form uij ¼
2qijmifj

m1þm2þf1þf2
, where 2qij represents the effective

contact number (which may be a product of several param-
eters including the average contact number of a parasite
and the probability of a pair being formed per contact [15]).

In Model (2.1), the recruitment rates of single adult par-
asites at time t are assumed to depend on the total number
of parasite pairs at the same time t. That is, the model
ignores the time parasites spent during the non-adult part
of their life cycle which can be as long as a couple of
months. Below, we modify the system and incorporate
life-history effects by introducing a fixed time delay, s, in
the recruitment terms. The analysis of the one-strain sys-
tem with a time delay follows.

2.1. Analysis of a one-strain system with delay

If only one-strain is present in the population, the model
with a time delay reads

_mðtÞ ¼ kSmðsÞpðt � sÞ � lm þ
r
h

� �
mðtÞ � uðmðtÞ; f ðtÞÞ;

_f ðtÞ ¼ kSf ðsÞpðt � sÞ � lf þ
r
h

� �
f ðtÞ � uðmðtÞ; f ðtÞÞ;

_pðtÞ ¼ uðmðtÞ; f ðtÞÞ � lp þ
r
h

� �
pðtÞ:

ð2:2Þ

Here, SmðsÞ and Sf ðsÞ are functions which keep track of
both the parasite’s survival probabilities in various (non-
adult) stages of the life cycle. SmðsÞ and Sf ðsÞ may take
the form of a product of factors representing the probabil-
ity of an egg getting into snail contaminated water; the
probability of successfully infecting a snail; the number
of cercaria generated by one miracidium within the snail
(this number depends on the snail’s infection age and there
is a latent period during which no cercariae are produced);
and the probability that a cercaria successfully infect a hu-
man host and survive the larval stage to become an adult
schistosome. The time delay, s, is assumed to capture var-
ious effects. For example, once an egg gets into water, a
miracidium hatches from the egg and it can survive for only
1–2 days if it cannot find and successfully infect a snail.
Similarly, a cercaria can survive for only 1–2 days if it can-
not find and infect a human host. An infected snail is as-
sumed to have an average life span of 170 days which
includes a latent period of a few weeks. Specific forms for
SmðsÞ and Sf ðsÞ are given in Section 3. All variables and
parameters in (2.2) have the same meaning as in Model
(2.1) except that the subscripts are dropped/changed and
the fixed time delay ðsÞ is introduced in the recruitment
terms.

System (2.2) is a homogeneous system [10–13], hence, we
look for persistent distribution, i.e., exponential solutions
of the form

ðmðtÞ; f ðtÞ; pðtÞÞ ¼ ð�m; �f ; �pÞe�kt ¼ ð�mðsÞ; �f ðsÞ; �pðsÞÞe�kðsÞt:

Direct substitution in (2.2) gives the nonlinear system

kSmðsÞe�ks�p � lm þ
r
h

� �
�m� uð�m; �f Þ ¼ k�m;

kSf ðsÞe�ks�p � lf þ
r
h

� �
�f � uð�m; �f Þ ¼ k�f ;

uð�m; �f Þ � lp þ
r
h

� �
�p ¼ k�p;

ð2:3Þ

which supports two trivial solutions (up to a constant)

Em ¼ ð1; 0; 0Þ and Ef ¼ ð0; 1; 0Þ with km

¼ �lm �
r
h

and kf ¼ �lf �
r
h
: ð2:4Þ

In addition, from Eq. (2.3) it follows that

kð�p þ �mÞ ¼ kSmðsÞeks � lp �
r
h

� �
�p � lm þ

r
h

� �
�m;
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or, if �p 6¼ 0, that

�m
�p
¼

kSmðsÞe�ks � lp � r
h � k

kþ lm þ r
h

:

Similarly, we have that

�f
�p
¼

kSf ðsÞe�ks � lp � r
h � k

kþ lf þ r
h

:

