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Robust estimators for multivariate location and dispersion should be
√
n con-

sistent and highly outlier resistant, but estimators that have been shown to have

these properties are impractical to compute. The RMVN estimator is an easily com-

puted outlier resistant robust
√
n consistent estimator of multivariate location and

dispersion, and the estimator is obtained by scaling the classical estimator applied

to the “RMVN subset” that contains at least half of the cases. Several robust esti-

mators will be presented, discussed and compared in detail. The applications for the

RMVN estimator are numerous, and a simple method for performing robust prin-

cipal component analysis (PCA), canonical correlation analysis (CCA) and factor

analysis is to apply the classical method to the “RMVN subset.” Two approaches

for robust PCA and CCA will be introduced and compared by simulation studies.
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CHAPTER 1

INTRODUCTION

A multivariate location and dispersion (MLD) model is a joint distribution

with parameters µ and Σ, where µ is a p× 1 population location vector and Σ is a

p×p symmetric positive definite population dispersion (scatter) matrix. Estimating

µ and Σ forms the cornerstone of multivariate data analysis since the estimators

are widely used by many classical multivariate methods. Suppose the observed data

is xi, for i = 1, · · · , n on p variables collected in an n× p matrix X.

X
(n×p)

=

























X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

























=

























xT
1

xT
2

...

xT
n

























The most commonly used estimators of multivariate location and dispersion are

the classical estimator (x̄,S) where x̄ is the sample mean and S is the sample

covariance-variance matrix. Then

x̄ =
1

n

n
∑

i=1

xi and S =
1

n − 1

n
∑

i=1

(xi − x̄)(xi − x̄)′.

An important MLD model is the elliptically contoured ECp(µ,Σ, g) distribu-

tion with probability density function.

f(x) = kp|Σ|−1/2g
[

(x − µ)′Σ−1(x − µ)
]

1



where g is some known function and kp is some positive constant.

If random vector X has an elliptically contoured (EC) distribution, then the

characteristic function of X is

φX (t) = E{exp[it′(X)]} = exp(it′µ)ψ(t′Σt)

for some function ψ. See Johnson (1987, p. 107). If the second moments exist, then

E(X) = µ

and

Cov(X) = cXΣ

where

cX = −2ψ′(0).

A p-dimensional multivariate normal (MVN) Np(µ,Σ) distribution has a probability

density function

f(x) =
1

(2π)p/2|Σ|1/2
e−(x−µ)′Σ

−1

(x−µ)/2. (1.1)

So Np(µ,Σ) is just a special case of ECp(µ,Σ, g) with

g(u) = e−u and kp =
1

(2π)p/2
.

The classical estimator (x̄,S) plays an important role in multivariate analysis.

If x1,x2, · · · ,xn are a random sample of size n from a multivariate normal popula-

tion, then (x̄,
n− 1

n
S) is the MLE of (µ,Σ), x̄ and S are sufficient statistics, and x̄

and S are independent. The widely used Hotelling’s T 2, which is in honor of Harold

2



Hotelling, a pioneer in multivariate analysis, is defined as

T 2 = n(x̄ − µ)′S−1(x̄ − µ)

Hotelling first obtained that

T 2 ∼ (n− 1)p

n− p
Fp,n−p

where Fp,n−p is the F distribution with parameters p and n − p. A 100(1 − α)%

confidence region for the mean µ of a p-dimensional MVN is the ellipsoid determined

by all µ such that

T 2 = n(x̄ − µ)′S−1(x̄ − µ) ≤ (n− 1)p

n− p
Fp,n−p(1 − α)

It can be shown that

n

n + 1
(x − x̄)′S−1(x − x̄) is distributed as

(n− 1)p

n− p
Fp,n−p

and a 100(1 − α)% p-dimensional prediction ellipsoid is given by all x satisfying

(x − x̄)′S−1(x − x̄) ≤ (n2 − 1)p

n(n− p)
Fp,n−p(1 − α)

where P
(

Fp,n−p ≤ Fp,n−p(1− α)
)

= 1− α. The above prediction region for a future

observed value xf is an ellipsoid that is centered at the initial sample mean x̄, and

its axes are determined by the eigenvectors of S. Before any new observations are

taken, the probability that xf falls in the prediction ellipsoid is 1 − α.

Let the p × 1 column vector T = T (X) be a multivariate location estimator,

3



and let the p × p symmetric positive definite matrix C = C(X) be a dispersion

estimator. The squared sample Mahalanobis distance is the scalar

D2
i (T,C) = D2(xi, T,C) = (xi − T )′C−1(xi − T ) (1.2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate

of center T (X) is D(xi, T, Ip). The classical Mahalanobis distance uses (T,C) =

(x,S). The population squared Mahalanobis distance is

U ≡ D2 = D2(x,µ,Σ) = (x − µ)′Σ−1(x − µ). (1.3)

For EC distributions, U has density

h(u) =
πp/2

Γ(p/2)
kpu

p/2−1g(u).

See Johnson (1987, p. 107-108).

A principal component analysis (PCA) is often conducted on the sample co-

variance matrix or on the sample correlation matrix. The objective is to construct

uncorrelated linear combinations of the measured variables that account for much

of the variation in the sample. The uncorrelated combinations with the largest

variances are called the sample principal components. Suppose the p × p sample

covariance matrix has eigenvalue-eigenvector pairs (λ̂1, ê1), (λ̂2, ê2), · · · , (λ̂p, êp).

4



Also rewrite the n× p observation data matrix X as

X
(n×p)

=

























X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

























=
[

X1 X2 · · · Xp

]

where Xi =
[

X1i X2i · · · Xni

]′
. Then the ith sample principal component is given

by

Ŷi = ê′
iX = êi1X1 + êi2X2 + · · ·+ êipXp

where 1 ≤ i ≤ p and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0. If the underlying distribution of X is

MVN, then the population principal components Yi = e′
i(X −µ) have an Np(0,Λ)

distribution, where the diagonal matrix Λ has entries λ1, λ2, · · · , λp. The contour

consisting of all p× 1 vectors x satisfying

(x − x̄)′S−1(x − x̄) = c2 (1.4)

estimates the constant density contour (x − µ)′Σ−1(x − µ) = c2. Geometrically,

the data may be plotted as n points in p dimensional space. Thus (1.4) defines a

hyperellipsoid that is centered at x̄ and has axes given by the eigenvectors of S.

The lengths of these hyperellipsoid axes are proportional to
√

λ̂i, i = 1, 2, · · · , p.

Despite their important role in multivariate analysis, the classical estimators

have a major flaw of being extremely sensitive to the presence of outliers. In conse-

quence, the classical multivariate procedures based on classical estimators are greatly

influenced by outliers. Therefore, it is important to consider robust alternative es-

timators to these estimators. Roughly speaking, a robust statistic (Huber 1981)

5



is resistant to errors in the results produced by small deviations from assumptions

(e.g. of normality). This means that if the assumptions are only approximately

met, the estimator will still have reasonable efficiency and reasonably small bias.

This dissertation is focused on applications of the recently developed RMVN robust

estimator of Olive and Hawkins (2010).

One of the measures of robustness is the breakdown value. Robust estimators

are expected to be bounded despite the presence of distorting outliers. Suppose

d of the cases have been replaced by arbitrarily bad contaminated cases, then the

rate of contamination is γ = d/n. For the multivariate location estimator T (X),

the breakdown point value is the smallest value of γ that makes ||T (X)|| arbitrarily

large. How to define the breakdown value of the dispersion estimator C(X) is a bit

more complicated. In linear algebra,

max
||x||=1

x′Cx = λ1 (equality attained when x = e1)

min
||x||=1

x′Cx = λp (equality attained when x = ep)

where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 are eigenvalues of C(X) and e1, e2, · · · , ep are asso-

ciated normalized eigenvectors. The spectral decomposition of the positive definite

matrix C(X) is given by

C(X) =

p
∑

i=1

λieie
′
i.

For ‖ei‖ = 1 for all i, the breakdown value of C(X) is only determined by eigenval-

ues. Hence for the dispersion estimator C(X), the breakdown value is the smallest

value of γ needed to drive the largest eigenvalue of C(X) to ∞ or to drive the

smallest eigenvalue to 0. High Breakdown (HB) statistics have γ → 0.5 as n → ∞.

The sample median is a simple HB location estimator.

Besides high breakdown, consistency (stability), statistical efficiency and com-

6



putational efficiency are factors to be scrutinized for any robust statistical procedure.

A sequence of estimators W n = W n(X) is called a consistent sequence of estimators

of the parameter θ if for every ε > 0,

lim
n→∞

P(||W n − θ|| < ε) = 1.

Or equivalently,

lim
n→∞

P(||W n − θ|| > ε) = 0.

That is, W n converges to θ in probability. In mathematical notation,

W n(X)
P→ θ.

As the sample size becomes infinite, the consistent estimator will be arbitrarily

close to the parameter with high probability. Two results relevant to consistency

are worthy to be mentioned here.

Theorem 1. If Wn is a sequence of estimators of a scalar parameter θ satisfying

i) lim
n→∞

Varθ Wn = 0,

ii) lim
n→∞

Biasθ Wn = 0,

then Wn is a consistent sequence of estimators of θ.

Proof.

Eθ[(Wn − θ)2] = Varθ Wn + [Biasθ Wn]2.

