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Abstract

In this paper, we consider a time-delayed periodic system which describes the competition
mature populations. By appealing to theories of monotone dynamical systems, periodic sem
and uniform persistence, we analyze the evolutionary behavior of the system and establish s
conditions for competitive coexistence and exclusion.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Population models with stage structure have received extensive investigations (s
5,7,10,14,18,20,22,24] and references therein). To describe a single species growth
and Freedman [1] proposed the following system:

ẋ(t) = αe−γ τ x(t − τ) − βx2(t),

ẏ(t) = αx(t) − γy(t) − αe−γ τ x(t − τ), (1.1)
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wherex(t) andy(t) denote the mature and immature populations,β andγ represent the
death rates of the mature and the immature,α denotes the birth rate of the mature, andτ is
the maturation age. They showed that there exists an asymptotically stable positive e
rium, and concluded that the introduction of stage structure does not affect the perm
of the species.

In order to investigate how the stage structure affects the asymptotic behavior
competitive species, Liu et al. [16] combined the competitive Lotka–Volterra system
system (1.1) and obtained a two-species competitive model with stage structure:

ẋi (t) = bie
−diτi xi(t − τi) − xi(t)

(
ai1x1(t) + ai2x2(t)

)
,

ẏi(t) = bixi(t) − diyi(t) − bie
−diτi xi(t − τi), i = 1,2, (1.2)

wherexi(t) and yi(t) denote the mature and immature populations of theith species
aij > 0, bi anddi denote the birth rate of theith mature population and the death ra
of the ith immature population, respectively,τi is the maturation age of speciesi. One of
the basic assumptions is that the immature does not compete with the other specie
the equations for mature populations are decoupled from those for immature popul
it suffices to study the global dynamics of subsystem (1.2). The authors of [16] de
ξi = diτi as the degree of stage, and concluded that if

a12

a22
<

b1e
−ξ1

b2e−ξ2
<

a11

a21
,

then system (1.2) is permanent. Furthermore, Liu et al. generalized the above syste
autonomous competitive system forn species in [15] and aT -periodic competitive system
for n species in [17]:

ẋi (t) = Bi(t)xi(t − τi) − xi(t)

n∑
j=1

aij (t)xj (t),

ẏi(t) = bi(t)xi(t) − di(t)yi(t) − Bi(t)xi(t − τi), 1� i � n, (1.3)

wherebi(t), aii(t), di(t) > 0, aij (t) � 0, and

Bi(t) = bi(t − τi)e
− ∫ t

t−τi
di (s) ds

, 1� i � n.

They obtained that if

Bl
i >

∑
j �=i

am
ij Bm

j /al
jj , 1� i � n, (1.4)

then system (1.3) is permanent, where

al
ij = inf

t
aij , am

ij = sup
t

aij , Bl
j = inf

t
Bj , Bm

j = sup
t

Bj , 1� i, j � n.

It is easy to see that condition (1.4) is very strong. There should exist more n
conditions in terms of average integrals of certain functions over the interval[0, T ]. Also
motivated by systems (1.1)–(1.3), we consider the following periodic system of comp
mature populations

u̇i (t) = ui(t − τi)Fi

(
t, ui(t − τi)

) − ui(t)Gi

(
t, u1(t), . . . , um(t)

)
= fi

(
t, u1(t), . . . , um(t), ui(t − τi)

)
, 1� i � m, (1.5)
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where the continuous functionfi(t, u1, . . . , um, vi) is T -periodic int, and Lipschitzian in
(u1, . . . , um, vi) in any bounded subset ofR

m+1+ , i = 1,2, . . . ,m. For this model, we hav
the same basic assumption: the immature of a species does not compete with other
Note that system (1.5) is also a general form of Ayala’s system (see, e.g., [3,13] f
autonomous case, and [6] for the nonautonomous case).

The purpose of this paper is to analyze the global dynamics of system (1.5). B
pealing to the theory of periodic semiflows, we established sufficient conditions fo
existence of periodic coexistence state, global persistence and extinction in terms o
tral radii of the Poincaré maps associated with linear periodic delay equations. In th
where the delays are integer multiples of the period, these conditions can be determ
the average integrals along certain periodic functions. When applied to system (1.
obtained conditions are necessary to those in [17], and the results improve those o
in [17].

The organization of this paper is as follows. In Section 2, we give some prelim
results on the spectral radius of the Poincaré map associated with a linear period
delayed equation, and threshold dynamics in a scalar periodic and delayed system.
tion 3, we first analyze the global dynamics in two-species competitive system (1
using the theory of competitive systems on Banach spaces [12]. In Section 4, w
investigate the uniform persistence of multi-species competitive systems by two-side
parison method, and then obtain natural invasibility conditions for the persistenc
coexistence states of three-species competitive systems by using the theory of u
persistence.

2. Preliminaries

In this section, we first introduce some basic notations, and then present the preli
results on scalar delay differential equations. Letτ, τ1 andτ2 be positive numbers, and

Y = C
([−τ,0],R

)
, Y+ = C

([−τ,0],R+
)
, Xi = C

([−τi,0],R
)
,

X+
i = C

([−τi,0],R+
)
, i = 1,2, X = X1 × X2, X+ = X+

1 × X+
2 .

Then(Y,Y+), (Xi,X
+
i ) and(X,X+) are ordered Banach spaces. Forϕ,ψ ∈ Y, we write

ϕ � ψ if ψ − ϕ ∈ Y+,

ϕ < ψ if ψ − ϕ ∈ Y+ \ {0},
ϕ � ψ if ψ − ϕ ∈ int(Y+).

For ϕ,ψ ∈ X1, X2, X and R
2+, we have the same notations for the partial orders.

K = X+
1 × (−X+

2 ). Then(X,K) is also an ordered Banach space. In a similar way, we
define�K,<K,�K . By an order interval[ϕ,ψ]K onX, we mean that

[ϕ,ψ]K = {ξ ∈ X: ϕ �K ξ �K ψ}.
For a linear operatorP , we denote the spectral radius ofP by r(P ).

Consider a linear scalar equation with delayτ

u̇ = a(t)u(t) + b(t)u(t − τ). (2.1)
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(H) a(t) andb(t) areT -periodic and continuous, andb(t) > 0 ∀t � 0.

Let ut (ϕ) be the solution semiflow for Eq. (2.1) defined byut (ϕ)(s) = u(t + s, ϕ) ∀s ∈
[−τ,0], whereu(t, ϕ) is the unique solution of (2.1) withu(s,ϕ) = ϕ(s) ∈ Y+. In what
follows, we always applyu(t, ϕ) to a solution of a certain system, andut (ϕ) to the associ-
ated solution semiflow. Sinceb(t) > 0, it follows thatut (ϕ) � 0∀ϕ ∈ Y+, t � 0. Define the
Poincaré mapP :Y+ → Y+ by P(ϕ) = uT (ϕ). Then,P n(ϕ) = unT (ϕ) for integern � 0.

The following result associates the spectral radiusr(P ) with an integral of the coeffi
cients of Eq. (2.1).

Proposition 2.1. r = r(P ) is positive and is an eigenvalue ofP with a positive eigen
functionϕ∗. Moreover, ifτ = kT for some integerk � 0, thenr − 1 has the same sign a∫ T

0 (a(t) + b(t)) dt .

Proof. By assumption (H), [8, Theorem 3.6.1] and [19, Lemma 5.3.2], there exis
integerm, mT � 2τ , such thatP m is compact and strongly positive. By the Krein–Rutm
theorem (see, e.g., [11, Theorem 7.2]),rm = r(P m) > 0 and is an algebraically simp
eigenvalue ofP m with an eigenfunctionϕ∗

m � 0. SinceP is a bounded linear operato
on Y+, rm = rm. Moreover, the spectrum ofP consists of the point spectrum ofP and
the possible accumulation point being zero (see, e.g., [8, p. 192]). Thus,r is a positive
eigenvalue ofP . Let Pϕ∗ = rϕ∗. Without lose of generality, we assumeϕ∗(s0) > 0 for
somes0 ∈ [−τ,0]. SinceP mϕ∗ = rmϕ∗ = rmϕ∗, we haveϕ∗ = cϕ∗

m for some positive
constantc. Thusϕ∗ � 0.

