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The existence, uniqueness up to translation and global exponential stability
with phase shift of bistable travelling waves are established for a quasi-
monotone reaction–diffusion system modelling man–environment–man
epidemics. The methods involve phase space investigation, monotone semiflows
approach and spectrum analysis.
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trum analysis; global exponential stability.

1. INTRODUCTION

The geographic spread of infectious diseases is an important subject
in mathematical epidemiology. To model the cholera epidemic which
spread in the European Mediterranean regions in 1973, Capasso and
Paveri-Fontana [4] proposed a system of two ordinary differential equa-
tions. As a basic feature, this model involves a positive feedback inter-
action between the infective human population and the concentration of
bacteria. The human population, once infected, has a contribution to the
growth rate of bacteria, which is then returned to the environment to
increase the infection rate of humans. This kind of mechanisum seems to
be appopriate to interpret other fecally–orally transmitted epidemics such
as typhoid fever, infections hepatitis, polyometitis etc., with suitable modi-
fications. Under the assumption that the bacteria disperse randomly while
the small mobility of the infective human population is neglected, Capasso
and Maddalena [5] further obtained a reaction–diffusion system
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∂U1

∂t
(x, t) = d

∂2U1

∂x2
(x, t)−a11U1(x, t)+a12U2(x, t),

∂U2

∂t
(x, t) = −a22U2(x, t)+g(U1(x, t)). (1.1)

Here d, a11, a12 and a22 are the positive constants, U1(x, t) and U2(x, t),
respectively, denote the spatial densities of infectious agent and the infec-
tive human population at a point x in the habitat at time t � 0, 1/a11 is
the mean lifetime of the agent in the environment, 1/a22 is the infectious
period of the human infections, a12 is the multiplicative factor of the mean
infectious agent due to the human populations, and g(x) is the infection
rate of human under the assumption that total susceptible human popula-
tion is constant during the evolution of the epidemic.

System (1.1) and its corresponding reaction system have received inves-
tigations. For example, the case in which there is at most one nontrivial
endemic equilibrium was studied in [3–5,7], and it is known that above some
parameter threshold a unique nontrivial state exists and all epidemic out-
breaks tend to it (i.e., monostable case), below the parameter threshold, all
epidemics tend to extinction. In [6], the bistable case (where the correspond-
ing reaction system of (1.1) admits exactly toe nontrivial steady states) was
obtained by assuming that the infection rate g is sigma-shaped. A saddle
point structure was obtained in [6] for (1.1) with Neumann boundary con-
ditions and its reaction systems, and a complete analysis of the steady states
of (1.1) subject to Dirichlet boundary conditions and numerical simulations
were made in [8]. It was shown in [23] that system (1.1) subject to Dirchlet
boundary conditions also admits saddle behavior.

Recently, the existence of monotone traveling waves and the minimal
wave speed was established in [36] for system (1.1) in the monostable case.
Moreover, it was proven in [32] that this minimal wave speed coincides
with the asymptotic speed of spread for solutions with initial functions
having compact supports. The purpose of this paper is to study the exis-
tence, uniqueness and global exponential stability of traveling waves of
system (1.1) with bistable nonlinearity.

Various approaches exist for proving the existence of wave solutions
of parabolic equations, ranging from topoligical methods [11,19,20] to
shooting methods based on Wazewski’s principle ([13]). For scalar bista-
ble evolution equations, the existence, uniqueness and global exponential
stability of traveling waves are well known (see, e.g., [9, 18] for reaction-
diffusion equations, [29,31] for time-delayed reaction–diffusion equations).
For quasi-monotone parabolic systems with positive diffusion coefficients,
monotone traveling waves were proven to exist via topological methods
[33]. Also by topological methods, the existence and uniqueness of bistable
traveling waves were obtained in [25] and [22], respectively, for a reaction-
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diffusion model of n mutualist species, in which all diffusion coefficients
were assumed to be positive.

A standard approach to the local stability of traveling waves is to
use the linearization at the waves under study. The stability then spil-
its into two steps. The first step is to prove the linear stability implies
the nonlinear stability. That is, proving that the stability for the line-
arization implies the stability for the full nonlinear problem. The gen-
eral results can be found in [2,21] and references therein. The second
step is to analyze the linearized equations. All the information needed
is about the spectrum of the corresponding linear operator. This is the
key issue for the stability problem. For FitzHugh–Nagumo equations, the
spectrum analysis [24] shows that traveling waves are stable. For quasi-
monotone parabolic systems with positive diffusion coefficients, the location
of the spectrum was investigated in [33,34] and references therein, and the
global stability of traveling waves was obtained in [28]. In the case of positive
diffusion coefficients, a general strategy for the second step was given in [1].

Evans did a series of works for an evolution system of nerve axon
equations (see [14–17]), where a reaction–diffusion equation is coupled
with n ordinary differential equations. In [14], he completed the first step,
and the main results in [16], in fact, states that the linearized equations are
stable if all spectrum points of the linear operator except for zero lie in an
appropriate negative half-plane of the complex plane, and zero is a simple
eigenvalue. It then follows that the local stability of bistable waves of sys-
tem (1.1) reduces to the spectral analysis of the linear operator associated
with the linearization at the wave profile.

The organization of this paper is as follows. In Section 2, we establish
the existence of bistable waves for system (1.1) by a qualitative analysis of
a three dimensional ordinary differential system. In Section 3, we use a
convergence theorem for monotone semiflows to prove the global attrac-
tivity and then the uniqueness of traveliing waves (up to translations). This
method seems to be new and is of its own interest. Section 4 is devoted to
the global exponential stability of traveling waves. To do this, we analyze
in detail the point spectrum and essential spectrum of the associated lin-
ear operator, respectively, and then use the global attractivity obtained in
Section 3 and the afore-mentioned results due to Evans. A numerical sim-
ulation section completes the paper.

2. EXISTENCE OF TRAVELING WAVES

Since we are interested in the bistable case of system (1.1), throughout
the whole paper we make the following assumption on the function g.
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(A1) g ∈C2(R+), g(0)= 0, g′(0)� 0, g′(z)> 0, ∀z> 0, lim
z→∞g(z)= 1,

and there is a ξ > 0 such that g′′(z) > 0 for z ∈ (0, ξ) and
g′′(z)<0 for z>ξ .

Mathematically, we can rescale system (1.1) and only study the
rescaled system

∂U1

∂t
(x, t) = d

∂2U1

∂x2
(x, t)−U1(x, t)+αU2(x, t),

∂U2

∂t
(x, t) = −βU2(x, t)+g(U1(x, t)), (2.1)

where α=a12/a
2
11, β=a22/a11.

Let γ =β/α. Note that the global dynamics of the cooperative system

U̇1(t) = −U1(t)+αU2(t),

U̇2(t) = −βU2(t)+g(U1(t)) (2.2)

has been described in detail [6–8]. In particular, the following results are
known.

Proposition 2.1. There exists γcrit >0 such that:

(i) For γ >γcrit , (0,0)∈R2 is the only equilibrium for ODE system
(2.2). It is globally asymptotically stable in the positive quadrant
of R2;

(ii) for γ = γcrit or 0< γ � g′(0) in this case of g′(0) > 0, system
(2.2) admits a unique nontrivial equilibrium in addition to (0,0);

(iii) for g′(0)<γ <γcrit , system (2.2) has three equilibria in the first
quadrant of R2:E− = (0,0),E0 = (a, a/α),E+ = (b, b/α), where
0< a < b are two positive roots of g(x)= (β/α)x. In this case,
E0 is a saddle point, E− and E+ are stable nodes.

In order to discuss the existence of bistable waves for (2.1), i.e., trav-
eling waves connecting two stable equilibria, we further assume g′(0)<γ <
γcrit . See Fig. 1 for an illustration of three equilibria.

Let (U1(x, t),U2(x, t)) = (u1(x + ct), u2(x + ct)) be a traveling wave
solution of (2.1). Then the wave front profile (u1(τ ), u2(τ )) satisfies the
ODE system

cu′
1(τ ) = du′′

1(τ )−u1(τ )+αu2(τ ),

cu′
2(τ ) = −βu2(τ )+g(u1(τ )), (2.3)

where ′ denotes the derivatives d/dτ . Since we are interested in travelling
wave fronts connecting E− and E+, we impose the asymptotic boundary
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Figure 1. Illustration of E−, E0 and E+.

conditions on the system

u1(−∞)=u′
1(−∞)=u2(−∞)=0. (2.4)

We first consider the case where c �=0. By the second equation of sys-
tem (2.3), we have

u2(τ )= e−
β
c
(τ−τ0)u2(τ0)+ 1

c

∫ τ

τ0

e−
β
c
(τ−s)g(u1(s))ds.

