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Abstract

In this paper, we consider a time-delayed periodic system which describes the competition among
mature populations. By appealing to theories of monotone dynamical systems, periodic semiflows
and uniform persistence, we analyze the evolutionary behavior of the system and establish sufficient
conditions for competitive coexistence and exclusion.
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1. Introduction

Population models with stage structure have received extensive investigations (see [2,4,
5,7,10,14,18,20,22,24] and references therein). To describe a single species growth, Aiello
and Freedman [1] proposed the following system:

$(t) =ae VTx(t — 1) — Bx2(D),
V() =ax(t) —yy(t) —ae Tx(t — 1), (1.1)
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wherex(t) andy(¢) denote the mature and immature populatighgndy represent the
death rates of the mature and the immaturdenotes the birth rate of the mature, anid
the maturation age. They showed that there exists an asymptotically stable positive equilib-
rium, and concluded that the introduction of stage structure does not affect the permanence
of the species.

In order to investigate how the stage structure affects the asymptotic behavior of the
competitive species, Liu et al. [16] combined the competitive Lotka—\Volterra system with
system (1.1) and obtained a two-species competitive model with stage structure:

X (1) = bie W x; (t — 1) — x; (1) (@1 (1) + aipxa(1)),

Ji(t) = bixi(t) — diyi (1) — bie " Tix;(t —1;), =12, (1.2)
where x; (¢) and y;(¢) denote the mature and immature populations of ithespecies,
a;; > 0, b; andd; denote the birth rate of thah mature population and the death rate
of theith immature population, respectively,is the maturation age of speciesOne of
the basic assumptions is that the immature does not compete with the other species. Since
the equations for mature populations are decoupled from those for immature populations,
it suffices to study the global dynamics of subsystem (1.2). The authors of [16] defined
& =d;t; as the degree of stage, and concluded that if

a2 bie ' an

)

L -
azy  be=%2 ap;

then system (1.2) is permanent. Furthermore, Liu et al. generalized the above system to an

autonomous competitive system fospecies in [15] and &@-periodic competitive system

for n species in [17]:

(1) = Bi(xi(t — 1) — x; (1) Y aij (O)xj(t),

j=1

Vi) =bi()x;(t) —di(®)yi (t) — Bi(Ox;(t — 7)), 1<i<n, (1.3)

whereb; (1), a;; (t), d; (t) > 0, a;jj(t) = 0, and
t .

Bi(t) =bi(t —t)e BN 1<,
They obtained that if

Bf > al'BT/d\;. 1<i<n, (1.4)

J#i

then system (1.3) is permanent, where
aj;=infa;j, al=supa;, B, =infB;, B}'=supB;. 1<i, j<n.
- r ! ¢ r ! ¢ ’

1

It is easy to see that condition (1.4) is very strong. There should exist more natural
conditions in terms of average integrals of certain functions over the intgyval. Also
motivated by systems (1.1)—(1.3), we consider the following periodic system of competing
mature populations

wi(t) =ui(t — ) Fi (t,u;i(t — 1)) —ui )G (¢, us(0), ..., um())
=f,-(t,ul(t),...,um(t),ui(t—ri)), 1<i<m, (1.5)
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where the continuous functiofi (¢, u1, ..., un, v;) is T-periodic inz, and Lipschitzian in

(u1, ..., un,v;) in any bounded subset &’}'fl, i=1,2, ..., m. For this model, we have

the same basic assumption: the immature of a species does not compete with other species.
Note that system (1.5) is also a general form of Ayala’s system (see, e.g., [3,13] for the
autonomous case, and [6] for the nonautonomous case).

The purpose of this paper is to analyze the global dynamics of system (1.5). By ap-
pealing to the theory of periodic semiflows, we established sufficient conditions for the
existence of periodic coexistence state, global persistence and extinction in terms of spec-
tral radii of the Poincaré maps associated with linear periodic delay equations. In the case
where the delays are integer multiples of the period, these conditions can be determined by
the average integrals along certain periodic functions. When applied to system (1.3), the
obtained conditions are necessary to those in [17], and the results improve those obtained
in[17].

The organization of this paper is as follows. In Section 2, we give some preliminary
results on the spectral radius of the Poincaré map associated with a linear periodic and
delayed equation, and threshold dynamics in a scalar periodic and delayed system. In Sec-
tion 3, we first analyze the global dynamics in two-species competitive system (1.5) by
using the theory of competitive systems on Banach spaces [12]. In Section 4, we first
investigate the uniform persistence of multi-species competitive systems by two-side com-
parison method, and then obtain natural invasibility conditions for the persistence and
coexistence states of three-species competitive systems by using the theory of uniform
persistence.

2. Preliminaries

In this section, we first introduce some basic notations, and then present the preliminary
results on scalar delay differential equations. tet; andz, be positive numbers, and
Y =C([-,0R), Y*=C([-1.0l.Ry), X; =C([-%,0lR),
X =c(-7,0LRy), i=12 X =X1x Xo, Xt=Xx{ xX3].

Then(Y, Y1), (X;, Xl.*) and(X, X*) are ordered Banach spaces. ko € Y, we write
o<y fy—gper®,
p<y ify—pe¥YT\{(0),
oLy ify—geinty™).

For ¢,y € X1, X2, X and Ri, we have the same notations for the partial orders. Let
K = XIF X (—X;). Then(X, K) is also an ordered Banach space. In a similar way, we can
define<g, <k, <k. By an order intervalg, ¥]x on X, we mean that

lo. ¥k ={§ e X: o<k § <k ¥}

For a linear operatoP, we denote the spectral radiusBfoy r(P).
Consider a linear scalar equation with detay

i =a®u(t) +bu(t — ). (2.1)
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Assume that
(H) a(z) andb(r) areT-periodic and continuous, aridr) > 0 Vr > 0.

Let u,(¢p) be the solution semiflow for Eq. (2.1) defined by(¢)(s) = u(t + s, ¢) Vs €
[—7, O], whereu(t, ¢) is the unique solution of (2.1) with(s, ¢) = ¢(s) € Y. In what
follows, we always apply (¢, ¢) to a solution of a certain system, amd¢) to the associ-
ated solution semiflow. Sindgt) > 0, it follows thatu, (¢) > 0Ve € Y1, ¢ > 0. Define the
Poincaré mapP . Y™ — YT by P(p) =ur(p). Then,P*(¢) = u,7(¢) for integern > 0.

The following result associates the spectral radi(R) with an integral of the coeffi-
cients of Eq. (2.1).

Proposition 2.1. r = r(P) is positive and is an eigenvalue &f with a positive eigen-
functiong*. Moreover, ift = kT for some integek > 0O, thenr — 1 has the same sign as

Jo a0 + b)) .