By Chebychev’s Inequality,

P(|Wn − θ| ≥ ε) ≤ Eθ[(Wn − θ)2]

ε2
.

7



Hence

P(|Wn − θ| ≥ ε) → 0.

Another result should be mentioned is the consistency of Maximum Likelihood

Estimator (MLE). Let X1, X2, · · · , Xn be iid f(x|θ). Let τ(θ) be a continuous

function of θ. Then under regularity conditions τ(θ̂) is a consistent estimator of

τ(θ). See Stuart, Ord, and Arnold (1999).

The property of consistency is concerned with the fact whether the estimator

converges to the parameter that is estimated. The statistical efficiency is concerned

with asymptotic variance of an estimator. A sequence of estimators Wn is asymp-

totically efficient for a parameter τ(θ) if
√
n[Wn − τ(θ)]

D→ N(0, v(θ)) and

v(θ) =
[τ ′(θ)]2

Eθ

(

∂
∂θ

log f(X|θ)2
) ;

that is the asymptotic variance of Wn achieves the Cramér-Rao Lower Bound. See

Casella and Berger (2002, p. 471).

In general, MLEs are considered to be asymptotically efficient. So the asymp-

totic variance of MLE is intuitively used to define the asymptotic efficiency of an

estimator. Suppose the estimator W has asymptotic variance v and the MLE has

asymptotic covariance v0. Then the asymptotic efficiency of W is defined by

Eff(W ) =
v0

v
.

The asymptotic efficiency of multidimensional estimators is defined in a similar

manner. Let W 0 be the MLE of parameter vector θ with asymptotic covariance

matrix V 0 and let W n be an estimator of θ with asymptotic covariance matrix V .

8



The asymptotic efficiency of W is defined by

Eff(W n) = min
c6=0

c′V 0c

c′V c
.

It follows that Eff(W n) is equal to the largest eigenvalue of the matrix V −1V 0.

The last concept to be introduced in this section is affine equivariance.

Definition. Let X = [x1,x2, · · · ,xn]′ be a data matrix. The multivariate location

and dispersion estimator (T,C) is affine equivariant if for any linear transformation

Z = XA + B,

T (Z) = T (XA + B) = A′T (X) + b,

and

C(Z) = C(XA + B) = A′C(X)A,

where A is a constant matrix, b is a constant vector, and B = 1b′.

According to this definition, it is easy to see that the classical sample mean

and sample covariance matrix are affine equivariant. Affine equivariance is natu-

rally desirable because it makes the analysis independent of the measurement scales

of variables as well as the translation of the data. Under any nonsingular linear

transformations, i.e., canonical correlations analysis, the result remains essentially

unchanged. Suppose x has an elliptically contoured distribution, ECp(µ,Σ, g). De-

note (T∞(x), C∞(x)) as the asymptotic values of the affine equivariant estimators

of µ and cΣ. Then

T∞(x) = µ, C∞(x) = cΣ,

where c is a constant. See Maronna, Martin and Yohai (2006, p. 217).

If (T,C) is affine equivariant, so is (T,D2
(cn)(T,C) C) where D2

(j)(T,C) is the

jth order statistic of the D2
i . The following proposition shows that the Mahalanobis

9



distances are invariant under affine transformations. See Rousseeuw and Leroy

(1987, p. 252-262) for similar results.

Proposition 1. If (T,C) is affine equivariant, then

D2
i (W ) ≡ D2

i (T (W ),C(W )) =

D2
i (T (Z),C(Z)) ≡ D2

i (Z). (1.5)

Proof. Since Z = WA + B has ith row

z′
i = x′

iA + b′,

D2
i (Z) = [zi − T (Z)]′C−1(Z)[zi − T (Z)]

= [A′(xi − T (W ))]′[A′C(W )A]−1[A′(xi − T (W ))]

= [xi − T (W )]′C−1(W )[xi − T (W )] = D2
i (W ).

The RMVN estimator given in Chapter 2 is
√
n consistent and will be used

to detect outliers and to replace the classical estimator in methods such as the

Hotelling’s T-test, Principal Component Analysis and Canonical Correlation Anal-

ysis. This dissertation compares multivariate statistical methods that use the clas-

sical estimator with methods that use the recently developed FCH estimator, Fast

Minimum Covariance Determinant (FMCD) estimator, RMVN estimator and OGK

estimator. These estimators are defined in the next chapter.

10



CHAPTER 2

MLD ROBUST ESTIMATORS COMPARISON

This chapter introduces and compares some well-known robust estimators of

(µ,Σ), such as the Huber M-estimator, minimum volume ellipsoid (MVE) esti-

mator, the minimum covariance determinant (MCD) estimator, the fast minimum

covariance determinant (FMCD) estimator, the FCH estimator, the RMVN estima-

tor and so on. The work of this chapter closely follows Olive (2004), Olive (2008),

and Olive and Hawkins (2010).

2.1 HUBER M-ESTIMATOR

M-estimators are defined by generalizing MLEs. By the density function of

multivariate normal distribution given in (1.1), the normal density functionNp(µ,Σ)

can be rewritten as

f(x) =
1

|Σ|1/2
ρ
(

d(x,µ,Σ)
)

,

where ρ(t) = (2π)−p/2 exp(−t/2) and d(x,µ,Σ) = (x − µ)′Σ−1(x − µ). Let

x1,x2, · · · ,xn be an iid sample with a Np(µ,Σ) distribution. Then the likelihood

function is

L(µ,Σ) =
1

|Σ|n/2

n
∏

i=1

ρ
(

d(xi,µ,Σ)
)

and

− 2 logL(µ,Σ) = n log |Σ| +
n

∑

i=1

ρ(di) (2.1)

where di = d(xi,µ,Σ). Maximizing L(µ,Σ) now becomes minimizing (2.1). Differ-

entiating the right hand side of (2.1) with respect to µ and setting the derivative

equal 0, one obtains

0 +

n
∑

i=1

ρ′(di)
∂di

∂µ
= 0. (2.2)

11



That is
n

∑

i=1

ρ′(di)
∂(x − µ)′Σ−1(x − µ)

∂µ
= 0. (2.3)

Recall in linear algebra,

∂b′Ab

∂b
= (A + A′)b, (2.4)

∂b′Ab

∂A
= bb′, (2.5)

and

∂|A|
∂A

= |A|A−1. (2.6)

Using (2.4), (2.3) becomes

n
∑

i=1

ρ′(di)(x − µ) = 0. (2.7)

Now using (2.5) and (2.6) to differentiate right hand side of (2.1) with respect to Σ

and setting the derivative equal 0, one obtains

n
1

|Σ|(|Σ| · Σ−1) +

n
∑

i=1

ρ′(di)(xi − µ)(xi − µ)′ = 0.

That is,

1

n

n
∑

i=1

ρ′(di)(xi − µ)(xi − µ)′ = Σ. (2.8)

Equations (2.7) and (2.8) together form the system of estimating equations for the

MLE, (µ̂, Σ̂).

n
∑

i=1

W (di)(x − µ̂) = 0 (2.9)

1

n

n
∑

i=1

W (di)(xi − µ̂)(xi − µ̂)′ = Σ̂ (2.10)

12



where W = ρ′ is called a weight function. Note that for the normal distribution,

W = ρ′ ≡ 1, and the solutions of the system of equations above are actually the

sample mean and sample covariance matrix, the MLE of (µ,Σ).

The M-estimator is generalized to be solutions of

n
∑

i=1

W1(di)(x − µ̂) = 0 (2.11)

1

n

n
∑

i=1

W2(di)(xi − µ̂)(xi − µ̂)′ = Σ̂ (2.12)

where W1 and W2 are not necessarily equal. From (2.12), one can intuitively look

at Σ̂ as a weighted covariance matrix. Note that (2.12) actually does not give an

explicit expression for Σ̂ since W2(di) depends on Σ̂. However, (2.12) suggests an

iterative procedure to find the solution. From (2.11), µ̂ can be expressed as the

weighted mean

µ̂ =

∑n
i=1W1(di)xi

∑n
i=1W1(di)

. (2.13)

Again, one should be aware that (2.13) is not an explicit expression for µ̂ either

since W1(di) depends on µ̂. An iterative procedure could be adopted to compute µ̂.

The Huber function is a very popular choice for weight functions. It is given

by

ρ(x) =















x2 if |x| ≤ k

2k|x| − k2 if |x| > k

with derivative 2ψ(x) where

ψ(x) =















x if |x| ≤ k

sgn(x)k if |x| > k
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where sgn(x) gives the sign of the value of x. The weight function is defined by

W (x) =















ψ(x)/x if |x| 6= 0

ψ′(0) if |x| = 0.

So the the weight function corresponding to Huber’s ψ is

W (x) =















1 if |x| ≤ k

k

|x| if |x| > k.

Another popular choice is the bisquare function:

ρ(x) =















1 − [1 − (x/k)2]3 if |x| ≤ k

1 if |x| > k

which works better for heavy tail distributions, such as the Cauchy distribution.

See Maronna, Martin, and Yohai (2006, p. 29). It has been proved that the M-

estimators are affine equivariant, and the M-estimator is consistent if x has an

elliptical distribution. Unfortunately the breakdown point of the M-estimator has

been shown no more than 1/(p + 1). So when the dimension of x gets larger, the

M-estimator performance gets worse.

2.2 THE MVE AND THE MCD ESTIMATORS

For a data set X, let D(X, T,C) be a vector of D(xi, T,C), i = 1, · · · , n.

