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Abstract. The Josephson equation is investigated in detail: the existence and bi-
furcations for harmonic and subharmonic solutions under small perturbations are
obtained by using second-order averaging method and subharmonic Melnikov func-
tion, and the criterion of existence for chaos is proved by Melnikov analysis; the
bifurcation curves about n-subharmonic and heteroclinic orbits and the driving fre-
quency ω effects to the forms of chaotic behaviors are given by numerical simulations.

1. Introduction. In this paper we consider the Josephson system{
ẋ = y
ẏ = −sinx− ksin2x + β − α(cosx + 2kcos2x)y + fsinωt.

(A)

Where x(t) is the phase-error process (i.e., an angular variable); sinx+ksin2x is the
Hybrid loop which represents the phase-detector characteristics; ω and f are angular
frequency and amplitude of the driving current (force) respectively; sinωt represents
a sinus plus noise; fsinωt is a small sinusoidal force; −α(cosx + 2kcos2x)y + β is a
characteristic of transfer functions of the ideal filter.

The domain of definition of the Josephson system is the tangent bundle of the
circle TS1 = R2×S1, i.e., the cylinder. The detailed descriptive surrey of Josephson
System (A) may be found in [1, 3, 4, 11, 16]. The Josephson junction was first
proposed by Josephson (see[18]), then the system has investigated by many authors,
for example, see[1, 2, 4-15, 19-22, 24-29] and references there.

As is well known, the synchronous electric motor models of a single machine
infinite bus [23], single point Josephson function [11], superconducting derive [8],
forced pendulum [20, 25] and many other applications, can readily be described by
the model, or analogous ones.

The study of Josephson system is of fundamental and even practical interest.
On one the hand, the eminent characteristics of the Josephson system have a rich
content of nonlinear properties which are suitable for a detailed investigating various
dynamical states. On the other hand, an understanding of the dynamical behavior
will be directly useful in the Josephson devices. We therefore think it is worthwhile
to undertake a detailed discussion for the System (A) in order to point out which
range of parameter corresponds to a certain behavior.
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The dynamics of the forced Josephson junction circuit have been studied in the
form of the equations

βẍ + ẋ + sinx = a + εsinωt,

ẍ + β(1 + αcosx)ẋ + sinx = a + εsinωt.

in [1, 3, 9, 10, 25-29] and in other papers. These authors provided a qualitative
analysis, given bifurcation diagrams, and investigated the chaotic states and the
routes to chaos. In particular, they found the intermittent behavior (see[2, 8, 20,
34]), period-doubling bifurcations (see[7-9]), and period-triple bifurcations (see[8])
in such system.

The system in the form such as Josephson system (A) was less studied. In earlier
papers [16, 17], we showed the existence of limit cycles and a saddle-to-saddle sep-
aratrix loop for f = 0, the existence of chaotic states for certain parameter regions
using Melnikov method for f �= 0. The chaos result from transverse intersection
between the stable and unstable manifolds.

In this paper, the Eq.(A) is investigated in detail: the existence and bifurcations
for harmonic and subharmonic solutions under small perturbations are obtained by
using second-order averaging method and subharmonic Melnikov function, and the
criterion of existence for chaos is proved by Melnikov analysis; the bifurcation curves
about n-subharmonic and heteroclinic orbits are given by numerical simulations.
We also present the driving frequency ω effects to the forms of chaotic behaviors.
In essence we use perturbation methods to study Eq.(A). We therefore introduce a
small parameter ε, 0 ≤ ε � 1, and assume that f = O(ε), α = O(1) or α = O(ε),
but k, β = O(1) or β = O(ε) in Eq.(A). We will study how the dynamics of the
unperturbed system are changed under the perturbation.

The paper is organized as follows. The bifurcations and classification of fixed
points for unperturbed system are given in Section 2. Analytical results for the
condition of existence and bifurcation of harmonics and subharmonics and the nu-
merical simulations of bifurcations for the perturbed system are given in Section 3.
In Section 4 Melnikov’s method is used to prove the existence of ”Smale-Birkhoff
horseshoe” chaos, and the numerically investigation is considered to show some in-
teresting attractors as the frequency ω varies. In Section 5, we conclude with a
summary and some comments.

2. Bifurcation and classification of fixed points for unperturbed system.
If ε = 0, system (A) is considered as an unperturbed system and can be written as{

ẋ = y,
ẏ = −sinx− ksin2x + β.

(2.1)

Eq.(2.1) corresponds to the non-damping, constant inputs case, and is a Hamil-
tonian system with a Hamiltonian function

H(x, y) =
1
2
y2 − (cosx +

k

2
cos2x) − βx. (2.2)

Let

G(x) = −(cosx +
k

2
cos2x) − βx. (2.3)

The minima and maxima of G(x) correspond to the center and saddle-point of
(2.1) respectively (see Fig.1). In Figure 2 we show the phase-portrait and hetero-
clinic orbits for k = 0.8, β = 0.001.
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The fixed points of (2.1) satisfy the following equations:{
y = 0,
−sinx− ksin2x + β = 0. (2.4)

Let
F (x) = −(sinx + ksin2x),

and β1(k) and β2(k) denote the maxima of F (x) as

β1(k) =

√
32k2 − 2 + 2

√
1 + 32k2(

√
1 + 32k2 + 3)

32k
, (2.5)

and

β2(k) =

√
32k2 − 2 −√

1 + 32k2(
√

1 + 32k2 − 3)
32k

. (2.6)

The fixed point (xj , 0) of (2.1) is a center if

cosxj + 2kcos2xj > 0, (2.7)

and a hyperbolic saddle if

cosxj + 2kcos2xj < 0, (2.8)

and a saddle-node point if

cosxj + 2kcos2xj = 0. (2.9)

Because the saddle-node bifurcation of a fixed point (xj , 0) satisfies the conditions
(2.4) and (2.9) simultaneously, we can prove that

∂2F

∂x2
∂F

∂k
|
x=xj ,β=β1(k)orβ=β2(k)=−(sinxj + 4ksin2xj)(−sin2xj) < 0.