Lettingu(t) = eλtv(t), we obtain a linear periodic equation with parameterλ,

v̇(t) = (
a(t) − λ

)
v(t) + b(t)e−λτ v(t − τ). (2.2)

DefineQ :Y+ → Y+ by Q(ϕ) = vT (ϕ), wherevt (ϕ) is the solution semiflow of Eq. (2.2
Let Eλ be a map fromY+ to Y+ defined by[Eλ(ϕ)](s) = eλsϕ(s) ∀s ∈ [−τ,0]. Then

Q(ϕ)(s) = vT (ϕ)(s) = v(T + s, ϕ) = e−λ(T +s)u
(
T + s,Eλ(ϕ)

) ∀s ∈ [−τ,0],
and hence,

Q(ϕ) = e−λT E−λ

(
uT

(
Eλ(ϕ)

)) = e−λT E−λ

(
P

(
Eλ(ϕ)

))
.

Thus, Q(E−λ(ϕ
∗)) = e−λT E−λ(P (ϕ∗)) = re−λT E−λ(ϕ

∗). Let λ0 = (1/T ) ln r . Then
E−λ0ϕ

∗ is a positive fixed point ofQ. Thusv0(t) = v(t,E−λ0(ϕ
∗)) is a positiveT -periodic

solution of (2.2), andu(t) = v0(t)e
λ0t > 0 for t � −τ . In particular, ifτ = kT for some

integerk � 0, thenv0(t) satisfies

v̇0(t)

v0(t)
= a(t) − λ0 + b(t)e−λ0τ ∀t � 0.

Integrating both sides of the above equation from 0 toT , we get

λ0 = 1

T

T∫ (
a(t) + e−λ0τ b(t)

)
dt.
0
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G(λ) = 1

T

T∫
0

a(t) dt + 1

T
e−λτ

T∫
0

b(t) dt

is strictly decreasing, andλ0 is the unique solution ofλ = G(λ), we haveλ0G(0) > 0, i.e.,
(r − 1)

∫ T

0 (a(t) + b(t)) dt > 0. The desired results are established.�
Let us consider a nonlinearT -periodic equation{

u̇ = f
(
t, u(t), u(t − τ)

)
,

u(s) = ϕ(s), −τ � s � 0,
(2.3)

whereϕ ∈ Y+ is an initial function to be specified later.
Assume that the continuous functionf (t, v1, v2) is T -periodic int and Lipschitzian in

(v1, v2) in any bounded subset ofR
2+, and satisfies

(C1) f (t,0,0) = 0, f (t,0, v2) � 0, (∂/∂v2)f (t, v1, v2) > 0 ∀v1, v2 � 0;
(C2) f is strictly sublinear, i.e., for anyα ∈ (0,1), f (t, αv1, αv2) > αf (t, v1, v2)

∀v1, v2 � 0;
(C3) there exists a positive numberL > 0 such thatf (t,L,L) � 0.

Let Pu be the Poincaré map of the linearized equation associated with Eq. (2.3) atu ≡ 0,
andr = r(Pu). Then we have the following threshold type result on the global dyna
of (2.3).

Theorem 2.1. Let (C1)–(C3)hold. Then the following statements hold.

(i) If r � 1, then zero solution is globally asymptotically stable for Eq.(2.3)with respect
to Y+.

(ii) If r > 1, then Eq.(2.3)has a unique positiveT -periodic solutionu(t, ϕ0), andu(t, ϕ0)

is globally asymptotically stable with respect toY+ \ {0}.

Proof. Let a(t) = (∂/∂v1)f (t,0,0), b(t) = (∂/∂v2)f (t,0,0). Sincef is strictly sublin-
ear,f (t, v1, v2) � a(t)v1 + b(t)v2. Note thatb(t) > 0, f (t,0, v2) � 0. By the comparison
theorem [19, Theorem 5.1.1] and the positivity theorem [19, Theorem 5.2.1], each so
u(t, ϕ) of Eq. (2.3) with initial valueϕ ∈ Y+ exists globally, andu(t, ϕ) � 0 ∀t � −τ .
Since (∂/∂v2)f (t, v1, v2) > 0, the nonautonomous version of [19, Theorem 5.3.4]
plies that for anyϕ,ψ ∈ Y+ with ϕ � ψ , ut (ϕ) � ut (ψ) ∀t � 0; and if ϕ < ψ , then
ut (ϕ) � ut (ψ) ∀t � 2τ . DefineSu :Y+ → Y+ by Su(ϕ) = uT (ϕ). ThenSu is monotone,
andSn

u is strongly monotone fornT � 2τ . Moreover, the strict sublinearity off implies
thatSu is strictly sublinear (see the proof of [25, Theorem 3.3]).

By the continuity and differentiability of solutions with respect to initial values, it
lows that the Poincaré mapSu is differentiable at zero, andDSu(0) = Pu. Sinceb(t) > 0, as
in the proof of Proposition 2.1,(DSu(0))n is compact and strongly positive for allnT � 2τ .
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u , wheren0T � 2τ . Then,Sn0

u is strongly monotone, and(DSu(0))n0

is compact and strongly positive.
For anyβ � 1, sincef is strictly sublinear, we havef (t, βL,βL) < βf (t,L,L) � 0.

Thus, [19, Remark 5.2.1] implies that for anyβ � 1, the order intervalVβ = [0, βL] is
a positive invariant set forSu, whereVβ = {ϕ ∈ Y+: 0 � ϕ(s) � βL, s ∈ [−τ,0]}. By
[8, Theorem 3.6.1],Sn0

u :Vβ → Vβ is compact for any fixedβ � 1. Then the closure
of S

n0
u ([ϕ,ψ]) is a compact subset ofVβ for any ϕ,ψ ∈ Vβ with ϕ � ψ . Furthermore,

DS
n0
u (0) = (DSu(0))n0, which is compact and strongly positive. Note thatSu is strictly

sublinear,Sn0
u is strongly monotone, and equalitiesr{(DSu(0))n0} = [r(DSu(0))]n0 =

(r(Pu))
n0 = rn0 hold. By [26, Theorem 2.3], as applied toSn0

u , we have the following
conclusions.

(i) If r � 1, then zero is a globally asymptotically stable fixed point ofS
n0
u with respect

to Vβ .
(ii) If r > 1, thenSn0

u has a unique positive fixed pointϕ0 in Vβ , andϕ0 is globally asymp-
totically stable with respect toVβ \ {0}.

By the arbitrariness ofβ, the above results hold on the whole spaceY+ for S
n0
u . It

then follows that zero solution of Eq. (2.3) is globally asymptotically stable in cas
and Eq. (2.3) admits the unique, positive andn0T -periodic solutionu(t, ϕ0) in case (ii). It
remains to prove thatu(t, ϕ0) is T -periodic. By Proposition 2.1, we know that there exis
positive eigenfunctionϕ∗ such thatDSu(0)(ϕ∗) = rϕ∗. In the case ofr > 1, for any small
ε > 0, it is easy to find an increasing sequence 0� εϕ∗ � Su(εϕ

∗) � S2
u(εϕ∗) � · · · �

Sn
u(εϕ∗) � · · · (see the proof of [29, Theorem 2.1]). On the other hand,S

n0n
u (εϕ∗) → ϕ0 as

n → ∞. Thus, by the monotonicity of the sequence ofSn
u(εϕ∗) and the continuity ofSu,

ϕ0 is a fixed point ofSu. That is,u(t, ϕ0) is aT -periodic solution. �

3. Two-species competition

In this section, we use the theory of competitive systems on Banach spaces (see
analyze the global dynamics of system (1.5) in the case of two-species competition.

In the case ofm = 2, we assume that periodic system (1.5) satisfies:

(H1) Fi(t, ui) > 0, (∂/∂ui)(uiFi(t, ui)) > 0, and (∂/∂uj )Gi(t, u1, u2) > 0 for t � 0,

ui � 0, 1� i �= j � 2.
(H2) f1(t, ·,0, ·) andf2(t,0, ·, ·) are strictly sublinear onR2+, andf1(t,L,0,L) � 0 and

f2(t,0,L,L) � 0 for some numberL > 0.