Proof. By assumption (H), [8, Theorem 3.6.1] and [19, Lemma 5.3.2], there exists an
integerm, mT > 27, such thatP™ is compact and strongly positive. By the Krein—Rutman
theorem (see, e.g., [11, Theorem 7.2]),= r(P™) > 0 and is an algebraically simple
eigenvalue ofP™ with an eigenfunctiory;, > 0. SinceP is a bounded linear operator
onY™, r, =r™. Moreover, the spectrum o consists of the point spectrum &f and
the possible accumulation point being zero (see, e.g., [8, p. 192]). Fhasa positive
eigenvalue ofP. Let Pp* = re*. Without lose of generality, we assumé(sg) > 0 for
somesg € [—1,0]. Since P"p* = r"¢* = r,e*, we havep* = ce for some positive
constant. Thusg* > 0.

Lettingu(r) = e v(¢), we obtain a linear periodic equation with parameter

0(1) = (a(t) — A v (@) + b(t)e " u(t — 7). (2.2)
DefineQ: Y+ — YT by Q(¢) = vr(p), wherev, (¢) is the solution semiflow of Eq. (2.2).
Let E; be a map front¥* to Y+ defined by{ E, (¢)](s) = e*¢(s) Vs € [—7, 0]. Then

0(@)(s) =vr(@)(s) =v(T +s5,9) = " Hu(T +5,Es(9)) Vs el-r,0],
and hence,

0(p) =e "M E_;(ur (Ex(9)) = e T E_;(P(Exn(9))).

Thus, Q(E_;(¢*) = e *TE_;(P(¢*)) = re " E_,(¢*). Let xo = (1/T)Inr. Then
E_,,¢" is a positive fixed point 0@. Thusuvg(r) = v(t, E_»,(¢*)) is a positiveT -periodic
solution of (2.2), and:(t) = vo(r)e* > 0 for t > —t. In particular, ift = kT for some
integerk > 0, thenug(?) satisfies
vo(?)
vo(?)
Integrating both sides of the above equation from @ tave get

=a(t) — Ao+ b(t)e ™" Vi >0.

T
Ao = %/(a(t) +e_)‘°rb(t)) dt.
0
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Note that
T T

G\ = %/a(t)dl—}- %e’“/b(t)dt
0 0

is strictly decreasing, anky is the unique solution of = G()), we haveroG(0) > 0, i.e.,
r—1 fOT (a(t) +b(t))dt > 0. The desired results are established

Let us consider a nonlinedr-periodic equation

{ = f(t,u(),u(t — 1)),

(2.3)
us)=ep(s), —-1<s<0,

whereg € YT is an initial function to be specified later.
Assume that the continuous functigitz, vy, v2) is T-periodic in and Lipschitzian in
(v1, v2) in any bounded subset ﬁ and satisfies

(C1) f(t,0,00=0, f(z,0,v2) >0, (3/dv) f (¢, v1, v2) > 0 Vv, v2 > 0;

(C2) f is strictly sublinear, i.e., for any € (0,1), f(, avi,av?) > af(t, v1, v2)
Vv, v2 2 0;

(C3) there exists a positive number> 0 such thatf (z, L, L) < 0.

Let P, be the Poincaré map of the linearized equation associated with Eq. (2.3 @t
andr = r(P,). Then we have the following threshold type result on the global dynamics
of (2.3).

Theorem 2.1. Let (C1)—(C3)hold. Then the following statements hold.

() If r <1, then zero solution is globally asymptotically stable for E3) with respect
toy™t.

(i) If » > 1, then Eq(2.3)has a unique positiv&-periodic solutionu (¢, ¢g), andu(z, ¢o)
is globally asymptotically stable with respectitd \ {0}.

Proof. Leta(r) = (3/dv1) f(¢,0,0), b(t) = (3/9v2) f (¢, 0,0). Since f is strictly sublin-
ear, f (¢, v1, v2) < a(t)vy + b(t)vz. Note thath(r) > 0, f(¢, 0, v2) > 0. By the comparison
theorem [19, Theorem 5.1.1] and the positivity theorem [19, Theorem 5.2.1], each solution
u(t, ) of Eqg. (2.3) with initial valuep € YT exists globally, andi(z, ¢) > 0 ¥Vt > —.
Since (3/dv) f (¢, v1, v2) > 0, the nonautonomous version of [19, Theorem 5.3.4] im-
plies that for anyp, v € YT with ¢ < ¥, u,;(¢) < u; () ¥t > 0; and if ¢ < v, then
u; (@) K u, () vt > 2v. DefineS, : YT — YT by S,(¢) =ur(p). Thens, is monotone,
and S} is strongly monotone forT > 2t. Moreover, the strict sublinearity of implies
that S, is strictly sublinear (see the proof of [25, Theorem 3.3]).

By the continuity and differentiability of solutions with respect to initial values, it fol-
lows that the Poincaré mdfj is differentiable at zero, anB S, (0) = P,. Sinceb(r) > 0, as
in the proof of Proposition 2.1D S, (0))" is compact and strongly positive for alf’ > 2t.
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Let us consides,°, wherengT > 2t. Then,S,,° is strongly monotone, andS,, (0))"°
is compact and strongly positive.

For anyg > 1, sincef is strictly sublinear, we have (¢, BL, L) < Bf (¢, L, L) <O0.
Thus, [19, Remark 5.2.1] implies that for agy> 1, the order intervaVg = [0, BL] is
a positive invariant set fos,, whereVg = {p € Y*: 0< ¢(s) < BL,s € [-1,0]}. By
[8, Theorem 3.6.1]5,°: Vg — Vg is compact for any fixed > 1. Then the closure
of S,°([p, ¥]) is a compact subset dfg for any ¢,y € Vg with ¢ < . Furthermore,
DS,°(0) = (DS, (0))", which is compact and strongly positive. Note tiSatis strictly
sublinear, S;,° is strongly monotone, and equalitie$(D S, (0))™°} = [r (DS, (0))]* =
(r(P,))™ = r™ hold. By [26, Theorem 2.3], as applied &°, we have the following
conclusions.

(i) If r <1, then zero is a globally asymptotically stable fixed poins@f with respect
to Vlg.

(i) If r > 1, thenS,° has a unique positive fixed poipg in Vs, andgg is globally asymp-
totically stable with respect t¥g \ {0}.

By the arbitrariness of, the above results hold on the whole spatke for S,°. It
then follows that zero solution of Eq. (2.3) is globally asymptotically stable in case (i);
and Eq. (2.3) admits the unique, positive and -periodic solutioru(z, ¢g) in case (ii). It
remains to prove that(r, ¢g) is T -periodic. By Proposition 2.1, we know that there exists a
positive eigenfunctiog* such thatD S, (0)(¢*) = re*. In the case of > 1, for any small
e > 0, it is easy to find an increasing sequenc& @¢* < S, (e¢*) < Sf(sgo*) <o <
S"(ep*) < --- (see the proof of [29, Theorem 2.1]). On the other ha#jtl; (s¢*) — o as
n — oo. Thus, by the monotonicity of the sequenceSite¢™) and the continuity of5,,,
¢o is a fixed point ofS,,. Thatis,u(z, ¢g) is aT-periodic solution. O

3. Two-species competition

In this section, we use the theory of competitive systems on Banach spaces (see [12]) to
analyze the global dynamics of system (1.5) in the case of two-species competition.
In the case ofn = 2, we assume that periodic system (1.5) satisfies:

(H1) F;(t,u;) > 0, (3/0u;)(u; F;(t,u;)) > 0, and (3/0u ;)G (t,u1,uz) > 0 for r > 0,
u; 20, 1<i#j<2

(H2) fi(z,-,0,-) and f2(t,0, -, -) are strictly sublinear of®2, and f1(¢, L,0, L) <0 and
f2(¢,0, L, L) <0 for some numbeL > 0.

