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ABSTRACT. A threshold dynamics and global attractiv-
ity of positive steady state are established in terms of principal
eigenvalues for a nonlocal reaction-diffusion population model
with stage structure, and the effects of spatial dispersal and
maturation period on the evolutionary behavior are also dis-
cussed in two specific cases.

1 Introduction Recently, an increasing attention has been paid
to nonlocal and time-delayed population models in order to study the
effects of spatial diffusion and time delay on the evolutionary behavior
of biological systems (see, e.g., [16, 13, 3, 1, 19, 17]). In the reality,
species may drift from one spatial point at a time to another spatial
point at another time, and may disperse from a domain to a larger
domain. Moreover, the environment is often spatially heterogeneous. To
describe the growth of a single species in a multi-patchy environment,
certain delay differential equation models were proposed and analyzed
in [12, 14, 20]. [13, 1, 3] also formulated the nonlocal and delayed
reaction-diffusion models for a single species with stage structure, and
established the existence of a family of traveling wave fronts for these
models.

In order to obtain a general nonlocal and time delayed model for a
single species in a bounded domain, we let u(t, a, x) be the density of
individuals with age a at a point x at time t, τ be the length of the
juvenile period. Denote by um(t, x) the density of mature adults. Then
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we have (see, e.g., [10])

(1.1)




∂tu+ ∂au = dj(a)4u− µj(a)u, 0 < a < τ, x ∈ Ω ⊂ R

N ,

Bu = 0, a ∈ (0, τ), x ∈ ∂Ω,

and um satisfies

(1.2)




∂tum = dm4um − g(um) + u(t, τ, x) t > 0, x ∈ Ω,

Bu = 0, t > 0, x ∈ ∂Ω,

with u(t, 0, x) = f(um(t, x)), t ≥ −τ, x ∈ Ω, where f(um) and g(um) are
the birth rate and the mortality rate of mature individuals, respectively,
µj(a) denotes the per capita mortality rate of juveniles at age a, 4
is the Laplacian operator on R

N , Ω is a bounded and open subset of
R

N with a smooth boundary ∂Ω, either Bu = u or Bu = ∂u/∂n+ αu
for some nonnegative function α ∈ C1+θ(∂Ω,R), θ > 0, ∂/∂n denotes
the differentiation in the direction of the outward normal n to ∂Ω. In
(1.2), the term u(t, τ, x) is the adults recruitment term, being those
of maturation age τ . As in [17, Section 4.1], integrating (1.1) along
characteristics yields

u(t, a, x) =

∫

Ω

Γ(η(a), x, y)F(a)f(um(t− a, y))dy,

where Γ is the Green function associated with the partial differential
operator 4 and boundary condition Bu = 0, and

η(a) =

∫ a

0

dj(s)ds, F(a) = e−
R

a

0
µj(s)ds.

Thus, um(t, x) satisfies

(1.3)





∂tum = dm4um − g(um)

+

∫

Ω

Γ(η(τ), x, y)F(τ)f(um(t− τ, y) dy, t > 0, x ∈ Ω,

Bum = 0, t > 0, x ∈ ∂Ω,

um(t, x) = φ(t, x), t ∈ [−τ, 0], x ∈ Ω,

where φ(t, x) is a positive initial function to be specified later.
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In the case of Ω = R
N , [17] studied the traveling wave solutions,

minimal wave speed and asymptotic speed of spread for (1.3). In the
case where Ω = R, g(u) = βu, (1.3) reduces to the model derived in [13],
where traveling wave fronts are investigated. In the case where Ω =
R, f(u) = αu and g(u) = βu2, (1.3) reduces to the model discussed in
[3], where the linear stabilities of two spatially homogeneous equilibrium
solutions, and traveling wave fronts are considered. A global convergence
theorem in the case of bounded intervals was also obtained in [3]. The
threshold dynamics and global convergence were established in [19] for
a special case of (1.3).

The purpose of this paper is to study the global dynamics of model
(1.3). In Section 2, we establish the global existence and positivity of
solutions, and the existence of a global attractor for the associated so-
lution semiflow. In Section 3, we first obtain a threshold type result on
the global extinction and uniform persistence in terms of the principal
eigenvalue of a nonlocal elliptic problem, and then obtain sufficient con-
ditions for the global attractivity of the positive steady state. Section 4
is devoted to the discussion of the effects of spatial diffusion and time
delay on the asymptotic behavior of system (1.3) in two specific cases.