Consider the linearization of system (1.5) at zero:

u̇1(t) = b1(t)u1(t − τ1) − a1(t)u1(t), (3.1)

u̇2(t) = b2(t)u2(t − τ2) − a2(t)u2(t), (3.2)

wherebi(t) = Fi(t,0), ai(t) = Gi(t,0,0). Let P (0)
1 andP

(0)
2 be the Poincaré maps asso

ated with Eqs. (3.1) and (3.2),r01 = r(P
(0)

) andr02 = r(P
(0)

) be the spectral radii ofP (0)

1 2 1
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andP
(0)
2 , respectively. Assume that

(H3) r01 > 1, r02 > 1.

By Theorem 2.1, it then follows that there exists a unique positiveT -periodic solution
u(1)(t) to

u̇1(t) = u1(t − τ1)F1
(
t, u1(t − τ1)

) − u1(t)G1
(
t, u1(t),0

)
= f1

(
t, u1(t),0, u1(t − τ1)

)
, (3.3)

andu(1)(t) is globally asymptotically stable with respect toX+
1 \ {0}. The similar results

hold for the equation

u̇2(t) = u2(t − τ2)F2
(
t, u2(t − τ2)

) − u2(t)G2
(
t,0, u2(t)

)
= f2

(
t,0, u2(t), u2(t − τ2)

)
. (3.4)

Let u(2)(t) be the unique positiveT -periodic solution to Eq. (3.4).
Obviously,(u(1)(t),0) and (0, u(2)(t)) areT -periodic solutions of system (1.5). Lin

earizing system (1.5) at(u(1)(t),0), we have

u̇1(t) = b
(1)
1 (t)u1(t − τ1) − a

(1)
11 (t)u1(t) − a

(1)
12 (t)u2(t), (3.5)

u̇2(t) = b
(1)
2 (t)u2(t − τ2) − a

(1)
22 (t)u2(t), (3.6)

where

b
(1)
1 (t) = u(1)(t − τ1)

∂

∂u1
F1

(
t, u(1)(t − τ1)

) + F1
(
t, u(1)(t − τ1)

)
,

b
(1)
2 (t) = F2(t,0),

a
(1)
11 (t) = G1

(
t, u(1)(t),0

) + u(1)(t)
∂

∂u1
G1

(
t, u(1)(t),0

)
,

a
(1)
12 (t) = u(1)(t)

∂

∂u2
G1

(
t, u(1)(t),0

)
,

a
(1)
22 (t) = G2

(
t, u(1)(t),0

)
.

Similarly, we have the linearized system of system (1.5) at(0, u(2)(t)):

u̇1(t) = b
(2)
1 (t)u1(t − τ1) − a

(2)
11 (t)u1(t), (3.7)

u̇2(t) = b
(2)
2 (t)u2(t − τ2) − a

(2)
21 (t)u1(t) − a

(2)
22 (t)u2(t), (3.8)

where

b
(2)
1 (t) = F1(t,0),

b
(2)
2 (t) = u(2)(t − τ2)

∂

∂u2
F2

(
t, u(2)(t − τ2)

) + F2
(
t, u(2)(t − τ2)

)
,

a
(2)
11 (t) = G1

(
t,0, u(2)(t)

)
,

a
(2)
21 (t) = u(2)(t)

∂
G2

(
t,0, u(2)(t)

)
,

∂u1
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enote

f this

tion
that
a
(2)
22 (t) = G2

(
t,0, u(2)(t)

) + u(2)(t)
∂

∂u2
G2

(
t,0, u(2)(t)

)
.

Let P (1)
2 andP

(2)
1 be the Poincaré maps of Eqs. (3.6) and (3.7), respectively, and d

their spectral radii byr12 = r(P
(1)
2 ), r21 = r(P

(2)
1 ). Let ϕ∗(s1) = u(1)(s1) ∀s1 ∈ [−τ1,0],

ϕ∗∗(s2) = u(2)(s2) ∀s2 ∈ [−τ2,0], and setE0 = (0,0), E1 = (ϕ∗,0), E2 = (0, ϕ∗∗). For
any ψ ∈ X+, denote byu(t,ψ) the solution of system (1.5). Letut (ψ) be the solution
semiflow associated with system (1.5). For convenience, we setX0 = {(ψ1,ψ2) ∈ X+:
ψi �= 0, i = 1,2}. Then we have the following result.

Theorem 3.1. Let (H1)–(H3)hold and suppose thatr12 > 1, r21 > 1. Then for system(1.5):

(i) System(1.5) has two positiveT -periodic solutionsu(t,φ∗) and u(t,φ∗∗) satisfying
u(t,φ∗∗) �K u(t,φ∗), t � 0, whereφ∗, φ∗∗ ∈ int(X+) with φ∗∗ �K φ∗.

(ii) Equality

lim
t→∞

∥∥u(t,ψ) − u(t,φ∗)
∥∥= 0

holds for everyψ = (ψ1,ψ2) ∈ X+ with φ∗ �K ψ <K E1 and ψ2 �= 0. Symmetri-
cally,

lim
t→∞

∥∥u(t,ψ) − u(t,φ∗∗)
∥∥ = 0

for everyψ = (ψ1,ψ2) ∈ X+ with E2 <K ψ �K φ∗∗ andψ1 �= 0.
(iii) Equality

lim
t→∞ dist

(
u(t,ψ),

[
u(t,φ∗∗), u(t, φ∗)

]
K

) = 0

holds for any pointψ ∈ X0.

In particular, in the case whereτi = kiT for some integerski , i = 1,2, if assumptions(H1)
and (H2) hold, and

T∫
0

(
bi(t) − ai(t)

)
dt > 0,

T∫
0

(
b

(i)
j (t) − a

(i)
jj (t)

)
dt > 0

for i �= j andi, j = 1,2, then the above results hold.

In order to prove Theorem 3.1, we need the following two lemmas. In the rest o
section, we always useS to denote the Poincaré map associated with system (1.5).

Lemma 3.1. The Poincaré mapS : X+ → X+ is strictly monotone with respect to�K ,
and is a bounded map.

Proof. For anyψ ∈ X+, by the positivity theorem [19, Theorem 5.2.1] and assump
(H1), the solutionu(t,ψ) of system (1.5) is nonnegative on its existence interval. Note
assumption (H1) implies the inequalities

f1(t, u1, u2, v1) � f1(t, u1,0, v1) and f2(t, u1, u2, v2) � f2(t,0, u2, v2)
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the
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(1.5)

-

i.e.,

d

for ui, vi � 0, i = 1,2. Since the solutions for Eqs. (3.3) and (3.4) exist globally, by
comparison theorem [19, Theorem 5.1.1], the solutionu(t,ψ) for system (1.5) globally
exists for anyψ ∈ X+. By assumption (H1), it easily follows that the solutionu1(t, ϕ1) of
Eq. (3.3) is bounded byB = max{L,‖ϕ1‖}, and hence solutions for Eq. (3.3) are uniform
bounded. The same conclusions hold for Eq. (3.4). Therefore, solutions for system
are also uniformly bounded.

Let ut (ψ) be the solution semiflow of system (1.5) withu0(ψ) = ψ ∈ X+. Then,
ut (ψ) � 0 for all t � 0. Moreover, ifϕ,ψ ∈ X+ with ϕ �K ψ , by the comparison the
orem and the transformationU1 = u1,U2 = −u2, it easily follows thatut (ϕ) �K ut (ψ)

for all t � 0. Let S :X+ → X+ be the Poincaré map associated with system (1.5),
S(·) = uT (·). ThenS is monotone with respect to�K , andS is a bounded map.