Consider the linearization of system (1.5) at zero:
u1(t) = ba(us(t — 7r1) — ar(Hua(t), (3.1)
t2(t) = ba(t)ua(t — t2) — az(t)uz(t), (3.2)
whereb; (t) = F;(t,0), a;(t) = G;(t,0,0). Let Pl(o) andPZ(O) be the Poincaré maps associ-
ated with Egs. (3.1) and (3.2p1 = r(Pl(O)) andrgz = r(PZ(O)) be the spectral radii oPl(O)
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and Pz(o), respectively. Assume that
(H3) ro1> 1,rp2 > 1.

By Theorem 2.1, it then follows that there exists a unique posifiveeriodic solution
uD (@) to
i1(t) =ua(t — r) Fa(r, ua(t — 1)) — ur(®)Ga(t, ua(1), 0)
= f1(r, u1(t), 0, us(r — 11)), (3.3)
anduD(¢) is globally asymptotically stable with respectxqr \ {0}. The similar results
hold for the equation
ti2(t) = uz(t — ©2) Fa(t, u2(t — 12)) — u2(1)G2(t, 0, u(t))
= fo(, 0, u2(t), uz(t — ©2)). (3.4)
Let u®(r) be the unique positivé-periodic solution to Eq. (3.4).

Obviously, (™ (r), 0) and (0, u®(r)) are T-periodic solutions of system (1.5). Lin-
earizing system (1.5) &Y (1), 0), we have

i1(1) = Y (Our(t — v1) — als (Dur(t) — aly (Oua(r), (3.5)
ip(1) = bSY (Nuz(t — t2) — aby (uz(t), (3.6)
where

d
b (1) =u® (- w5, Al u =) + Fu(t, u® @ — ),
5P (1) = Fa(1,0),

8
a0y = G1(t, u® (1), 0) + w0 5 Ga(1u® ), 0).

i)
@ 1 1

ajs (1) =u' )(t)auzGl(t, u®(1),0),
asy (1) = Ga(t,u (1), 0).

Similarly, we have the linearized system of system (1.5Pat @ (1)):

i1(1) = b2 (ur(t — 71) — a? (Hur(t), (3.7)
i2(t) = b (Dua(t — 2) — aR ur(t) — a (uz(t), (3.8)
where

b? (1) = Fi(1,0),

d
b (1) =u®(t — )5, Pt u@(t — ) + Fa(t,u®(t — 1),
al? (1) =G1(1,0,u®)),

0
ad () =u? (t)a—ule(t, 0,u@()),
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9
a (1) = G(t,0,u®@®)) +u® ()5,-Ga(1.0. u@()).

Let Pz(l) and Pl(z) be the Poincaré maps of Egs. (3.6) and (3.7), respectively, and denote
their spectral radii by-1o = r(Pz(l)), ro1 = r(Pl(Z)). Let p*(s1) = uP(s1) Vs1 € [—71, 0],
©**(s2) = u®@ (s2) Vs2 € [—12,0], and setEg = (0, 0), E1 = (¢*,0), E2 = (0, ¢**). For
any ¢ € X*, denote byu(t, v) the solution of system (1.5). Let (y) be the solution
semiflow associated with system (1.5). For convenience, weSet {(y/1, ¥2) € X*:
¥; #0, i =1, 2}. Then we have the following result.

Theorem 3.1. Let(H1)—(H3)hold and suppose that, > 1, rp1 > 1. Then for syster(l.5):

(i) Systen{1.5) has two positivel’-periodic solutions«(z, ¢*) and u(¢, ¢**) satisfying
u(t, ™) <g u(t,¢*),t > 0, wheregp*, ¢** € int(X™) with ¢™* < ¢*.
(i) Equality

,ﬂ”goﬂu(t, v) —u(t,¢*)|=0

holds for everyy = (v1, ¥2) € Xt with ¢* <x ¥ <g E1 and yr» # 0. Symmetri-
cally,

Jim [Ju(e, y) = u(r, )| =0

for everyy = (Y1, ¥2) € X with E2 <k ¥ <k ¢** andyry #£0.
(iii) Equality

Jim dist(u(t, v). [u(z, "), u(,¢")] ) =0

holds for any poiniy € X°.

In particular, in the case where = k; T for some integers;, i =1, 2, if assumptiongH1)
and (H2) hold, and
T T
f (bi (1) — a; (1)) dt > O, / BP0y —al)0)dt >0
0 0

fori # j andi, j = 1, 2, then the above results hold.

In order to prove Theorem 3.1, we need the following two lemmas. In the rest of this
section, we always usgto denote the Poincaré map associated with system (1.5).

Lemma 3.1. The Poincaré mag : X+ — X is strictly monotone with respect tgx,
and is a bounded map.

Proof. For anyy € X™, by the positivity theorem [19, Theorem 5.2.1] and assumption
(H1), the solutionu(z, 1) of system (1.5) is nonnegative on its existence interval. Note that
assumption (H1) implies the inequalities

fi(t,ug,up,v1) < f1(t,ug,0,v1) and  fo(t,ug, uz, v2) < f2(t, 0, uz, v2)
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for u;,v; > 0,i =1, 2. Since the solutions for Egs. (3.3) and (3.4) exist globally, by the
comparison theorem [19, Theorem 5.1.1], the soluti¢n ) for system (1.5) globally
exists for anyy € X*. By assumption (H1), it easily follows that the solutie(z, 1) of
Eq. (3.3) isbounded b® = maxXL, |l¢1]}, and hence solutions for Eq. (3.3) are uniformly
bounded. The same conclusions hold for Eq. (3.4). Therefore, solutions for system (1.5)
are also uniformly bounded.

Let u;(y) be the solution semiflow of system (1.5) witly(y) = v € X*. Then,
u; () > 0 for all t > 0. Moreover, if, ¥ € Xt with ¢ <g v, by the comparison the-
orem and the transformatidil; = u1, Uz = —up, it easily follows thatu;(¢) <g u:(¥)
for all t > 0. Let S: X+ — Xt be the Poincaré map associated with system (1.5), i.e.,
S() =u7(-). ThenS is monotone with respect tdx, andS is a bounded map.