From the third equation in (2.3),

u
�m
�p
;
�f
�p

� �
¼ kþ lp þ

r
h
: ð2:5Þ

Hence, positive solutions exist only if kþ lp þ r
h > 0 and if

�m
�p ;

�f
�p > 0, that is, if

kSmðsÞe�ks � lp �
r
h
� k > 0; and

kSf ðsÞe�ks � lp �
r
h
� k > 0:

ð2:6Þ

Consequently, as k increases from �lp � r=h to the upper
bound determined by (2.6), the left side of (2.5) decreases
monotonically from a positive value to zero, whereas the
right side increases monotonically from zero to a positive
value. Therefore, (2.5) admits a unique solution
�k > �lp � r=h. That is, there exists a unique positive expo-
nential solution ð�m; �f ; �pÞe�kt. In the case when SmðsÞ ¼ Sf ðsÞ
and lm ¼ lf , the positive solution is given by ð1; 1; �pÞe�kt

where �p ¼ q=ð�kþ lp þ r=hÞ:
Hadeler’s results [11] imply that the stability of the posi-

tive exponential solution can be determined by the location
of the eigenvalues of the eigenvalue problem

ðAþ Be�ksÞx ¼ kx; ð2:7Þ
where

A ¼
�lm � r

h � um �uf 0

�um �lf � r
h � uf 0

um uf �lp � r
h

0
B@

1
CA;

B ¼
0 0 kSmðsÞ
0 0 kSf ðsÞ
0 0 0

0
B@

1
CA

and um ¼ 2q�f 2=ð�mþ �f Þ2, uf ¼ 2q�m2=ð�mþ �f Þ2. Using
Hadeler’s arguments [11], it follows that �k is not only an
algebraically simple eigenvalue but also the eigenvalue with
the largest real part. Hence, by Proposition 5 [11], the un-
ique exponential solution ð�m; �f ; �pÞe�kt is linearly stable (in
the sense of stability of exponential solutions of homoge-
neous evolution equations).

When resistant parasite strains are introduced in a par-
asite population, the first question we ask is under what
condition a resistant strain can invade in the population
when the sensitive strain is already established (at the expo-
nential solution). If the condition allows the resistant strain
to invade, the next question we study is how drug treat-
ment may affect the long term coexistence of both sensitive
and resistant strains.

2.2. Invasion of resistant strains and coexistence

To explore the potential invasion of resistant strains in
an environment mediated by chemotherapy (treatment)
and resistance, we have to study the interaction of two
strains. Introducing the time delay in Model (2.1) leads
to the following two-strain model:

_mi ¼ SmðsÞBiðt � sÞ � lm þ
r
hi

� �
mi �

X2

j¼1

uijðm; f Þ;

_f i ¼ Sf ðsÞBiðt � sÞ � lf þ
r
hi

� �
fi �

X2

j¼1

ujiðm; f Þ;

_pij ¼ uijðm; f Þ � lp þ
r
hi

� �
pij;

Biðt � sÞ ¼ kiipiiðt � sÞ þ k12p12ðt � sÞ þ k21p21ðt � sÞ;
i; j ¼ 1; 2;

ð2:8Þ
where all variables and parameters have the same meanings
as in Systems (2.1) and (2.2). In the following, we set
h1 < h2.

In the absence of resistant strains, System (2.8) reduces
to a subsystem like the one generated by System (2.2).
The subsystem, from the prior analysis, has a unique posi-
tive exponential solution ð�m1; �f 1; �p11Þe�k1t, which is locally
stable with respect to the subsystem in the absence of resis-
tant strains. If we let E1 ¼ ð�m1; �f 1; �p11; 0; 0; 0; 0; 0Þ then
E1e

�k1t is an exponential solution for System (2.8). When this
solution is unstable it is expected that Strain 2 can invade
and persist in the population if a small number of Strain
2 parasites are introduced.