It remains to prove thatS is strictly monotone with respect to�K , i.e.,S(ϕ) <K S(ψ) if
ϕ <K ψ . Suppose, by contradiction, thatS(ϕ) = S(ψ). Let u(t, ϕ) = (u1(t, ϕ), u2(t, ϕ)),
u(t,ψ) = (u1(t,ψ),u2(t,ψ)). Thenui(ti , ϕ) = ui(ti ,ψ) for all ti ∈ [T − τi, T ], i = 1,2.
Thus,

0= u̇i (ti , ϕ) − u̇i (ti ,ψ)

= ui(ti − τi, ϕ)Fi

(
ti , ui(ti − τi, ϕ)

) − ui(ti − τi,ψ)Fi

(
ti , ui(ti − τi,ψ)

)
for ti ∈ (T − τi, T ]. SinceuiFi(t, ui) is strictly increasing,ui(ti − τi, ϕ) = ui(ti − τi,ψ).
Therefore,ui(ti , ϕ) = ui(ti ,ψ) for ti ∈ (T − 2τi, T ], i = 1,2. By induction, we have
ui(ti , ϕ) = ui(ti ,ψ) for ti ∈ [−τi,0], i.e., ϕ = ψ , which contradicts toϕ <K ψ . Thus
we haveS(ϕ) <K S(ψ). �
Lemma 3.2. Supposeu∗(t) = (u∗

1(t), u
∗
2(t)) is a T -periodic solution of Eq.(1.5) with

u∗
i (t) � 0 for some1� i � 2, andu∗

j (t) ≡ 0 for j �= i. LetPj be the Poincaré map of

u̇j (t) = Fj (t,0)uj (t − τj ) − Gj

(
t, u∗

1(t), u
∗
2(t)

)
uj (t).

If rj = r(Pj ) > 1, then for any integern0 � 1, there existsδ > 0 such that

lim sup
n→∞

∥∥Sn0n(ψ) − ψ∗∥∥ � δ for all ψ ∈ int(X+),

whereψ∗ ∈ X+ is the initial function ofu∗(t).

Proof. Sinceu∗(t) is also ann0T -periodic solution ofn0T -periodic system (1.5), an
r{(Pj )

n0} = [r(Pj )]n0 = r
n0
j > 1, without loss of generality, we can assume thatn0 = 1.

It suffices to prove that there existsδ > 0 such that for anyψ ∈ int(X+) with ‖ψ −
ψ∗‖ < δ, there existsN � 1 such that‖SN(ψ) − ψ∗‖ � δ. Let b1 = mint∈[0,T ] Fj (t,0).
For anyε ∈ (0, b1), let rε be the spectral radius of the Poincaré map associated with

u̇(t) = (
Fj (t,0) − ε

)
u(t − τj ) − (

Gj

(
t, u∗

1(t), u
∗
2(t)

) + ε
)
u(t). (3.9)

Then limε→0 rε = rj > 1. In what follows, we fix a sufficient smallε ∈ (0, b1) such that
rε > 1. For this fixedε, assumption (H1) implies that there existsδ1 > 0 such that

Fj (t, uj ) > Fj (t,0) − ε ∀t ∈ [0,∞) ∀uj ∈ [0, δ1).
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Let b2 = maxt∈[0,T ] ‖u∗(t)‖. By the uniform continuity ofGj on the set[0,∞) ×
[0, b2 + 1]2, there existsδ2 > 0 such that∣∣Gj(t, u1, u2) − Gj

(
t, u′

1, u
′
2

)∣∣ < ε ∀t ∈ [0,∞),

for any u = (u1, u2), u
′ = (u′

1, u
′
2) ∈ [0, b2 + 1]2 with ‖u − u′‖ < δ2. By the continuous

dependence of solutions on initial values, there existsδ > 0 such that for anyψ ∈ int(X+)

with ‖ψ − ψ∗‖ < δ,∥∥u(t,ψ) − u∗(t)
∥∥ < δ′ = min(1, δ1, δ2) ∀t ∈ [0, T ).

Proceeding by contradiction, assume that there existsψ̄ = (ψ̄1, ψ̄2) ∈ int(X+) with
‖ψ̄ − ψ∗‖ < δ such that‖Sn(ψ̄) − ψ∗‖ < δ for all n � 1. For anyt � 0, let t = nT + t ′,
wheret ′ ∈ [0, T ), n = [t/T ] is the greatest integer less than or equal tot/T . Then,∥∥u(t, ψ̄) − u∗(t)

∥∥ = ∥∥u
(
t ′, Sn(ψ̄)

) − u∗(t ′)
∥∥ < δ′ ∀t � 0.

Let u(t, ψ̄) = (ū1(t), ū2(t)). Then

Fj

(
t, ūj (t)

)
> Fj (t,0) − ε,

and ∣∣Gj

(
t, ū1(t), ū2(t)

) − Gj

(
t, u∗

1(t), u
∗
2(t)

)∣∣ < ε ∀t � 0.

Thus,

˙̄uj (t) = ūj (t − τj )Fj

(
t, ūj (t − τj )

) − ūj (t)Gj

(
t, ū1(t), ū2(t)

)
>

(
Fj (t,0) − ε

)
ūj (t − τj ) − ūj (t)

(
Gi

(
t, u∗

1, u
∗
2

) + ε
) ∀t � 0. (3.10)

As in the proof of Proposition 2.1, Eq. (3.9) has a solutionu0(t) = v0(t)e
λ0t , where

v0(t) is a positive,T -periodic and continuous function,λ0 = (1/T ) ln rε > 0. Letϕ0(s) =
u0(s), s ∈ [−τj ,0]. Thenϕ0 � 0. Sinceψ̄j � 0, there existsη > 0 such thatηϕ0 � ψ̄j . By
the comparison theorem and inequality (3.10), we haveūj (t) � uε

j (t, ψ̄j ) � ηu0(t), where

uε
j (t, ψ̄j ) is the solution of (3.9) withuε

j (s, ψ̄j ) = ψ̄j (s) ∀s ∈ [−τj ,0]. Therefore,

lim
t→∞ ūj (t) � lim

t→∞ηu0(t) = ∞.

ThusSn(ψ̄) is unbounded, a contradiction.�
Proof of Theorem 3.1. Note that the Poincaré mapS :X+ → X+ is α-condensing andSn

is compact for sufficiently largen (see, e.g., [8, Theorem 3.6.1]). We then proceed with
steps. The first step is to verify the basic assumptions in [12] (see also [28, Sectio
for competitive systems on Banach spaces, and apply a compression theorem [28
rem 2.4.2] toSn0, wheren0 is an appropriate positive integer. In the second step, we p
that fixed pointsφ∗ andφ∗∗ of Sn0 are actually fixed points ofS.

Step 1. So far, we have shown that (1)u(1)(t) andu(2)(t) are stable positiveT -periodic
solutions for Eqs. (3.3) and (3.4), respectively, and they attract all of the solutions e
for the trivial solution; (2) the Poincaré mapS for system (1.5) is bounded and stric
monotone with respect to�K (see Lemma 3.1).
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Let Su1 andSu2 be the Poincaré maps of Eqs. (3.3) and (3.4), respectively. SinceX+
1 ×

{0} and {0} × X+
2 are clearly invariant sets for system (1.5), we haveS = (Su1,0) on

X+
1 × {0}, S = (0, Su2) on {0} × X+

1 . Therefore,

lim
n→∞Sn

(
(ϕ1,0)

) = E1 for anyϕ1 ∈ X+
1 \ {0}, and

lim
n→∞Sn

(
(0, ϕ2)

) = E2 for anyϕ2 ∈ X+
2 \ {0}.

We claim the following.

Claim. For any ϕ = (ϕ1, ϕ2) ∈ X0, u(t, ϕ) � 0 for t � τ = max(τ1, τ2). In particular,
Sn(ϕ) � 0 for all nT � 2τ .

Indeed, for eachi = 1,2, we assume thatϕi(θi) > 0 for someθi ∈ [−τi,0], i = 1,2.
Thenui(τi + θi, ϕ) > 0. In fact, ifui(τi + θi, ϕ) = 0, then

u̇i (τi + θi, ϕ) = ui(θi, ϕ)Fi

(
τi + θi, ui(θi, ϕ)

) = ϕi(θi)Fi

(
τi + θi, ϕi(θi)

)
> 0,

which implies thatui(t
′
i , ϕ) < 0 for somet ′i < τi +θi . However, by the proof of Lemma 3.

ui(t, ϕ) � 0 for all t � −τi , a contradiction. Thus, we haveui(τi + θi, ϕ) > 0. On the other
hand,

u̇i (t, ϕ) = ui(t − τi, ϕ)Fi

(
t, ui(t − τi, ϕ)

) − ui(t, ϕ)Gi(t, u1, u2)

� −ui(t, ϕ)Gi(t, u1, u2).