It remains to prove thaf is strictly monotone with respect t9x , i.e.,S(p) <k S) if
¢ <k ¥.Suppose, by contradiction, th&tp) = S(). Letu(z, ¢) = (u1(t, @), u2(t, 9)),
u(t, ) = (u1(t, ¥),u2t,¥)). Thenu; (t;, ¢) = u; (t;, ) forallt;, e [T — t;, T],i =1, 2.
Thus,

O=u;(t;,0) —u;(t;, )
=u;i(t; — 7, ) Fi (1, ui (6 — 1, @) — i (t; — T, ) Fi (i, wi (6 — 7, ¥))

fort; € (T — t;, T). Sinceu; F; (¢, u;) is strictly increasingu; (t; — t;, ¢) = u; (t; — 1;, ¥).
Therefore,u; (¢;, ¢) = u;(t;,¥) for t; € (T — 2t;, T],i = 1,2. By induction, we have
u;(ti,¢) = u;(t;,y) for t; € [—1;,0], i.e., ¢ = ¢, which contradicts tap <g . Thus
we haveS(p) <g S(¥). O

Lemma 3.2. Suppose:*(t) = (uj(t), u3(t)) is a T-periodic solution of Eq(1.5) with

u?(t) > 0forsomel <i <2, andujf(t) =0for j #i. Let P; be the Poincaré map of
iwj(t) =Fj(t,0uj(t —tj) — Gj(t, ui (), u3(t))u;j ().

If r; =r(P;) > 1, then for any integeng > 1, there exist$ > 0 such that

lim sup || $""(y) —y*| =8 forall y eint(x™),
n—00
wherey* € X is the initial function ofi*(¢).

Proof. Sinceu*(¢) is also anngT-periodic solution ofngT -periodic system (1.5), and
r{(P))"} =[r(P))]" = r;?o > 1, without loss of generality, we can assume that 1.

It suffices to prove that there exisis> 0 such that for anyy € int(X™) with ||y —
Y*|| < 8, there existsV > 1 such that| S (y) — ¢*|| = 8. Let by = min,g(o,7; F; (2, 0).
For anye € (0, b1), let ¢ be the spectral radius of the Poincaré map associated with

w(t) = (Fj(t,0) —&)u(t — ;) — (G (t, ui(0), ub(®)) + &)u(t). (3.9

Then lim_,or® =r; > 1. In what follows, we fix a sufficient smadl € (0, b1) such that
r¢ > 1. For this fixeds, assumption (H1) implies that there exigis> 0 such that

Fj(t,uj)> Fj(t,0)—& Vi €[0,00) Vu, [0, 1).
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Let bp = maxcpo, 7] lu*(®)||. By the uniform continuity ofG; on the set[0, co) x
[0, b2 + 112, there exists$, > 0 such that

|Gj(t,u1,u2) — Gj(t,uy, ub)| <& Vrel0,00),

for anyu = (u1, u), u’ = (u}, uh) € [0, by + 1]2 with [u — u'|| < 8. By the continuous
dependence of solutions on initial values, there exist<0 such that for anyr € int(X™)
with [y — y*| <3,

lut, ¥) —u* ()| <8 =min(L, 81,82) Vr€[0,T).

_Proceeding by contradiction, assume that there exfists (1, ¥2) € int(X*) with
I —¥*| <& such that|S" () — ¥*| < é foralln > 1. Foranyr > 0, lett =nT + 1/,
wheret’ € [0, T), n = [t/ T] is the greatest integer less than or equal/tb. Then,

lut, ) —u*@)|| = |u(t', ")) —u* )| <& V=0
Letu(r, ) = (i41(1), ii2(¢)). Then
Fj(t.iij(1)) > F;(t,0) — &,

and
|Gj(t. i1 (t), d2(t)) — G (t,ui (1), us(t))| <& Ve =0.
Thus,
() =it —t)F;(t,aj(t — 1)) — i j ()G (t, wr(r), ia(1))
> (Fj(t, 0) — s)ﬁj(t — 1) — ﬁj(t)(Gi (t, uj, ué) + 8) vt > 0. (3.10)

As in the proof of Proposition 2.1, Eq. (3.9) has a solutid) = vo(r)e*’, where
vo(t) is a positive T -periodic and continuous functiofg = (1/T) Inr® > 0. Letgpg(s) =
u®(s), s € [-1;, 0]. Thengg > 0. Sincey; > 0, there existg > 0 such thatgo < ;. By
the comparison theorem and inequality (3.10), we have) > uj.(t, Vi) > nuO(t), where

u'(t, ;) is the solution of (3.9) withe (s, ¥j) =1v;(s) Vs € [}, 0]. Therefore,
lim i;(t) > lim 7u®@) = co.
—00 —>0o0

ThusS” () is unbounded, a contradiction o

Proof of Theorem 3.1. Note that the Poincaré mafa X* — X is a-condensing and”

is compact for sufficiently large (see, e.g., [8, Theorem 3.6.1]). We then proceed with two
steps. The first step is to verify the basic assumptions in [12] (see also [28, Section 2.4])
for competitive systems on Banach spaces, and apply a compression theorem [28, Theo-
rem 2.4.2] toS"0, whereng is an appropriate positive integer. In the second step, we prove
that fixed pointsp*™ and¢** of S0 are actually fixed points of.

Step 1. So far, we have shown that (&) (r) andu®(¢) are stable positivé -periodic
solutions for Egs. (3.3) and (3.4), respectively, and they attract all of the solutions except
for the trivial solution; (2) the Poincaré mapfor system (1.5) is bounded and strictly
monotone with respect tdx (see Lemma 3.1).
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Let S,, andS,, be the Poincaré maps of Egs. (3.3) and (3.4), respectively. Sifice
{0} and {0} x X2+ are clearly invariant sets for system (1.5), we ha&ve (S,,,0) on
X1 x {0}, S = (0, S,,) on{0} x X;. Therefore,

lim $"((¢1,0) =E1 foranygi e X\ {0}, and
n—oo

lim $"((0,¢2)) = E» foranyg, € X5 \ {0}.
n—oo

We claim the following.

Claim. For any ¢ = (@1, ¢2) € X%, u(r, ¢) > 0 for t > r = max(ty, r2). In particular,
S"(p) > Oforall nT > 2r.

Indeed, for eachi = 1, 2, we assume that; (6;) > 0 for somed; € [—1;,0],i =1, 2.
Thenu;(t; +6;, ¢) > 0. In fact, ifu; (r; + 6;, ¢) = 0, then

i (i 4 6, 9) = u;i 0;, @) Fi (T + 6;, ui (6, 9)) = @i (6) Fi (i + 61, i (6;)) > 0,
which implies thais; (7], ¢) < 0 for somer/ < 7; 4-6;. However, by the proof of Lemma 3.1,

u;(t,9) > 0forallr > —1;, a contradiction. Thus, we haue(z; +6;, ¢) > 0. On the other
hand,

wi(t, @) =ui(t — i, @) Fi(t,ui (t — 71, 9)) — ui(t, 9)Gi (1, u1, u2)
Z —ui(t,9)Gi(t,u1, u2).
Then

t
2 +o; Gi(s,uz,uz)ds

ui(t, @) = ui(t; +0i,p)e

Thereforey; (¢, ) > 0 forr > 1; +6;. Thusu(z, ¢) > 0 fort > t = max(z1, 12).