One way to define the estimator (T,C) is by

σ̂
(

D(X, T,C)
)

= min, |C| = 1 (2.14)
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where σ̂ is a robust scale. The constraint C = 1 is used to prevent the case that

the small eigenvalues (close to 0) trivially cause small distances D(x, T,C). If σ̂ is

chosen to be sample median, then (T,C) is called the minimum volume ellipsoid

(MVE) estimator. Among all ellipsoids {x : D2(x, µ,Σ) ≤ h2} containing at least

half of the data points, the one given by MVE estimate has the minimum volume.

The equation

D2(x, T,C) = (x − T )′C−1(x − T ) = h2

defines an ellipsoid centered at T . The volume of the hyperellipsoid {x :

D2(x, T,C) ≤ h2} is equal to

kp|C|1/2hp (2.15)

where kp =
2πp/2

pΓ(p/2)
. See Johnson and Wichern (1998, p. 132). The complexity

of computing MVE is very high: no feasible approach has been found to compute

MVE when n and p are not small.

If the robust scale is chosen to be a trimmed scale

σ̂ =
m

∑

i=1

D(i),

where D(i) is ith order statistic of Di = D(xi, T,C) and 1 ≤ m ≤ n, then (T,C)

defined by (2.14) is called a minimum covariance determinant (MCD) estimator.

For each hyperellipsoid {x : D2(x, µ̂, Σ̂) ≤ h2} containing at least m data points,

compute the classical covariance matrix of the data points in the hyperellipsoid.

Given the MCD estimator (T,C), the determinant computed from the sample vari-

ance matrix of hyperellipsoid {x : D2(x, T,C) ≤ h2} is a minimum. See Maronna,

Martin and Yohai (2006, section 6.4).

Butler et al. (1993) and Cator and Lopuhaä (2009) showed the MCD esti-

mator is consistent, asymptotically normal, and affine equivariant. Although the
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MCD estimator was introduced as early as 1984, it had not been practically used

due to its enormous computation complexity. The fastest estimator of the multi-

variate location and dispersion that has been shown to be both consistent and high

breakdown is the MCD estimator with complexity O(nδ) where δ = 1 + p(p+ 3)/2.

See Bernholt and Fischer (2004). The Fast-MCD algorithm of Rousseeuw and Van

Driessen (1999) does not compute MCD, and it will be discussed in the following

section.

2.3 CONCENTRATION ALGORITHM

One of many practical techniques for computing robust estimators of multivari-

ate location and dispersion is the concentration technique. In general, concentration

begins with some initial estimators of (µ,Σ), which are called starts, such as the

classical estimator (x̄,S) of some random subset with p + 1 cases or the classical

estimator (x̄,S) computed from all n cases. For each start, a concentration algo-

rithm generates a corresponding new estimator, which is called an attractor. Then

one of the attractors is chosen to be used in the final “robust estimator” based on

some criterion.

Suppose that there are K starts used for a concentration. Let (T0,j ,C0,j) be

the jth start, where 1 ≤ j ≤ K. Compute the squared Mahalanobis distances of n

observations

D2
i (T0,j ,C0,j) = (xi − T0,j(X))T C−1

0,j(X)(xi − T0,j(X)) (2.16)

where 1 ≤ i ≤ n. At the next iteration, the classical estimator (T1,j,C1,j) is com-

puted from the cn ≈ n/2 cases corresponding to the smallest Mahalabonis distances

computed by (2.16). By continuing this iteration k times, a sequence of estima-

tors (T0,j ,C0,j), (T1,j,C1,j), ..., (Tk,j,Ck,j) is obtained corresponding to the jth start
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(T0,j ,C0,j). The last estimator (Tk,j,Ck,j) of this sequence is said to be jth attrac-

tor. An empirical choice for k is 10. Once all K attractors are obtained, the one

optimizing the criterion will be used in the final “robust estimator”.

2.4 THE FAST-MCD AND THE OGK ESTIMATORS

Rousseeuw and Van Driessen (1999) introduced the Fast-MCD algorithm to

approximate the MCD estimator. The major part of the algorithm is the concentra-

tion step (C-step). Provided an initial location and dispersion estimator (Told,Cold),

1. Compute the squared Mahalanobis distances of all n cases

D2
i (Told,Cold) = (xi − Told)

′C−1
old(xi − Told).

2. Construct a subset H by choosing h cases with smallest Mahalanobis distances.

It is common to take h ≈ n/2.

3. Compute the new location and dispersion estimator (Tnew,Cnew) by

Tnew =
1

h

∑

i∈H

xi and

Cnew =
1

h

∑

i∈H

(xi − Tnew)(xi − Tnew)′.

The complete algorithm works as following.

First, generate K elemental subsets, i.e. K = 500. Each subset contains p+ 1

cases randomly drawn from the original dataset.

Second, compute the sample mean and sample covariance matrix for each ele-

mental subset as initial estimators (T0,j,C0,j). Make sure each C0,j is non-singular.

If it is singular, random data drawn from original data set are added to the associ-

ated subset till C0,j becomes non-singular.

17



Third, apply C-step to (T0,j ,C0,j) obtaining (T1,j ,C1,j) for all 1 ≤ j ≤ K.

Apply C-step again to (T1,j ,C1,j) obtaining (T2,j ,C2,j) for all 1 ≤ j ≤ K.

Fourth, choose only 10 estimators with the smallest determinant from all

(T2,j ,C2,j) where 1 ≤ j ≤ K. Apply C-steps further only for those 10 chosen

estimators until convergence to get 10 attractors.

Fifth, choose the attractor (out of 10) with the smallest determinant. Denote

the chosen attractor as (TA,CA).

Lastly, reweight the chosen attractor (TA,CA) to obtain Fast-MCD (TF ,CF ).

TF =
n

∑

i=1

wixi/
n

∑

i=1

wi

CF = dn

(

n
∑

i=1

wi(xi − TF )(xi − TF )′
)

/

n
∑

i=1

wi

where dn is a correction factor so that (TF ,CF ) can be a better estimator of (µ,Σ)

when the clean data have a multivariate normal distribution and wi is a weight

function defined by

wi =















1 if D(xi, TA,CA) ≤
√

χ2
p,.975

0 otherwise

On the third step, only two C-steps are applied to all K elemental subsets for

the purpose of increasing the computational efficiency. Moreover, Rousseeuw and

Van Driessen (1999) give a theorem that after each C-step is applied, |Cnew| ≤ |Cold|

with equality only if Cnew = Cold. The theorem guarantees the convergence of the

determinants to a local min, obtained by applying finite C-steps iteratively.

The Fast-MCD estimator program is available in R. After loading the MASS

library, call the function cov.mcd.
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Maronna and Zamar (2002) introduced the orthogonalized Gnanadesikan-

Kettenring (OGK) estimator. The OGK estimator is based on a robust estimator

σ̂jk of covariance σjk proposed by Gnanadesikan and Kettenring (1972). Let Xj and

Xk be a pair of two random variables, m() be the robust mean function, and σ() be

the robust standard deviation function. The Gnanadesikan and Kettenring robust

estimator of covariance σjk is calculated as

σ̂jk =
1

4

(

σ(Xj +Xk)
2 − σ(Xj −Xk)

2
)

.

When p > 2, Gnanadesikan and Kettenring’s robust estimator, A, of Σ is

A =

























σ̂11 σ̂12 · · · σ̂1p

σ̂21 σ̂22 · · · σ̂2p

...
...

. . .
...

σ̂n1 σ̂n2 · · · σ̂np

























.

Unfortunately A is not affine equivariant and can be non positive definite. Maronna

and Zamar (2002) proposed an algorithm based on σ̂jk but yielding a positive definite

covariance matrix estimator. Let the data matrix

X = [X1, X2, · · · , Xp] = [x1,x2, · · · ,xn]′.

1. Compute D = diag(σ(X1), σ(X2), · · · , σ(Xp)). Define yi = D−1xi, where i =

1, 2, · · · , n.
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2. Compute the Gnanadesikan and Kettenring correlation matrix U = (Uij) with

Ujk =















1

4

(

σ(Xj +Xk)
2 − σ(Xj −Xk)

2
)

if j 6= k

1 if j = k

3. Decompose the matrix U = EΛE′, where E = [e1, e2, · · · , ep] is an orthogonal

matrix of eigenvectors of U and Λ = diag(λ1, λ2, · · · , λp) is a diagonal matrix of

eigenvalues.

4. Define zi = E′xi and construct the matrix Z = [Z1, Z2, · · · , Zp], Γ =

diag(σ(Z1)
2, σ(Z2)

2, · · · , σ(Zp)
2) and ν =

(

m(Z1),m(Z2), · · · ,m(Zp)
)

. Compute

A = DE. Then the location and dispersion estimator (µ̂, Σ̂) of µ,Σ is computed

as:

(µ̂, Σ̂) = (Aν,AΓA′)

5. Iterate the procedure by replacing U in step 2 by EΓE′ until convergence.

6. Transform converged (µ̂, Σ̂) back to get the estimator (µ̂OGK, Σ̂OGK) by

(µ̂OGK , Σ̂OGK) = (Dµ̂,DΣ̂D′).