Then

ui(t, ϕ) � ui(τi + θi, ϕ)e
− ∫ t

τi+θi
Gi(s,u1,u2) ds

> 0 for t � τi + θi .

Therefore,ui(t, ϕ) > 0 for t � τi + θi . Thusu(t, ϕ) � 0 for t � τ = max(τ1, τ2).
Given an order intervalI = [0, α1] × [0, α2], αi ∈ X+

i , i = 1,2. Sn(I ) is precompac
because of the compactness ofSn for nT � τ (see, e.g., [8, Theorem 3.6.1]). Thus, for
nT � τ , Sn is order compact with respect to�K .

At any pointϕ = (ϕ1, ϕ2) ∈ int(X+), the Jacobi matrix of system (1.5) is

D(f1, f2) =

 D11 −ϕ1(0)

∂

∂u2
G1

(
t, ϕ1(0), ϕ2(0)

)
−ϕ2(0)

∂

∂u1
G2

(
t, ϕ1(0), ϕ2(0)

)
D22


 ,

where

Dii = ∂

∂ui

(
uiFi(t, ui)

)∣∣∣∣
ui=ϕi(−τi )

− ∂

∂ui

(
uiGi(t, u1, u2)

)∣∣∣∣
u1=ϕ1(0), u2=ϕ2(0)

,

i = 1,2. D(f1, f2) is irreducible due to assumption (H1). By [19, Theorem 5.3.4], it t
easily follows thatSn(ϕ) �K Sn(ψ) ∀nT � 3τ for anyϕ,ψ ∈ int(X+) with ϕ <K ψ .

Let ϕ,ψ be inX+ satisfyingϕ = (ϕ1, ϕ2) � 0, ψ = (ψ1,0) ∈ X+
1 × {0}, andϕ1 � ψ1.

Then ϕ <K ψ . We want to show thatSn(ϕ) �K Sn(ψ) for all large integersn. Let
u(t, ϕ) = (u1(t, ϕ), u2(t, ϕ)), u(t,ψ) = (u1(t,ψ),0). Thenu(t, ϕ) �K u(t,ψ), i.e., 0�
u1(t, ϕ) � u1(t,ψ),u2(t, ϕ) � 0. By the above claim, we haveui(t, ϕ) > 0 ∀t � τ . Thus
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we only need to prove thatu1(t, ϕ) < u1(t,ψ) ∀t > 0. Assume, by contradiction, th
u1(t0, ϕ) = u1(t0,ψ) for somet0 > 0. Since

∂

∂u2
G1(t, u1, u2) > 0 and

∂

∂u1
u1F1(t, u1) > 0,

we have

u̇1(t0, ϕ) − u̇1(t0,ψ)

= u1(t0 − τ1, ϕ)F1
(
t0, u1(t0 − τ1, ϕ)

) − u1(t0 − τ1,ψ)F1
(
t0, u1(t0 − τ1,ψ)

)
+ u1(t0,ψ)G1

(
t0, u1(t0,ψ),0

) − u1(t0, ϕ)G1
(
t0, u1(t0, ϕ), u2(t0, ϕ)

)
< 0,

which implies thatu1(t, ϕ) − u1(t,ψ) > 0 for somet < t0. The conclusion contradict
u1(t, ϕ) � u1(t,ψ) for all t � −τ1. Thus,u1(t, ϕ) < u1(t,ψ) ∀t > 0, and hence we hav
u(t, ϕ) �K u(t,ψ) for t > 0. In particular,Sn(ϕ) �K Sn(ψ) for all nT � 2τ . Similarly,
if ϕ andψ belong toX+ and satisfyϕ <K ψ,ψ ∈ int(X+) andϕ ∈ {0} × X+

2 , we have
Sn(ϕ) �K Sn(ψ) for all nT � 2τ .

Let us fix an integern0 such thatSn0 satisfies:

(1) Sn0(ϕ) � 0 for anyϕ ∈ X0.
(2) If ϕ,ψ ∈ X+ satisfyϕ <K ψ , and eitherϕ or ψ belongs to int(X+), thenSn0(ϕ) �K

Sn0(ψ).

Also, Sn0 has the following properties:

(3) Sn0 is order compact and strictly monotone with respect to�K .
(4) Sn0(E1) = E1 and

lim
n→∞Sn0n

(
(ϕ1,0)

) = E1 for anyϕ1 ∈ X+
1 \ {0}.

The symmetric results hold forE2.
(5) Sincer12 > 1, it follows from Lemma 3.2 thatE1 is an isolated fixed point ofSn0, and

Ws(E1)∩ int(X+) = ∅, whereWs(E1) is the stable set ofE1 for Sn0. The same result
hold for E0 andE2. Also, Theorem 2.1 implies thatE0 is a repelling fixed point o
Sn0.

By the compression theorem [28, Theorem 2.4.2], we have the following results foSn0.

(i) Sn0 has two positive fixed pointsφ∗ andφ∗∗ with φ∗∗ �K φ∗. Then, system (1.5
has two positiven0T -periodic solutionsu(t,φ∗) and u(t,φ∗∗) with u(t,φ∗∗) �K

u(t,φ∗).
(ii) For everyψ = (ψ1,ψ2) ∈ X+, ψ2 �= 0 andφ∗ �K ψ <K E1, limn→∞ Sn0n(ψ) = φ∗.

It then follows that

lim
t→∞

∥∥u(t,ψ) − u(t,φ∗)
∥∥ = 0.

Symmetrically, for everyψ = (ψ1,ψ2) ∈ X+ with ψ1 �= 0 andE2 <K ψ �K φ∗∗,

lim Sn0n(ψ) = φ∗∗,

n→∞
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and hence,

lim
t→∞

∥∥u(t,ψ) − u(t,φ∗∗)
∥∥ = 0.

(iii) Since

lim
n→∞ dist

(
Sn0n(ψ), [φ∗∗, φ∗]K

) = 0 for any pointψ ∈ X0,

therefore,

lim
t→∞ dist

(
u(t,ψ),

[
u(t,φ∗∗), u(t, φ∗)

]
K

) = 0.

Step 2. It remains to prove thatu(t,φ∗) andu(t,φ∗∗) areT -periodic solutions. We only
need to show thatφ∗ andφ∗∗ are fixed points ofS. In what follows, we prove thatφ∗∗ is a
fixed point forS.

By Proposition 2.1, we haveP (2)
1 e1 = r21e1, ande1 � 0. LetS∗∗ be the Poincaré ma

of the linearized system (3.7)–(3.8). We claim thatr21 is an eigenvalue ofS∗∗. Indeed, for
anyϕ ∈ X+

2 , suppose thatu(t, σ,ϕ) solves

u̇2(t) = b
(2)
2 u2(t − τ2) − a

(2)
22 u2(t) (3.11)

with initial valuesuσ = ϕ. Let W(t, σ )ϕ = ut (σ,ϕ), then W(t, σ ) is a continuous lin-
ear evolution operator. Letu1(t, e1) be the solution of Eq. (3.7) satisfyingu1(θ, e1) =
e1(θ) ∀θ ∈ [−τ1,0]. By the variation-of-constants formula, the solutions of Eq. (3.8)
be expressed by

ut (σ,ϕ) = W(t, σ )ϕ +
t∫

σ

W(t, s)X0h(s) ds, t � σ,

whereX0(θ) = 0 for θ ∈ [−τ2,0),X0(θ) = 1 for θ = 0, andh(s) = −a
(2)
21 (s)u1(s, e1) < 0.

Consider the following equation:

(
r21 − W(T,0)

)
e2 = −

T∫
0

W(T, s)X0h(s) ds, e2 ∈ X+
2 . (3.12)

Sinceu(2)(t) is a globally asymptotically stableT -periodic solution of Eq. (3.4), and it
linearized equation atu(2)(t) coincides with Eq. (3.11), we haver(W(T ,0)) � 1. Since
W(T, s)X0 > 0,

−
T∫

0

W(T, s)X0h(s) ds > 0.