For simplicity, we assume that lm ¼ lf ¼ ls (results will
not vary if they are slightly different) and consider the sta-
bility of E1 ¼ ð1; 1; �p11; 0; 0; 0; 0; 0Þ, where
�p11 ¼ 2q11=ð�k1 þ lp þ r=h1Þ. According to Hadeler [11],
the stability of E1e

�k1t is decided from the analysis of the fol-
lowing eigenvalue problem

ðJ 1 þ J 2e�ksÞx ¼ kx; ð2:9Þ
where

J 1 ¼
A1 � �
0 A2 �

0 A3

0
B@

1
CA; J 2 ¼

B1 � �
0 B2 �
0 0 0

0
B@

1
CA;

A2 ¼

�lm � r
h2
� q21 0 0 0

0 �lf � r
h2
� q12 0 0

0 q12 �lp � r
h1

0

q21 0 0 �lp � r
h2

0
BBB@

1
CCCA;

B2 ¼

0 0 k12SmðsÞ k21SmðsÞ
0 0 k12Sf ðsÞ k21Sf ðsÞ
0 0 0 0

0 0 0 0

0
BBB@

1
CCCA;

A3 ¼ �lp � r=h2, and A1;B1 are equal to A;B in Eq. (2.7)
with um ¼ uf ¼ q11=2; k ¼ k11 and h ¼ h1. The off-diago-
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nal blocks * are not of interest for a linear stability anal-
ysis. By Proposition 5 [11], E1e

�k1t is linearly stable if for
all eigenvalue k of (2.9) (other than �k1) the real parts of
ðk� �k1Þ are negative, whereas it is unstable if there exists
a k such that ðk� �k1Þ has a positive real part. The eigen-
values of (2.9) are given by �lp � r=h2 and the roots of
equations

DetðA1 þ B1e�ks � kIÞ ¼ 0; ð2:10Þ
DetðA2 þ B2e�ks � kIÞ ¼ 0: ð2:11Þ

By the former analysis, �k1 is the root with the largest real
part of all roots of Eq. (2.10). Therefore, E1e

�k1t is linearly
stable if �k1 is greater than �lp � r=h2 and all roots of
Eq. (2.11).

In order to quantify these results we consider the case
where q12 ¼ q21 ¼ q and SmðsÞ ¼ Sf ðsÞ ¼ SðsÞ in what fol-
lows. The roots of (2.11) are given by �ls � q� r=h2 and
the roots of the equation

kþ lp þ
r
h2

� �
kþ lp þ

r
h1

� �
kþ ls þ qþ r

h2

� ��

�k12qSðsÞe�ks

�
¼ qk21SðsÞe�ks kþ lp þ

r
h1

� �
:

Rewriting the equation as

kþ ls þ qþ r
h2

� qk12SðsÞe�ks

kþ lp þ r
h1

� qk21SðsÞe�ks

kþ lp þ r
h2

¼ 0; ð2:12Þ

and observing that the left side of (2.12) is a function of k,
f ðkÞ. As k increases from �lp � r=h2 to þ1, f ðkÞ strictly
increases from �1 to þ1. Thus there exists a number
k0 > �lp � r=h2 such that f ðk0Þ ¼ 0. If we define
DðdÞ ¼ A2 þ B2d then k0 is actually an eigenvalue of the
matrix Dðe�k0sÞ, whose off-diagonal elements are nonnega-
tive. The corresponding eigenvector is given by

1; 1; q
k0þlpþr=h1

; q
k0þlpþr=h2

� �
, which has positive components.

Therefore, k0 is actually the principal eigenvalue of the ma-
trix Dðe�k0sÞ, i.e., the spectral bound sðDðe�k0sÞÞ is k0.