(2.10)

Therefore, the saddle-node bifurcation is supercritical. By the above analysis it
can be obtain without difficulty that

Lemma 1 (i) For 0 < β < β2 and k >
1
2
, there are four fixed points: (x2, 0) and

(x4, 0) being saddle, and (x1, 0) and (x3, 0) being centers, where 0 < x1 < x2 <
π, π < x3 < x4 < 2π (see Fig.3).

(ii) For β1 < β < β2 and k >
1
2
or 0 < β < β1 and 0 < k ≤ 1

2
, there are two

fixed points: center (x1, 0) and saddle (x2, 0) or center (x3, 0) and saddle (x4, 0).
(iii) For β1 and β2 are saddle-node bifurcation values for fixed points: if β = β1

then there is a saddle-node (x1, 0) (see the intersection point of the line β with the
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Figure 3

curve (sinx+ 2ksin2x) in Fig.3); if β = β2 and k >
1
2
, there are three fixed points:

one saddle-node(x3, 0), and one center (x1, 0) and one saddle (x2, 0) (see Fig.3).
β1 and β2 are supercritical bifurcation by (2.10).

Remark.1 β1(k) and β2(k) are monotonous function of k, i.e., β
′
1(k) > 0, β

′
2(k) > 0,

and β1 < β2, and β1(k) approaches β2(k) as k is large enough. For β = 0, as k
increased the large amplitude heteroclinic orbits in Fig2 contract and the small
amplitude heteroclinic orbits in Fig2 expand, up to β1(k) ∼ β2(k), the amplitude
of the two heteroclinic orbits approach.

Remark.2 We show that for unperturbed system (2.1) there are two qualitatively
different periodic solution in the cylinder: (1) the oscillating one (or called as el-
lipses, or cycle of first type), and the rotating ones (or called as ‘waves’, or cycle
of second type); (2) the heteroclinic orbits are the boundaries of the two types of
periodic orbits except the saddle-node bifurcation point.

3. Analysis for perturbed system. In this section we give the dynamical
changes under the perturbations for the Josephson system (A).
3.1. Damped perturbation. If the nonlinear damping is added to (2.1), then
give the equation

{
ẋ = y ≡ P (x, y),
ẏ = −sinx− ksinx + β − εα(cosx + 2kcos2x)y ≡ Q(x, y). (3.1)

The phase portraits of unperturbed system (2.1) are destroyed under the pertur-
bation. Besides the existence of fixed points the essential dynamical feature of (3.1)
is the presence of four types of two kinds of simple closed orbits and the saddle-
to-saddle separatrix loop (heteroclinic orbits) and almost all orbits approach to the
fixed point.

The simple closed orbits are cycles of the first kind (those homotopic to zero)
corresponding to periodic solutions of (3.1); cycles of the second kind (not homotopic

to zero) corresponding to the solution y = y(x) of the equation
dy

dx
=

Q

P
periodic

in x (and in particular, a constant).
The conditions of the existence for two types of closed orbits and separatrix loop

are given by using qualitative method in [16]. We describe the results for system
(3.1) as the following, and the detail can be seen in the original literature[16].
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Figure 4. (a) β = β∗
0 , (b) β = β∗, (c) β > β∗.

Figure 5. (a) β = β∗
1 , (b) β = β∗

21, (c) β = β∗
22, (d) β > β∗

21 or β > β∗
22.

Theorem 3.1 [16] For 0 < k <
1
2
, 0 < β < β1, there are two bifurcation values

β∗
0(α, k) and β∗(α, k)(0 < β∗

0 < β∗ < β1) which correspond one unstable cycle
y1(x) of second type and a separatric loop L1 in the half plane y > 0 respectively,
and the loop L1 disappears if β > β∗(β < β1). The global phase portraits changes
qualitatively as the parameter β vary which are shown in Fig.4(a)—(c). The cross-
hatched areas in Fig.4 show the region of the attraction of the stable equilibrium
point.

Theorem 3.2 [16] For k >
1
2
, 0 < β < β2, there are bifurcation values β∗

1 and β∗
21

or β∗
22 which correspond one unstable cycle y2(x) (see Fig.5(a)) of second type and

the represents loop L11 and L12 (see Fig.5(b)) or a separatrix loop L2 (see Fig.5(c))
in the half plane y > 0 respectively, and the loop L12 and L22 or L2 disappear if
β > β∗

21 or β > β∗
22 (see Fig.5(d)). The cross-hatched areas in Fig.5 show the region

of the attraction of the stable equilibrium points.

Remark 1. The bifurcation values β∗
0 , β

∗, and β∗
1 , β

∗
21, β

∗
22 depend on α, k. But the

existence of the β∗
12, β

∗
22 is not proved up to now, the approximate computation of
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the values of the bifurcations in the creation of the separatrix loop and approximate
expressions for computation of the catch of the region are given in [16].