By the Krein–Rutman theorem (see, e.g., [11, Theorem 7.3]), Eq. (3.12) has a u
solution e2 and e2 � 0. Let e = (e1,−e2), then e �K 0. Let P2 be the Poincaré ma
of Eq. (3.8). Then,

P2(−e2) = W(T,0)(−e2) +
T∫

W(T, s)X0h(s) ds.
0
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Thus,

S∗∗e = (
P

(2)
1 (e1),P2(−e2)

) = r21(e1,−e2) = r21e,

and hencer21 is an eigenvalue ofS∗∗ with eigenfunctione �K 0.
For anyε > 0 (note thatDS(E2) = S∗∗) we have

S(E2 + εe) = S(E2) + DS(E2)(εe) + o(ε) = E2 + ε

(
r21e + o(ε)

ε

)
.

Sincer21 > 1, (r21 − 1)e ∈ int(K), there existsε0 > 0 such that(r21 − 1)e + o(ε)/ε ∈
int(K) for any ε ∈ (0, ε0]. HenceS(E2 + εe) − (E2 + εe) �K 0; that is,E2 + εe �K

S(E2 + εe). SinceS is monotone with respect to�K , we have an increasing sequen
E2+εe �K Sn(E2+εe) �K Sn+1(E2+εe) for all n � 1. SinceE2 <K φ∗∗ andφ∗∗ � 0,
we can choose anε such thatE2 + εe �K φ∗∗. Therefore,

lim
n→∞Sn0n(E2 + εe) = φ∗∗,

and hence

lim
n→∞Sn(E2 + εe) = φ∗∗.

By the continuity ofS, it follows thatφ∗∗ is a fixed point ofS. In the same way, it is eas
to show thatφ∗ is a fixed point ofS.

In the case ofτi = kiT , if

T∫
0

(
bi(t) − ai(t)

)
dt > 0,

T∫
0

(
b

(i)
j (t) − b

(i)
jj (t)

)
dt > 0, 1� i �= j � 2,

Proposition 2.1 implies the last statement in the theorem.�
Theorem 3.1 implies that two species coexist. The following result shows tha

species drives the other one to extinction.

Theorem 3.2. Let (H1) and(H2) hold. Assume that system(1.5)has no positiveT -periodic
solution. If (H3) holds andr21 > 1, or in the case whereτi = kiT for some integerski , if

T∫
0

(
bi(t) − ai(t)

)
dt > 0 ∀i = 1,2, and

T∫
0

(
b

(2)
1 (t) − a

(2)
11 (t)

)
dt > 0,

then for anyψ ∈ X0, the solutionu(t,ψ) of system(1.5)satisfies

lim
t→∞

∥∥u(t,ψ) − (
u(1)(t),0

)∥∥ = 0.

A symmetric result holds for(0, u(2)(t)).
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Proof. In the case ofr21 > 1, by Lemma 3.2, for anyψ ∈ X0, the omega limit setω(ψ)

of Sn(ψ) cannot beE2 sinceSn(ψ) � 0 for all nT � 2τ (see the claim in the proo
of Theorem 3.1). Moreover, just as in the proof of Theorem 3.1, we can consideSn0

such thatSn0 satisfies the assumptions of Theorem A in [12]. Note that system
has no positiveT -periodic solutions, and henceS has no positive fixed points, we ha
Sn·n0(ψ) → E1(n → ∞). Therefore,

lim
t→∞

∥∥u(t,ψ) − u(t,E1)
∥∥ = lim

t→∞
∥∥u(t,ψ) − (

u(1)(t),0
)∥∥ = 0.

A symmetric result holds for(0, u2(t)). �
In practice, it is not easy to verify the nonexistence of positiveT -periodic solutions. To

establish some sufficient conditions for the conclusion of Theorem 3.2, we assume

(H4) f1(t, ·, u2, ·) andf2(t, u1, ·, ·) are strictly sublinear onR2+, whereu1, u2 � 0, and
f1(t,L,0,L) � 0, f2(t,0,L,L) � 0 for someL > 0.

Then assumption (H1) impliesf1(t,L,u2,L) � 0, f2(t, u1,L,L) � 0 for all u1, u2 � 0.
By Theorem 2.1, ifr21 > 1, then equation

u̇1(t) = f1
(
t, u1(t), u

(2)(t), u1(t − τ1)
)

admits a unique positiveT -periodic solutionu(2)
1 (t), which is globally asymptotically sta

ble with respect toX+
1 \ {0}, whereu(2)(t) is the positiveT -periodic solution of Eq. (3.4)

Let r(2)
1,2 be the spectral radius, defined by Theorem 2.1, associated with

u̇2(t) = f2
(
t, u

(2)
1 (t), u2(t), u2(t − τ2)

)
.

Then we have the following result.

Corollary 3.1. Let (H1), (H3) and (H4) hold. Then ifr21 > 1 andr
(2)
1,2 < 1, the conclusion

of Theorem3.2holds.

Proof. We use the same notation as in Theorem 3.2. Assumption (H3) impliesu(2)(t) is
globally asymptotically stable with respect toX+

2 \ {0} for Eq. (3.4). For anyψ ∈ X0, let
u(t,ψ) = (u1(t), u2(t)). Since assumption (H1) implies

u̇2(t) = f2
(
t, u1(t), u2(t), u2(t − τ2)

)
� f2

(
t,0, u2(t), u2(t − τ2)

)
,

for any smallε > 0, we haveu2(t) < u(2)(t) + ε for all t > t (ε). Therefore,

u̇1(t) = f1
(
t, u1(t), u2(t), u1(t − τ1)

)
> f1

(
t, u1(t), u

(2)(t) + ε,u1(t − τ1)
)

(3.13)

for t > t (ε). Let rε
21 be the spectral radius defined by Theorem 2.1, as applied to

u̇(t) = f1
(
t, u(t), u(2)(t) + ε,u(t − τ1)

)
. (3.14)

Then limε→0 rε
21 = r21 > 1, and hencerε

21 > 1 for all sufficiently smallε. Therefore, by
assumption (H4) and Theorem 2.1, there exists a unique positiveT -periodic solutionuε(t)
1
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for Eq. (3.14), anduε
1(t) is globally asymptotically stable with respect toX+

1 \ {0}. By
inequality (3.13), it follows that for anyε′ > 0, we haveu1(t) > uε

1(t) − ε′ for t > t (ε, ε′).
Therefore, assumption (H1) implies

u̇2(t) = f2
(
t, u1(t), u2(t), u2(t − τ2)

)
< f2

(
t, uε

1(t) − ε′, u2(t), u2(t − τ2)
)

(3.15)

for t > t (ε, ε′). Let rε′
be the spectral radius defined by Theorem 2.1, as applied to

u̇(t) = f2
(
t, uε

1(t) − ε′, u(t), u(t − τ2)
)
. (3.16)

Note that limε→0 uε
1(t) = u

(2)
1 (t) uniformly for t ∈ [0, T ] (see, e.g., [28, Theorem 1.4.1]

[21, Theorem 2.1]). We have limε,ε′→0 rε′ = r
(2)
1,2 < 1, and hencerε′

< 1 for all sufficiently
smallε andε′. Therefore, by Theorem 2.1, zero solution is globally asymptotically st
for Eq. (3.16). Thus inequality (3.15) implies limt→∞ u2(t) = 0. That is, system (1.5) ha
no positiveT -periodic solutions. Therefore, Theorem 3.2 completes the proof.�
Remark 3.1. Theorem 3.1, as applied to system (1.3) withn = 2, implies that system (1.3
is permanent and has at least one positiveT -periodic solution. In particular, if there is on
one positiveT -periodic solution, then it is globally attractive. Therefore, the conclusion
Theorem 3.1 are stronger than [17, Theorem 2.2] for system (1.3) withn = 2. Furthermore
since assumptions (H1)–(H3) are automatically satisfied for system (1.3), Theore
holds if r12 > 1, r21 > 1, or if

T∫
0

(
b

(1)
2 (t) − a

(1)
22 (t)

)
dt > 0 and

T∫
0

(
b

(2)
1 (t) − a

(2)
11 (t)

)
dt > 0

in the case ofτi = kiT , i = 1,2.

Remark 3.2. For system (1.3) withn = 2, the conditions of [17, Theorem 2.2] are sufficie
for r12 > 1 andr21 > 1 (see Lemma 3.3). Thus, Theorem 3.1 is a natural generalizati
[17, Theorem 2.2].