Now, assume that (2.11) has some root k ¼ aþ bi with
a; b 2 R and a > k0. Then k is an eigenvalue of the matrix
Dðe�ksÞ and je�ksj ¼ e�as < e�k0s. Therefore,

a 6 sðDðe�ksÞÞ 6 sðDðe�asÞÞ 6 sðDðe�k0sÞÞ ¼ k0;

a contradiction. It follows that the largest real part of
roots of (2.11) is k0. Thus, to obtain the stability of
E1e

�k1t, we only need to find the condition under which
�k1 > k0 (note that k0 > �lp � r=h2 > �ls � q� r=h2

since ls > lp).
Observe that �k1 is a root of Eq. (2.5) which can be

rewritten as

gðkÞ ¼ kþ ls þ q11 þ
r
h1

� q11k11SðsÞe�ks

kþ lp þ r
h1

¼ 0:

Notice that f ð�k1Þ > 0 ¼ gð�k1Þ is equivalent to the
inequality

qþ r
h2

� qk12SðsÞe��k1s

�k1 þ lp þ r
h1

� qk21SðsÞe��k1s

�k1 þ lp þ r
h2

> q11

þ r
h1

� q11k11SðsÞe��k1s

�k1 þ lp þ r
h1

: ð2:13Þ

Since f ðk0Þ ¼ 0, Inequality (2.13) implies that f ð�k1Þ >
f ðk0Þ. Therefore, in the case of �k1 > �lp � r=h2 or
equivalently

�k1 þ lp þ r=h2 > 0; ð2:14Þ

by the strict monotonicity of f in the interval ð�lp

�r=h2;þ1Þ, �k1 > k0 if and only if Inequality (2.13) holds.
Therefore, E1e

�k1t is linearly stable if both inequalities
(2.13) and (2.14) hold. Reversal of one of the two inequal-
ities leads to the instability of E1e

�k1t. In the case where
s ¼ 0, these stability conditions are reduced to those found
in [18].

Symmetrically, there exists an exponential solution
E2e

�k2t for System (2.8), which represents the case where
only Strain 2 parasites exist in the population. Following
the same analysis above, one can come to the conclusion
that E2e

�k2t is stable if there hold the Inequalities (2.13)
and (2.14) with interchanged indices (1 by 2 and 2 by 1).
If both exponential solutions E1e

�k1t and E2e
�k2t are unstable,

an exponential solution representing coexistence of the two
strains is expected to exist (the proof of the existence is sim-
ilar to that in [18]).

3. Numerical simulations

This section confirms the results via numerical simula-
tions. Parameter values are chosen according to the follow-
ing assumptions: we set Strain 1 to be drug-sensitive
ðh1 ¼ 1Þ and Strain 2 to be drug-resistant ðh2 > 1Þ; the
costs associated with the evolution of drug-resistant strains
of parasites translate into diminished reproduction and
transmission; and it is assumed that the birth rates of pairs
involving Strain 2 parasites are decreasing functions of
h2 : k12 ¼ k21 ¼ k11=2h2; k22 ¼ k11=h

2
2. We further retain the

assumption that ls ¼ 10lp, reflecting diminished survival
experienced by unmated worms, and that q11 ¼ q22 ¼
q12 ¼ q21 ¼ q, assuming no bias in pair formation between
strains. With respect to the life cycle of schistosomes, we set
ð30þ 35Þ=365 6 s 6 ð30þ 35þ 140Þ=365 year, assuming
that the life span of an infected snail is 170 days with a
latent period of 30 days, and that the juvenile duration is
35 days. As in [9], we assume that after the latent period
the number of cercariae released by snails decreases expo-
nentially; a mated pair of schistosomes is responsible for
200–300 eggs per day; the probabilities that eggs get into
water and infect a snail are small and on the order of
10�5 to 10�4; and the per capita rate of infection of humans
by one cercariae is also chosen to have similar values
(estimated in [9]). An infected snail is assumed to release
500–750 cercaria per day for the first few days of produc-
tion. Using these values we have k11SðsÞ ¼ 0:6e�0:001806
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�ðs� 65=365Þ � 365 for the sensitive strain. The death rate
of pairs lp includes the natural death rates of human hosts
and parasite pairs, and the disease-induced death rate of
human hosts. We choose lp ¼ 0:114 and q ¼ 0:8.