7. Compute the OGK estimator (TOGK ,COGK) by a reweighting process.

TOGK =

n
∑

i=1

wixi/

n
∑

i

wi=1

and

COGK =
(

n
∑

i=1

wi(xi − TOGK)(xi − TOGK)′
)

/

n
∑

i=1

wi
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where wi is a weight function defined by

wi =















1 if D(xi, µ̂OGK , Σ̂OGK) ≤ c

0 otherwise

where c =
√

χ2
p,.975MED(D(xi, µ̂OGK, Σ̂OGK))/

√

χ2
p,.5. Maronna and Zamar (2002)

proposed weighted mean for m() and τ -scale of Yohai and Zamar (1988) for σ() in the

OGK algorithm. As the Fast-MCD algorithm, the OGK estimator uses reweighting

process to improve the simulated statistical efficiency.

The Orthogonalized Gnanadesikan-Kettenring (OGK) MLD estimator is de-

scribed in in Maronna and Zamar (2002). It can be implemented by the R function

covOGK from the robustbase library as was the covMcd concentration algorithm.

2.5 THE ELEMENTAL, THE MB AND THE DGK ESTIMATORS

Three important starts will be discussed in this section. Hawkins and Olive

(1999) and Rousseeuw and Van Driessen (1999) use elemental starts. The DGK

(Devlin, Gnanadesikan, Kettenring 1975, 1981) estimator is generated by concen-

tration that has only one start, the classical estimator (x̄,S) computed from all n

cases. The Olive (2004) median ball (MB) estimator is generated by concentration

that uses (T0,j ,C0,j) = (MED(X), Ip) as the only start, where MED(X) is coordi-

natewise median. So 50% of cases furthest in Euclidean distance from the sample

median MED(X) are trimmed for computing the MB start.

For the algorithm using concentration with randomly selected elemental starts,

(T0,j ,C0,j) is the classical estimator applied to a randomly selected “elemental set”

of p+1 cases. Although this algorithm is computationally efficient, it has theoretical

drawbacks.
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Proposition 2 (Inconsistent and Zero Breakdown Elemental Estimator). Suppose

K randomly selected elemental starts are used with k step concentration to produce

the attractors for a data set with size n, then the resulting estimator is inconsistent

and zero breakdown if K and k are fixed and free of n. See Olive and Hawkins

(2010).

Proof. Each elemental start (T0,j,C0,j) is the classical estimator applied to a ran-

domly selected subset of p + 1 cases. So each elemental start is zero breakdown.

Changing one case can make an elemental start breakdown. A breakdown start

implies a breakdown attractor. Hence the breakdown value of final estimator is

bounded by K/n→ 0 as n→ ∞.

Without loss of generality, assume xi are iid (independent and identically

distributed) random variables and xi do not have point mass at µ. That is,

P(xi = µ) < 1.

Let x̄0,j be the jth start: sample mean applied to p + 1 cases. There exits ε > 0

such that

P(||x̄0,j − µ|| > ε) ≡ δε > 0.

Thus

P(min
j

||x̄0,j − µ|| > ε)

= P(all ||x̄0,j − µ|| > ε)

→ δK
ε > 0 as n→ ∞

Therefore the start that minimizes ||x̄0,j − µ|| is inconsistent. The elemental con-

centration needs Kn → ∞ as n→ ∞ to obtain a consistent estimator.
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Proposition 2 shows that concentration using elemental starts does not produce

a high breakdown and
√
n consistent robust estimator. Hubert, Rousseeuw and Van

Aelst (2008) claim that “MCD” can be efficiently computed with the Fast-MCD (or

FMCD) estimator. The claim is plainly false because the FMCD uses an elemental

concentration algorithm. Whether it is consistent or not is unknown. MCD, on the

other hand, is consistent by Theorem 3. Theorem 3 will be discussed later in this

section.

Like Proposition 2, the following proposition shows theory of the algorithm

estimator depends on the theory of attractors, not on the estimator corresponding

to the criterion. One can see Olive and Hawkins (2010) appendix for the proof.

Proposition 3. Suppose that (Tj ,Cj) are K attractors of (µ, aΣ) for some constant

a > 0. Let (TA,CA) be the final estimator obtained by choosing one of the K

attractors where K is fixed.

(i) If all of the attractors (Tj ,Cj) are consistent, then (TA,CA) is consistent.

(ii) If all of the attractors (Tj ,Cj) are consistent with the same rate, e.g., nδ where

0 < δ ≤ .5, then (TA,CA) is consistent with the same rate nδ.

(iii) If all of the attractors (Tj ,Cj) are high breakdown, then (TA,CA) is high

breakdown.

The rest of this section shows that the MB estimator is high breakdown and

the DGK and MCD estimators are
√
n consistent.

Lemma 1. If the classical estimator (xB,SB) is applied to cn cases that are con-

tained in some bounded region where p+ 1 ≤ cn ≤ n, then the maximum eigenvalue

λ1 of SB is bounded. See Olive and Hawkins (2010).
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Proof. The largest eigenvalue of a p× p matrix A is bounded above by pmax |ai,j|

where ai,j is the (i, j) entry of A. See Datta (1995, p. 403). Denote the cn cases by

z1, ..., zcn
. Then the (i, j)th element ai,j of A = SB is

ai,j =
1

cn − 1

cn
∑

m=1

(zi,m − zm)(zj,m − zj).

Hence the maximum eigenvalue λ1 is bounded.

Theorem 2. Suppose (T,C) is a high breakdown start estimator where C is sym-

metric and positive definite if the contamination proportion dn/n is less than the

breakdown value. Each concentration uses the cn ≈ n/2 cases corresponding to the

smallest distances. Then the concentration attractor (Tk,Ck) is a high breakdown

estimator provided that k is fixed. See Olive and Hawkins (2010).

Proof. Following Leon (1986, p. 280), if A is a symmetric and positive definite

matrix with eigenvalues τ1 ≥ · · · ≥ τn, then for any nonzero vector x,

0 < ||x||2τn ≤ x′Ax ≤ ||x||2τ1.

Let λ1 ≥ · · · ≥ λn > 0 be the eigenvalues of C. Then
1

λn
≥ · · · ≥ 1

λ1
> 0 are the

eigenvalues of C−1. And

1

λ1
||x − T ||2 ≤ (x − T )′C−1(x − T ) ≤ 1

λn
||x − T ||2. (2.17)

Let D2
(i) denote the order statistics of the D2

i (T,C). Since (T,C) is a high break-

down, then 1/λn and MED(||x − T ||2) are both bounded even for the number of

outliers dn near n/2. Therefore, D2
(i) < V for some constant V that only depends

on the clean data but not on the outliers even if i and dn are near n/2.
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Following Johnson and Wichern (1998, p. 132), the boundary of the set

{x|(x − T )TC−1(x − T ) ≤ h2} = {x|D2
x ≤ h2} is a hyperellipsoid centered at T

with axes of length 2h
√
λi. Hence {x|D2

x ≤ D2
(cn)} is contained in some ball about

the origin of radius r where r does not depend on the number of outliers even for dn

near n/2. This is the set containing the cases used to compute (T1,C1). Since the

set is bounded, T1 is bounded and the largest eigenvalue λ1,1 of C1 is bounded by

Lemma 1. Since 0 < det(CMCD) ≤ det(C0), the smallest eigenvalue λn,0 is bounded

away from 0. Since these bounds do not depend on the outliers even for dn near n/2,

(T0,C0) is a high breakdown estimator. Now repeat the argument with (T0,C0) in

place of (T,C) and (T1,C1) in place of (T0,C0). Then (T1,C1) is high breakdown.

Repeating the argument iteratively shows (Tk,Ck) is high breakdown.

The MB estimator (Tk,M ,Ck,M) uses (T0,j ,C0,j) = (MED(X), Ip) as the only

start, which is high breakdown. Theorem 2 implies the MB estimator is also high

breakdown.

Lopuhaä (1999) shows that if a start (T,C) is a consistent estimator of (µ, sΣ),

then the attractor (Tk,Ck) is a consistent estimator of (µ, aΣ) That is, if

(T,C)
P→ (µ, sΣ),

then

(Tk,Ck)
P→ (µ, aΣ)

where a, s > 0 are some constants. The constant a depends on s, p, and the

elliptically contoured distribution, but does not otherwise depend on the consistent

start. The constant a also depends on the weight function I(D2
i (T,C) ≤ h2) where

h2 is a positive constant and the indicator is 1 if D2
i (T,C) ≤ h2 and 0 otherwise.

Following Olive and Hawkins (2010), to see that the Lopuhaä (1999) theory
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extends to concentration where the weight function uses h2 = D2
(cn)(T,C), note

that (T, C̃) ≡ (T,D2
(cn)(T,C) C) is a consistent estimator of (µ, bΣ) where b > 0

is derived in (2.19), and weight function I(D2
i (T, C̃) ≤ 1) is equivalent to the con-

centration weight function I(D2
i (T,C) ≤ D2

(cn)(T,C)). If (T,C) is a
√
n consistent

estimator of (µ, s Σ), then

D2(T,C) = (x − T )T C−1(x − T )

= (x − µ + µ − T )T [C−1 − s−1Σ−1 + s−1Σ−1](x − µ + µ − T )

= (x − µ)T [s−1Σ−1](x − µ)

+(x − T )T [C−1 − s−1Σ−1](x − T )

+(x − µ)T [s−1Σ−1](µ − T )

+(µ − T )T [s−1Σ−1](x − µ)

+(µ − T )T [s−1Σ−1](µ − T )

= s−1D2(µ,Σ) +OP (n−1/2). (2.18)

Thus the sample percentiles of D2
i (T,C) are consistent estimators of the percentiles

of s−1D2(µ,Σ). Suppose cn/n→ ξ ∈ (0, 1) as n→ ∞, and let D2
ξ(µ,Σ) be the ξth

percentile of the population squared distances. Then

D2
(cn)(T,C)

P→ s−1D2
ξ(µ,Σ)

and

bΣ = s−1D2
ξ(µ,Σ)sΣ = D2

ξ(µ,Σ)Σ.