Given an order interval = [0, a1] x [0, az], a; € X;Lz =1,2. §"(I) is precompact
because of the compactnessSéffor nT > 7 (see, e.g., [8, Theorem 3.6.1]). Thus, for all
nT > 1, S" is order compact with respect 0k .

At any pointg = (g1, ¢2) € int(X ™), the Jacobi matrix of system (1.5) is

>0 fortr>1 +6;.
>

ad
D11 —¢1(0)WG1(I, 91(0), ¢2(0))
D(f1. f) = 5 ’ ,
—wz(O)a—Lthz(t, 91(0), 92(0)) D2
where

d d
Di; = T(uiFi(tv u;)) - _.(MiGi(t, u1, uz)) ;

Ui ui=gi(—z) Ot u1=¢1(0), uz=92(0)

i =1,2. D(f1, f2) is irreducible due to assumption (H1). By [19, Theorem 5.3.4], it then
easily follows thats” (¢) <k S"(¥) YuT > 3t for anye, ¥ € int(X ) with ¢ <x .

Letp, ¥ be in X" satisfyingy = (¢1, 92) > 0, ¥ = (¥1,0) € X] x {0}, andgy < y1.
Theng <x . We want to show that”(¢) < S"(y) for all large integers:. Let
u(t, ) = (ua(t, @), uz(t, ), u(t,¥) = (wi(t, ¥),0). Thenu(t, ) <k u(t,¥), i.e., 0<
ui(t, ) <ui(t, ¥),u2(t, ) > 0. By the above claim, we haveg (¢, ¢) > 0 Vs > 7. Thus
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we only need to prove thaty(z, ¢) < ui(t,¥) Vit > 0. Assume, by contradiction, that
u1(to, ¢) = u1(to, ¥) for somerg > 0. Since

d d
—G1(t,u,u2) >0 and —uq1Fy(t,uq) >0,
ouy duy

we have

= u1(to — 71, ) F1(to, u1(to — 71, ¢)) — u1(to — 71, ¥) F1(to, uz(to — 71, ¥))

+ u1(to, ¥)G1(to, us(to, ¥), 0) — u1(to, 9)G1(to, u(to, @), uz(to, )) <0,
which implies thatui (¢, ¢) — u1(t, ) > 0 for somer < 9. The conclusion contradicts
ui(t, ) <ui(t, ) forall t > —11. Thus,u1(t, ¢) < u1(z, ¥) V¥t > 0, and hence we have
u(t, o) Lk u(t,y) fort > 0. In particular,S" (¢) <x S"(y) for all nT > 2t. Similarly,
if ¢ andy belong toX™ and satisfyy <x ¥, ¥ €int(X™) andg € {0} x X, we have
S"(p) <k S"(y) forall nT > 2r.

Let us fix an integeng such thatS"° satisfies:

(1) $"0(p) > 0 for anyyp € XO.
(2) If g, ¥ € XT satisfyp <g ¥, and eithekrp or ¢ belongs to intX ™), thenS™(¢) <« x
S"0().

Also, §"° has the following properties:

(3) S"0is order compact and strictly monotone with respectjo.
(4) S"°(E1)=E;1and

lim $"9"((¢1,0)) = E1 foranye; € X7 \ {O}.
n—oo

The symmetric results hold fdt,.

(5) Sinceryz > 1, it follows from Lemma 3.2 thak is an isolated fixed point o§"°, and
WS (ED) Nint(X1) =@, whereW* (E1) is the stable set af; for §°. The same results
hold for Eqg and E». Also, Theorem 2.1 implies thdig is a repelling fixed point of
S"o,

By the compression theorem [28, Theorem 2.4.2], we have the following result®for

(i) S"™ has two positive fixed pointg* and ¢** with ¢** <k ¢*. Then, system (1.5)
has two positivengT-periodic solutionsu (¢, ¢*) and u(t, ¢**) with u(z, ¢**) <g
u(t,¢®).

(i) Foreveryy = (1, ¥2) € X+, Y2 #0andep* <g ¥ <g Eq, lim, 00 S"" () = $*.
It then follows that

llim |utt, ¥) —u(t. ¢*)| =0.
— 00
Symmetrically, for everyy = (1, ¥2) € X with y1 #£ 0 andE> < ¢ <k ¢™,

lim_ 870" () = ¢,
n—oo
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and hence,
l&r‘rgonu(t, ¥) —u(t, ™| =0.
(i) Since
nli_)moodist(S"O"(w), [¢**, ¢*1x) =0 for any pointy € X°,
therefore,
Nim dist(u(z, ¥). [u(, ™), u(t. ¢™) ] ) =0.

Step 2. It remains to prove that(z, ¢*) andu(z, ¢**) areT-periodic solutions. We only
need to show thap* and¢** are fixed points of. In what follows, we prove that** is a
fixed point forS.

By Proposition 2.1, we havEl(z)el =rp1e1, andey > 0. Let $** be the Poincaré map
of the linearized system (3.7)—(3.8). We claim thatis an eigenvalue a$**. Indeed, for
anyy € X{ suppose that(z, o, ¢) solves

lip(1) = bPup(t — 12) — aGun(t) (3.11)

with initial valuesu, = ¢. Let W(t,0)p = us(o, ¢), then W(z, o) is a continuous lin-
ear evolution operator. Leti(z, e1) be the solution of Eq. (3.7) satisfying (0, e1) =
e1(0) VO € [—11, O]. By the variation-of-constants formula, the solutions of Eq. (3.8) can
be expressed by

t
u (o, <p)=W(t,0)¢+fW(t,S)Xoh(S)ds, t>o,
o

whereXo(6) = 0 for € [—12,0), Xo(6) = 1 for6 =0, andi(s) = —a3 (s)u1(s, e1) < O.
Consider the following equation:

T
(ra1— W(T,0))ex = —/ W(T,s)Xoh(s)ds, ex€X,. (3.12)
0

Sinceu'@(r) is a globally asymptotically stabl&-periodic solution of Eq. (3.4), and its
linearized equation at®(r) coincides with Eq. (3.11), we hav&W (7, 0)) < 1. Since
W(T,s)Xo >0,

T
—/ W(T, s)Xoh(s)ds > 0.
0

By the Krein—Rutman theorem (see, e.g., [11, Theorem 7.3]), Eq. (3.12) has a unique
solutione; andey > 0. Lete = (e1, —e2), thene >k 0. Let P, be the Poincaré map
of Eq. (3.8). Then,

T
Po(—ep) = W(T,0)(—e2) + / W(T, s)Xoh(s)ds.
0
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Thus,

2
§*e = (P2 (e1), Pa(—e2)) = ra1(e1, —e2) = rate,

and hencey; is an eigenvalue ao$** with eigenfunctiore > 0.
For anye > 0 (note thatDS(E2) = $**) we have