2 Existence and boundedness of solutions For convenience,
we drop the subscript m in (1.3), and write it as

(2.1)





∂tu(t, x) = d4u(t, x) − g(u(t, x))

+

∫

Ω

Γ(η(τ), x, y)F(τ)f(u(t − τ, y)) dy, t > 0, x ∈ Ω,

Bu(t, x) = 0, t > 0, x ∈ ∂Ω,

u(t, x) = φ(t, x) ≥ 0, t ∈ [−τ, 0], x ∈ Ω.

We assume that

(A1) f ∈ C1(R+,R+), f(0) = 0, f ′(0) > 0, and f is sublinear, i.e.,
f(γu) ≥ γf(u) for all γ ∈ (0, 1) and u ≥ 0.

(A2) g ∈ C1(R+,R+), g(0) = 0, g′(0) ≥ 0, and −g is sublinear.
(A3) There exists a number M ≥ 0 such that for all L > M , f̄(L) −

g(L) < 0, where f̄(u) = F(τ) maxv∈[0,u] f(v).

Let p ∈ (N,∞) be fixed. For each β ∈ ( 1
2 + N

2p
, 1), let Xβ be the

fractional power space of Lp(Ω) with respect to (-A,B) (see, e.g., [6]),
where A := 4. Then Xβ is an ordered Banach space with respect to the



306 DASHUN XU AND XIAO-QIANG ZHAO

positive cone X
+
β consisting of all nonnegative functions in Xβ , and X

+
β

has nonempty interior int(Xβ). Moreover, Xβ ⊂ C1+ν(Ω) with continu-
ous inclusion for ν ∈ [0, 2β−1−N/p). Denote the norm on Xβ by ‖ ·‖β.
Then there exists a constant kβ > 0 such that ‖φ‖∞ := maxx∈Ω |φ(x)| ≤
kβ‖φ‖β, ∀φ ∈ Xβ. It is well known that the differential operator A gen-
erates an analytic semigroup T (t) on Lp(Ω). Moreover, the standard
parabolic maximum principle (see, e.g., [11, Corollary 7.2.3]) implies
that the semigroup T (t) : Xβ → Xβ is strongly positive in the sense that
T (t)(X+

β \{0}) ⊂ int(X+
β ), ∀t > 0.

Let Y := C([−τ, 0],Xβ) and Y
+ := C([−τ, 0],X+

β ). For convenience,

we will identify an element φ ∈ Y as a function from [−τ, 0] × Ω to
R defined by φ(s, x) = φ(s)(x), and for each s ∈ [−τ, 0], we regard
g(φ(s)) as a function on Ω defined by g(φ(s)) = g(φ(s, ·)). For any
function y(·) : [−τ, b) → Xβ, where b > 0, define yt ∈ Y, t ∈ [0, b)
by yt(s) = y(t + s), ∀s ∈ [−τ, 0]. Define F : Y

+ → Xβ by F (φ) =
−g(φ(0))+F(τ)T (η(τ))f(φ(−τ, ·)), ∀φ ∈ Y

+. Then we can rewrite (2.1)
as an abstract functional differential equation





du(t)

dt
= dAu(t) + F (ut), t > 0,

u0 = φ ∈ Y
+.

Therefore, we can write the above equation as an integral equation

u(t) = T (d t)φ(0) +

∫ t

0

T (d (t− s))F (us)ds, t ≥ 0,

whose solutions are called mild solutions for (2.1).
Since T (t) : Xβ → Xβ is strongly positive, we have

lim
h→0+

dist(φ(0) + hF (φ),X+
β ) = 0, ∀φ ∈ Y

+.

By [8, Proposition 3 and Remark 2.4] (see also [18, Corollary 8.1.3]), for
each φ ∈ Y

+, (2.1) has a unique non-continuable mild solution u(t, φ)
with u0 = φ, and u(t, φ) ∈ X

+
β for all t ∈ (0, σφ). Moreover u(t, φ) is

a classical solution of (2.1) for t > τ (see [18, Corollary 2.2.5]). We
further have the following result.