From the conditions for the stability of the exponential
solution E1e

�k1t, we identify the Inequalities (2.13) and (2.14)
by the conditions g1ðsÞ > 0 and g2ðsÞ > 0, respectively. The
effect of the time delay can be explored by looking at how
these conditions may be affected when s increases. If we
choose ðh2; rÞ as bifurcation parameters with all other
parameter values fixed, then the contour curves given by
the conditions g1ðsÞ ¼ 0 and g2ðsÞ ¼ 0 (in the ðh2; rÞ plane)
determine the stability region for the persistent solution
E1e

�k1t. For convenience we call the curve corresponding
to giðsÞ ¼ 0 the curve giðsÞ ¼ 0. Fig. 2 shows the contour
curves g1ðsÞ ¼ 0 (solid curve) and g2ðsÞ ¼ 0 (dashed curve)
with h1 ¼ 1 for different values of s. For each fixed s (e.g.,
s ¼ 65=365; ð65þ 60Þ=365 and ð65þ 110Þ=365), the condi-
tion giðsÞ > 0 represents the region in which all points
ðh2; rÞ lie below the curve giðsÞ ¼ 0 ði ¼ 1; 2Þ.

For comparison purposes we include the curve obtained
in the non-delay case ðs ¼ 0Þ. For the parameter values
used in Fig. 2, the curve g2ðsÞ ¼ 0 always lies above the
curve g1ðsÞ ¼ 0 for each fixed s. In this case, g1ðsÞ > 0
implies g2ðsÞ > 0. Therefore, E1e

�k1t is stable for ðh2; rÞ
below the curve g1ðsÞ ¼ 0, and it is unstable above the
curve in which case Strain 2 can invade.

We observe that, the curve g1ðsÞ ¼ 0 gets lower as s
increases. This implies that the introduction of time delay
makes it more likely for drug-resistant strains to invade
and persist in a population. To see this more clearly, we

can compare the threshold levels of resistance ðh2Þ above
which the resistant strain can invade for various values of
time delay ðsÞ and for a fixed treatment rate ðrÞ. For exam-
ple, from Fig. 2 we see that for r ¼ 0:3, the threshold resis-
tance level decreases from h2 � 3 for s ¼ 0 (the diamond)
to h2 � 1:4 for s ¼ 175=365 (the astronaut). One possible
explanation for the increased chance of invasion of the
resistant strain is the following. Recall that the birth rate
of sensitive strain is higher than that of resistant strain
(e.g., k22 ¼ k11=h

2
2). Note that an increase in s corresponds

to a longer delay for generating new parasite, which can
decrease the parasite reproduction. Thus, for a larger s,
the reduction will be less severe for the strain with a lower
birth rate (which in this case is the resistant strain), suggest-
ing that a larger s will make it easier for the resistant strain
to invade.

We can explore the influence of delay on different para-
site strains by examining the composition of these strains in
the population for different values of s. Consider new vari-
ables, y1 and y2, which are scaled p11 and p22 and are
defined as follows. Let xðtÞ be the solution of System
(2.8) with initial condition xð0Þ ¼ x0, and let

yðtÞ ¼ xðtÞR 0

�s e� � xðt þ sÞds
;

where e� ¼ ð1; 1; � � � ; 1Þ is the row vector with all compo-
nents equal to 1 and the dot ‘‘�’’ denotes the inner product.
Then the exponential solution E1e

�k1t changes into
�k1E1=ð1� e�

�k1sÞe� � E1. Note that p11 and p22 are compo-
nents of x, and that the corresponding components of y,
denoted by y1 and y2, represent the proportions of p11

and p22 in the total population. It can be verified that
pii ! 0 if and only if yi ! 0 as t!1 ði ¼ 1; 2Þ. Figs. 3
and 4 illustrate the time changes of y1 and y2 for two values
of the delay, s ¼ 65=365 and 175=365. In Fig. 3, the point
ðh2;rÞ ¼ ð3; 0:23Þ is chosen to be below the curve
g1ð175=365Þ ¼ 0 (see Fig. 2) and hence E1e

�k1t is stable for
both values of s. In this case, Strain 2 can not persist in
the population (p22 and y2 tend to 0 as t!1). In Fig. 4,
ðh2;rÞ ¼ ð3; 0:28Þ is above the curve g1ð65=365Þ ¼ 0 and
hence E1e

�k1t is unstable. In this case, both stains coexist.