Remark 2. The system (3.1) is not structurally stable at bifurcation points, since
the phase portraits for β > β∗ and β < β∗, or β > β∗

0 and β < β∗
0 or β > β∗

1 and
β < β∗

1 or β > β∗
2 and β < β∗

2 are qualitatively different (compare Fig.4(a) and
Fig.4(c), Fig.5(a) and Fig.5(d)). Moreover, when 0 < k < 1

2 for small β(β < β∗),
both the left and right unstable equilibrium points lie on the boundary of the region
of attraction of the stable equilibrium point(see Fig.4(a)), for large β(β > β∗), only
the right unstable equilibrium point lies on the boundary of the region of attraction
of the stable equilibrium point (see Fig.4(c)). When k > 1

2 , we also show the
different of the boundary of the region of attraction of the stable equilibrium for
small β(β < β∗

2) and large β(β > β∗
2) (see Fig.5(a) and Fig. 5(d)), where β∗

2 = β∗
21

or β∗
22.

3.2. Primary harmonic solutions and bifurcation. We now study the in-
fluence of perturbation (damping and extra force) on the system (2.1), i,e., study
the dynamical behavior of Eq.(A). First of all, we consider the primary harmonic
solution(primary resonance) of Eq.(A) using the second-order averaging method.
Introduce a small parameter ε, such that 0 < ε � 1 and replace α and f by εα and
ε

3
2 f respectively. Then Eq.(A) can be rewritten as

{
ẋ = y,

ẏ = − sinx− ksin2x + β − εα(cosx + 2kcos2x)y + ε
3
2 f sinωt.

(3.2)

Let (x0, 0) be a center of Eq (2.1), i.e,. (x0, 0) satisfies

−sinx0 − ksin2x0 + β = 0

and
cosx0 + 2kcos2x0 > 0.

The frequency of periodic orbit near the center is approximately given by

ω0 =
√

cosx0 + 2kcos2x0.

If the ratio of ω and ω0 is a rational number, then resonance behavior may occur
in Eq.(3.2). We begin with the case of primary resonance ω ∼ ω0 for Eq.(3.2) (hence
Eq.(A)). Assume that

ω2 ∼ ω20 ,

εΩ = ω2 − ω20 .

Let

a1 = cosx0+2kcos2x0 = ω20 , a2 = −1
2

(sinx0+4ksin2x0), a3 =
1
6

(cosx0+8kcos2x0),

and
x = x0 +

√
εz, y = y.

Then Eq.(3.2) can be rewritten as

z̈ + ω20z = −a2
√
εz2 + ε(a3z3 − ᾱż + fsinωt) + O(ε

3
2 ),

or
{

ż = v1,

v̇1 = −ω20z − a2
√
εz2 + ε(a3z3 − ᾱv1 + fsinωt) + O(ε

3
2 ).

(3.3)
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We use the van der Pol transformation


 u

v


 =




cosωt
1
ω
sinωt

−sinωt − 1
ω
cosωt





 z

v1




and carry out averaging up to second-order for Eq.(3.3). We obtain the following
averaged equation:




u̇ =
ε

2ω0
(Ωv − ᾱω0u− b1(u2 + v2)v − f),

v̇ =
ε

2ω0
(−Ωu− ᾱω0v + b1(u2 + v2)u).

(3.4)

where

ᾱ = αω20 , b1 =
−(a1a3ω20 + 10a22)

12ω20
+ O(ε).

The fixed points of Eq.(3.4) satisfy the following equation:

F (u) = b21f
2u3 + 2Ωb1fᾱu

2 + (ᾱ2 + Ω)ᾱ2u + fᾱ3 = 0, (3.5)

and
v2 = (−1)u(u +

f

ᾱ
). (3.6)

In order to find the bifurcation values of the fixed point we write equation (3.5)
as

F (ū) = ū3 + pū + q = 0, (3.7)
where

ū = u +
2Ωb1fᾱ

3b1f2
, p =

ᾱ2(3ᾱ2 − Ω2)
3b21f2

, q =
(−18ᾱ2Ω − 2Ω3 + 27b1f)ᾱ3

27b31f3
.

At bifurcation points, equation (3.7) must have multiple roots, that is

F (ū) = ū3 + pū + q = 0,
∂F

∂ū
= 3ū3 + p = 0. (3.8)

Now we determine all values of p and q (or f2 and Ω2) for which equation (3.7) can
have some common solution ū. If we eliminate ū from (3.8), there is the following
equation for a cusp:

∆ = 4p3 + 27q2

= 27b21f
4 − 4(Ω2 + 9ū2)Ωb1f

2 + 4(ᾱ2 + Ω2)2ᾱ2 = 0, (3.9)
The nature of the roots of equation (3.7) (or(3.5)) and hence of the fixed points

of the averaged equation (3.4) depends on the position in the (Ω2, f2)-plane, in
relation to the bifurcation curves as

2(Ω2 + 9ᾱ2) + 2
√

(Ω2 − 3ᾱ2)3

27b1
≡ f21 , (3.10)

and
2(Ω2 + 9ᾱ2) − 2

√
(Ω2 − 3ᾱ2)3

27b1
≡ f22 , (3.11)

In Fig.6 we have drawn the bifurcation curves of Eq.(3.9) in the (Ω2, f2)-plane.
The plane is divided into five subsets in each appropriate region we have sketched
a graph for the equation (3.5)(or (3.7)), which include the region (I) “inside” the
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curve ∆ = 0, the region “outside” it, the two branches f21 and f22 of the curve ∆ = 0,
and the point P (p = 0 and q = 0). The points (Ω2, f2) which lie in (I) are those
for ∆ < 0, those in (E) satisfy ∆ > 0. Thus, we obtain the following conclusion.