Theorem 2.1. Let (A1)–(A3) hold. Then for each φ ∈ Y
+, a unique

solution u(t, φ) globally exists on [−τ,∞), and the solution semiflow
Φ(t) = ut(·) : Y

+ → Y
+, t ≥ 0, admits a connected global attractor.
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Proof. For any L ≥ M , let ΣL = {φ ∈ X
+
β : φ(x) ≤ L, ∀x ∈ Ω},

ZL = C([−τ, 0],ΣL). It then follows that

lim
h→0+

dist(φ(0) + hF (φ),ΣL) = 0, ∀φ ∈ ZL.

By [11, Corollary 7.2.4] and [18, Corollary 8.1.3], ZL is a positively
invariant set for (2.1). Thus for any φ ∈ Y

+, u(t, φ) globally exists
on [−τ,∞), and hence (2.1) defines a semiflow Φ(t) : Y

+ → Y
+ by

(Φ(t)φ)(s, x) = u(t + s, x, φ), ∀s ∈ [−τ, 0], x ∈ Ω̄. Moreover, Φ(t) is
compact for all t > τ ([18, Theorem 2.2.6]).

Let us consider the delay differential equation

(2.2)




v̇(t) = −g(v(t)) + f̄(v(t− τ)),

v(s) = ϕ(s) ∈ C([−τ, 0],R+), ∀s ∈ [−τ, 0].

Note that the function f̄ is Lipschitz in any bounded subset of R
+.

For any ϕ ∈ C([−τ, 0],R+), (2.2) admits a unique solution v(t, ϕ) with
v(s, ϕ) = ϕ(s), ∀s ∈ [−τ, 0]. It is easy to see that v(t, ϕ) is bounded.
Hence v(t, ϕ) exists globally on [−τ,∞). Therefore, for any
ϕ ∈ C([−τ, 0],R+), the omega limit set ω(ϕ) of the orbit γ+(ϕ) is
nonempty, compact and invariant, where γ+(ϕ) = {vt(ϕ) : t ≥ 0}. Let
G = {ψ(s) : ψ ∈ ω(ϕ), s ∈ [−τ, 0]}. Then G is compact because of the
compactness of ω(ϕ). Therefore, there exist s0 ∈ [−τ, 0] and ψ ∈ ω(ϕ)
such that ψ(s0) = supG := LG. By the invariance of ω(ϕ), there exists
ψ′ ∈ ω(ϕ) such that vτ (ψ′) = ψ, i.e., v(τ + s, ψ′) = ψ(s), ∀s ∈ [−τ, 0].
Without loss of generality, we can assume that ψ(0) = LG. Thus,

v̇(τ, ψ′) = −g(v(τ, ψ′)) + f̄(v(0, ψ′))

≤ −g(LG) + f̄(LG).

If LG > M , then v̇(τ, ψ′) < 0, which implies that there exists some
s ∈ [−τ, 0) such that ψ(s) > ψ(0) = LG, a contradiction. Thus,
lim supt→∞

v(t, ϕ) ≤M, ∀ϕ ∈ C([−τ, 0],R+).

For any given φ ∈ Y
+, let L̂(s) = max{φ(θ, x) : θ ∈ [−τ, 0], x ∈

Ω}, ∀s ∈ [−τ, 0]. Then lim supt→∞
v(t, L̂) ≤ M . Note that for any
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ζ ∈ Y
+ with ζ(s, ·) ≤ v(t+ s, L̂), ∀s ∈ [−τ, 0], we have

v(t, L̂) − ζ(0, x) + h(−g(v(t, L̂)) + f̄(v(t− τ, L̂))

− h(−g(ζ(0, x)) +

∫

Ω

Γ(η(τ), x, y)F(τ)f(ζ(−τ, y))dy

≥ v(t, L̂) − ζ(0, x) − h(g(v(t, L̂)) − g(ζ(0, x)))

≥ 0 for 0 < h� 1, x ∈ Ω.