S(Ez+ ee) = S(E2) + DS(E)(ge) + o(e) = Ez + 8(’216 * %8))

Sincerpy > 1, (r21 — e € int(K), there existgg > 0 such that(ro; — e + o(e) /e €
int(K) for any e € (0, eg]. HenceS(E2 + ee) — (E2 + ge) >k O; that is, E2 + ce <
S(E2 + ee). Since S is monotone with respect ta g, we have an increasing sequence
Ex+se <k S"(Ea+ee) <k S"TL(Eo+¢e) foralln > 1. SinceE, <k ¢** andp™ > 0,
we can choose ansuch thatts + ce <g ¢™*. Therefore,
lim S$"0"(Es + ce) = ¢™,
n—oo
and hence
lim S"(E+ ee) = ¢p™*.
n—>oo

By the continuity ofS, it follows that¢™** is a fixed point ofS. In the same way, it is easy
to show that* is a fixed point ofS.
In the case of; =k; T, if

T
/ (bi (1) — a; (1)) dt > O,

0
T

/(bﬁ.’”(z) —b)0)dr >0, 1<i#j<2,
0
Proposition 2.1 implies the last statement in the theorem.

Theorem 3.1 implies that two species coexist. The following result shows that one
species drives the other one to extinction.

Theorem 3.2. Let(H1) and(H2) hold. Assume that systdi5)has no positivd -periodic
solution. If (H3) holds andr21 > 1, or in the case where; = k; T for some integers;, if

T

T
/ (bi(t) —a;(t))dt >0 Vi=1,2, and / (b? (1) — a3 1)) dt > 0,
0 0

then for anyy € X°, the solutionu(z, ) of systen{1.5)satisfies
i —_ (4D —
Nim fu(, v) — (P ). 0)| =0.

A symmetric result holds faB, u‘® (r)).
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Proof. In the case of»1 > 1, by Lemma 3.2, for any € X2, the omega limit seb ()

of $"(y) cannot beE> since S"(y) > 0 for all nT > 27 (see the claim in the proof

of Theorem 3.1). Moreover, just as in the proof of Theorem 3.1, we can conSifler
such thatS"o satisfies the assumptions of Theorem A in [12]. Note that system (1.5)
has no positivel'-periodic solutions, and hencghas no positive fixed points, we have
S"Mo(yr) — E1(n — 00). Therefore,

Jim e, ¥) = ute, Ev)| = lim Ju, ) — @@, 0)] =0.
A symmetric result holds fof0, u%(r)). O

In practice, it is not easy to verify the nonexistence of posifiveeriodic solutions. To
establish some sufficient conditions for the conclusion of Theorem 3.2, we assume that

(H4) fi(t, -, uz,-) and fa(t,u1, -, -) are strictly sublinear ofR2 , whereu1, u» > 0, and
f1(¢t,L,0,L) <0, f2(z,0, L, L) <0 for someL > 0.

Then assumption (H1) implieg (¢, L, u2, L) <0, fa(t,u1, L, L) <0 for all ug, up > 0.
By Theorem 2.1, if»1 > 1, then equation

i (1) = fa(t, ur(@), u® (@), ua(t — 1))
admits a unique positivé-periodic solutioru(lz) (1), which is globally asymptotically sta-
ble with respect ton \ {0}, whereu@ (z) is the positivel -periodic solution of Eq. (3.4).

Let rf% be the spectral radius, defined by Theorem 2.1, associated with
(1) = fo(t, u? (1), ua(t), ua(t — 72)).
Then we have the following result.

Corollary 3.1. Let(H1), (H3) and (H4) hold. Then ifrp; > 1 and r% < 1, the conclusion
of Theoren8.2holds.

Proof. We use the same notation as in Theorem 3.2. Assumption (H3) imgh4s) is
globally asymptotically stable with respectli’c;r \ {0} for Eq. (3.4). For any) € X9, let
u(t, ¥) = (u1(t), u2(t)). Since assumption (H1) implies

u2(t) = fo(t, ur(t), u2(t), u2(t — 12)) < f2(, 0, u2(1), u2(t — v2)),
for any smalle > 0, we havei(r) < u@(t) + ¢ for all ¢ > 1 (¢). Therefore,
() = fu(t, ur(0), ua(0), us(t — w)) > fa(t,ua @), u® @) + &, u1t — 7)) (3.13)
fort > t(e). Letr;; be the spectral radius defined by Theorem 2.1, as applied to
() = fu(t, u(), u® @) + e, u(t — 10)). (3.14)

Then lim._,.or5; =r21 > 1, and hences,; > 1 for all sufficiently smalle. Therefore, by
assumption (H4) and Theorem 2.1, there exists a unique pogitperiodic solution: (t)
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for Eq. (3.14), and:j(¢) is globally asymptotically stable with respectKJIr \ {0}. By
inequality (3.13), it follows that for any’ > 0, we have:y (1) > uf{(t) — &' fort > t (e, &').
Therefore, assumption (H1) implies

() = fo(t, us(t), ua(t), uz(t — 12)) < fa(t, uf(t) — ', uz(t), u2(t — 12)) (3.15)
fort > (s, &'). Letr¢ be the spectral radius defined by Theorem 2.1, as applied to

w(t) = fo(r,uf(t) — &, u@), u(t — 12)). (3.16)

Note that lim _ouf (1) = u(lz) (t) uniformly for ¢ € [0, T'] (see, e.g., [28, Theorem 1.4.1] or

[21, Theorem 2.1]). We have lim_,or® = r% <1, and hence®’ < 1 for all sufficiently
smalle ande’. Therefore, by Theorem 2.1, zero solution is globally asymptotically stable
for EqQ. (3.16). Thus inequality (3.15) implies lim., u2(t) = 0. That is, system (1.5) has
no positiveT -periodic solutions. Therefore, Theorem 3.2 completes the praof.

Remark 3.1. Theorem 3.1, as applied to system (1.3) witk 2, implies that system (1.3)
is permanent and has at least one posifiveeriodic solution. In particular, if there is only
one positiveT -periodic solution, then it is globally attractive. Therefore, the conclusions of
Theorem 3.1 are stronger than [17, Theorem 2.2] for system (1.3)witR. Furthermore,
since assumptions (H1)—(H3) are automatically satisfied for system (1.3), Theorem 3.1
holds ifr12 >1ro1>1,0r if
T T

/(bél)(t) - aélz) (t))dt >0 and /(bf) (t) — afl)(t))dt >0

0 0
inthe case ot; =k, T,i =1, 2.

Remark 3.2. For system (1.3) with = 2, the conditions of [17, Theorem 2.2] are sufficient
for r12 > 1 andrz1 > 1 (see Lemma 3.3). Thus, Theorem 3.1 is a natural generalization of
[17, Theorem 2.2].

Lemma 3.3. If inequalities(1.4) hold, therri> > 1 andrp1 > 1.