Lemma 2. (i) If (Ω2, f2) lies in (E) there is one real root of Eq.(3.5) which
corresponds to one nontrivial fixed point of Eq (3.4).
(ii) If (Ω2, f2) lies in (I) there are three distinct real roots of (3.5) which corre-

spond to three distinct nontrivial fixed point of Eq.(3.4).
(iii) If (Ω2, f2) lies in the curve f21 or f22 , there are three real roots of Eq.(3.5),

but two of them coincide; on f22 the coincidence occurs for the smaller roots; on f21
the large, which correspond to two nontrivial fixed points of Eq.(3.4).

(iv) If (Ω2, f2) lies at the point P (3ᾱ2,
8
√

3ᾱ3

9b1
), there are three coincident real

roots, which correspond to one nontrivial fixed point of Eq.(3.4).

The stability of fixed points (u0, v0) of Eq.(3.4) is determined by the characteristic
equation:

λ2 + 2ᾱλ + ᾱ2 + Ω2 +
3b1f2

ᾱ2
u20 +

4b1Ωf

ᾱ
u0 = 0, (3.12)

Thus, the fixed point (u0, v0) is stable if the following condition holds:

g(u0) = b21f
2u30 + 2Ωb1fᾱu

2
0 + (ᾱ2 + Ω2)ᾱ2u0 + fᾱ3 > 0, (3.13)

and the fixed point (u0, v0) is a stable node if 0 < g(u0) < ᾱ2; is a stable focus
if g(u0) > ᾱ2. It is obvious that the fixed point (u0, v0) is unstable if g(u0) < 0,

meanwhile we can prove that
∂2F

∂u2
∂F

∂f
|f2

1
> 0 and

∂2F

∂u2
∂F

∂f
|f2

2
< 0.
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Moreover, by the Dulac’s criterion it is known that the averaged equation (3.4)
has no closed orbit.

Thus, by consider the above stability conditions and the roots of Eq.(3.5) we can
obtain the phase portraits which are given in Fig.7 and the following conclusion:

Lemma 3. (i) For Ω2−3ᾱ2 > 0 and 0 < ε � 1, there exist two stable foci-node and
one saddle in region (I); there exists a stable foci-node in region (II) and (III). From
region (I) to (II) or to (III), the supercritical saddle-node bifurcation of fixed point
occurs at the curve f22 , the subcritical saddle-node bifurcation occurs at the curve
f21 . On the curves f21 and f22 there are one stable foci-node and one saddle-node.
(ii) For Ω2− 3ᾱ2 < 0 and 0 < ε � 1, there exists a stable foci-node in the region

(IV);
(iii) For Ω2 − 3ᾱ2 = 0 and 0 < ε � 1, there exists a stable foci-node on the line

Ω2 = 3ᾱ2;
(iv) At the point P ,there exists a saddle;
(v) When f22 is increasing, the fixed point is changed from one into three, through

passing f22 , on the f22 there are two fixed points and one of them is saddle-node, so
the f22 is supercritical saddle-node bifurcation; when f21 is decreasing, the fixed point
is changed from one to three, on f21 there are two fixed points and one of them is
saddle-node, so the f21 is subcritical saddle-node bifurcation. Fig.8 shows a bifur-
cation diagram indicating how the fixed point of Eq.(3.4) are created or annihilated
when f is varying while the other parameters remain fixed.

By the averaging theorem (see [24]), the hyperbolic fixed points of the averaged
equation (3.4) correspond to the resonant harmonic solutions of the original equation
(3.2) and therefore asymptotically to solutions of Eq.(A) for sufficiently small value
of ε �= 0. For all other solutions of (3.4) the asymptotic validity is for a finite interval
of time proportional to ε−1.

Therefore, by Lemma1-2 and the averaging theorem for Eq.(3.2) (or Eq.(A)) we
can give the following Theorem.

Theorem 3.3 (i) For Ω2−3ᾱ2 > 0 and 0 < ε � 1, there exists two stable resonant
harmonic solutions and one unstable resonant harmonic solution in region (I), there
is a stable resonant harmonic in region (II) and (III). A stable harmonic appears
near the supercritical bifurcation curve f22 and a stable harmonic disappears near
the subcritical bifurcation curve f21 .
(ii) For Ω2 − 3ᾱ2 ≤ 0 and 0 < ε � 1, there exists a stable harmonic in region

(IV) and on the line Ω2 = 3ᾱ2 .

(iii) At the point P (3ᾱ2,
8
√

3ᾱ2

9b1
), there exists an unstable harmonic solution.

(iv) The harmonic solutions of Eq.(3.2) is approximately given by

x(t) = x0(t) +
√
ε(ucosωt− vsinωt) + O(ε)

where u and v are given by the equilibrium solutions of averaged equation (3.4).The
other solutions in Eq.(3.4) correspond to the almost periodic solutions or chaotic
motions in Eq.(3.2) (or Eq.(A)).
Where f21 and f22 are given in (3.10) and (3.11) respectively, and ᾱ = αω30.

3.3. Subharmonic solutions and bifurcations. In this subsection we inves-
tigate the second-order subharmonic resonance (secondary resonance) and n-order
subharmonics using the second-order averaging method and the Melnikov method
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respectively. For second order subharmonic resonance ω ≈ 2ω0, we set

εΩ =
ω2 − 4ω20

4
.