Lemma 3.3. If inequalities(1.4)hold, thenr12 > 1 andr21 > 1.

Proof. For system (1.3) withn = 2, the corresponding Eqs. (3.3) and (3.6) reduce to

ẋ1(t) = B1(t)x1(t − τ1) − a11x
2
1(t), (3.17)

ẋ2(t) = B2(t)x2(t − τ2) − a21(t)u
(1)(t)x2(t), (3.18)

respectively, whereu(1)(t) is the positiveT -periodic solution for Eq. (3.17). Note th
u(1)(t) is globally asymptotically stable with respect toX+

1 \ {0}, and thatr12 is the spec-

tral radius of the Poincaré mapP (1)
2 associated with Eq. (3.18). Choosingt∗ such that

u(1)(t∗) = maxt∈[0,T ] u(1)(t), we then have

0= u̇(1)(t∗) = B1(t
∗)u(1)(t∗ − τ1) − a11(t

∗)
(
u(1)(t∗)

)2
.

Therefore,

a11(t
∗)

(
u(1)(t∗)

)2 = B1(t
∗)u(1)(t∗ − τ1) � B1(t

∗)u(1)(t∗),
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and henceu(1)(t∗) � Bm
1 /al

11, where by the upper indexes we mean the same as the
inequalities (1.4).

By inequalities (1.4), it is easy to see that for anyϕ ∈ X+
2 with ϕ � 0, the solution

x(t, ϕ) of the equation

ẋ(t) = Bl
2x(t − τ2) − am

21
Bm

1

al
11

x(t)

satisfies limt→∞ x(t, ϕ) = ∞. By the proof of Proposition 2.1, it follows that Eq. (3.1
has a positive solutionu0(t) = v0(t)e

λ0t with λ0 = (1/T ) ln r12 andv0(t) being continuous
andT -periodic.

Let ϕ0(s) = u0(s), s ∈ [−τ2,0], thenϕ0 � 0. Note that

ẋ2(t) = B2(t)x2(t − τ2) − a21(t)u
(1)(t)x2(t) � Bl

2x2(t − τ2) − am
21

Bm
1

al
11

x2(t).

By the comparison theorem, we haveu0(t) � x(t, ϕ0), and hence limt→∞ u0(t) = ∞. This
implies thatλ0 > 0 and hencer12 > 1. By a similar argument, we haver21 > 1. �
Remark 3.3. Theorem 3.2 and Corollary 3.1 imply that one species persists at a po
periodic solution while the other one dies out. The conclusion of Corollary 3.1, as ap
to system (1.3) withn = 2, is the same as [17, Corollaries 2.1 and 2.2]. However
the comparison method in the proofs of Lemma 3.3 and Corollary 3.1, one can
conclude that the conditions in [17, Corollaries 2.1 and 2.2] are sufficient for the cond
in Corollary 3.1.

4. Multi-species competition

As we have seen in Section 3, the monotonicity of the Poincaré map associated w
periodic system (1.5) withm = 2 plays an important role in obtaining the global dynam
However, for system (1.5) withm � 3, we are not able to appeal to the powerful theory
monotone dynamical systems. In this section, we use the elementary comparison
to establish a set of conditions for uniform persistence in system (1.5) withm � 3. In virtue
of the persistence theory, we further obtain natural invasibility conditions for uniform
sistence and the existence of positive periodic solutions in 3-species competitive p
system (1.5).

We first considerm-species competitive system (1.5). Assume that forui � 0,1 � i �=
j � m, we have

(S1) Fi(t, ui) > 0, (∂/∂ui)(uiFi(t, ui)) > 0, (∂/∂uj )Gi(t, u1, . . . , um) > 0;
(S2) fi(t, u1, . . . , ui−1, ·, ui+1, . . . , um, ·) is strictly sublinear onR2+; and for someL > 0,

fi(t,0, . . . ,0,L,0, . . . ,0,L) � 0, whereL is at the positions of theith and(m+1)th
arguments offi except fort .

Thenfi(t, u1, . . . , ui−1,L,ui+1, . . . , um,L) � 0, for all ui � 0, l � L, i = 1,2, . . . ,m. As
analyzed before, it easily follows that solutions of system (1.5) are uniformly bounde
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Let r̄i be the spectral radius defined by Theorem 2.1, as applied to the scalar p
equation

u̇i (t) = fi

(
t,0, . . . ,0, ui(t),0, . . . ,0, ui(t − τi)

)
. (4.1)

Assume that

(S3) r̄i > 1, i = 1,2, . . . ,m.

Then for eachi, by Theorem 2.1, (4.1) admits a unique positiveT -periodic solution
ūi (t, φ̄i ), which attracts every solution of (4.1) except for zero. Letri be the spectral radiu
defined by Theorem 2.1, as applied to the scalar periodic equation

u̇(t) = fi

(
t, ū1(t, φ̄1), . . . , ūi−1(t, φ̄i−1), ui(t),

ūi+1(t, φ̄i+1), . . . , ūm(t, φ̄m), u(t − τi)
)
. (4.2)

If we assume thatri > 1, then (4.2) admits a unique positiveT -periodic solutionui(t, φi),
which attracts all solutions of Eq. (4.2) except for zero.

Let

Z+
m = C

(
m∏

i=1

[−τi,0],R
m+

)
,

Z0
m = {

ψ = (ψi)
m
i=1 ∈ Z+

m : ψi �= 0 ∀i, 1� i � m
}
.

For anyφ ∈ Z+
m , let us denote byu(t,ψ) = (ui(t))

m
i=1 the solution of system (1.5) wit

u0(ψ) = ψ . The following theorem implies that system (1.5) is uniformly persistent.

Theorem 4.1. Let assumptions(S1)–(S3)hold. Suppose thatri > 1, i = 1,2, . . . ,m. Then
system(1.5) admits a positiveT -periodic solution, and for anyψ ∈ Z0

m, the solution
u(t,ψ) of system(1.5)satisfies

lim
t→∞ dist

(
u(t,ψ),

[
u(t), ū(t)

]) = 0,

where[
u(t), ū(t)

] = {
u = (ui)

m
i=1 ∈ R

m+: ui(t, φi) � ui � ūi (t, φ̄i ) ∀1� i � m
}
.

Proof. By Theorem 2.1 and the standard two-side comparison method similar to t
the proof of Corollary 3.1, for anyψ ∈ Z0

m and any smallε, ε′ > 0, we haveuε
i (t) − ε′ <

ui(t,ψ) < ūi(t, φ̄i )+ε for t > t (ε, ε′), whereuε
i (t) is positive andT -periodic and satisfie

that

lim
ε→0

uε
i (t) = ui(t, φi) uniformly for t ∈ [0, T ].

Let ε, ε′ → 0, we have

lim
t→∞ dist

(
u(t,ψ),

[
u(t), ū(t)

]) = 0.

Let S be the Poincaré map of system (1.5). ThenS is bounded, point dissipative,α-
condensing and uniformly persistent with respect to(Z0

m, ∂Z0
m), where∂Z0

m = Z+
m \ Z0

m.
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Furthermore,Sn is compact fornT � 2τ = 2 max(τ1, τ2, . . . , τm). By [28, Theorem 1.3.6
and Remark 3.1.1],S has a coexistence stateφ0 ∈ Z0

m. Thus system (1.5) admits a positi
T -periodic solutionu(t,φ0). �

As mentioned in [23], for the periodic system (1.5) in the case ofm = 2, (ū1(t, φ̄1),0)

and(0, ū2(t, φ̄2)) (i.e., (u(1)(t),0) and(0, u(2)(t)) defined in Section 3) are the semitri
ial periodic solutions. Thenr1 > 1 andr2 > 1 (i.e.,r12 > 1, r21 > 1 in Theorem 3.1) are
natural invasibility conditions for uniform persistence. However, for them-species compe
tition periodic system (m � 3), (ū1(t, φ̄1), . . . , ūi−1(t, φ̄i−1),0, ūi (t, φ̄i ), . . . , ūm(t, φ̄m))

(1 � i � m) are not solutions of system (1.5), and hence, due to the overestimation
effect of competition, conditionsri > 1 in Theorem 4.1 are very strong conditions. In
rest of this section, we use the ideas in [23] to obtain some natural invasibility cond
for uniform persistence and existence of a positive coexistence state in the three-
competition.