By [8, Proposition 3], u(t, x, φ) ≤ v(t, L̂), ∀x ∈ Ω, t ≥ −τ. Thus,
lim supt→∞

u(t, x, φ) ≤ M, ∀x ∈ Ω̄. That is, Φ(t) : Y
+ → Y

+ is point
dissipative. By [4, Theorem 3.4.8], Φ(t) admits a connected global at-
tractor on Y

+, which attracts each bounded set in Y
+.

3 Uniform persistence and global attractivity Consider the
nonlocal elliptic eigenvalue problem

(3.1)





λv(x) = d4v(x) − g′(0)v(x)

+f ′(0)F(τ)

∫

Ω

Γ(η(τ), x, y)v(y)dy, x ∈ Ω,

Bv(x) = 0, x ∈ ∂Ω.

By the same arguments as in [11, Theorem 7.6.1], it follows that prob-
lem (3.1) has a principal eigenvalue, denoted by λ0. Then we have the
following threshold dynamics for system (2.1), which shows that the lin-
ear stability of (2.1) at zero implies the extinction of the species while
the instability implies the uniform persistence of the species.

Theorem 3.1. Let e∗ ∈ int(X+
β ) be fixed, and (A1)–(A3) hold. For

any φ ∈ Y
+, denote by u(t, x, φ) or u(t, φ) the solution of (2.1).

(i) If λ0 < 0, limt→∞ ‖u(t, φ)‖β = 0 for every φ ∈ Y
+.

(ii) If λ0 > 0, then (2.1) admits at least one steady state solution ϕ∗

with ϕ∗(x) ∈ (0,M ], ∀x ∈ Ω, and there exists δ > 0 such that for
every φ ∈ Y

+ with φ(0, ·) 6≡ 0, there is t0 = t0(φ) > 0 such that
u(t, x, φ) ≥ δe∗(x), ∀x ∈ Ω, t ≥ t0.
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Proof. Note that zero is an equilibrium of (2.1). The variational equa-
tion about zero is given by

(3.2)





∂tv(t, x) = d4v(t, x) − g′(0)v(t, x)

+f ′(0)F(τ)

∫

Ω

Γ(η(τ), x, y)v(t − τ, y) dy, t > 0, x ∈ Ω,

Bv(t, x) = 0, t > 0, x ∈ ∂Ω,

v(s, x) = φ(s, x) ≥ 0, s ∈ [−τ, 0], x ∈ Ω.

By [22, Theorem 9.2.1] and a similar argument in the case of Dirichlet
boundary condition, it follows that the eigenvalue problem

(3.3)





λv(x) = d4v(x) − g′(0)v(x)

+f ′(0)F(τ)e−λτ

∫

Ω

Γ(η(τ), x, y)v(y) dy, x ∈ Ω,

Bv(x) = 0, x ∈ ∂Ω,

has a principle eigenvalue λ̄0, and λ̄0 shares the same sign with λ0.

(i) In the case of λ0 < 0, the properties of the principal eigenvalue
λ̄0 and linear semigroups imply that limt→∞ ‖v(t, ·, φ)‖β = 0, ∀φ ∈ Y,
where v(t, x, φ) is the unique solution of (3.2). Note that a solution
u(t, x) of (2.1) satisfies

∂tu(t, x) ≤ d4u(t, x) − g′(0)u(t, x)

+ f ′(0)F(τ)

∫

Ω

Γ(η(τ), x, y)u(t − τ, y)dy, t > 0.

The comparison theorem for abstract functional differential equations
([8, Proposition 3]) implies that u(t, ·, φ) ≤ v(t, ·, φ), ∀t ≥ −τ. It then
follows that limt→∞ ‖u(t, φ)‖β = 0, ∀φ ∈ Y

+.

(ii) In the case of λ0 > 0, let Y0 = {φ ∈ Y
+ : φ(0, ·) 6≡ 0}, ∂Y0 :=

Y
+ \ Y0. For any φ ∈ Y

+, the solution u(t, x, φ) of (2.1) satisfies

∂tu(t, x) ≥ d4u(t, x) − g(u(t, x)), t > 0, x ∈ Ω.