Thus

b = D2
ξ(µ,Σ) (2.19)
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does not depend on s > 0 or δ ∈ (0, 0.5].

The following assumption (E1) gives a class of distributions where we can prove

that the new robust estimators are
√
n consistent. Cator and Lopuhaä (2009) show

that MCD is consistent provided that the MCD functional is unique. Distributions

where the functional is unique are called “unimodal,” and rule out, for example,

a spherically symmetric uniform distribution. Theorem 4 shows that under (E1),

both MCD and DGK are estimating (µ, aMCDΣ). Olive (2008, § 10.7) and Olive and

Hawkins (2010) prove that FCH estimator is a
√
n consistent estimator of (µ, d Σ)

under the following assumption (E1).

Assumption(E1):

(i) The x1, ...,xn are iid from a “unimodel” distribution with nonsingular Cov(xi);

(ii) g is continuously differentiable with finite 4th moment:

∫

(xT x)2g(xT x)dx <∞.

Theorem 3. Assume that (E1) holds and that (T,C) is a consistent estimator of

(µ, sΣ) with rate nδ where the constants s > 0 and 0 < δ ≤ 0.5. Then the classical

estimator (xt,j ,St,j) computed from the cn ≈ n/2 of cases with the smallest distances

Di(T,C) is a consistent estimator of (µ, aMCDΣ) with the same rate nδ. See Olive

and Hawkins (2010).

Proof. By Lopuhaä (1999) the estimator is a consistent estimator of (µ, aΣ) with

rate nδ. By the remarks above, a will be the same for any consistent estimator of

(µ, sΣ) and a does not depend on s > 0 or δ ∈ (0, 0.5]. Hence the result follows

if a = aMCD. The MCD estimator is a
√
n consistent estimator of (µ, aMCDΣ)

by Butler, Davies and Jhun (1993) and Cator and Lopuhaä (2009). If the MCD

estimator is the start, then it is also the attractor by Rousseeuw and Van Driessen
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(1999) who show that concentration does not increase the MCD criterion. Hence

a = aMCD.

Theorem 3 shows that a = aMCD where ξ = 0.5. Hence concentration with

a consistent estimator of (µ, sΣ) with rate nδ as a start results in a consistent

estimator of (µ, aMCDΣ) with rate nδ. This result can be applied iteratively for a

finite number of concentration steps. Hence DGK is a
√
n consistent estimator of

the same quantity that MCD is estimating. It is not known if the results hold if

concentration is iterated to convergence. For multivariate normal data, D2(µ,Σ) ∼

χ2
p.

2.6 THE FCH AND THE RMVN ROBUST ESTIMATORS

This section discusses two
√
n consistent and outlier resistant estimators, the

FCH estimator and RMVN estimator. FCH and RMVN are introduced by Olive

and Hawkins (2010).

Both FCH and MBA estimators use two attractors: DGK (Tk,D,Ck,D) and MB

(Tk,M ,Ck,M). The MBA estimator uses the attractor with the smallest determinant.

The FCH estimator, however, uses a location criterion to choose the attractor: if the

DGK location estimator Tk,D has a greater Euclidean distance from MED(X) than

n/2 cases, then FCH uses the MB attractor (Tk,M ,Ck,M) as the final estimator.

Otherwise, FCH uses the attractor that has the smallest determinant. In other

words, the FCH estimator only uses the attractor with the smallest determinant if

||Tk,D − MED(X)|| ≤ MED(Di(MED(X), Ip)).

Let (TA,CA) be the attractor finally used. Then the FCH estimator (TF ,CF ) takes
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TF = TA and

CF =
MED(D2

i (TA,CA))

χ2
p,0.5

CA (2.20)

where χ2
p,0.5 is the 50th percentile of a chi–square distribution with p degrees of

freedom.

In particular, CF estimates dΣ with d = 1 when x1, ...,xn
iid∼ Np(µ,Σ).

For MVN data, U = D2(µ,Σ) = (x−µ)TΣ−1(x−µ) ∼ χ2
p. Similarly, suppose

(TF ,CF ) is a consistent estimator of (µ, d Σ), and that P (U ≤ uα) = α. Then, by

the scaling in (2.20),

(TF ,CF ) =
(

TA,
MED

(

D2
i (TA,CA)

)

χ2
p,0.5

CA

)

P→
(

µ,
MED

(

d−1D2(µ,Σ)
)

χ2
p,0.5

dΣ
)

=
(

µ,
u0.5

χ2
p,0.5

Σ
)

=
(

µ, dFΣ
)

where dF =
u0.5

χ2
p,0.5

. It is obvious that dF = 1 for MVN data since u0.5 = χ2
p,0.5.

The next theorem shows the FCH estimator
√
n consistent and TFCH is high

breakdown.

Theorem 4. TFCH is high breakdown. Suppose (E1) holds. If (TA,CA) is the DGK

or MB attractor with the smallest determinant, then (TA,CA) is a
√
n consistent

estimator of (µ, aMCDΣ). Hence the MBA and FCH estimators are outlier resistant

√
n consistent estimators of (µ, cΣ) where c = 1 for multivariate normal data. See

Olive and Hawkins (2010).

Proof. TFCH is high breakdown since it is a bounded distance from MED(X) even

if the number of outliers is close to n/2. Under (E1) the FCH and MBA estimators

are asymptotically equivalent since ‖Tk,D − MED(X)‖ → 0 in probability. The
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estimator satisfies 0 < det(CMCD) ≤ det(CA) ≤ det(S0,M) < ∞ by Theorem 2 if

up to nearly 50% of the cases are outliers. If the distribution is spherical about

µ, then the result follows from Pratt (1959) and Theorem 3 since both starts are

√
n consistent. Otherwise, the MB estimator Sk,M is a biased estimator of aMCDΣ.

But the DGK estimator Sk,D is a
√
n consistent estimator of aMCDΣ by Theorem

3 and ‖CMCD − Sk,D‖ = OP (n−1/2). Thus the probability that the DGK attractor

minimizes the determinant goes to one as n → ∞, and (TA,CA) is asymptotically

equivalent to the DGK estimator (xk,D,Sk,D).

Let P (U ≤ uα) = α where U is given by (1.3). Then the scaling in (2.20) makes

CF a consistent estimator of cΣ where c = u0.5/χ
2
p,0.5, and c = 1 for multivariate

normal data.

We also considered several estimators that use the MB and DGK estimators as

attractors. CMVE is a concentration algorithm like FCH, but the “MVE” criterion

is used in place of the MCD criterion. A standard method of reweighting can be

used to produce the RMBA, RFCH and RCMVE estimators. RMVN uses a slightly

modified method of reweighting so that RMVN gives good estimates of (µ,Σ) for

multivariate normal data, even when certain types of outliers are present.

The RFCH estimator uses two standard reweighting steps. Let (µ̂1, Σ̃1) be

the classical estimator applied to the n1 cases with D2
i (TFCH,CFCH) ≤ χ2

p,0.975, and

let

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,0.5

Σ̃1.

Then let (TRFCH , Σ̃2) be the classical estimator applied to the cases with

D2
i (µ̂1, Σ̂1) ≤ χ2

p,0.975, and let

CRFCH =
MED(D2

i (TRFCH , Σ̃2))

χ2
p,0.5

Σ̃2.
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RMBA and RFCH are
√
n consistent estimators of (µ, cΣ) by Lopuhaä (1999) where

the weight function uses h2 = χ2
p,0.975, but the two estimators use nearly 97.5% of

the cases if the data is multivariate normal. We conjecture CMVE and RMVE are

also
√
n consistent estimators of (µ, cΣ).

RMVN is a weighted FCH estimator. Let (µ̂1, Σ̃1) be the classical esti-

mator applied to the n1 cases with D2
i (TFCH ,CFCH) ≤ χ2

p,0.975, and let q1 =

min{0.5(0.975)n/n1, 0.995} and

Σ̂1 =
MED(D2

i (µ̂1, Σ̃1))

χ2
p,q1

Σ̃1.

Then let (TRMV N , Σ̃2) be the classical estimator applied to the n2 cases with

D2
i (µ̂1, Σ̂1)) ≤ χ2

p,0.975. Let q2 = min{0.5(0.975)n/n2, 0.995}, and

CRMV N =
MED(D2

i (TRMV N , Σ̃2))

χ2
p,q2

Σ̃2.

RMVN is
√
n consistent by Lopuhaä (1999). If the bulk of the data is

Np(µ,Σ), the RMVN estimator can give useful estimates of (µ,Σ) for certain types

of outliers where FCH and RFCH estimate (µ, dEΣ) for dE > 1. To see this claim,

let 0 ≤ γ < 0.5 be the outlier proportion. If γ = 0, then ni/n
P→ 0.975 and qi

P→ 0.5.