4. Variable delays

In the previous sections, by introducing a fixed delay
inspired by the life history of schistosomes into Model
(2.1), we investigated the impact of the delay on the inva-
sion and persistence of drug-resistant parasite strains as
well as on multi-strain coexistence. In real systems, for dif-
ferent genotypes of schistosome parasites the life cycles
may involve different time delays. Furthermore, the costs
associated with the evolution of drug-resistant strains of
schistosomes may not only translate into diminished repro-
duction and transmission, but also prolonged life cycles.
That is, the delay s in Model (2.8) associated with different
genotypes of parasites may vary. Therefore, biologically it
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Fig. 2. Contour plots determined by g1ðsÞ ¼ 0 (solid curves) and g2ðsÞ ¼ 0
(dashed curves) for different values of s. For each fixed s, the persistent
solution E1e

�k1 t is stable for ðh2;rÞ below the curve g1ðsÞ ¼ 0, and it is
unstable above the curve in which case Strain 2 parasites can invade and
persist. For each group of curves (solid or dashed), the corresponding
values of s (from top to bottom) are s ¼ 0; 65=365; 125=365 and 175=365.
The symbols (diamond, astronaut, etc.) represent the threshold resistance
levels (for r ¼ 0:3 and various values of time delay s) above which the
resistant strains can invade and persist.
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is interesting to examine the effect of variable delays on the
invasion and coexistence conditions for drug-resistant
strains of parasites.

Denote the time period of Strain i parasite’s life cycle by
si. The delay si may also be a function of the drug resis-
tance level hi. Substituting si for s with si in System (2.8),
we get a system with different delays for different strains.
Just as System (2.8), the new system is a homogeneous sys-
tem, and has exponential solutions representing the sce-
nario in which only one parasite strain is present. We useeE1e

~k1t to denote the Strain 1 persistent solution, where ~k1

is the unique solution of Eq. (2.5) with the delay s1. The
stability analysis is very similar to that of the original sys-
tem (2.8). In fact, following the argument and assumption
as in Section 2, one can show that eE1e

~k1t is stable if

qþ r
h2

� qk12Sðs2Þe�~k1s2

~k1 þ lp þ r
h1

� qk21Sðs2Þe�~k1s2

~k1 þ lp þ r
h2

> q11 þ
r
h1

� q11k11Sðs1Þe�~k1s1

~k1 þ lp þ r
h1

ð4:15Þ
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Fig. 3. Time plots of y1 and y2 (see text). The parameter values are chosen so that the point ðh2; rÞ ¼ ð3; 0:23Þ lies below the curve g1ð175=365Þ ¼ 0 (see
Fig. 2), for which E1e

�k1 t is stable when s ¼ 65=365; 175=365. It is shown that Strain 2 parasites cannot invade.

0 50 100 150 200
0.2

0.4

0.6

0.8

t

τ = (65+110)/365

0 50 100 150 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

0 50 100 150 200
2.1

2.15

2.2

2.25

t

θ
1
=1

τ = 65/365

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

t

y
1

θ
2
=3

y
1

y
2 y

2
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�k1 t is

unstable for s ¼ 65=365 and 175=365. It is shown that Strain 2 parasites can invade into the population and coexist with Strain 1 parasites.
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and

~k1 þ lp þ r=h2 > 0: ð4:16Þ

Therefore, Strain 2 parasites can invade the population if
one of the two inequalities is reversed.