Replacing α and f by εα and εf (0 < ε � 1) respectively, then Eq.(A) can be
written as

{
ẋ = y,
ẏ = −sinx− ksin2x + β − εα(cosx + 2kcos2x)y + εfsinωt.

(3.14)

Using regular perturbation methods, one obtains harmonics of (3.14) in the form

x(t) = x0 − εΓsinωt + O(ε2), where Γ =
f

ω2 − ω20
. (Assume x(t, ε) = x0 + εx1 + · · ·

substituted into (3.14), we obtain

x0 = a0cosωt + b0sinωt

and

x1 = − f

ω2 − ω20
sinωt,

hence
x(t) = x0 + εx1 = x0 − εΓsinωt.)

To investigate stability of the harmonic x(t), one can set

x = x0 +
√
εz − εΓsinωt, (3.15)

where (x0, 0) is a center of Eq.(3.14) for ε = 0.
Substituting (3.15) into (3.14), then Eq.(3.14) becomes as

z̈ = −a1z −
√
εa2z

2 + ε(a3z3 − αa1ż + 2a2Γzsinωt) + O(ε
3
2 ). (3.16)

We use the van der Pol transformation


 u

v


 =




cos
ωt

2
− 2
ω
sin

ωt

2

−sin
ωt

2
− 2
ω
cos

ωt

2





 z

ż


 (3.17)

and carry out averaging up to second-order, so that the averaged equation corre-
sponding Eq.(3.16) becomes as




u̇ =
ε

2ω0
[Ωv − (αa1ω0 +

a2Γ
4

)u + c(u2 + v2)v] ≡ P (x, y),

v̇ =
ε

2ω0
[−Ωu− (αa1ω0 − a2Γ

4
)v − c(u2 + v2)u] ≡ Q(x, y),

(3.18)

where

c =
3a3
4

+
10a22
24ω20

.

By the Dulac’s criterion we know that
∂P

∂u
+

∂Q

∂v
= −2αa1ω0. (3.19)

and no periodic solution for Eq.(3.18).
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For Eq.(3.18) apart from the trivial fixed point (0, 0), the nontrivial fixed points
satisfy the following equations

c2a22Γ
2

4(αa1ω0 +
a2Γ
4

)2
v4 +

Ωa2cΓ

αa1ω0 +
a2Γ
4

v2 + (Ω2 + α2a21ω
2
0 −

a22Γ
2

16
) = 0, (3.20)

There therefore exist nontrivial fixed points for Eq.(3.18) if the following condi-
tions are satisfied:

f∗
02 ≡

144ω20(Ω
2 + α2a21ω

2
0)

a22
> f2 ≥ 144α2a21ω

4
0

a22
≡ f∗

01,

and c > 0.
The eigenvalue equation about the fixed point (0, 0) in Eq.(3.18) satisfy the

following equation

λ2 + 2αa1ω0λ + 4(Ω2 + α2a21ω
2
0) −

a22f
2

36ω40
, (3.21)

Let

D(ω0) = 4(Ω2 + α2a21ω
2
0) −

a22f
2

36ω40
For the stability and bifurcation of the fixed point (0, 0) of Eq.(3.18) we have the

following conclusion:

Lemma 4. There exists a bifurcation l which is given by

f2(ω0) =
144ω20(Ω

2 + α2a21ω
2
0)

a22
≡ f∗

02. (3.22)

Moreover, above the l the fixed point (0, 0) is stable, below the l the fixed point
(0, 0) in unstable; on the bifurcation curve l the fixed point is a saddle-node (one
eigenvalue λ1 = 0 and another λ2 = −2αa1ω0).

The eigenvalue equations about the nontrivial fixed point (u0, v0) of Eq.(3.18)
satisfy the following equations:

λ2 + 2αa1ω0λ− (2cu0v0 − (αa1ω0 +
a2Γ
4

))(2cu0v0 + (αa1ω0 − a2Γ
4

))

+(Ω + 3cv20 + cu20)(Ω + 3cv20 + cv20) = 0.
Let

G(u0, v0) = −(2cu0v0 − (αa1ω0 +
a2Γ
4

))(2cu0v0 + (αa1ω0 − a2Γ
4

))

+(Ω + 3cv20 + cu20)(Ω + 3cv20 + cv20). (3.23)
Therefore, the fixed point (u0, v0) is a stable if G(u0, v0) > 0, and a unstable if

G(u0, v0) < 0.
By the averaging theorem and the above analysis we get the following conclusion:

Theorem 3.4. (i) Including the trivial fixed point (0, 0),there are one, three, or five
fixed points in Eq.(3.18). Each additional pair of nontrivial fixed points corresponds
to a single subharmonic of period two of Eq.(3.14) and is given approximately by

x(t) = x0 +
√
ε(u0cos

ωt

2
− v0sin

ωt

2
) − εΓsinωt,

where (u0, v0) is the solution of Eq.(3.18).
The trivial fixed point (0, 0) corresponds to a non-resonance harmonic of Eq.(3.14).
(ii)There are two bifurcation curves which are given by
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f2 =
144α2a21ω

4
0

a22
≡ f∗

01, (3.24)

and

f2 =
144ω20(Ω

2 + α2a21ω
4
0)

a22
≡ f∗

02. (3.25)

f∗
02 is the supercritical bifurcation or the period-doubling bifurcation of harmonic,

and f∗
01 is the subcritical bifurcation or the saddle-node bifurcation of subharmonic.