Note that, as τ →−∞, u2(τ ) and g(u1(τ )) are bounded. By taking τ0 →
−∞, we obtain

u2(τ )= 1
c

∫ τ

−∞
e−

β
c
(τ−s)g(u1(s))ds

= 1
c

∫ 0

−∞
e
β
c
sg(u1(τ + s))ds, ∀τ ∈R. (2.5)

Therefore, if u1(τ ) is increasing with

u1(−∞)=0, u1(+∞)=b, (2.6)

then u2(τ ), defined by formula (2.5), is also increasing and satisfies

u2(−∞)=0, u2(+∞)= b

α
.

Consequently, it suffices to consider positive and increasing solutions u1(τ )

of system (2.3) subject to the boundary conditions (2.6).
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Let u3 =u′
1. Then system (2.3) is equivalent to

u′
1(τ ) = u3(τ ),

u′
2(τ ) = 1

c
(−βu2(τ )+g(u1(τ ))),

u′
3(τ ) = 1

d
(cu3(τ )+u1(τ )−αu2(τ )). (2.7)

Obviously, system (2.7) admits three equilibria: (E−,0), (E0,0) and (E+,0).
The Jacobian matrix of (2.7) is

J =



0 0 1
1
c
g′(z) −β

c
0

1
d

−α
d
c
d


 .

Let f (λ,m) := (λ+ β
c
)(−λ2 + c

d
λ+ 1

d
)−m. Then, at the point (E−,0)

the eigenvalues of J are given by the roots of f (λ, α
cd
g′(0)) = 0. Since

f (λ,β/cd) admits three real zero points: λ1 < 0, λ2 = 0, λ3 > 0, and 0 �
g′(0)<β/α, it follows that at (E−,0), J admits a positive eigenvalue λ(c)
and two negative eigenvalues. Therefore, system (2.7) has an one-dimen-
sional unstable manifold corresponding to λ(c) at (0, 0, 0). Denote by Uc
this manifold. Note that (1, g′(0)/(β+cλ(c), λ(c))) is an eigenvector corre-
spondinig to λ(c). It is easy to prove the following lemma for the solution
on Uc (see, e.g., [10]).

Lemma 2.1. Assume that c �= 0. Then system (2.3) and (2.4) has
exactly one positive solution on Uc (up to translations). For sufficiently large
negative τ , this solution satisfies

u′
1(τ )=u3(τ )=λ(c)u1(τ )+O(u1(τ )), u2(τ )= g′(0)

β+ cλ(c)u1(τ )+O(u1(τ )).

Remark 2.1. If g′(0) = 0, we assume that g′′(0) �= 0. Then u2(τ )

Lemma 2.1 can be approximated by

u2(τ )= g′′(0)
2β+4cλ(c)

u1(τ )+O(u2
1(τ )) (τ→−∞).

In the case where c=0, system (2.3) is equivalent to

dy′′
1 (τ )−y1(τ )+ α

β
g(y1(τ ))=0

y′
1(τ )=y3(τ ), y′

3(τ )=
1
d

(
y1(τ )− α

β
g(y1(τ ))

)
(2.8)
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with boundary conditions y1(−∞)= y3(−∞)= 0. In what follows, we are
only interested in positive and increasing solutions u1(τ ) and y1(τ ) of (2.3)
and (2.8), respectively. As long as y′

1(τ )� 0, for the trajecatory �(η) :=
y3(y

−1
1 (η)) we have the following graph equation in (y1, y3) phase space

�̇(η)=
η− α

β
g(η)

d�(η)
for η>0. (2.9)

In the case where c �= 0, as long as u′
1(τ )� 0, for V (η) := u′

1(u
−1
1 (η))

(η=u1(τ )) we have

V̇ (η)= c

d
+ η−αu2(τ )

dV (η)
for η>0, (2.10)

where u2(τ )= u2(u
−1
1 (η)). For the solutions of (2.10) associated with the

trajectory for (2.3) and (2.4), the boundary conditions (2.4) and Lemma
2.1 provide

V (0+)=0, V̇ (0+)=λ(c). (2.11)

Our proofs involve continuous “switching” between solutions for the
graph equation (2.10) and the original system (2.3) or (2.7). So we first
give the following lemma on some general properties of trajectories V (η)
with (2.11), which will be frequently used. Let u(τ)= (u1(τ ), (u2(τ ), (u3(τ ))

be the solution of system (2.7) associated with V (η).

Lemma 2.2. Let c>0. Then the following statements hold.

(i) V (η)>0, and V̇ (η)� c
d
>0 for η∈ (0, a].

(ii) Let η̄= inf {η ∈ (0, b] :V (η)= 0}. Then η̄ > a, and η̄ < b implies
that lim

n↗η̄

V (η)
η−η̄ =−∞.

Proof. (i) As long as V (η) is well defined (i.e., u′
1(τ )=u3(τ )� 0), it

follows from (2.5) that u2(τ )� (1/β)g(u1(τ )) for u1(τ )∈ (0, b]. Therfeore,
for u3(τ )>0 and u1(τ )∈ (0, a], we have u2(τ )� (1/β)g(u1(τ ))� (1/α)u1(τ )

(see Fig. 1). We claim that u′
3(τ ) > 0 as long as u1(τ ) ∈ (0, a]. Indeed,

Lemma 2.1 implies that u3(τ )> 0 for small positive u1(τ ). It follows that
for small u1(τ ) there holds

u′
3(τ )=

1
d
(cu3(τ )+u1(τ )−αu2(τ ))�

1
d
cu3(τ )>0.

Suppose, by contradiction, that τ0 ∈R is the first point such that u′
3(τ0)=0

and u1(τ0)∈ (0, a]. Then

1
d
(cu3(τ0)+u1(τ0)−αu2(τ0))=0 and u3(τ0)>0.
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Therefore u1(τ0)<αu2(τ0), and hence u1(τ0)>a, a contradiction. It then
folows that u3(τ )>0 and αu2(τ )�u1(τ ) as long as u1(τ )∈ (0, a]. Thus, for
η ∈ (0, a], we have V (η) > 0 and V̇ (η)= (c/d)+ (u1(τ )−αu2(τ ))/dV (η)�
(c/d)>0, where τ =u−1

1 (η).

(ii) Clearly, η̄ > a. Suppose that η̄ < b. Then u′
3(τ̄ )= 0 and u′

3(τ̄ )� 0,
where τ̄ =u−1

1 (η̄). We claim that u′
3(τ̄ )<0. Suppose, by contradiction, that

u′
3(τ̄ )=0. Then u1(τ̄ )−αu2(τ̄ )=0, and τ̄ <+∞. Moreover, we can choose

a small ε>0 such that for τ ∈ (τ̄ −ε, τ̄ ), u′
3(τ )�0 and u3(τ )>0, and hence,

u1(τ )− αu2(τ ) < 0. Using (2.5) and the fact that u′
1(τ ) > 0 for τ < τ̄ , we

then have

0�u′
1(τ̄ )−αu′

2(τ̄ ) = u3(τ̄ )− α

c

(
−βu2(τ̄ )+g(u1(τ̄ ))

)

= −α
c

(
−βu2(τ̄ )+g(u1(τ̄ ))

)
<0,

a contradiction. Thus u′
3(τ̄ )<0, and hence

lim
η↗η̄

V (η)

η− η̄ = lim
τ↗τ̄

u′
3(τ )

u′
1(τ )

= lim
τ↗τ̄

u′
3(τ )

u3(τ )
=−∞.