If γ > 0, suppose the outlier configuration is such that the D2
i (TFCH ,CFCH) are

roughly χ2
p for the clean cases, and the outliers have larger D2

i than the clean cases.

Then MED(D2
i ) ≈ χ2

p,q where q = 0.5/(1− γ). For example, if n = 100 and γ = 0.4,

then there are 60 clean cases, q = 5/6, and the quantile χ2
p,q is being estimated

instead of χ2
p,0.5. Now ni ≈ n(1 − γ)0.975, and qi estimates q. Thus CRMV N ≈ Σ.

Of course consistency cannot generally be claimed when outliers are present.

Simulation 1
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Simulations suggested (TRMV N ,CRMV N) gives useful estimates of (µ,Σ) for

a variety of outlier configurations. Using 20 runs and n = 1000, the averages of

the dispersion matrices were computed when the bulk of the data are iid N2(0,Σ)

where Σ = diag(1, 2). For clean data, FCH, RFCH and RMVN give
√
n consistent

estimators of Σ, while FMCD and OGK seem to be approximately unbiased for Σ.

The median ball estimator was scaled using (2.15) and estimated diag(1.13, 1.85).

Next the data had γ = 0.4 and the outliers had x ∼ N2((0, 15)T , 0.0001I2),

a near point mass at the major axis. FCH, MB and RFCH estimated 2.6Σ

while RMVN estimated Σ. FMCD and OGK failed to estimate d Σ. Note that

χ2
2,5/6/χ

2
2,0.5 = 2.585. See Table 2.1.

Table 2.1. Average Dispersion Matrices for Near Point Mass Outliers
RMVN FMCD

[

1.002 −0.014
−0.014 2.024

] [

0.055 0.685
0.685 122.46

]

OGK MB
[

0.185 0.089
0.089 36.244

] [

2.570 −0.082
−0.082 5.241

]

Table 2.2. Average Dispersion Matrices for Mean Shift Outliers
RMVN FMCD

[

0.990 0.004
0.004 2.014

] [

2.530 0.003
0.003 5.146

]

OGK MB
[

19.671 12.875
12.875 39.724

] [

2.552 0.003
0.003 5.118

]

Next the data had γ = 0.4 and the outliers had x ∼ N2((20, 20)T ,Σ), a mean

shift with the same covariance matrix as the clean cases. Rocke and Woodruff

(1996) suggest that outliers with mean shift are hard to detect. FCH, FMCD, MB

and RFCH estimated 2.6Σ while RMVN estimated Σ, and OGK failed. See Table
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2.2.

Example 1. Tremearne (1911) recorded height = x1 and height while kneeling =

x2 of 112 people. Figure 2.1 shows a scatterplot of the data. Case 3 has the

largest Euclidean distance of 214.767 from MED(X) = (1680, 1240)T , but if the

distances correspond to the contours of a covering ellipsoid, then case 44 has the

largest distance. The hypersphere (circle) centered at MED(X) that covers half

the data is small because the data density is high near MED(X). The median

Euclidean distance is 59.661 and case 44 has Euclidean distance 77.987. Hence the

intersection of the sphere and the data is a highly correlated clean ellipsoidal region.

The Rousseeuw and Van Driessen (1999) DD plot is a plot of classical distances

(MD) versus “robust” distances (RD). Figure 2.2 shows the DD plot using the

MB estimator. Notice that both the classical and MB estimators give the largest

distances to cases 3 and 44. As the dimension p gets larger, outliers that can not

be detected by marginal methods (case 44 in Example 1) become harder to detect.
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Figure 2.1. Plots for Tremearne (1911) Data

Example 2. The estimators can be useful when the data is not elliptically con-
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Figure 2.2. DD Plots for Tremearne (1911) Data

toured. The Gladstone (1905-6) data has 12 variables on 267 persons after death.

Head measurements were breadth, circumference, head height, length and size as

well as cephalic index and brain weight. Age, height and three categorical variables

ageclass (0: under 20, 1: 20-45, 2: over 45), sex and cause of death (1: acute,

2: not given, 3: chronic) were also given. Figure 2.3 shows the DD plots for the

FCH, CMVE, FMCD and MB estimators. The plots were similar and six outliers

correspond to the six infants in the data set.

Olive (2002) showed that if a consistent robust estimator is scaled as in (2.20),

then the plotted points in the DD plot will cluster about the identity line with

unit slope and zero intercept if the data is multivariate normal, and about some

other line through the origin if the data is from some other elliptically contoured

distribution with a nonsingular covariance matrix. Since multivariate procedures

tend to perform well for elliptically contoured data, the DD plot is useful even if

outliers are not present.

Simulation 2
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Figure 2.3. DD Plots for Gradstone (1905-6) Data

Table 2.3. Scaled Variance nS2(Tp) and nS2(Cp,p)

p n V FCH RFCH RMVN DGK OGK CLAS FMCD MB
5 50 C 216.0 72.4 75.1 209.3 55.8 47.12 153.9 145.8
5 50 T 12.14 6.50 6.88 10.56 6.70 4.83 8.38 13.23
5 5000 C 307.6 64.1 68.6 325.7 59.3 48.5 60.4 309.5
5 5000 T 18.6 5.34 5.33 19.33 6.61 4.98 5.40 20.20
10 100 C 817.3 276.4 286.0 725.4 229.5 198.9 459.6 610.4
10 100 T 21.40 11.42 11.68 20.13 12.75 9.69 14.05 24.13
10 5000 C 955.5 237.9 243.8 966.2 235.8 202.4 233.6 975.0
10 5000 T 29.12 10.08 10.09 29.35 12.81 9.48 10.06 30.20
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If Win ∼ N(0, τ 2/n) for i = 1, ..., r and if S2
W is the sample variance of the

Win, then E(nS2
W ) = τ 2 and V (nS2

W ) = 2τ 4/(r − 1). So nS2
W ±

√
5SE(nS2

W ) ≈

τ 2±
√

10τ 2/
√
r − 1. So for r = 1000 runs, expect nS2

W to be between τ 2−0.1τ 2 and

τ 2 + 0.1τ 2 with high confidence. Similar results hold for many estimators if Win is

√
n consistent and asymptotically normal and if n is large enough. If Win has less

than
√
n rate, e.g. n1/3 rate, then the scaled sample variance nS2

W → ∞ as n→ ∞.

Table 2.3 considers W = Tp and W = Cp,p for eight estimators, p = 5 and 10

and n = 10p and 5000 when x ∼ Np(0, diag(1, ..., p)). For the classical estimator,

Tp = xp ∼ N(0, p/n), and nS2(Tp) ≈ p while Cp,p is the sample variance of n

iid N(0, p) random variables. Hence nS2(Cp,p) ≈ 2p2. RFCH, RMVN, FMCD and

possibly OGK use a “reweight for efficiency” concentration step that uses a random

number of cases with percentage close to 97.5%. These four estimators had similar

behavior. DGK, FCH and MB used about 50% of the cases and had similar behavior.

By Lopuhaä (1999), estimators with less than
√
n rate still have zero efficiency after

the reweighting. Although FMCD, MB and OGK have not been proven to be
√
n

consistent, their values did not blow up even for n = 5000.

Simulation 3

The collection of rpack.txt functions from www.math.siu.edu/olive/rpack.txt

has the function corrsim2. Put it into R and type library(MASS). It generates data

x then multiplies x by diag(
√

1, ...,
√
p) where p is the dimension of the x vector.

There are 7 distributions for x considered:

1: Np(0, Ip)

2: 0.6Np(0, Ip) + 0.4Np(0, 25Ip)

3: 0.4Np(0, Ip) + 0.6Np(0, 25Ip)

4: 0.9Np(0, Ip) + 0.1Np(0, 25Ip)
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5: 0.75Np(0, Ip) + 0.25Np(0, 25Ip)

6,7: multivariate t3, t5.

There are 7 estimators of multivariate location and dispersion type = 1 MBA,

2 RMBA, 3 cov.mcd, 4 FCH, 5 RFCH, 6 CMVE, and 7 RCMVE. The function

computes the correlation between the robust Mahalanobis distances and the classical

Mahalanobis distances. For each of the 49 x type (xt) and estimator type (et)

combinations, the smallest value of n such that the correlation is 0.95 or higher is

found for p = 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and

100. Table 2.4 and 2.5 present the result of simulation 3 for xt = 1, 2, 3, 7 and

et = 4, 5, 6, 7. Both tables show FCH and CMVE are nearly identical, and RFCH

and RCMVE are nearly identical. As p increases, n increases with a smaller rate of

change than p. For example, n ≈ 50p when p = 2, but n ≈ 10p when p = 100.

2.7 OUTLIER RESISTANCE

Geometrical arguments suggest that the MB estimator has considerable outlier

resistance. Suppose the outliers are far from the bulk of the data. Let the “median

ball” correspond to the half set of data closest to MED(X) in Euclidean distance.

If the outliers are outside of the median ball, then the initial half set in the iteration

leading to the MB estimator will be clean. Thus the MB estimator will tend to give

the outliers the largest MB distances unless the initial clean half set has very high

correlation in a direction about which the outliers lie. This property holds for very

general outlier configurations. The FCH estimator tries to use the DGK attractor

if det(CDGK) is small and the DGK location estimator TDGK is in the median ball.

Distant outliers that make det(CDGK) small also drag TDGK outside of the median

ball. Then FCH uses the MB attractor.