The curves f∗
01 and f∗

02 are given by the numerical simulation in Fig.9.
(iii) See Fig.9: in region (I) there is a stable fixed point (0, 0) of Eq.(3.18),

which corresponds to a stable non-resonant harmonic of Eq.(3.14); on the curve f∗
01

there are three fixed points which correspond to a stable non-resonant harmonic and
a single unstable resonant subharmonic of period-two of Eq.(3.14). In region(II)
there are five fixed points which correspond to a stable harmonic and two resonant
subharmonic (one stable and another unstable) of period-two of Eq.(3.14). On the
curve f∗

02 there are three fixed points which correspond to a saddle-node harmonic
and a unstable subharmonic. In region (III) the harmonic becomes unstable and the
unstable subharmonic disappears.

From above analysis we show that there exist second-order subharmonic solutions
for f∗

01 < f2 < f∗
02, and there exist only harmonic solution for f2 < f∗

01 and f2 > f∗
02

.We give the harmonic solution and subharmonic solution in phase-plane by the
numerically simulations for fixed parameters k = 0.8, α = β = 0.001 and varying f
and ω.

There are harmonic solutions for f = 0 and ω = 0(Fig.10), and f = 60, ω = 1
(Fig.11), but the amplitude for f = 60 is thirty fold of f = 0, and there are
subharmonic solutions for f = 0.1 and ω = 1 (see Fig.12).

In order to investigate the existence of n-order subharmonic solutions of Eq.(3.14),
we use the Melnikov function for subharmonic which is defined as [13, 31].
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In the following we shall consider two different type of the perturbed system

{
ẋ = y,
ẏ = −sinx− ksin2x + β − ε[α(cosx + 2kcos2x)y − fsinωt]. (3.26)

{
ẋ = y,
ẏ = −sinx− ksin2x− ε[α(cosx + 2kcos2x)y − β − fsinωt]. (3.27)

When ε = 0 write (3.26) and (3.27) as (3.26)0 and (3.27)0 respectively.
Consider a one-parameter family of periodic orbits qµ(t) = (xµ, yµ) with µ in

(µ1, µ2), where µ1 and µ2 are constants, let qµ(t) and qµ
1 (t)be a periodic orbit of

period 2πm
ω of Eq (3.26)0 and (3.27)0 respectively, where m is a positive integer.

In [33] it has been proved that M
m
n (t0) can have simple zero only if n = 1, so the

Melnikov function for qµ(t) of Eq.(3.26) is given by

Mm(t0) =
∫ 2πm

ω

0

yµ(t)[−α(cos(xµ(t)) + 2kcos(2xµ(t)))yµ(t) + fsinω(t + t0)]dt

=
∫ 2πm

ω

0

−α(cosxµ(t) + 2kcos(2xµ(t)))(yµ(t))2dt + f

∫ 2πm
ω

0

yµ(t)sinωtcosωt0dt

+f

∫ 2πm
ω

0

yµ(t)sinωt0cosωtdt = −αAm(β, k, ω) + fcosωt0B
m(β, k, ω) +

fsinωt0C
m(β, k, ω) = −αAm + fSmsin(ωt0 + Θm(ω)), (3.28)

where

Am(β, k, ω) =
∫ 2πm

ω

0

(yµ(t))2(cos(xµ(t)) + 2kcos(2xµ(t))dt,

Bm(β, k, ω) =
∫ 2πm

ω

0

yµ(t)sinωtdt,

Cm(β, k, ω) =
∫ 2πm

ω

0

yµ(t)cosωtdt

Sm(β, k, ω) =
√

(Bm)2 + (Cm)2,
Θm(ω) = arctanBm

Cm .

(3.29)

If
f

α
≥ Am

Sm
≡ Rm

1 (β, k, ω), (3.30)

then Mm(t0) has simple zero and a necessary condition for the occurrence of sub-
harmonics of period 2πm

ω of Eq.(3.26) is given by (3.30).
The bifurcation curve of subharmonics is created and occurs at

f

α
≡ Rm

1 (β, k, ω) + O(ε). (3.31)

The bifurcation curve (3. 31) is shown for k = 0.8, ε = 0.01, β = 0.001, α =
3, f = 2, ω = 3 in Fig.13 in the (ω, f

α ) parameter plane, which separate regions with
and without occurrence of subharmonics.

The Melnikov function for qµ
1 (t) of Eq.(3.27) is given by

Mm
1 (t0) =

∫ 2πm
ω

0

yµ
1 (t)[−αcos(xµ

1 (t)
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+2kcos(2xµ
1 (t)))yµ

1 (t) + β + fsinω(t + t0)]dt

= −α

∫ 2πm
ω

0

(cosxµ
1 (t) + 2kcos(2xµ

1 (t)))(yµ
1 (t))2dt + β

∫ 2πm
ω

0

yµ
1 (t)dt

+f

∫ 2πm
ω

0

yµ
1 (t)sinωtcosωt0dt + f

∫ 2πm
ω

0

yµ
1 (t)sinωt0cosωtdt

= −2α
∫ x0

2

x0
1

(yµ
1 (t))2(cosxµ

1 (t) + 2k(cos2xµ
1 (t)))dt

+2β(x(
Tm

2
) − x(0)) + 2f

∫ x0
2

x0
1

sinωtcosωt0dx + 2f
∫ x0

2

x0
1

sinωt0cosωtdx

= −2αAm
1 (k, ω) + 2βB1 + 2fCm

1 (k, ω)cosωt0 + 2fDm
1 (k, ω)sinωt0

= −2αAm
1 + 2βB1 + 2Sm

1 sin(ωt0 + Θm
1 (ω)). (3.32)