To see the quantitative difference due to the variable
delays introduced in Model (2.8), we numerically compare
the stability condition (4.15) with Inequality (2.13) using
the same parameter values chosen in Section 3. Let Strain
1 ðh1 ¼ 1Þ denote the drug-sensitive strain and let Strain
2 ðh2 > 1Þ denote the drug-resistant strain. Furthermore,
it is assumed that drug-resistant strains of parasites pay
their costs associated with drug resistance in two respects:
diminished reproduction and transmission, and prolonged
life cycles. For the costs of prolonged life cycles, we set
s2 ¼ s1 þ e1ðh2 � 1Þ=ðh2 þ e2Þ, where 65=365 6 s1 6

175=365. That is, the longest life cycle of Strain 2 parasites
is equal to s1 þ e1. A biologically reasonable choice is that
e1 ¼ 56=365 and e2 ¼ 2.

We identify Inequalities (4.15) and (4.16) by
G1ðs1; h2Þ > 0 and G2ðs1Þ > 0, respectively. Recall that
giðsÞ > 0 (i ¼ 1; 2) are the stability conditions for the expo-
nential solution E1e

�k1t of Model (2.8) with the fixed delay s.
Thus, if s1 ¼ s, then G2ðs1Þ ¼ g2ðsÞ. Hence, the only differ-
ence will be reflected by g1ðsÞ and G1ðs1; h2Þ > 0. As in
Fig. 2, we plot the curve G1ðs1; h2Þ ¼ 0 for
s1 ¼ 65=365; 125=365 and 175=365. The curves are shown
in Fig. 5, where the curves g1ðsÞ ¼ 0 with s ¼ s1 are plotted
as solid lines. The stable region (below the curve
G1ðs1; h2Þ ¼ 0) is slightly larger than that in the case of a
fixed delay the region below the curve giðsÞ ¼ 0, i ¼ 1; 2.
This suggests that the variable delay induced by drug resis-
tance of parasites has a similar effect as the fixed delay on
the invasion and persistence of drug-resistant strains. Of

course, we can not rule out the possibility that a variable
delay may generate significantly different outcomes if other
complexities of the system are considered (for example,
explicitly introducing state variables for parasite stages in
the intermediate snail hosts or incorporating heterogeneous
responses of snail hosts to different strains of parasites).

5. Discussion

The desire to incorporate additional details into models
is often strong particularly, in the presence of complex
interactions like those associated with dynamics of schisto-
somiasis (Fig. 1). Here, we expanded our earlier work [18]
to include not only the impact of the parasite’s mating sys-
tem but also the effect of life-history stages on schistosomi-
asis multi-strain coexistence. We apply Hadeler’s results on
the existence and stability of exponential solutions (for
homogeneous systems) as well as his work on pair forma-
tion [11] to the study of schistosomiasis.

The conditions for the linear stability of exponential
solutions that represent the presence of a single strain is
derived, which are used to discuss the invasion and persis-
tence of drug-resistant parasite strains. The trade-offs asso-
ciated with the cost of resistance (diminished reproduction
and prolonged life cycle) and selection (increased mortality
of the wild type) are evaluated in a framework that consid-
ers (in a rather simple way) both the non-adult parasite and
mating adults. What we have found is that the incorpora-
tion of additional complexity via the addition of a time
delay and mating may have substantial quantitative influ-
ence on the likelihood of invasion and persistence of
drug-resistant parasite stains, although the qualitative out-
comes of the system are not affected dramatically (see
Fig. 2). Consequently, when modeling host–parasite sys-
tems such as the one considered in this paper, depending
on the focus of the study, the inclusion of time delay may
be important in some cases, while in other cases a simple
caricature of the life history of the parasite is enough.

Schistosome mating structure could be pretty compli-
cated. Cosgrove and Southgate [6] demonstrated that one
species can have the competitive advantages over another
one in terms of a stronger homospecific mate preference
and mating more easily with females of either species. It
was also observed that single males of one species of schis-
tosoma actively pull paired females away from their males
[16,6]. It is interesting and valuable to investigate the pos-
sible effects of those phenomena on the evolution of
drug-resistant strains of schistosoma.
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