Consider theT -periodic model for the three-species competition

u̇i (t) = ui(t − τi)Fi

(
t, ui(t − τi)

) − ui(t)Gi

(
t, u1(t), u2(t), u3(t)

)
= fi

(
t, u1(t), u2(t), u3(t), ui(t − τi)

)
, 1� i � 3, (4.3)

which satisfies conditions (S1)–(S3) in the case ofm = 3. For eachi, there is a correspond
ing 2-species competition system

u̇j (t) = fj

(
t, u1(t), u2(t), u3(t), uj (t − τj )

)
, ui(t) ≡ 0, j �= i, 1� j � 3. (Ri)

Suppose that each system(Ri ) satisfies the conditions either in Theorem 3.1 or in Th
rem 3.2. We consider the following three cases:

(Q1) Each(Ri ) satisfies Theorem 3.1 and admits only one positiveT -periodic solution
û(i)(t).

(Q2) both(R2) and(R3) satisfy Theorem 3.1, and each of them admits only one pos
T -periodic solution.(R1) satisfies Theorem 3.2.

(Q3) (R3) satisfies Theorem 3.1 and admits only one positiveT -periodic solution.(R1)

and(R2) satisfy Theorem 3.2.

Let

Z+
3 = C

(
3∏

i=1

[−τi,0],R
3+

)
, Z0

3 = {
(φi)

3
i=1 ∈ Z+

3 : φi �= 0 ∀1� i � 3
}
.

For anyφ ∈ Z+
3 , denote the solution of system (4.3) byu(t,φ) = (ui(t, φ))3

i=1, and the
solution semiflow byut (φ). We then have the following results.

Theorem 4.2. Let (Q1) hold. Denote byr(1) the spectral radius defined by Theorem2.1,
as applied tou̇(t) = f1(t, u(t), û(1)(t), u(t − τ1)). In the same way, we can definer(i), i =
2,3. Suppose thatr(i) > 1, i = 1,2,3. Then system(4.3) admits a positiveT -periodic
solution and is permanent in the sense that there existα > 0 andβ > 0 such that for any
φ ∈ Z0, β � lim inf t→∞ ui(t, φ) � lim supt→∞ ui(t, φ) � α.
3
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Proof. For any φ ∈ Z0
3, by the argument similar to the claim in the proof of The

rem 3.1,ui(t, φ) > 0 for all t � τ = max(τ1, τ2, τ3). For anyφ ∈ Z+
3 , defineT (t)(φ) :=

ut (φ), S(φ) := uT (φ). ThenT (t)φ,Sn(φ) ∈ int(Z+
3 ) for φ ∈ Z0

3 and t, nT � 2τ . By the
same argument as in the proof of Corollary 3.1, we haveui(t, φ) < ūi(t, φ̄i )+ ε ∀t > t (ε).

Thus, it is easy to find a numberα such that

lim sup
t→∞

ui(t, φ) � α for all i andφ ∈ Z0
3.

In particular,S is point dissipative and a bounded map (by the same argument
Lemma 3.1).

Note thatS is α-condensing and orbits of bounded sets are bounded. By [9, T
rem 2.4.7],S admits a connected global attractorA ⊂ Z+

3 . Let M1 = (0,0,0), M2 =
(φ̄1,0,0), M3 = (0, φ̄2,0), M4 = (0,0, φ̄3), M5 = (0, φ̂

(1)
2 , φ̂

(1)
3 ), M6 = (φ̂

(2)
1 ,0, φ̂

(2)
3 ),

M7 = (φ̂
(3)
1 , φ̂

(3)
2 ,0), where(φ̂

(1)
2 , φ̂

(1)
3 ), (φ̂

(2)
1 , φ̂

(2)
3 ), and(φ̂

(3)
1 , φ̂

(3)
2 ) are initial functions

of û(1)(t), û(2)(t) and û(3)(t), respectively. Clearly, allMi are fixed points ofS. For any
φ ∈ ∂Z0

3 = Z+
3 \ Z0

3, let ω(φ) be theω-limit set ofφ with respect to the discrete semiflo
{Sn}∞n=0. By assumption (Q1) and Theorem 3.1,⋃

φ∈∂Z0
3

ω(φ) = {M1,M2,M3,M4,M5,M6,M7},

and no subset of theMi ’s forms a cycle forS in ∂Z0
3. By assumptions (Q1) and (S1

simply following the proof of Lemma 3.2, we can obtain thatMi are isolated invariant se
in Z+

3 for S, andWs(Mi) ∩ int(Z+
3 ) = ∅, whereWs(Mi) is the stable set ofMi for S.

ThenWs(Mi) ∩ Z0
3 = ∅. By [27, Theorem 2.2], it follows thatS is uniformly persisten

with respect to(Z0
3, ∂Z0

3). Note thatSn is compact fornT � 2τ , by [28, Theorem 1.3.6
and Remark 3.1.1], there exists a global attractorA0 ⊂ Z0

3 for S :Z0
3 → Z0

3, andS admits a
coexistence stateφ0 ∈ A0. Sinceφ0 ∈ A0 = Sn(A0) ⊂ int(Z+

3 ) for nT � 2τ , system (4.3)
admits a positiveT -periodic solutionu(t,φ0).

Let

A∗
0 =

⋃
0�t�n0T

T (t)A0, wheren0T � 2τ.

Then by the argument given in the claim in the proof of Theorem 3.1,A∗
0 ∈ int(Z+

3 ), and
by [27, Theorem 2.1], it follows thatA∗

0 is a compact set and attracts strongly boun
sets inZ0

3. SinceT (t)φ ∈ int(Z+
3 ) for t � 2τ andφ ∈ Z0

3, A∗
0 attracts every point inZ0

3
underT (t). For everyφ ∈ A∗

0, there exists a numberβφ > 0 such thatφ � βφId , where
Id = (1,1,1). By the compactness ofA∗

0, it follows that there existsβ = β(V ) such that
φ � βId ∀φ ∈ V , whereV is a neighborhood ofA∗

0 in int(Z+
3 ). Thus for anyφ ∈ Z0

3,
T (t)φ � βId for sufficiently larget , which implies that lim inft→∞ ui(t, φ) � β. �
Theorem 4.3. Let (Q2) hold, andr32 be spectral radius defined by Theorem3.2, as applied
to (R1). Suppose thatr32 > 1, r(i) > 1, i = 2,3. Then the conclusions of Theorem4.2hold.
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Proof. We use the same notation as in the proof of Theorem 4.2. By Theorem 3
follows that

lim
n→∞Sn(φ) = (0, φ̄2,0) = M3

for any φ = (φi)
3
i=1 ∈ ∂Z0

3 with φ1 = 0 andφ2 �= 0. By assumption (Q2), Theorems 3
and 3.2,⋃

φ∈∂Z0
3

= {M1,M2,M3,M4,M6,M7},

and no subset of theMi ’s forms a cycle forSn0 in ∂Z0
3. As in the proof of Theorem 4.2

we haveS is uniformly persistent with respect to(Z0
3, ∂Z0

3). Now, the same argument
in Theorem 4.2 completes the proof.�
Theorem 4.4. Let (Q3)hold andr31 be spectral radius defined by Theorem3.2, as applied
to (R2). Suppose thatr31 > 1, r32 > 1 and r(3) > 1. Then the conclusions of Theorem4.2
hold.

Proof. We use the same notation as in the proof of Theorem 4.2. As in the proof of T
rem 4.3, assumption (Q3) implies that for anyφ = (φi)

3
i=1 ∈ ∂Z0

3 with φ1 = 0 andφ2 �= 0

lim
n→∞Sn(φ) = (0, φ̄2,0) = M3,

and for anyφ = (φi)
3
i=1 ∈ ∂Z0

3 with φ2 = 0 andφ1 �= 0

lim
n→∞Sn(φ) = (φ̄1,0,0) = M2.

Clearly,⋃
φ∈∂Z0

3

= {M1,M2,M3,M4,M7}.

Then as in the proof of Theorem 4.2,S is uniformly persistent with respect to(Z0
3, ∂Z0

3).
Now, the same argument as in Theorem 4.2 completes the proof.�
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