Assume that
∫ b

0 ((α/β)g(z)− z)dz>0. Let

Nk ={(η, ζ )∈R2 : ζ 2/2+F(η)=k}\{(0,0), (a,0), (b,0)},

where F(η)= (1/d)
∫ η

0 ((α/β)g(z)− z)dz. Since z > (α/β)g(z) for z ∈ (0, a)
in the case of g′(0)<γ <γcrit (see Fig. 1), k0 =F(a)<0. Note that Nk are
exactly the trajectories of solutions to system (2.8), and k�0 gives exactly
the trajectories intersecting ζ -axis (see Fig. 2). For k�0, we define N+

k =
Nk ∩{(η, ζ )∈ R2 : ζ > 0} and denote by �k(η), the solution of Eq. (2.9) in
N+
k . Let Vc(η) be the solution of Eqs. (2.10) and (2.11) with the velocity of

c and uc(τ )=(u1(τ ), u2(τ ), u3(τ )) be the solution of system (2.7) with (2.4)
corresponding to Vc(η). Then we have the following result on the relation-
ship between �k and Vc or uc.

Lemma 2.3. For c > 0 and u3(τ ) > 0, (u1(τ ), u3(τ )) crosses through
increasing level sets N+

k with increasing τ when u1(τ ) ∈ (0, b). That is,
Vc(η) intersects a level set N+

k at most once for η ∈ (0, b). Furthermore,
at the point of intersection (ηk,Vc(ηk))= (ηk,�k(ηk)), there holds V ′

c(ηk)�
(c/d)+� ′

k(ηk).
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Figure 2. Phase portrait of (2.8).

Proof. Note that u2(τ )� (1/β)g(u1(τ )) whenever u1(τ ) ∈ (0, b). We
then have

d
dτ
k = d

dτ

(
1
2
u2

3(τ )+F(u1(τ ))

)
=u3(τ )u

′
3(τ )+

1
d

(
α

β
g(u1(τ ))−u1(τ )

)
u′

1(τ )

= c

d
u2

3(τ )+
1
d
u3(τ )

(
α

β
g(u1(τ ))−αu2(τ )

)
>0.

This proves the first part of the result. The second part follows from a
direct computation

V ′
c(ηk)=

c

d
+ ηk −αu2(τk)

Vc(ηk)
� c

d
+
ηk − α

β
g(ηk)

�k(ηk)
= c

d
+� ′

k(ηk).

Now we are ready to prove the main result of this section.

Theorem 2.1. Assume that g′(0) < γ < γcrit . Then there exists a
wave speed c∗ such that system (2.1) has a nontrivial strictly mono-
tone wave solution connecting E− and E+, and c∗ has the same sign as∫ b

0 ((α/β)g(z)− z)dz. Moreover, c∗ =0 iff the integral vanishes.

Proof. Without loss of generality, we assume that
∫ b

0

(
α

β
g(z)− z

)
dz�0. (2.12)
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Otherwise, by the change of varibles V1 =b−U1, V2 = (1/α)b−U2, we can
transform the original system (2.1) into

∂

∂t
V1(x, t) = d

∂2

∂x2
V1(x, t)−V1(x, t)+αV2(x, t),

∂

∂t
V2(x, t) = G(V1(x, t))−βV2(x, t),

where G(z)=g(b)−g(b−z). since g(b)= (β/α)b,G(z) satisfies assumption
(A1)on [0,b) and (2.12).

If c∗ = 0, the heteroclinic orbit of system (2.8) implies that the inte-
gral (2.12) vanishes. Conversely, if the integral vanishes, there is a nont-
rival wave solution of the ODE system (2.3) with velocity c=0. Therefore,
we restrict ourselves to the positive integral.

Let N∗ :=N+
F(b) be the level curve through the critical point (b,0) and

�∗(η) :=�F(b)(η) be the corresponding solution. Define

E={c>0 :Vc and N∗ intersect at (ηc,Vc(ηc))=(ηc,�∗(ηc)) with ηc ∈ (0, b]}.

In the rest of the proof, we proceed with four steps.

Step 1: E �= ∅. For c>0 and η∈ (0, a], we have Vc(η)>0 and V̇c(η)�
c/d > 0. If V̇c(η) > 0 for η ∈ (a, b), then Vc(η) must inter-
sect with N∗ on (0,b]. Suppose that V̇c(η0)= 0 for η0 ∈ (a, b).
Then Vc(η0)= (1/c)(αu2(τ0)−u1(τ0))>Vc(a)−Vc(0)=aV̇ (η1),
where η1 ∈ (0, a), τ0 =u−1

1 (η0). We then have αu2(τ0)−u1(τ0)>

(c2/d)a. Note that 0 < u2(τ0) � (b/α). Thus, whenever, c2 �
(bd/a), we have V̇c(η)> 0 for η∈ (a, b). Then Vc(η) intersects
N∗. Thus, E �=∅.

Step 2: c= inf E>0. Let m>0 be a constant. Consider the line V =
−m(η− b)(η ∈ [0, b]). If Vc(η) intersect with this line, then at
the intersection we have

V̇c(η)= c

d
− η−αu2

md(η−b) � c

d
+ b−η
md(η−b) = 1

d

(
c− 1

m

)
.

For any sufficiently small c>0, we can choose m∈ (0,−c/2 +√
1+ c2/4) such that c − 1/m < −m. Then we must have

Vc(ηc)= 0 for some ηc ∈ (a, b]. Thus, by Lemma 2.3, Vc does
not intersect with N∗ on (0,b]. Therefore, c>0.

Step 3: c ∈E. Suppose, by contradiction , that Vc(η) does not inter-
sect with N∗. Then Lemmas 2.2 and 2.3 imply that Vc(η̄)= 0
for η̄∈ (a, b]. If η̄=b, we are done.
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Assume that η̄ <b. Let P1 be a small plane in a small neigh-
borhood of (0,0,0) in (u1, u2, u3) phase space, which is nor-
mal to the eigenvector (1,m(c), λ(c)) corresponding to the
eigenvector λ(c), where m(c) = g′(0)/(β+ cλ(c)). By Lemma
2.1, the trajectory uc(τ ) transversely intersects with P1 at Ic.
By the local continous dependence of Uc on c, for all c in
a small neighborhood of c, uc(τ ) transversely crosses through
P1 at Ic and lim

c→c
Ic= Ic Without loss of generality, we assume

that uc(0)= Ic, uc(0)= Ic. Let P2 = {(u1, u2, u3) ∈ R3 : u1, u2 >

0, u3 = 0}. Then, Lemma 2.2 implies that uc(τ ) transversely
intersects P2 at (η̄, u2(u

−1
1 (η̄)),0). By the continuous depen-

dence of solutions on parameters and initial values, for all Ic
in a sufficiently small neighborhood of Ic, uc(τ ) transversely
intersects P2. Thus, we can choose a c > c such that uc(τ )
intersects P2. That is, Vc(η)=0 for some η∈ (a, b). By Lemma
2.3, Vc(η) has no intersection points with N∗. Hence c<c /∈E,
which contradicts the definition of c. Therefore, Vc does inter-
sect with N∗. That is, c∈E.

Step 4. ηc = b. Suppose that ηc < b. Let P3 = {(u1, u2, u3) ∈ R3 :
(u1, u3)∈N∗, u2 > 0}. Then by Lemma 2.3, uc(τ ) transversely
intersects P3 at (ηc, u2(u

−1
1 (ηc)),Vc(ηc)). By the same argu-

ment as in step 2, we obtain that, as c→ c, uc(τ ) transversely
intersects P3 at (ηc, u2(u

−1
1 (ηc)),Vc(ηc)), and ηc → ηc < b. It

follows that there exists a δ>0 such that c−δ∈E, which con-
tradicts the definition of c.

Remark 2.2. Note that

∫ b

0

(
α

β
g(z)− z

)
dz=α

[∫ b

a

(
1
β
g(z)− 1

α
z

)
dz−

∫ a

0

(
1
α
z− 1

β
g(z)

)
dz

]
.

By Theorem 2.1, it then foliows that exists γ̄ ∈ (g′(0), γcrit) such that c∗>
0 if γ ∈ (g′(0), γ̄ ), and c∗<0 if γ ∈ (γ̄ , γcrit).

3. ATTRACTIVITY AND UNIQUENESS

In this section, we discuss the global attractivity and uniqueness of
travelling waves of system (2.1). For convenience, in the rest of the paper
we considr a more general quasi-monotone system
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∂U1

∂t
(x, t) = d

∂2U1

∂x2
(x, t)+F 1(U1(x, t),U2(x, t)),

∂U2

∂t
(x, t) = −βU2(x, t)+g(U1(x, t)) :=F 2(U1(x, t),U2(x, t)). (3.1)

Assume that

(A2) There exists l > 0 such that F 1 ∈ C2((−l,∞)2,R), and
(∂/∂u1)F

1(u1, u2)<0, (∂/∂u2)F
1(u1, u2)>0 for (u1, u2)∈ (−l,∞)2.