where x01 and x02 are the two points at which the periodic orbit qµ
1 (t) crosses the

x-axis in the phase-plane and

Am
1 =

∫ x0
2

x0
1

y2(cos(x + 2kcos2x))dx,

B1 = x(
Tm

2
) − x(0),

Cm
1 =

∫ x0
2

x0
1

sinω(
∫ x0

2

x0
1

dx√
2Hm + 2cosx + kcos2x

)dx,

Dm
1 =

∫ x0
2

x0
1

cosω(
∫ x0

2

x0
1

dx√
2Hm + 2cosx + kcos2x

)dx,

Sm
1 =

√
(Cm
1 )2 + (Dm

1 )2,

Θm
1 = arctan

Cm
1

Dm
1

.

It follows that for fixed k and ω if

f ≥| αA
m
1 − βB1
Sm
1

|≡ Rm
2 (k, ω, α, β). (3.33)

Then Mm
1 (t0) has simple zero and the bifurcation curve of m-order subharmonics

is created and occurs at
f = Rm

2 (k, ω, α, β). (3.34)
The bifurcation curve (3.34) for k = 0.8, α = 3, ε = 0.01, β = 0.001 is shown

in Fig.14 in the (ω, f
α ) parameter plane which separate regions with and without

occurrence of subharmonics. By the above analysis for subharmonics Melnikov func-
tion we find that the bifurcation formulae (3.30) of Eq.(3.26) (corresponds to the
bifurcation curve in Fig.13) differ from the bifurcation formula (3.33) of Eq.(3.27)
(corresponds to the bifurcation curve in Fig.14). The bifurcation curve Fig.14 may
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be considered a more smooth, and the bifurcation curve Fig.13 present the oscilla-
tions, since the different of the perturbed terms between (3.26) and (3.27).

4. Heteroclinic bifurcation for chaos. In this section, we write Eq.(A) as the
following three different perturbed forms:




ẋ = y ≡ f1(x, y) + εg1(x, y, t),

ẏ = − sinx− ksin2x− ε[α(cosx + 2kcos2x)y − β − fsinωt],

≡ f2(x, y) + εg2(x, y, t).

(4.1)




ẋ = y ≡ f1(x, y) + εg1(x, y, t),

ẏ = −sinx− ksin2x + β − ε[α(cosx + 2kcos2x)y − fsinωt],

≡ f2(x, y) + εg2(x, y, t).

(4.2)




ẋ = y ≡ f1(x, y) + εg1(x, y, t),

ẏ = −sinx− ksin2x− α(cosx + 2kcos2x)y + β + εfsinωt

≡ f2(x, y) + εg2(x, y, t).

(4.3)

where 0 ≤ ε � 1 and α, β, f, are of order one for (4.1), and α, f are of order one for
(4.2), and f is of order one for (4.3). Let ε = 0, Eqs.(4.1)-(4.3) become three differ-
ent unperturbed systems (4.1)0-(4.3)0, respectively. Moreover,(4.1)0 and (4.2)0 are
Hamiltonian, and possess heteroclinic orbits as Fig.2. Eq.(4.3)0 is non-Hamiltonian
system, but we have proved the existence of heteroclinic orbit in the half-cylinder
y ≥ 0 for β = β∗(α, k) as Fig.5(b) or Fig.5(c) by qualitative method and numeri-
cally simulation in [16]. When the perturbations are added (ε �= 0), Eqs.(4.1)-(4.3)
may have transverse heteroclinic orbits. By the Smale-Birkhoff Theorem [13,30, 31],
the existence of such orbits results in chaotic dynamics. And we can apply Mel-
nikov’s method to Eqs.(4.1)-(4.3) and obtain criteria for the existence of heteroclinic
bifurcation and chaos.

The conditions of the Melnikov function M(t0) has transverse zeros for Eqs(4.1)
and (4.3) are given in [17]. Moreover, we give the expression for the Melnikov
function and the changes of regions of chaos as k increases (see Fig.15) for Eq.(4.1).
The curves Ci(i = 1−4) in Fig.15 correspond to the Melnikov integrals for different
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k, and separated the regions with and without occurrence of chaos. Above the
curves Ci(i = 1 − 4) the “double chaotic” arise in Eq.(4.1) (as in Fig.16(a)). The
“double chaotic” means both branches of the stable and unstable manifolds intersect
transversely in the cylinder.

For the non-Hamiltonian system (4.3), we have proved the existence of hetero-
clinic orbits for β = β∗(α, k) and chaotic dynamics in the half-cylinder y ≥ 0 (as in
Fig.16(b)) in Eq.(4.3) by qualitative analysis and Melnikov method.

We now give the heteroclinic bifurcation criteria of chaos in Eq.(4.2).
The unperturbed system (ε = 0) for Eq.(4.2) is Hamiltonian system with energy

given by Eq.(2.2) and has the two types of heteroclinic orbits

Γ±
13(t)(x

±
13(t), y

±
13(t))

and
Γ±
35(t)(x

±
35(t), y

±
35(t))

associated with hyperbolic saddle points (x1, 0), (x3, 0) and (x5, 0) for 0 ≤ x ≤ 2π
(see Fig.1). The Melnikov function for Eq.(4.2) is

Mm(t0) =
∫ ∞

−∞
y(t)[−αy(t)(cosx(t) + 2kcos(2x(t))) + fsinω(t + t0)]dt

= −αl1(k, β, ω) − 2kαl2(k, β, ω) + fl3(k, β, ω)cosωt0 + fl4(k, β, ω)sinωt0
= −αl1 − 2kαl2 + fAsin(ωt0 + θ).