Compared to OGK and FMCD, the MB estimator is vulnerable to outliers
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Table 2.4. Smallest n for corr(RD,MD) > .95, xt=1,2

p xt et n p xt et n p xt et n p xt et n
2 1 4 170 25 1 5 220 50 1 6 870 75 1 7 760
2 1 5 30 25 1 6 520 50 1 7 470 80 1 4 1170
2 1 6 130 25 1 7 220 55 1 4 830 80 1 5 810
2 1 7 30 30 1 4 560 55 1 5 510 80 1 6 1330
5 1 4 260 30 1 5 260 55 1 6 940 80 1 7 820
5 1 5 50 30 1 6 580 55 1 7 530 85 1 4 1240
5 1 6 250 30 1 7 270 60 1 4 890 85 1 5 870
5 1 7 50 35 1 4 600 60 1 5 570 85 1 6 1440
10 1 4 340 35 1 5 310 60 1 6 1010 85 1 7 880
10 1 5 100 35 1 6 640 60 1 7 580 90 1 4 1320
10 1 6 320 35 1 7 320 65 1 4 960 90 1 5 930
10 1 7 100 40 1 4 650 65 1 5 630 90 1 6 1520
15 1 4 390 40 1 5 360 65 1 6 1130 90 1 7 950
15 1 5 130 40 1 6 710 65 1 7 640 95 1 4 1390
15 1 6 390 40 1 7 370 70 1 4 1030 95 1 5 990
15 1 7 140 45 1 4 710 70 1 5 690 95 1 6 1620
20 1 4 450 45 1 5 410 70 1 6 1160 95 1 7 1010
20 1 5 170 45 1 6 780 70 1 7 700 100 1 4 1470
20 1 6 460 45 1 7 420 75 1 4 1120 100 1 5 1060
20 1 7 180 50 1 4 770 75 1 5 740 100 1 6 1730
25 1 4 500 50 1 5 470 75 1 6 1250 100 1 7 1080

2 2 4 40 25 2 5 90 50 2 6 130 75 2 7 180
2 2 5 30 25 2 6 90 50 2 7 130 80 2 4 190
2 2 6 30 25 2 7 90 55 2 4 140 80 2 5 190
2 2 7 30 30 2 4 100 55 2 5 140 80 2 6 190
5 2 4 60 30 2 5 100 55 2 6 140 80 2 7 190
5 2 5 50 30 2 6 100 55 2 7 140 85 2 4 200
5 2 6 50 30 2 7 100 60 2 4 160 85 2 5 200
5 2 7 50 35 2 4 110 60 2 5 160 85 2 6 200
10 2 4 70 35 2 5 110 60 2 6 150 85 2 7 200
10 2 5 60 35 2 6 110 60 2 7 150 90 2 4 210
10 2 6 60 35 2 7 110 65 2 4 160 90 2 5 210
10 2 7 60 40 2 4 120 65 2 5 160 90 2 6 210
15 2 4 70 40 2 5 120 65 2 6 160 90 2 7 210
15 2 5 70 40 2 6 110 65 2 7 160 95 2 4 220
15 2 6 70 40 2 7 110 70 2 4 170 95 2 5 220
15 2 7 70 45 2 4 120 70 2 5 170 95 2 6 220
20 2 4 80 45 2 5 120 70 2 6 170 95 2 7 220
20 2 5 80 45 2 6 120 70 2 7 170 100 2 4 230
20 2 6 80 45 2 7 120 75 2 4 180 100 2 5 230
20 2 7 80 50 2 4 140 75 2 5 180 100 2 6 230
25 2 4 90 50 2 5 140 75 2 6 180 100 2 7 230
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Table 2.5. Smallest n for corr(RD,MD) > .95, xt=3,7

p xt et n p xt et n p xt et n p xt et n
2 3 4 50 25 3 5 280 50 3 6 490 75 3 7 730
2 3 5 40 25 3 6 250 50 3 7 500 80 3 4 760
2 3 6 40 25 3 7 290 55 3 4 520 80 3 5 760
2 3 7 40 30 3 4 290 55 3 5 520 80 3 6 770
5 3 4 80 30 3 5 320 55 3 6 540 80 3 7 790
5 3 5 90 30 3 6 300 55 3 7 550 85 3 4 800
5 3 6 80 30 3 7 330 60 3 4 560 85 3 5 800
5 3 7 90 35 3 4 330 60 3 5 570 85 3 6 820
10 3 4 130 35 3 5 360 60 3 6 580 85 3 7 840
10 3 5 140 35 3 6 350 60 3 7 590 90 3 4 850
10 3 6 120 35 3 7 370 65 3 4 600 90 3 5 850
10 3 7 140 40 3 4 380 65 3 5 610 90 3 6 880
15 3 4 160 40 3 5 400 65 3 6 630 90 3 7 880
15 3 5 190 40 3 6 390 65 3 7 640 95 3 4 890
15 3 6 170 40 3 7 410 70 3 4 650 95 3 5 890
15 3 7 190 45 3 4 430 70 3 5 660 95 3 6 920
20 3 4 200 45 3 5 440 70 3 6 680 95 3 7 920
20 3 5 240 45 3 6 440 70 3 7 690 100 3 4 940
20 3 6 210 45 3 7 450 75 3 4 700 100 3 5 950
20 3 7 240 50 3 4 470 75 3 5 700 100 3 6 980
25 3 4 240 50 3 5 480 75 3 6 730 100 3 7 980

2 7 4 80 25 7 5 190 50 7 6 290 75 7 7 410
2 7 5 30 25 7 6 170 50 7 7 300 80 7 4 410
2 7 6 80 25 7 7 190 55 7 4 290 80 7 5 410
2 7 7 30 30 7 4 200 55 7 5 320 80 7 6 410
5 7 4 100 30 7 5 220 55 7 6 290 80 7 7 410
5 7 5 70 30 7 6 200 55 7 7 320 85 7 4 410
5 7 6 100 30 7 7 220 60 7 4 320 85 7 5 430
5 7 7 70 35 7 4 210 60 7 5 340 85 7 6 430
10 7 4 120 35 7 5 230 60 7 6 320 85 7 7 430
10 7 5 100 35 7 6 230 60 7 7 350 90 7 4 440
10 7 6 120 35 7 7 230 65 7 4 340 90 7 5 440
10 7 7 100 40 7 4 230 65 7 5 360 90 7 6 450
15 7 4 140 40 7 5 260 65 7 6 350 90 7 7 450
15 7 5 140 40 7 6 240 65 7 7 360 95 7 4 460
15 7 6 140 40 7 7 260 70 7 4 360 95 7 5 460
15 7 7 140 45 7 4 250 70 7 5 360 95 7 6 480
20 7 4 150 45 7 5 270 70 7 6 360 95 7 7 480
20 7 5 170 45 7 6 270 70 7 7 370 100 7 4 480
20 7 6 150 45 7 7 290 75 7 4 390 100 7 5 480
20 7 7 170 50 7 4 270 75 7 5 390 100 7 6 490
25 7 4 170 50 7 5 300 75 7 6 410 100 7 7 490
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Table 2.6. Number of Times Mean Shift Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 4 49 49 85 84 38 76 57
10 .1 100 5 91 91 99 99 93 98 91
10 .4 100 7 90 90 90 90 0 48 100
40 .1 100 5 3 3 3 3 76 3 17
40 .1 100 8 36 36 37 37 100 49 86
40 .25 100 20 62 62 62 62 100 0 100
40 .4 100 20 20 20 20 20 0 0 100
40 .4 100 35 44 98 98 98 95 0 100
60 .1 200 10 49 49 49 52 100 30 100
60 .1 200 20 97 97 97 97 100 35 100
60 .25 200 25 60 60 60 60 100 0 100
60 .4 200 30 11 21 21 21 17 0 100
60 .4 200 40 21 100 100 100 100 0 100

that lie within the median ball. If the bulk of the data is highly correlated with the

major axis of an ellipsoidal region, then the distances based on the clean data can

be very large for outliers that fall within the median ball. The outlier resistance

of the MB estimator decreases as p increases since the volume of the median ball

rapidly increases with p.

A simple simulation for outlier resistance is to count the number of times the

minimum distance of the outliers is larger than the maximum distance of the clean

cases. The simulation used 100 runs. If the count was 97, then in 97 data sets the

outliers can be separated from the clean cases with a horizontal line in the DD plot,

but in 3 data sets the robust distances did not achieve complete separation.

The clean cases had x ∼ Np(0, diag(1, 2, ..., p)). Outlier types were the

mean shift x ∼ Np(pm1, diag(1, 2, ..., p)) where 1 = (1, ..., 1)T , and x ∼

Np((0, ..., 0, pm)T , 0.0001Ip), a near point mass at the major axis. Notice that the

clean data can be transformed to a Np(0, Ip) distribution by multiplying xi by

diag(1, 1/
√

2, ..., 1/
√
p), and this transformation changes the location of the near

point mass to (0, ..., 0, pm/
√
p)T .
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For near point mass outliers, an ellipsoid with very small volume can cover

half of the data if the outliers are at one end of the ellipsoid and some of the clean

data are at the other end. This half set will produce a classical estimator with very

small determinant by (2.15). In the simulations for large γ, as the near point mass

is moved very far away from the bulk of the data, only the classical, MB and OGK

estimators did not have numerical difficulties. Since the MCD estimator has smaller

determinant than DGK while MVE has smaller volume than DGK, estimators like

FAST-MCD and MBA that use the MVE or MCD criterion without using location

information will be vulnerable to these outliers. Following Hawkins and Olive (2002),

FAST-MCD is also vulnerable to outliers if γ is slightly larger than γo given by

γo ≈ min

(

0.5, 1 −
[

1 − (0.2)1/K
]1/(p+1)

)

100%.