(A3) F 1(0,0)= 0, and for any l2 � 1/β, there exists l1 > 0 such that
F 1(l1, l2)<0.

Without loss of generality, we may assume that the function g admits a
smooth extension defined on (−l,∞) with g′(z)�0 for z∈ (−l,0). In what
follows, we use notations

F ij (u1, u2):= ∂

∂uj
F i(u1, u2), F ijk(u1, u2):= ∂2

∂uj ∂uk
F i(u1, u2), 1� i, j, k�2.

Consider the ODE system

w′
1(t)=F 1(w1(t), w2(t)),

w′
2(t)=F 2(w1(t), w2(t)). (3.2)

Because of our assumptions on F 1 and g, system (3.2) is cooperative on
R2+. Hence the comparison principle implies that every solution to (3.2)
with nonnegative initial values remains nonnagative. By the standard com-
papison arguments, it easily follows that solutions of (3.2) on R2+ are uni-
formly bounded and ultimately bounded. Thus, each solution of (3.2) with
nonnagative initial values exists globally on [0,∞), and the solution semi-
flow of (3.2) is compact, point dissipative, and monotone on R2+.

Obviously, E− is an equilibrium of (3.2). We further assume that
(3.2) admits two nonnagative equilibrim in R2+. With a little abuse of
notations, we denote them by E0 and E+. Furthermore, suppose that
E− � E0 � E+, and E± are stable nodes and E0 is a saddle point,
where “�” means that components of the two vectors satisfy “<”. Define
[E−,E0] = {w ∈ R2+ : E− � w � E0} and [E0,∞)= {w ∈ R2+ : E0 � w}. By
the Dancer–Hess connecting orbit lemma (see [12, Proposition 1]) and [30,
Therom 2.3.2], as applied to [E−,E0] and [E0,∞), respectively, it follows
that limt→∞w(t,w0)=E− for w0 ∈ [E−,E0]\{E0} and limt→∞w(t,w0)=
E+ for w0 ∈ [E0,∞)\{E0}, where w(t,w0) is the solution to (3.2) with
w(0,w0)=w0 ∈R2+.
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Let X :=BUC(R,R2) be the Banach space of all bounded and uni-
formly continouous functions from R to R2 with the usual supreme norm.
Let X+ = {(ψ1,ψ2)∈ X : ψi(x)� 0,∀x ∈ R, i = 1,2}. It is easy to see that
X+ is a closed cone of X and its induced partial ordering makes X into a
Banach lattice. For any ψ1 = (ψ1

1 ,ψ
1
2 ),ψ

2 = (ψ2
1,ψ

2
2)∈X, we write ψ1 �X

ψ2 if ψ2 −ψ1 ∈X+,ψ1<Xψ
2 if ψ2 −ψ1 ∈X+\{0},ψ1 �Xψ

2 if ψ2 −ψ1 ∈
int (X+). For ψ1,ψ2 ∈ X with ψ1 �x ψ

2, let [ψ1,ψ2]X = {ψ ∈ X : ψ1 �X

ψ�Xψ
2}.

To prove the global attractivity and uniqueness of travelling waves, we
need a series of lemmas.

Lemma 3.1. For any ψ ∈X+, system (3.1) has a unique, bounded and
nonnegative solution U(x, t,ψ) with U(·,0,ψ)=ψ , and the solution semi-
flow of (3.1) is monotone. Moreover, U(x, t,ψ1)�U(x, t,ψ2) for t >0 and
x ∈R whenever ψ1,ψ2 ∈X+ with ψ1<Xψ

2.

Proof. Let T1(t) be the analytic semigroup on BUC(R,R) gen-
erated by ∂u/∂t = ∂2u/∂x2, and T2(t)ψ2 = e−βtψ2,∀ψ2 ∈ BUC(R,R).

Clearly, T (t)= (T1(t), T2(t)) is a linear semigroup on X. Let B(ψ)(x)=
(F 1(ψ1(x),ψ2(x)), g(ψ1(x))),∀ψ = (ψ1,ψ2) ∈ X+. Then a mild solution
U(t) of (3.1) is defined as a solution to the integral equation

U(t)=T (t)U(0)+
∫ t

0
T (t− s)B(U(s))ds.

It is easy to check the quasi-monotonicity of B(ψ). By [26, corollary 5]
(taking delay as zero), it then follows that for any ψ ∈ X+, system (3.1)
has a unique nonnegative and noncontinuable mild solution U(x, t,ψ) sat-
isfying U(·,0,ψ)=ψ . Moreover, by a semigroup theory argument given in
the proof of [26, Theorem 1], it follows that U(x, t,ψ) is a classical solu-
tion for t >0. Note that [26, Corollary 5] also implies that the comparison
principle holds for system (3.1). By the comparison argument, solutions
of (3.1) on X+ are uniformly bounded. Therefore, system (3.1) defines a
monotone solution semiflow on X+.

Suppose that ψ1,ψ2 ∈ X+ with ψ1<X ψ
2. Then U(x, t,ψi)� 0,∀x ∈

R, t�0. Let U(x, t)=U(x, t,ψ2)−U(x, t,ψ1). Then U(x, t)�0,∀x∈R, t�
0, and U(·,0) �≡0. Note that the first component U1(x, t) of U(x, t) satis-
fies

U1,t = dU1,xx +
2∑
i=1

Ui

∫ 1

0
F 1
i (sU(x, t,ψ

2)+ (1− s)U(x, t,ψ1))ds (3.3)

� dU1,xx +U1

∫ 1

0
F 1

1 (sU(x, t,ψ
2)+ (1− s)U(x, t,ψ1))ds, (3.4)
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and the second component U2(x, t) of U(x, t) satisfies

U2,t =−βU2 +A(x, t)U1,

where A(x, t)=∫ 1
0 g

′(sU1(x, t,ψ
2)+(1−s)U1(x, t,ψ

1))ds, and U1(x, t,ψ
1),

U1(x, t,ψ
2) are the first components of U(x, t,ψ1) and U(x, t,ψ2), respec-

tively. It then follows that

U2(x, t)= e−βtU2(x,0)+
∫ t

0
e−β(t−s)A(x, s)U1(x, s)ds. (3.5)

In the case where U1(·,0) �≡ 0, the strict positivety theorem [33,
Theorem 5.5.4] and inequality (3.4) imply that U1(x, t) > 0,∀x ∈ R, t > 0.
Since g′(z) > 0 for z > 0, (3.5) implies U2(x, t) > 0,∀x ∈ R, t > 0. Thus,
U(x, t,ψ1)�U(x, t,ψ2) for x ∈R, t >0.

In the case where U2(·,0) �≡ 0, it follows from (3.5) that U2(·, t) �≡ 0
for t � 0. Since F 1

2 > 0 on R2+. the equality (3.3) implies that U1(., t) �≡
0 for t >0, and hence by the inequality (3.4) and [33, Theorem 1.4.5], we
must have U1(x, t) > 0, ∀x ∈ R, t > 0. Therefore, it follows from (3.5) that
U2(x, t)>0, ∀x ∈R, t >0. Thus U(x, t,ψ1)�U(x, t,ψ2), ∀x ∈R, t >0.

In view of Section 2, we suppose that ϕ(x− ct)= (ϕ1(x− ct), ϕ2(x−
ct) is a strictly increasing travelling wave solution of (3.1) connecting
E− and E+. By the moving coordinate z=x−ct, we transform (3.1) into
the following system:

u1,t (z, t) = cu1,z(z, t)+du1,zz(z, t)+F 1(u1(z, t), u2(z, t)), (3.6)

u2,t (z, t) = cu2,z(z, t)+F 2(u1(z, t), u2(z, t)).