By the standard parabolic maximum principle, it then follows that
Φ(t)(Y0) ⊂ int(Y+), ∀t > 0. Let Z1 = {φ ∈ ∂Y0 : Φ(t)φ ∈ ∂Y0, ∀t ≥ 0}.
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Then
⋃

φ∈Z1
ω(φ) = {0}, where ω(φ) denotes the omega limit set of the

orbit γ+(φ) := {Φ(t)φ : ∀t ≥ 0}. We claim that

Claim. Zero is a uniform weak repeller for Y0 in the sense that there
exists δ0 > 0 such that lim supt→∞

‖Φ(t)φ‖β ≥ δ0, ∀φ ∈ Y0.
Let us consider the following eigenvalue problem

(3.4)





λv(x) = d4v(x) − (g′(0) + ε)v(x) + (f ′(0) − ε)

×F(τ)e−λτ
∫
Ω

Γ(η(τ), x, y)v(y)dy, x ∈ Ω,

Bv(x) = 0, x ∈ ∂Ω.

Since (3.3) admits a positive principal eigenvalue λ̄0, there exists a
sufficiently small positive number ε such that (3.4) admits a positive
principal eigenvalue λε. For this ε, there exists δε > 0 such that
g(u) < (g′(0) + ε)u and f(u) > (f ′(0) − ε)u for all u ∈ (0, δε). Let
δ0 = δε/kβ. Suppose, by contradiction, that there exists φ0 ∈ Y0 such
that lim supt→∞

‖Φ(t)φ0‖β < δ0. Then there exists t′ > τ such that
‖u(t, ·, φ0)‖∞ ≤ kβ‖u(t, ·, φ0)‖β < δε for all t ≥ t′ − τ . Therefore,
u(t, x, φ0) satisfies

(3.5) ∂tu(t, x) > d4u(t, x) − (g′(0) + ε)u(t, x)

+ (f ′(0) − ε)F(τ)

∫

Ω

Γ(η(τ), x, y)u(t − τ, y)dy, t ≥ t′, x ∈ Ω.

Let ϕ ∈ Xβ be the positive eigenfunction associated with the principal
eigenvalue λε. Then uε(t, x) = ϕ(x)eλεt is a solution to





∂tu(t, x) = d4u(t, x) − (g′(0) + ε)u(t, x)

+(f ′(0) − ε)F(τ)
∫
Ω

Γ(η(τ), x, y)u(t − τ, y)dy, t > 0, x ∈ Ω,

Bu(t, x) = 0, t > 0, x ∈ ∂Ω.

Since u(t, x, φ0) > 0, ∀t > 0, x ∈ Ω, there exists ς > 0 such that
u(t′ + s, x, φ0) ≥ ςuε(s, x) for s ∈ [−τ, 0], x ∈ Ω̄. By inequality (3.5)
and the comparison theorem ([8, Proposition 3]), we have u(t, x, φ0) ≥
ςuε(t − t′, x) = ςϕ(x)eλε(t−t′), ∀t ≥ t′, x ∈ Ω̄. Since λε > 0, u(t, x, φ0)
is unbounded, a contradiction.
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By [15, Theorem 4.6], Φ(t) is uniformly persistent with respect to Y0

in the sense that there exists δ1 > 0 such that

lim inf
t→∞

dist(Φ(t)φ, ∂Y0) ≥ δ1, ∀φ ∈ Y0.

Since Φ(t) : Y
+ → Y

+ is compact for each t > τ , [22, Theorem 1.3.9]
with e = e∗ ∈ int(Y+) implies that there exists δ > 0 such that for any
φ ∈ Y0, u(t, x, φ) ≥ δe∗(x) for all t ≥ t(φ), x ∈ Ω.

It remains to prove the existence of a positive steady state. We con-
sider





∂tu(t, x) = d4u(t, x) − g(u(t, x))

+

∫

Ω

Γ(η(τ), x, y)F(τ)f(u(t, y))dy, t > 0, x ∈ Ω,

Bu(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = ϕ(x) ≥ 0, x ∈ Ω.

Let Φ0(t) : X
+
β → X

+
β , t ≥ 0, be the solution semiflow. As proven

for Φ(t) : Y
+ → Y

+, it follows that Φ0(t) is point dissipative on X
+
β ,

compact for each t > 0, and uniformly persistent with respect to X
+
β \{0}.