Proof. For system (1.3) witlk = 2, the corresponding Egs. (3.3) and (3.6) reduce to
x1(1) = Bu(t)x1(t — 1) — anaxi (1), (3.17)
Ka(t) = Ba(t)x2(t — 12) — aza(t)u® (1)x2(1), (3.18)

respectively, wheretP () is the positiveT-periodic solution for Eq. (3.17). Note that
uD(z) is globally asymptotically stable with respectXq \ {0}, and thatr1, is the spec-

tral radius of the Poincaré mabz(l) associated with Eq. (3.18). Choosirg such that
u® (%) = max 0.7 u® (r), we then have

0=i® (") = By u® " — 11) — ana(t) (P (")),
Therefore,

a1 () w® ()% = But*)u® (t* — 71) < BiHu® (%),
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and hence:™D (1*) < Bi"/alll, where by the upper indexes we mean the same as these in
inequalities (1.4).
By inequalities (1.4), it is easy to see that for amy X} with ¢ > 0, the solution
x(t, p) of the equation
Bm
£(1) = Byx(t — 12) — agy—=x(t)
a11
satisfies lim_, o, x (¢, ¢) = co. By the proof of Proposition 2.1, it follows that Eq. (3.18)
has a positive solution®(r) = vo(r)e*** with A9 = (1/T) Inr12 andvo(z) being continuous
andT-periodic.
Let po(s) = u(s), s € [—12, O], thengp > 0. Note that
m
Ka(t) = Ba(t)x2(t — 12) — aza(t)u® (1)x2(1) > Boxa(t — t2) — ag"llexzm.
1
By the comparison theorem, we hav¥t) > x(z, ¢o), and hence lim,, o, u°(¢) = co. This
implies that\g > 0 and hencej, > 1. By a similar argument, we havg; > 1. O

Remark 3.3. Theorem 3.2 and Corollary 3.1 imply that one species persists at a positive
periodic solution while the other one dies out. The conclusion of Corollary 3.1, as applied
to system (1.3) withh = 2, is the same as [17, Corollaries 2.1 and 2.2]. However, by
the comparison method in the proofs of Lemma 3.3 and Corollary 3.1, one can easily
conclude that the conditions in [17, Corollaries 2.1 and 2.2] are sufficient for the conditions
in Corollary 3.1.

4. Multi-species competition

As we have seen in Section 3, the monotonicity of the Poincaré map associated with the
periodic system (1.5) witl = 2 plays an important role in obtaining the global dynamics.
However, for system (1.5) withe > 3, we are not able to appeal to the powerful theory of
monotone dynamical systems. In this section, we use the elementary comparison method
to establish a set of conditions for uniform persistence in system (1.5)mwit!8. In virtue
of the persistence theory, we further obtain natural invasibility conditions for uniform per-
sistence and the existence of positive periodic solutions in 3-species competitive periodic
system (1.5).

We first considerm-species competitive system (1.5). Assume thaufar 0,1 <i #

Jj <m, we have

(S1) Fi(t,u;) > 0, (3/0u;)(u; Fi(t,u;)) > 0,(@/0u;)G;(t,u1, ..., um) >0;

(S2) fi(t,u1, ..., ti—1,  Uit1, ..., Un, ) is strictly sublinear ofR2 ; and for somd. > 0,
fi(,0,...,0,L,0,...,0,L) <0,whereL is at the positions of thah and(m + 1)th
arguments off; except forr.

Thenf;(¢t,u1,...,ui—1, L ujs1, ..., um, L) <0, forallu; >0,l>L,i=12,...,m.As
analyzed before, it easily follows that solutions of system (1.5) are uniformly bounded.
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Let 7; be the spectral radius defined by Theorem 2.1, as applied to the scalar periodic
equation

()= fi(£,0,...,0,u;(),0,...,0,u; (t — 77)). (4.1)

Assume that
S)r>1i=12...,m.

Then for eachi, by Theorem 2.1, (4.1) admits a unique positiWeperiodic solution
u; (t, ¢;), which attracts every solution of (4.1) except for zero. k;éte the spectral radius
defined by Theorem 2.1, as applied to the scalar periodic equation

w(t) = fi(t,a1(t, o). ... wi—1(t, i—1). u; (1),
lzi+l(t7<5l'+1)a"'v’/_tm(tvq;m)au(t_ri))' (42)

If we assume that; > 1, then (4.2) admits a unique positi¥eperiodic solutiorn; (7, ¢;),
which attracts all solutions of Eq. (4.2) except for zero.
Let

Z$=C<1"[[—ri,0],m),
i=1
Z) ={y =W e Zt vi £0Vi, 1<i <m}.

For any¢ € Z;!, let us denote by(z, ¥) = (u; (1)), the solution of system (1.5) with
uo(y) = ¢. The following theorem implies that system (1.5) is uniformly persistent.

Theorem 4.1. Let assumptionéS1)—(S3)hold. Suppose that > 1,i =1,2,...,m. Then
system(1.5) admits a positivel -periodic solution, and for any/ € Z,%, the solution
u(t, ) of systen{1.5) satisfies

lan;O dist(u(t, ¥), [u@®), a(t)]) =0,
where

[u@), i) ={u= )y €RY: ui(t, i) <uy <iti(t, i) VI<i <m}.
Proof. By Theorem 2.1 and the standard two-side comparison method similar to that in
the proof of Corollary 3.1, for any Zf,’, and any smalk, ¢ > 0, we haveu (r) — ¢’ <

ui(t, ) <it;(t, i) +efore>t(e, &), whereu; (¢) is positive and’'-periodic and satisfies
that

Iimogf(t) =u;(t,¢;) uniformly forr € [0, T].
e— -
Lete, ¢’ — 0, we have

Jlim dist(u(z, ¥), [u(®). d()]) = 0.

Let S be the Poincaré map of system (1.5). Thers bounded, point dissipative;-

condensing and uniformly persistent with respect2 , 82°), whered z0 = z+ \ z9.
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FurthermoreS” is compact fomT > 2t = 2maxy, 12, ..., Tn). By [28, Theorem 1.3.6
and Remark 3.1.1]§ has a coexistence stagg € Z0. Thus system (1.5) admits a positive
T -periodic solutionu(z, ¢o). O

As mentioned in [23], for the periodic system (1.5) in the case ef 2, (it1(z, ¢1), 0)
and (0, iio(z, ¢2)) (i.e., @D (r), 0) and (0, u® (1)) defined in Section 3) are the semitriv-
ial periodic solutions. Then; > 1 andrz > 1 (i.e.,r12 > 1,r21 > 1 in Theorem 3.1) are
natural invasibility conditions for uniform persistence. However, forthspecies compe-
tition periodic system > 3), (i1(t, ¢1), ..., ii—1(t, pi—1), 0, i (t, i), ..., i (L, Pm))
(1 < i < m) are not solutions of system (1.5), and hence, due to the overestimation of the
effect of competition, conditions; > 1 in Theorem 4.1 are very strong conditions. In the
rest of this section, we use the ideas in [23] to obtain some natural invasibility conditions
for uniform persistence and existence of a positive coexistence state in the three-species
competition.