Then ϕ(z) is an equilibrium solution of system (3.6). In what follows, we
denote by u(z, t,ψ)= (u1(z, t), u2(z, t)) the solution of system (3.6) with
u(·,0,ψ) = ψ ∈ X+. Clearly, the solution U(x, t,ψ) of (3.1) with initial
value ψ is given by U(x, t,ψ)=u(x− ct, t,ψ). As noted before, the com-
parison principle holds for (3.1) and hence for (3.6). For convenience, we
set

N1(u1, u2) := u1,t (z, t)− cu1,z(z, t)−du1,zz(z, t)−F 1(u1(z, t), u2(z, t))=0,

N2(u1, u2) := u2,t (z, t)− cu2,z(z, t)−F 2(u1(z, t), u2(z, t))=0.

Lemma 3.2. If ψ= (ψ1,ψ2)∈X+ satisfies

lim sup
ξ→−∞

ψ(ξ)�E0 � lim inf
ξ→∞

ψ(ξ), (3.7)

then, for any ε > 0, there exist z̃= z̃(ε,ψ)> 0 and a large time t̃ = t̃ (ε,ψ)
such that ϕ(z− z̃)− ε�u(z, t̃ ,ψ)�ψ(z+ z̃)+ ε.
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Proof. Without loss of generality, we assume that ψ(ξ) � l1,∀ξ ∈
R and ψ(ξ) � l2, ∀ξ � 0, where l1, l2 ∈ R2+, l1 � E+,E− � l2 � E0. Let
v+(t)= (v+

1 (t), v
+
2 (t)) :=w(t,2l1 − l2) and v−(t) :=w(t, l2) be the solution

of the reaction system (3.2) with v+(0)=2l1 − l2, v−(0)= l2. Define ς(s)=
(1/2)(1+ tanh(s/2)). Then ς ′ =ς(1−ς), ς ′′ =ς ′(1−2ς). Let

c̄ = c+d+ sup{ (v
+
1 (t)−v−

1 (t))
2

v+
i (t)−v−

i (t)
|F i11(θ)|+

(v+
2 (t)−v−

2 (t))
2

v+
i (t)−v−

i (t)
|F i22(θ)|

+2(v+
j (t)−v−

j (t))|F i12(θ)| : t ∈ [0,+∞), θ ∈ (v−(t), v+(t)),1� i �= j �2}.
Let c̃� c̄ be a fixed number, and define the function

v(z, t)=v+(t)ζ(z+ c̃t)+v−(t)(1− ζ(z+ c̃t)), ∀z∈R, t�0.

It easily follows that v(·,0)�ψ(·). We further claim that v(z, t) is a super-
solution of system (3.6). Indeed, by Taylor’s expansion, we have

�i := ζF i(v+)+ (1− ζ )F i(v−)−F i(ζv+(1− ζ )v−)

= 1
2
ζ(1− ζ )(v+

1 −v−
1 )

2F i11(θ)+
1
2
ζ(1− ζ )(v+

2 −v−
2 )

2F i22(θ)

+ζ(1− ζ )(v+
1 −v−

1 )(v
+
2 −v−

2 )F
i
12(θ),

where θ ∈ (v−(t), v+(t)). For each i=1,2, and (z, t)∈R×R+, we have

Ni(v(z, t)) = vi,t (z, t)− cvi,z(z, t)−divi,zz(z, t)−F i(v(z, t))
= ζF i(v+)+ (1− ζ )F i(v−)−F i(v(z, t))

+ζ(1− ζ )[(c̃− c)(v+
i −v−

i )−di(1−2ζ )(v+
i −v−

i )]�0,

where d1 =d, d2 =0, and vi(z, t) is the i-th component of v(z, t). Therefore
v(z, t) is a super-solution of system (3.6).

Thus, by the comparison principle we have u(z, t,ψ)� v(z, t),∀t � 0.
Note that lim

t→∞v
±(t)=E±. It then follows that for any ε > 0, there exists

t̃ = t̃ (ε,ψ)>0 and z̃= z̃(ε,ψ)∈R such that u(z, t̃ ,ψ)�ϕ(z+ z̃)+ ε,∀z∈R.
A similar estimate on the lower bound of the solution completes the proof.

Note that E± are stable nodes for the reaction system (3.2), i.e.,
the Jacobian matrixes (F ij (E

±)) have only negative eigenvalues. Let A± =
(µ±
ij ) be the constant matrixes so that F ij (E

±)<µ±
ij ,1 � i, j � 2, and that

A± are irreducible and have only negative eigenvalues. Denote by ρ± =
(ρ±

1 , ρ
±
2 ) the positive eigenvectors corresponding to the principle eigen-

values of A±. Let ρ1(ξ), ρ2(ξ) be smooth positive functions such that
ρ(ξ)= (ρ1(ξ), ρ2(ξ))→ρ± in C2-topology as ξ→±∞. Motivated by [27],
we have the following result on super- and sub-solution for (3.6).
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Lemma 3.3. There exist positive numbers σ and ς0 such that for any
ς �ς0, any ẑ∈R, and ε∈ (0, ε0(ς)),

w±(z, t)=ϕ(z± ẑ±ςε(1− e−σ t ))± ερ(z± ẑ)e−σ t , ∀z∈R, t�0,

are super- and sub-solutions of systems (3.6), respectively.

Proof. Clearly, there exist δ, k>0 such that

F ij (u)�µ±
ij for ‖u−E±‖� δ, u∈R2, 1� i, j �2, (3.8)

2∑
j=1

µ±
ij ρj �−kρi for ρ= (ρ1, ρ2)∈R2

+ with ‖ρ−ρ±‖� δ, i=1,2.

Since ϕ(ξ) → E±, ρ(ξ) → ρ±, ρ′(ξ), ρ′′(ξ) → 0 as ξ → ±∞, there exist
ε1,M >0 such that

k− cε1 −dε1>0,

|ρ′
i (η)|, |ρ′′

i (η)|� ε1ρi(η), ∀|η|�M−1, i=1,2,

‖ρ(η)−ρ+‖� δ, ∀η�M−1; ‖ρ(η)−ρ−‖� δ, ∀η�−M+1, (3.9)

‖ϕ(ξ)+ ερ(η)−E+‖� δ, ∀ε∈ (0, ε1], ξ �M−1, η�M−1,

‖ϕ(ξ)+ ερ(η)−E−‖� δ, ∀ε∈ (0, ε1], ξ �−M+1, η�−M+1.

Let B1>0 so that ‖ρ(η)‖,‖ρ′(η)‖,‖ρ′′(η)‖�B1 for all η∈R. Define

B2 = sup{|F ij (u)| : u∈ [E− − δ�e,E+ +B1�e]},B3 = inf
‖ξ‖�M

‖ϕ′(ξ)‖.

Choosing 0<σ �k− cε1 −dε1, set

ς �ς0 = B1

σB3
(B2 +σ + c+d), ε0 =min

{
ε1,

1
ς

}
.

With q=e−σ t , the argument of ϕ and ϕi being ξ=z+ ẑ+ςε(1−e−σ t ) and
ρ,ρi being η= z+ ẑ, for any ε∈ (0, ε0), we have

Ni(w
+(z, t)) = w+

i,t (z, t)− cw+
i,z(z, t)−diw+

i,zz(z, t)−F i(w+(z, t))
= F i(ϕ)−F i(ϕ+ ερq)+ εςσqϕ′

i − (ρiσ + cρ′
i +diρ′′

i )εq,

where d1 =d, d2 =0. We distinguish among three cases.
Case (i): |ξ |�M.Note that F ij >0 for i �= j,F ij �0 for i= j , and ϕ′

i >0.
By the choice of ε0, ς, and σ , we have

F i(ϕ)−F i(ϕ+ ερq)=−
∫ 1

0
εq


 2∑
j=1

ρjF
i
j (ϕ+ εsρq)


ds�−B1B2εq
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and hence

Ni(w
+(z, t))�−B1B2εq−B1εq(σ + c+di)+B3εςσq�0.

Case (ii): ξ �M. Since ξ −η�ςε�1, ξ >η�M−1. Thus, by (3.9), we
have

‖ϕ(ξ)+ sερ(η)−E+‖� δ, ‖ρ(η)−ρ+‖� δ, ∀s ∈ (0,1).
Therefore, by (3.8), there holds

F i(ϕ)−F i(ϕ+ ερq) = −
∫ 1

0
εq


 2∑
j=1

ρjF
i
j (ϕ+ sερq)


ds

� −εq
2∑
j=1

µijρj �kεqρi.