Then, by [22, Theorem 1.3.7], Φ0(t) has an equilibrium ϕ∗ ∈ X
+
β \ {0},

i.e., Φ0(t)ϕ
∗ = ϕ∗ for all t ≥ 0. Clearly, ϕ∗ ∈ int(X+

β ).

Theorem 3.2. Let (A1)–(A3) hold and λ0 > 0. Suppose that either f
or −g is strictly sublinear on [0,M ], and that f is monotone increasing
on [0,M ]. Then (2.1) admits a unique positive steady state ϕ∗, and
limt→∞ ‖u(t, φ) − ϕ∗‖β = 0 for every φ ∈ Y

+ with φ(0, ·) 6≡ 0, where
u(t, φ) is the solution of (2.1).

Proof. We use notations in the proofs of Theorems 2.1 and 3.1. Note
that f is monotone increasing on [0,M ]. It then follows that

lim
h→0+

1

h
dist (ψ(0) − ϕ(0) + h(F (ψ) − F (ϕ)),X+

β ) = 0,

for all ϕ, ψ ∈ ZM with ϕ(s, x) ≤ ψ(s, x), ∀s ∈ [−τ, 0], x ∈ Ω̄. By
[8, Proposition 3 and Corollary 5], Φ(t) : ZM → ZM is a monotone
semiflow with respect to the order on Y induced by Y

+. By the proof
of Theorem 2.1, every omega limits set ω(φ) of Φ(t) is contained in ZM .
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In particular, every nonnegative steady state ϕ of (2.1) is contained in
ΣM . We further claim that (2.1) admits at most one positive steady
state. Indeed, it suffices to show that Φ0(t) has at most one positive
equilibrium in ΣM . By [8, Corollary 5] with τ = 0, it then follows
that Φ0(t) : ΣM → ΣM is a monotone semiflow with respect to the
order on Xβ induced by X

+
β . Moreover, for any ϕ1, ϕ2 ∈ ΣM with

ϕ1 − ϕ2 ∈ X
+
β \ {0}, u(t, x) := (Φ0(t)ϕ1)(x) − (Φ0(t)ϕ2)(x) satisfies

∂tu(t, x) ≥ d4u(t, x)

− u(t, x)

∫ 1

0

g′(sΦ0(t)ϕ1(x) + (1 − s)Φ0(t)ϕ2(x))ds

≥ d4u(t, x) − ku(t, x), t > 0, x ∈ Ω,

where k = supu∈[0,M ] g
′(u). Then the standard parabolic maximum prin-

ciple implies that u(t) ∈ int(X+
β ), ∀t > 0. That is, Φ0(t) : ΣM → ΣM is

strongly monotone. By the strict sublinearity of f or −g, it easily follows
that for each t > 0, Φ0(t) : ΣM → ΣM is strictly sublinear (see, e.g.,
[2, Theorem 2.2]). Now fix a real number t0 > 0. Then [21, Lemma 1]
implies that the map Φ0(t0) has at most one positive fixed point in ΣM ,
and hence the semiflow Φ0(t) has at most one positive equilibrium in
ΣM . Note that Φ(t) : Y

+ → Y
+ is compact for t > τ , admits a global

attractor in Y
+, and is uniformly persistent with respect to Y0. By

[5, Theorem 3.2], Φ(t) : ZM ∩ Y0 → ZM ∩ Y0 has a global attractor
A0. Theorem 3.1, together with the uniqueness of the positive steady
state, implies that A0 contains only on equilibrium ϕ∗. By the Hirsch
attractivity theorem ([7, Theorem 3.3]), it then follows that ϕ∗ attracts
every point in ZM ∩ Y0. Consequently, every orbit in ZM converges
to either the trivial equilibrium or the positive equilibrium ϕ∗. Note
that the equilibria 0 and ϕ∗ are also isolated invariant sets in ZM , and
there is no cyclic chain of equilibria. By the continuous time version of
[22, Theorem 1.2.2], every compact internally chain transitive set for
Φ(t) : ZM → ZM is an equilibrium. For any given φ ∈ Y

+, by the
proof of Theorem 2.1, ω(φ) ⊂ ZM , and hence ω(φ) is an equilibrium. If
φ ∈ Y

+ with φ(0, ·) 6≡ 0, we then have ω(φ) = ϕ∗.