Consider ther'-periodic model for the three-species competition

wi(t) =ui(t — w) Fi (t,u;(t — 1)) —ui ()G (¢, ur(r), uz(), uz(r))
= fi(t,us (D), u2(0), u3(t), u;i(t — 7)), 1<i<3, (4.3)

which satisfies conditions (S1)—(S3) in the casaief 3. For eacli, there is a correspond-
ing 2-species competition system

wj(t) = fi(t,ur(®), u2(), uz(®),uj(t — 7)), w;®)=0, j#i, 1<j<3.  (R)

Suppose that each systeR;) satisfies the conditions either in Theorem 3.1 or in Theo-
rem 3.2. We consider the following three cases:

(Q1) Each(R;) satisfies Theorem 3.1 and admits only one posifivperiodic solution
a® ().

(Q2) both(R2) and(R3) satisfy Theorem 3.1, and each of them admits only one positive
T -periodic solution(R;) satisfies Theorem 3.2.

(Q3) (R3) satisfies Theorem 3.1 and admits only one posifivperiodic solution.(R1)
and(Ry) satisfy Theorem 3.2.

Let

3

z3 :C<l_[[—r,~,0],R§r), Z9=(p)} €23 ¢ £0¥1<i <3}
i=1

For any¢ € Z;, denote the solution of system (4.3) by, ¢) = (u; (z, ¢>))l.3:1, and the

solution semiflow by, (¢). We then have the following results.

Theorem 4.2. Let (Q1) hold. Denote by (D the spectral radius defined by Theorém,
as applied tai(r) = f1(r, u(@), i (1), u(t — 11)). In the same way, we can defirn@, i =
2,3. Suppose that® > 1,i = 1,2, 3. Then systent4.3) admits a positivel'-periodic
solution and is permanent in the sense that there exist0 and 8 > 0 such that for any
¢ e Z3, B <liminf,_oou; (1, ¢) <limsup_, . u;(t, ) <a.
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Proof. For any ¢ € Z9, by the argument similar to the claim in the proof of Theo-
rem 3.1,u; (¢, ) > 0 for all t > t = max(ty, 12, t3). FOr any¢ < Zgr, define7 (t)(¢) :=

u: (@), S(¢) :=ur(¢). ThenT ()¢, S"(¢) € int(Zgr) for ¢ € Zg andt,nT > 2t. By the
same argument as in the proof of Corollary 3.1, we have ¢) < i; (t, ¢;) + ¢ ¥t > t(¢).
Thus, it is easy to find a numbersuch that

limsupu; (1, ¢) <a foralli andg € Z3.
—00
In particular, S is point dissipative and a bounded map (by the same argument as in
Lemma 3.1).
Note thatS is «-condensing and orbits of bounded sets are bounded. By [9, Theo-
rem 2.4.7],S admits a connected global attractarc ZJr Let M1 = (0,0,0), Mo =
<¢1, 0.0), M3 = (0,¢2.0), Ms = (0,0, $3), M5 = (0, ¢<1) 35, M = ({7, 0,85,
= @2, $52,0), where(@s”, 65", (62, ), and (¢4?, ¢(3)) are initial functions
of u(l)(t) 1@ () andi® (1), respectively. Clearly, alM; are fixed points ofS. For any
¢ €dzI= 23\ Z3, letw(¢) be thew-limit set of ¢ with respect to the discrete semiflow
{8"}:2 - By assumption (Q1) and Theorem 3.1,

U @(¢) = (M1, M2, M3, Ma, Ms, M, M7},
$edZ3

and no subset of thaZ;’s forms a cycle forS in 823. By assumptions (Q1) and (S1),
simply following the proof of Lemma 3.2, we can obtain thié4t are isolated invariant sets
in 3 for S, and W*(M;) Nint(Z3) = @, where W*(M;) is the stable set o#; for S.
ThenW* (M;) N Z9 = @. By [27, Theorem 2.2], it follows tha$ is uniformly persistent
with respect to(Z3, 32J). Note thatS” is compact fomT > 2z, by [28, Theorem 1.3.6
and Remark 3.1.1], there exists a global attragigc ZJ for S: Z3 — z3, ands admits a
coexistence statgg € Ag. Sincegg € Ag = S"(Ag) C int(Zgr) for nT > 21, system (4.3)
admits a positive-periodic solutionu(z, ¢g).

Let

U T(t)Ag, wherengT > 2.
0<t<noT

Then by the argument given in the claim in the proof of Theorem &gl int(Zgr), and

by [27, Theorem 2.1], it follows thati§j is a compact set and attracts strongly bounded
sets |nZ3 Since7 ()¢ € mt(Zg“) fort > 2t and¢ € Z3, Aj attracts every point uig
under7 (). For everyg € Ag, there exists a numbed; > 0 such thatp > B414, where

1; = (1, 1,1). By the compactness of}, it follows that there existg = (V) such that

¢ > Bls Y € V, whereV is a neighborhood ofij in int(Zgr). Thus for anyg € Zg,

T (t)¢ > B1, for sufficiently larger, which implies that liminf, o u; (r,¢) > 8. O

Theorem 4.3. Let(Q2) hold, andrz» be spectral radius defined by Theor8, as applied
to (Ry). Suppose thai; > 1, r® > 1,i = 2, 3. Then the conclusions of Theordn2 hold.
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Proof. We use the same notation as in the proof of Theorem 4.2. By Theorem 3.2, it
follows that

lim_$"($) = (0, §2,0) = Ms

for any ¢ = (¢;)>_; € 323 with ¢1 = 0 andg, # 0. By assumption (Q2), Theorems 3.1
and 3.2,

U =M1, M2, M3, Ma, Mg, M7},
¢zl

and no subset of th#f;’s forms a cycle forS™ in azg. As in the proof of Theorem 4.2,

we haves is uniformly persistent with respect ((Zg, azg). Now, the same argument as
in Theorem 4.2 completes the prooft

Theorem 4.4. Let(Q3) hold andr3; be spectral radius defined by Theor&R, as applied
to (Ro). Suppose thatz; > 1, r3o > 1 andr®® > 1. Then the conclusions of Theoren?
hold.

Proof. We use the same notation as in the proof of Theorem 4.2. As in the proof of Theo-
rem 4.3, assumption (Q3) implies that for apiy= (¢;)>_; € 323 with ¢1 = 0 andg, # 0

Jim $"(¢) = (0, ¢2,0) = Ms,

and for anyp = (¢;)>_; € 9Z3 with ¢, = 0 andgy # 0
Jim $"(¢) = (#1,0.0) = M.

Clearly,

U =M1 M2, M3, My, M7).
$€dZ

Then as in the proof of Theorem 4.2s uniformly persistent with respect t&3, 923).
Now, the same argument as in Theorem 4.2 completes the praoof.
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