Hence,

Ni(w
+(z, t)) � kερiq− (ρiσ + cρ′

i +diρ′′
i )εq

� (k−σ − cε1 −diε1)εqρi �0.

Case (iii): ξ � −M. By an argument similar to case (ii), we have
Ni(w

+(z, t))�0.
Combining Cases (i)–(iii), we have Ni(w+(z, t))� 0. for all ε ∈ (0, ε0)

and t � 0. Thus w+(z, t) is a super-solution of system (3.6). By a similar
argument, we can prove that w−(z, t) is a sub-solution.

Lemma 3.4. The wave profile ϕ(z) is a Liapunov stable equilibrium of
(3.6).

Proof. Let ε0 and w±(z, t, ε) be defined as in Lemma 3.3 with ẑ=
0 and ς = ς0. It then follows that there exists K > 0, independent of ε,
such that ‖w±(z, t, ε)− ϕ(z)‖<Kε,∀z ∈ R, t � 0, ε ∈ (0, ε0). For any ε ∈
(0, ε0), let δ= ε inf

z∈R
ρ(z). Thus, for any given ‖ψ−ϕ‖<δ, we have

w−(z,0, ε)=ϕ(z)− ερ(z)�ψ(z)�ϕ(z)+ ερ(z)=w+(z,0, ε), ∀z∈R.

Then the comparison principle implies that w−(z, t, ε) � u(z, t,ψ)

�w+(z, t, ε), ∀z∈R, t�0, and hence ‖u(·, t,ψ)−ϕ(·)‖<Kε,∀t�0.

To prove the attractivity and uniqueness of traveling waves, we need
the following convergence result for monotone semiflows, which comes
from [35, Theorem 2.2.4].
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Lemma 3.5. Let U be a closed convex subset of an ordered Banach
space χ , and �(t):U→U be a monotone semiflow. Assume that there exists
a monotone homeomorphism h from [0, 1] onto a subset of U such that:

(1) For each s ∈ [0,1], h(s) is a stable equilibrium for �(t):U→U ;
(2) each orbit of �(t) in [h(0), h(1)]χ is precompact;
(3) one of the following two properties holds:

(3a) if h(s0)<χ ω(φ) for some s0 ∈ [0,1) and φ ∈ [h(0), h(1)]χ ,
then there exists s1 ∈ (s0,1) such that h(s1)�χ ω(φ);

(3b) if ω(φ)<χ h(r1) for some r1 ∈ [0,1) and φ ∈ [h(0), h(1)]χ ,
then there exists r0 ∈ (0, r1) such that ω(φ)�χ h(r0).

Then for any precompact orbit γ+(φ0) of �(t) inU withω(φ0)∩ [h(0), h(1)]χ
�=∅, there exists s∗ ∈ [0,1] such that ω(φ0)=h(s∗).

Now we are in a position to prove the main result of this section.

Theorem 3.1. Let ϕ(x− ct) be a monotone traveling wave solution of
system (3.1) and U(x, t,ψ) be the solution of (3.1) with U(·,0,ψ)=ψ(·)∈
X+. Then for any ψ ∈ X+, satisfying (3.7), there exists sψ ∈ R such that
limt→+∞ ‖U(x, t,ψ)− ϕ(x − ct + sψ)‖ = 0 uniformly for x ∈ R. Moreover,
any travelling wave solution of system (3.1) connecting E− and E+ is a
translate of ϕ.

Proof. We will apply the notations in Lemma 3.3. Let δ0 =min
z∈R

ρ(z),

and choose ς �max{ς0,
1
δ0

}. For ε∈ (0, ε0(ς)), by Lemma 3.2, there exists
t̃ such that

ϕ(z− z̃)− εδ0 �u(z, t̃ ,ψ)�ϕ(z+ z̃)+ εδ0, ∀z∈R.

Let f (z) = u(z, t̃ ,ψ). Then, from the construction of w±(z, t) in
Lemma 3.3, we have w−(z,0)� u(z,0, f )�w+(z,0),∀z∈ R. By the com-
parison principle, we have w−(z, t)�u(z, t, f )�w+(z, t),∀z∈R, t�0. Note
that u(z, t+ t̃ , ψ)=u(z, t, u(z, t̃ ,ψ)). We then have

ϕ(z− z̃− ες)− ερ(z− z̃)e−σ t � u(z, t+ t̃ , ψ)�ϕ(z+ z̃+ ες)+ ερ(z+ z̃)e−σ t ,
∀t � 0. (3.10)

Define �t(ψ): = u(·, t,ψ),∀ψ ∈ X+, t � 0. By the estimate (3.10), the
positive orbit γ+(ψ) :={�t(ψ) : t � 0} is bounded in C1(R,R2). Note that
limz→±∞ ϕ(z)=E±. Consequently, the positive orbit γ+(ψ) is precompact
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in X, and hence its omega limit set ω(ψ) is nonempty, compact and invari-
ant.

Letting z0 = z̃ + εζ and t → ∞ in (3.10), we then have ω(ψ) ⊂
I := [ϕ(· − z0), ϕ(· + z0)]X. Let h(s)= ϕ(· + s),∀s ∈ [−z0, z0]. Then h is a
monotone homeomorphism from [−z0, z0] onto a subset of I . Let V =
[E−,E+]X. Then �t : V → V is a monotone autonomous semiflow. By
Lemma 3.4, each h(s) is a stable equilibrium for �t . Clearly, each φ ∈ I
satisfies condition (3.7) and hence, by the above proof, γ+(φ) is procom-
pact. By Lemma 3.5, it suffices to verify the condition 3(a) to obtain the
convergence of γ+(ψ).

Assume that for some s0 ∈ [−z0, z0) and φ0 ∈ I, ϕ(· + s0) <X φ(·) for
all φ ∈ ω(φ0); that is, ϕ(· + s0) <X ω(φ0). By Lemma 3.1, ϕ(z + s0) �
�t(φ)(z),∀z∈R, t >0, and hence, by the invariancce of ω(φ0), ϕ(z+ s0)�
φ(z),∀φ ∈ω(φ0), z∈R.

Since limz→±∞ ϕ′(z)=0, we can choose a large positive number z1 ∈
(z0,+∞) such that δ̄= sup|z|�z1−z0

‖ϕ′(z) ‖� (1/4ζ 2). By the compactness
of ω(φ0), there exists s1 ∈ (s0, z0) such that s1 − s0<2ε0ς, and

ϕ(z+ s1)�φ(z), ∀z∈ [−z1, z1], φ ∈ω(φ0).

For any fixed φ ∈ω(φ0), there exists a time sequence {tj } such that
limj→∞ tj =+∞, and limj→∞�tj (φ0)=φ. Fix a tj such that ‖�tj (φ0)−
φ ‖<δ̄(s1 − s0). Since ϕ(z+ s1)�φ(z) for z∈ [−z1, z1], and ϕ(z+ s0)−ϕ(z+
s1)�φ(z)−ϕ(z+ s1) for ∀z∈R, we have

�tj (φ0)(z)−ϕ(z+ s1) = �tj (φ0)(z)−φ(z)+φ(z)−ϕ(z+ s1)
> −δ̄(s1 − s0)�e+φ(z)−ϕ(z+ s1)
> −δ̄(s1 − s0)�e− sup

|z|�z1

‖ϕ(z+ s0)−ϕ(z+ s1)‖ �e

� −δ̄(s1 − s0)�e− (s1 − s0) sup
|z|�z1

‖ϕ′(z)‖ �e

� −2δ̄(s1 − s0)�e�−ε1ρ(z+ s1), ∀z∈R,

where �e is the unit vector in R2, ε1 = (s1 − s0)/2ς2δ0. Note that ε1 < ε0
and ε1ς� (1/2)(s1 − s0). By the construction of w−(z, t) in Lemma 3.3, we
have w−(z,0)��tj (φ0)(z). It then follows that

�t(φtj (φ0))(z) � w−(z, t)=ϕ(z+ s1 − ε1ς(1− e−σ t ))− ε1ρ(z+ s1)e−σ t
� ϕ(z+ s1 − ε1ς)− ε1ρ(z+ s1)e−σ t

� ϕ(z+ s1 − 1
2
(s1 − s0))− ε1ρ(z+ s1)e−σ t

= ϕ(z+ 1
2
(s1 + s0))− ε1ρ(z+ s1)e−σ t , z∈R, t >0.
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Setting t= ti − tj and ti →∞, we then obtain that ϕ(·+ 1
2 (s1 + s0))�x φ(·).