4 Discussion In this section, we discuss the effects of spatial diffu-
sion and time delay on the global behavior of model (1.3) in two specific
cases.

First let us compute the principal eigenvalue λ0 for problem (3.1). In
the case of the Neumann boundary condition, it easily follows that the
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eigenvalue problem (3.1) admits the principle eigenvalue λ0 = −g′(0) +
f ′(0)F(τ) (with the eigenfunction v(·) ≡ 1). In the case of the Dirichlet
boundary condition, we consider (3.1) with Ω = (0, π). Let

T0(t)ϕ =

∫

Ω

Γ(t, x, y)ϕ(y)dy,

which is the linear semigroup generated by

(4.1)





∂tu = 4u,

u(t, 0) = u(t, π) = 0,

u(0, x) = ϕ(x) ∈ X
+
β .

It then follows that e−t sinx is a solution of (4.1) with ϕ(x) = sinx.
Thus, we have

∫

Ω

Γ(t, x, y) sin y dy = e−t sinx, ∀t ≥ 0, x ∈ (0, π).

In particular,

∫

Ω

Γ(η(τ), x, y) sin y dy = e−η(τ) sinx.

It is easy to verify that sinx is a positive solution of (3.1) with λ =
−d− g′(0) + f ′(0)F(τ)e−η(τ). Therefore,

λ0 = −d− g′(0) + f ′(0)F(τ)e−η(τ).

Example 1. Consider the model (1.3) with g(u) = βu2, f(u) = αu and
F(τ) = e−µjτ , where α, β, µj and the immature diffusion coefficient dj

in (1.1) are all positive constants.
In the case of the Neumann boundary condition, we have λ0 =

αe−µjτ > 0. By Theorem 3.2 with M = (α/β)e−µjτ , it follows that for
each φ ∈ Y

+ with φ(0, ·) 6≡ 0, limt→∞ um(t, x, φ) = ϕ∗(x) ≡ (α/β)e−µjτ

uniformly for x ∈ Ω, where um(t, x, φ) is the solution of (1.3) with the
initial function φ. This convergence result is consistent with that in [3].
In this case, we can see that the maturation period τ and the diffusion
of the species do not affect the persistence of the species.
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In the case of the Dirichlet boundary condition, let Ω = (0, π). Then,
λ0 = −dm + αe−(µj+dj)τ (dm in (1.3) is equivalent to d in (3.1)). Note
that λ0 < 0 if α < dm, and in the case of α > dm, we have λ0 > 0 if
τ ∈ [0, τ0), and λ0 < 0 if τ > τ0, where τ0 = 1/(µj + dj) ln(α/dm) > 0.
By Theorems 3.1 and 3.2 with M = (α/β)e−µjτ , we have the following
result for this case.

Proposition 4.1. Let um(t, x, φ) denote the solution of (1.3) subject
to the Dirichlet boundary condition and with the initial function φ ∈ Y

+.

(1) If α < dm, then for any φ ∈ Y
+, limt→∞ um(t, x, φ) = 0 uniformly

for x ∈ [0, π].
(2) In the case of α > dm, let τ0 = 1/(µj + dj) ln(α/dm) > 0.

(a) If τ ∈ [0, τ0), then for any φ ∈ Y
+ with φ(0, ·) 6≡ 0,

limt→∞ um(t, x, φ) = ϕ∗(x) uniformly for x ∈ [0, π], where ϕ∗

is the unique positive steady state of (1.3).

(b) If τ > τ0, then for any φ ∈ Y
+, limt→∞ um(t, x, φ) = 0 uni-

formly for x ∈ [0, π].

By Proposition 4.1, we have the following observations on the model
(1.3) subject to the Dirichlet boundary condition.

Conclusion 1. If all parameters except for dm are fixed, then the fast
mature dispersal in space brings negative effect on persistence of the
species.

Conclusion 2. If all parameters except for the delay τ are fixed, then
the large maturation time τ brings negative effect on persistence of the
species.