(4.4)

where

l1(k, β, ω) =
∫ ∞

−∞
(y(t))2cosx(t)dt, l2(k, β, ω) =

∫ ∞

−∞
(y(t))2cos2x(t)dt,

l3(k, β, ω) =
∫ ∞

−∞
y(t)sinωtdt, l4(k, β, ω) =

∫ ∞

−∞
y(t)cosωtdt,

A(k, β, ω) =
√

l23 + l24, θ = arctan
l3
l4
.

(4.5)

Note that (x(t), y(t))in (4.4) is given by

(x13(t), y13(t)), (x31(t), y31(t))

and
(x35(t), y35(t)), (x53(t), y53(t))

for the heteroclinic orbits Γ13(t), Γ31(t) and Γ35(t), Γ53(t), respectively.
Let M(t0) = 0, we have

M(t0) = −αl1 − 2kαl2 + fAsin(ωt0 + θ) = 0.
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Thus, if
f

α
>| l1 + 2kl2

4
|≡ R(ω), (4.6)
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then there is a t0 such that M(t0) = 0 and dM
dt |t0 �= 0, and obtain the following

conclusion:

Theorem 4. The heteroclinic bifurcation of Eq.(4.2) will occur if

f

α
= R(ω). (4.7)

This implies that Eq.(4.7) represents a criteria for the existence of Smale-horseshoe
chaos in Eq.(4.2).

The bifurcation curves in the (ω, f
α ) parameter plane which separates regions with

and without occurrence of chaos is given by equality in formula (4.6). The hetero-
clinic bifurcation curves by the numerical simulation for (4.7) and fixed β = 0.0001
are shown in Fig.17—19 for k = 0.2, k = 0.8, and k = 30.5, respectively. Fig.18
and Fig.19 depict heteroclinic bifurcation curves l1 and l2 which are corresponding
the bifurcations of the heteroclinic orbits from (x1, 0) to (x3, 0), and from (x3, 0)
to (x5, 0), respectively. We note that the heteroclinic bifurcation curves for fixed
β = 0.0001 and different values k, for example, k = 0.2(Fig.17), k = 0.8(Fig.18)
and k = 30.5 (Fig.19), and for the two types of heteroclinic orbits in same value k
(compare the two curves l1 (is for the bifurcation from (x1, 0) to (x3, 0)) and l2 (is
for the bifurcation from (x3, 0) to (x5, 0)) in Fig.18 and Fig.19) are different.

The chaotic behavior in Eq.(A) is also verified by Lyapunov exponent. For
Eq.(4.2), we calculated the Lyapunov exponent as a function of parameter α as
show in Fig.20—22 corresponding cases: k = 0.2, k = 0.8 and k = 30.5 and fixed
β = 0.0001, ε = 0.01, f = 2, ω = 3, respectively. We shown that the Lyapunov
exponent is positive and the motion is chaotic when α ≥ 0.2 for above cases.

Here we report some of chaotic behaviors by numerical investigate. One inter-
esting result is that the driving frequency ω effects to the form of attractor of the
trajectory. For example, for fixed k = 0.8, β = 0.001, α = 0.01 and f = 0.8, vary ω:

(i). If w = 0.8, there are the chaotic trajectories with a cloud nonregular points
at the regions of the initial points (2.521,0), (4.032,0) and (8.33,0) which are the
approximate saddle points of the unperturbed system (4.1)0( see Fig.23).

(ii). If ω = 6.8, we show that the chaotic trajectories with the obvious bound-
aries(see Fig.24), and the left of that is from initial (2.521,0), and the right of
that is from initials (4.032, 0) and (8.33, 0). And moreover, for 0.2 ≤ f ≤ 2 and
6.5 ≤ ω ≤ 25 there are analogous chaotic trajectories. In particular, if ω = 25, the
n(> 20)-subharmonic trajectories are include in the chaotic motions(see Fig.25).

If fixed k = 0.8, β = 0.001, α = 3, f = 0.8 and ω = 6.8, the trajectories with
initials (2.521, 0), (4.032, 0) and (8.33, 0) are tending the three different attractors
with the very small size, respectively (see Fig.26).

5. Conclusion. The study of the Josephson System.(A) has revealed a rich content
of dynamical behavior, which including limit cycles, harmonic and subharmonic
bifurcations, and chaotic motions as the parameters vary. Combining our previous
results from the literature [16, 17] with our new results we proved more complete
descriptions of the Josephson System (A). However, Josephson System (A) still have
not been completely discussed, because the parameter space is so large. There are
at least the following problems should consider in the future studies.

(1). Chaos is not difficult to find by numerical simulations, however, the an-
alytic investigation may be difficult, for examples, give the analytic conditions of
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various routes to chaos (period-doubling bifurcation, period-three-triple bifurcation,
intermittence chaos).

(2). Future numerical simulations should attempt to study: find out an various
attractors and effect of parameters and initial condition on the dynamic.

Acknowledgements. The authors wish to thank Dr. Pengcheng Xu for his help
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