Denote s2 = (1/2)(s1 + s0). Then s2 ∈ (s0, s1)⊂ [s0, z0] and ϕ(·+ s2)�x φ(·).
Since φ ∈ω(φ0) is arbitrary, we have φ(·+ s2)�xω(φ0).

By Lemma 3.5, there exists sψ ∈ [−z0, z0] such that ω(ψ)= h(sψ)=
ϕ(· + sψ). Then limt→∞�t(ψ) = ϕ(· + sψ). Since U(x, t,ψ) = u(x −
ct, t,ψ)=�t(ψ)(x− ct), we have limt→∞ ‖U(x, t,ψ)−ϕ(x− ct + sψ) ‖= 0
uniformly for x ∈R.

Let ϕ̃(x− c̃t) be a traveling wave solution of system (3.1) connecting
E− and E+. Then ϕ̃ satisfies condition (3.7). By what have been proven
above, there exists s̃ψ ∈ R so that limt→∞ ‖ ϕ̃(· − c̃t)− ϕ(· − ct + s̃ψ ) ‖= 0.
By a change of variable z=x− ct , we have limt→∞ ‖ ϕ̃(·+ (c− c̃)t)−ϕ(·+
s̃ψ )‖=0. Since ϕ̃(±∞)=E± and ϕ(·) is strictly increasing on R, we must
have c̃= c, and hence, ϕ̃(·)=ϕ(·+ s̃ψ ).

4. GLOBAL EXPONENTIAL STABILITY

In Section 3 we proved that for a large class of initial values, solutions
of (3.1) converge to translates of the travelling wave front. In this section,
we will show that this convergence is also uniformly exponential via the
spectrum analysis.

A standard technique for determining stability (exponential) of trav-
elling waves is to use the linearization criterion. As in Section 3, we
assume that system (3.1) admits a strictly increasing travelling wave solu-
tion U(x, t)= ϕ(x − ct)= (ϕ1(x − ct), ϕ2(x − ct)), c �= 0. If the right-hand
side of (3.6) is linearized about its equilibrium solution ϕ(z), the resulting
linear operator is

(Lu)(z)=
(

du1,zz+ cu1,z

cu2,z

)
+Jϕ(z)

(
u1

u2

)
,

where Jϕ(z)= (F ij (ϕ(z))), u(z)= (u1(z), u2(z))∈X.
The linearization criterion for stability of the travelling wave front is

that the spectrum σ(L) of L (except for zero) lies in a left-half complex
plane and is bounded away from the imaginary axis, and zero is a sim-
ple eigenvalue. Note that zero is always an eigenvalue of L because of the
translation invariance of travelling waves. For the point spectrum σp(L) of
L, we have the following result.

Lemma 4.1. Assume that λ is an eigenvalue of L with eigenfunction
u∈Xc, complexified X. If u /∈ span{ϕ′(·)}, then Reλ<0.

Proof. Let D=diag(d,0),C=diag(c, c),B(z)= (F ij (ϕ(z))) and B± =
(F ij (E

±)).We claim that there exist positive vectors q± such that B±q±<0.
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Note that the reaction system (3.2) is cooperate and E± are stable nodes.
Since B+ is irreducible, we can choose q+ as a positive eigenvector asso-
ciated with the negative principle eigenvalue of B+. Thus, B+q+ < 0. If
g′(0)>0, then B− is an irreducible matrix. Therefore, a positive eigenvec-
tor q− can be chosen such that B−q−<0. If g′(0)=0, let q− = (1, ε). Then
B−q−<0 for some sufficiently small positive number ε.

Let z0 > 0 be a sufficiently large number so that B(z)q+< 0 for z�
z0, and B(z)q− < 0 for z� −z0. Set ε > 0 be small so that (ε2D+ εC +
B(z))q+< 0 for z� z0, and (ε2D+ εC+B(z))q−< 0 for z� −z0. Letting
Q±(z)= e±εzq±, we have LQ+<0 for z� z0, and LQ−<0 for z�−z0.

Assume that λ is an eigenvalue of L with eigenfunction u∈ Xc and
u /∈ span{ϕ′(·)}. Rewrite λ=λ1 +λ2i, u=u1 +u2i, where λ1, λ2 ∈ R, u1, u2 ∈
X, and u2 =0 if λ2 =0. Consider the Cauchy problem:

vt (z, t)=Lv(z, t)−λ1v(z, t), v(z,0)=u1(z).

The function v(z, t)=u1(z) cos (λ2t)−u2(z) sin (λ2t) is a solution of this
problem. We require that at least one of the elements of the vecator-
valued function v(z, t) takes a positive value (otherwise, we can consider
−v(z, t)). Let ψ(z)= ϕ′(z) > 0. Since v(z, t) is periodic and bounded, we
can choose a positive number r such that

vt (z, t)� rψ(z) for |z1|� z0 and t�0, (4.1)

where for at least one k=1 or 2, and one |zi |�z0 and t1>0, we have the
following equality for the kth components

vk(z1, t1)= rψk(z1). (4.2)

We proceed the proof by contradication. Suppose that λ1 � 0. Then
the following two claims hold.

Claim 1: v(z, t)� rψ(z) for all z ∈ R, t � 0. Suppose, by contradica-
tion, that there exist some z > z0, t � 0 such that v(z, t) > rψ(z). Since
Q+(z)= eezq+ → +∞ as z→ +∞, there exists r̃ > 0 such that v(z, t)�
rψ(z)+ r̃Q+(z) for z� z0, t � 0, where at least for one j , one z2>z0 and
t2>0, we have the equality for j th component:

vj (z2, t2)= rψ(z2)+ r̃Q+
j (z2).

Let y(z, t) = rψ(z) + r̃Q+(z) − v(z, t). Then the j th component yj (z, t)
satisfies yj (z2, t2)= 0, yj (z0, t) > 0, yj (z, t)� 0 for z � z0, t � 0. Therefore,
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yj,t (z2, t2) � 0, yj,z(z2, t2) = 0, and if j = 1, then yj,zz(z2, t2) � 0. Since
Lψ(z)=0, and LQ+(z)<0 for z� z0, yj (z, t) satisfies

yj,t = −vj,t =−(Lv−λ1v)j

> (−Lv+λ1v+Lrψ+Lr̃Q+ −λ1(rψ+ r̃Q+))j
= (Ly−λ1y)j

= djyj,zz+ cyj,z+Fj1 (ϕ(z))y1 +Fj2 (ϕ(z))y2 −λ1yj ,

where dj = d if j = 1 and dj = 0 if j = 2. Evaluating the above inequality
at (z2, t2) and using the positivity of Fji (ϕ(z)) for i �= j , we then have a
contradiction in signs. Thus v(z, t)� rψ(z), ∀z� z0, t � 0. Using the same
argument, we obtain that v(z, t)� rψ(z), ∀z� z0, t � 0. Thus the claim is
established.

Claim 2: v(z, t)≡ rψ(z), ∀z∈ R, t � 0. Suppose, by contradiction, that
v(z, t) �≡ rψ(z). Then there exist t̄ > 0, z̄ ∈ R and k̄ such that vk̄(z̄, t̄ ) <
rψ(z̄). Let Y (z, t)= rψ(z)− v(z, t). Then Y (z, t) > 0 for z ∈ R, t � 0, and
Yk̄(z̄, t̄ )>0. Moreover, the components Yi(z, t) of Y (z, t) satisfy

Yi,t � (LY −λ1Y )i

= diYi,zz+ cYi,z+F i1(ϕ(z))Y1 +F i2(ϕ(z))Y2 −λ1Yi, (4.3)

By a similar argument as in Claim 1, it follows from the inequality (4.3)
that Yi(z̄, t̄) > 0 for each i = 1,2. Applying the strict positivity theorem
[33, Theorem 5.5.4], we have Y1(z, t) > 0 for z ∈ R, t > t̄ . By the period-
icity of Y in t , we have Y1(z, t) > 0 for z ∈ R, t � 0. Therefore, if k = 1,
defined by (4.2), we then have a contradiction. Let us consider the case
where k= 2. Since Y2(z1, t1)= 0 and Y2(z, t)� 0 for z∈ R, t � 0, it follows
that Y2,t (z1, t1)�0, Y2,z(z1, t1)=0. Note that Y1(z1, t1)>0. Evaluating (4.3)
with i=2 at (z1, t1), we have a contradiction in signs. This established the
claim.