Example 2. Consider the model (1.3) with g(u) = βu, f(u) = pue−qu

and F(τ) = e−µjτ , where β, p, q, µj and dj are all positive constants. A
direct computation shows that

f ′(u) = pe−qu(1 − qu), f ′′(u) = −pqe−qu(2 − qu),

and f(u) reaches its maximum value f(1/q) = (p/q)e−1.
In the case of the Neumann boundary condition, λ0 = −β + pe−µjτ .

Therefore, if β > pe−µjτ , then Theorem 3.1 (i) with M = 0 implies
that the species goes extinct; if β < pe−µjτ , then Theorem 3.1 (ii) with
M = (p/βq)e−1−µjτ implies that the species persists. If, in addition,



A NONLOCAL POPULATION MODEL 315

pe−1−µjτ ≤ β < pe−µjτ , Theorem 3.2 with the last M implies that (1.3)
admits the unique positive steady state

ϕ∗(x) ≡
1

q

(
ln
p

β
− µjτ

)
> 0,

which is globally attractive.
The above analysis supports our second conclusion. For suitable val-

ues of the maturation time τ , the species goes extinct, persists, or sta-
bilizes at a positive steady state. However, the diffusion coefficient dm

has no effects on the persistence of the species.
In the case of the Dirichlet boundary condition, λ0 = −(dm + β) +

pe−(µj+dj)τ . By Theorems 3.1 and 3.2 with M = 0, or (p/βq)e−1−µjτ

and (1/q)(ln(p/β) − µjτ), we have the following result, which implies
the same conclusions about the effects of the maturation period τ and
the diffusion coefficient dm as in Example 1.

Proposition 4.2. Let um(t, x, φ) denote the solution of (1.3) subject
to the Dirichlet boundary condition and with the initial function φ ∈ Y

+.

(1) If p < dm + β, then for any φ ∈ Y
+, limt→∞ um(t, x, φ) = 0 uni-

formly for x ∈ [0, π].
(2) In the case of p > dm + β, let

τ0 =
1

µj + dj

ln
p

dm + β
, τ1 =

1

µj

(ln
p

β
− 1).

(a) If τ1 ≤ τ < τ0, then for any φ ∈ Y, φ(0, ·) 6≡ 0,
limt→∞ um(t, x, φ) = ϕ∗(x) uniformly for x ∈ [0, π], where ϕ∗

is the unique positive steady state of (1.3).

(b) If τ > τ0, then for any φ ∈ Y
+, limt→∞ um(t, x, φ) = 0 uni-

formly for x ∈ [0, π].

Numerical simulation. We numerically simulate Example 2 with the
domain Ω = (0, π). Model (1.3) is discretised by using the finite dif-
ference method, where the nonlocal term is approximated by composite
integration formulas. Note that in the case of the Neumann boundary
condition,

Γ(η(τ), x, y) =
1

π
+

2

π

∞∑

n=1

e−n2djτ cosnx cosny,
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and in the case of the Dirichlet boundary condition,

Γ(η(τ), x, y) =
2

π

∞∑

n=1

e−n2djτ sinnx sinny.

In what follows we only present the numerical simulations for the case
of the Dirichlet boundary condition since we have the similar results for
the case of the Neumann boundary condition.

Let p = 5, q = β = 1, µj = 1.2, dj = 0.25, dm = 0.5. When τ > 0.8303,
zero solution attracts every solution of (1.3) (Theorem 3.1); when τ ∈
(0.5078, 0.8303), model (1.3) admits a globally attractive and positive
steady state (Theorem 3.2). In Figure 1, the solution of (1.3) with initial
function φ(t, x) = sinx and τ = 1 converges to zero, while in Figure 2,
the solution with the same initial function and τ = 0.65 converges to
the unique steady state ϕ∗(x). Our theoretical results are consistent
with the numerical simulations. We also simulate the solutions of (1.3)
in the case of τ < 0.5078 (see, e.g., Figure 3). Our further numerical
simulations suggest that ϕ∗(x) would be globally attractive even if the
monotonicity condition in Theorem 3.2 is not satisfied. We leave this
open problem for future investigation.
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FIGURE 1: τ = 1, φ(t, x) = sin x.
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FIGURE 2: τ = 0.65, φ(t, x) = sin x.
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FIGURE 3: τ = 0.3, φ(t, x) = 1 − cos 4x.
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