For λ2 �=0, Claim 2 implies that Lv(z, t)=Lrψ(z)=0, i.e., Lu1(z) cos
(λ2t)−Lu2(z) sin (λ2t)=0, ∀t�0. Hence Lu1(z)=0 and Lu2(z)=0. There-
fore, Lu= 0, which contradicts the fact that Lu= λu �= 0. For λ2 = 0, we
have u2 =0 and hence u(z)=u1(z)=v(z, t)= rψ(z), which contradicts our
assumption that u /∈ span{ψ}. Therefore, λ1 = Re λ<0.

To show that the essential spectrum σe(L) of L satisfies the lineariza-
tion criterion, we will use the results developed in [21, pp. 136–138].

Let T be the following linear operator:

(T u)(z)=
(

du1,zz+ cu1,z

cu2,z

)
+J (z)

(
u1

u2

)
,
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where J (z) = (F ij (E
+)) for z� 0, j (z) = (F ij (E

−)) for z < 0, and u(z) =
(u1(z), u2(z))∈X. Consider the eigenvalue problem of T

(T −λI)
(
p

r

)
=0, (4.4)

where (
p

r

)
(z)∈Xc,

complexified X. Rewrite (4.4) as a system

p′(z) = q,

q ′(z) = − 1
d
(cq+J11(z)p+J12(z)r−λp),

r ′(z) = −1
c
(J21(z)p+J22(z)r−λr),

where J (z) = (Jij (z)). Let y= (p, q, r)∈C3, and write the above system as

y′ =A(z, λ)y, (4.5)

where

A(z, λ)=



0 1 0
− 1
d
(J11(z)−λ) − c

d
− 1
d
J12(z)

− 1
d
J21(z) 0 − 1

c
(J22(z)−λ)


 .

Define A+(λ) :=A(1, λ),A−(λ) :=A(−1, λ), and S± = {λ∈ C :A± =A±(λ)
have imaginary eigenvalues}, which will provide the necessary information
about σe(L).

Lemma 4.2. C\S± has an open connected set G for which there exists
a λ0<0 such that {λ : Reλ>λ0}⊂G.

Proof. Let P(λ)=det (A± −µiI). Then

P(λ) = det




−µi 1 0
− 1
d

(
F 1

1 (E
±)−λ) − c

d
−µi − 1

d
F 1

2 (E
±)

− 1
d
F 2

1 (E
±) 0 − 1

c

(
F 2

2 (E
±)−λ)−µi




= − 1
cd
λ2 +

(
2
d
µi− 1

c
µ2 + 1

cd

(
F 1

1 (E
±)+F 2

2 (E
±)

))
λ

+µ2
(
µi+ c

d

)
+ 1
c
µ2F 2

2 (E
±)− 1

d
µi

(
F 1

1 (E
±)+F 2

2 (E
±)

)

+ 1
cd

(
F 2

1 (E
±)F 1

2 (E
±)−F 1

1 (E
±)F 2

2 (E
±)

)
.
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Setting P(λ)=0, we have

λ= 1
2

(
F 1

1 (E
±)+F 2

2 (E
±)+2cµi−dµ2

)
±

√
�,

where �= (
F 2

2 (E
±)−F 1

1 (E
±)+dµ2

)2 + 4(F 2
1 (E

±)F 1
2 (E

±), which is pos-
itive since F ij (u1, u2) � 0 for i �= j,1 � i, j � 2. Let λ = λ1 + λ2i, where
λ1, λ2 ∈R. Then

λ1 = 1
2

(
F 1

1 (E
±)+F 2

2 (E
±)−dµ2

)
±

√
�, λ2 = cµ.

Eliminating the parameter µ, we have

λ1 = 1
2

(
F 1

1 (E
±)+F 2

2 (E
±)− d

c2
λ2

2

)

±1
2

√(
F 2

2 (E
±)−F 1

1 (E
±)+ d

c2
λ2

2

)2

+4F 2
1 (E

±)F 1
2 (E

±).

Thus the set S± is symmetric about the real axis in the complex plane. It
is easy to obtain that the derivative dλ1/dλ2 �0 for λ2 �0. Therefore, the
maximal real part of the point in S± is one of the following values

λ± = 1
2

(
F 1

1 (E
±)+F 2

2 (E
±)

)
+ 1

2

√(
F 2

2 (E
±)−F 1

1 (E
±)

)2 +4F 2
1 (E

±)F 1
2 (E

±).

Note that λ± are exact eigenvalues of the Jacobian matrix of the reaction
system (3.2) at E±. Thus λ± < 0. Therefore, the curves S± are bounded
uniformly away from the imaginary axis. This proves the lemma.

The implication of Lemma 4.2 is that there is no essential spectrum
point of L in G.
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Lemma 4.3. σ(L)∩G⊂σp(L).
Proof. Define the differential operator L(λ)y = y′ −A(z, λ)y. Then,

by [21, Lemma 2, p. 138], one of the following cases holds: (i) 0∈σ(L(λ))
for all λ∈G (defined in Lemma 4.2); (ii) 0 ∈ρ(L(λ)) for all λ∈G except
for isolated points, and the exception points are poles of L(λ)−1 of finite
order. Therefore, the set G consists either entirely of spectral points σ(T )
of T (case (i)), or entirely of normal points of T (case (ii)). Here a normal
point is a resolvent point or an isolated eigenvalue of T with finite multi-
plicity. It is not difficult to see that large positive numbers are not eigen-
values of T (see, e.g., the proof of Lemma 4.1). Thus, G consists entirely
of normal points of T . Let S=Jϕ(z)−J (z). Then L=T +S. It is easy to
show that S(λ0I −T )−1 is compact for large positive λ0. By [21, Theorem
A.1, p. 136], G consists either entirely of normal points of L, or entirely
of eigenvalues of L. Hence, Lemma 4.1 implies that σ(L)∩G⊂σp(L).

Now we know that σe(L) causes no problem for linear stability.
Hence, we can draw the following conclusion about the global exponential
stability.

Theorem 4.1. Let ϕ(x− ct) be a monotone traveling wave solution of
(3.1) with c �= 0. Then there exists a positive constant µ> 0 such that for
every ψ ∈X+ satisfying (3.7), the solution U(x, t,ψ) of (3.1) satisfies

‖U(x, t,ψ)−ϕ(x− ct+ sψ)‖�Cψe−µt , ∀x ∈R, t�0,

for some constant sψ ∈R and Cψ >0.

Proof. By Lemmas 4.1 and 4.3, it follows that zero is a simple eigen-
value of L and the rest of the spectrum σ(L) lies in the left-hand complex
plane and is bounded away from the imaginary axis. Thus, by the main
theorem in [16], zero solution is stable for the linearized PDE system of
(3.1) at the travelling wave solution. Then by the result in [14], the travel-
ling wave solutions are locally exponentially stable for the original system
(3.1), and hence, Theorem 3.1 completes the proof.

5. NUMERICAL SIMULATIONS

By Theorems 2.1, 3.1 and 4.1, we see that the epidemic model
(2.1) admits a unique monotone bistable travelling wave solution (up to
translation), which is globally exponentially stable with phase shift. In
order to check this result, we numerically simulate solutions of system
(2.1). Assume that d = 0.2, α = 2.3, β = 1 and g(z) = z2/(1+ z2). Then,
a = 0.5821, b = 1.7179, and the integral (2.12) is 0.07521 > 0. Hence,
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Theorem 2.1 implies that the wave speed c∗ is positive. System (2.1) is dis-
cretised by using the finite difference method on a finite spatial interval
[−L,L] with the Neumann boundary condition, where L>0 is sufficiently
large in comparison with the domain in which the solutions rapidly change
shapes. The numerical wave profile is shown as solid lines in Fig. 3 and 4.
Figures 5 and 6 provide the evolution of the solution with initial function
being the dashed lines in Fig. 3 and 4. We can see that the solution rap-
idly converges to the wave profile as the time t becomes large.
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Figure 4. u2 components .
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Figure 5. The graph of u1(x, t).

Figure 6. The graph of u2(x, t).
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