Table 2.7. Number of Times Near Point Mass Outliers had the Largest Distances

p γ n pm MBA FCH RFCH RMVN OGK FMCD MB

10 .1 100 40 73 92 92 92 100 95 100
10 .25 100 25 0 99 99 90 0 0 99
10 .4 100 25 0 100 100 100 0 0 100
40 .1 100 80 0 0 0 0 79 0 80
40 .1 100 150 0 65 65 65 100 0 99
40 .25 100 90 0 88 87 87 0 0 88
40 .4 100 90 0 91 91 91 0 0 91
60 .1 200 100 0 0 0 0 13 0 91
60 .25 200 150 0 100 100 100 0 0 100
60 .4 200 150 0 100 100 100 0 0 100
60 .4 200 20000 0 100 100 100 64 0 100

Tables 2.6 and 2.7 help illustrate the results for the simulation. Large counts

and small pm for fixed γ suggest greater ability to detect outliers. Values of p were

5, 10, 15, ..., 60. First consider the mean shift outliers and Table 4. For γ = 0.25

and 0.4, MB usually had the highest counts. For 5 ≤ p ≤ 20 and the mean shift, the
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OGK estimator often had the smallest counts, although FMCD could not handle

40% outliers for p = 20. For 25 ≤ p ≤ 60, OGK usually had the highest counts

for γ = 0.05 and 0.1. For p ≥ 30, FMCD could not handle 25% outliers even for

enormous values of pm.

In Table 2.7, FCH greatly outperformed MBA although the only difference

between the two estimators is that FCH uses a location criterion as well as the

MCD criterion. OGK performed well for γ = 0.05 and 20 ≤ p ≤ 60 (not tabled).

For large γ, OGK often has large bias for cΣ. Then the outliers may need to be

enormous before OGK can detect them. Also see Table 2.2, where OGK gave the

outliers the largest distances for all runs, but COGK does not give a good estimate

of cΣ = c diag(1, 2).

The table 6.13 in Appendix D compares the FCH, RFCH, CMVE, RCMVE

and MB estimators. It shows the result of a simulation function mldsim5 avail-

able at http://www.math.siu.edu/olive/rpack.txt. The bulk of the data X is

N
(

(0, ..., 0)′, diag(1, ..., p)
)

. Four types of the outliers are simulated.

1: N
(

(0, ..., pm)′, .0001Ip

)

2: N
(

(pm, ..., 0)′, .0001Ip

)

3: N
(

(pm, ..., pm)′, diag(1, ..., p)

4: X[i, p] = pm.

The program counts the number of times all of the outliers have larger Mahalanobis

distances than the biggest distance of the clean cases. The table shows how large pm

is before the outliers are large, say that the counts are greater than 90. Typically

MB works best but not always.
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CHAPTER 3

ROBUST PRINCIPAL COMPONENT ANALYSIS

3.1 INTRODUCTION

Principal component analysis (PCA) is used to explain the dispersion structure

with a few uncorrelated linear combinations of the original variables, called principal

components. The analysis is used for data reduction and interpretation.

Let x = [X1, X2, · · · , Xp]
′ be a p-dimensional random vector with the covari-

ance matrix Σ = Cov(x). The first principal component is the linear combination

a′
1x that maximizes Var(a′x) subject to ||a|| = 1.

a′
1 = arg max

||a||=1

Var(a′x) (3.1)

The second principal component is the linear combination a′
2x that maximizes

Var(a′x) subject to ||a|| = 1 and Cov(a′x,a′
1x) = 0.

a′
2 = arg max

||a||=1,a⊥a1

Var(a′x) (3.2)

In general, the jth principal component is the linear combination a′
jx that maxi-

mizes Var(a′x) subject to ||a|| = 1 and Cov(a′x,a′
kx) = 0 for all k < j.

a′
i = arg max

||a||=1,ai⊥a1,···ai−1

Var(a′
ix) (3.3)

Assume Σ has eigenvalue-eigenvector pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Then the jth principal component is given by

Yj = eT
j x = e′j1X1 + e′j2X2 + · · · + e′jpXp.
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In addition,
p

∑

j=1

Var(Xi) = λ1 + λ2 + · · ·+ λp =

p
∑

j=1

Var(Yi).

Thus the proportion of total variance explained by jth principal component is

Var(Yj)
∑p

j=1 Var(Yi)
=

λj

λ1 + λ2 + · · ·+ λp

j = 1, 2, · · · , p

The analysis can also be based on the p eigenvalue eigenvector pairs (λi, ei) of

the correlation matrix ρ. However, since the (λj , ej) derived from Σx are different

from the ones derived from ρ, the principal components derived from Σx are con-

sequently different from the ones derived from ρ. In general, the results of PCA are

not invariant under affine transformation. PCA can be invariant only under orthog-

onal transformations. Hence a previous rescaling or standardizing of the variables

are usually recommended if the units of measurement are not commensurate.

The sample analogs use the sample covariance matrix. Assume that the sam-

ple covariance matrix S has eigenvalue-eigenvector pairs (λ̂1, ê1), (λ̂2, ê2), ..., (λ̂p, êp)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0. Then the principal components corresponding to

the jth case are Ŷ1j = ê′
1xj , ..., Ŷpj = ê′

pxj. The estimated proportion of the total

population variance due to the ith principal component is λ̂i/
∑p

j=1 λ̂j. The analysis

can also be based on the p eigenvalue eigenvector pairs (λ̂i, êi) of the sample corre-

lation matrix R. However, for classical PCA based on sample covariance matrix or

sample correlation matrix, outliers possibly have a distorting result on the results.

Example 3. The 11th observation in the table below is an obvious outlier.

Without deleting the outlier,

S =









188.88 −3.95

−3.95 98.39









, λ̂1 = 189.05 and λ̂2 = 98.21.
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Table 3.1. Outlier Effect on PCA

1 2 3 4 5 6 7 8 9 10 11 12
x 41 38 63 63 76 58 51 55 60 85 44 52
y 25 24 17 12 18 17 24 23 19 13 -12 15

Hence the first principal component of the sample covariance matrix of the data

explains
188.98

188.98 + 98.39
= 65.8% of the variablity.

After deleting the outlier,

S =









188.85 −44.93

−44.93 21.16









, λ̂1 = 200.13 and λ̂2 = 9.89.

Hence the first principal component of the sample covariance matrix of the data

explains
200.13

200.13 + 9.89
= 95.3% of the variablity. The distorting effect of the outlier

on PCA in this example is significant.

To avoid drawing false and misleading conclusions from contaminated data,

one has to robustify the PCA procedure. A simple and intuitively appealing way is

to replace the classical covariance or correlation matrix with the robust dispersion

covariance matrix or correlation matrix. See Croux and Haesbroeck (2000). Another

very popular method is Projection-Pursuit (PP) approach. The advantage of PP

approach is that it produces high breakdown robust estimators. With an underlying

elliptically contoured distribution, PP estimators are consistent. See Li and Cheng

(1985). The next section discusses the PP approach in detail. The last section of

this chapter is focused on robustifying PCA method (RPCA) based on the robust

covariance or correlation matrices, such as FMCD and RMVN.
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3.2 ROBUST PROJECTION-PURSUIT PCA

Projection pursuit is a statistical technique for finding the most “interesting”

low-dimensional projections of a high-dimensional point cloud by numerically max-

imizing a certain objective function called projection index (PI). See Huber (1985).

The PCA actually can be looked as a PP-technique since it searches the directions

that have maximum variances. The classical PCA uses the variance function as the

projection index. It has a serious drawback since the variance function is zero break-

down. To robustify, a robust PP-technique (RPP) uses a robust scale instead of the

variance as its PI. Projection-Pursuit techniques start from the initial definition of

(3.1) with a robust scale.

Let x be a p-dimensional random vector and let S(·) be a robust scale. The

robust principal components of x, denoted by Si(x) and αi, are defined by

a1(x) = arg max
||a||=1

S(a′x),

S1(x) = S(a′
1x),

a2(x) = arg max
||a||=1,a⊥a1

S(a′x)

S2(x) = S(a′
2x),

...

ap(x) = arg max
||a||=1,a⊥a1,··· ,ap−1

S(a′x)

Sp(x) = S(a′
px),

The robust covariance matrix, C(x) is then defined by

C(x) =

p
∑

i=1

Si(x)aia
′
i (3.4)

In general, RPP estimators are not affine equivariant. However, they are rotationally
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equivariant. That is, for any orthogonal matrix P ,

Si(Px) = Si(x), ai(Px) = Pai(x), and Var(Px) = P Var(x)P ′. (3.5)

The proof is quite straightforward from the definition of RPP. Since P is orthogonal,

||Pa|| = ||a|| and a′P = (P ′a)′ = (Pa)′. By definition of RPP,

S1(x) = max
||a||=1

S(a′x)

and

S1(Px) = max
||a||=1

S(a′Px) = max
||Pa||=1

S((Pa)′x) = S1(x).

It follows that

a1(Px) = arg max
||a||=1

S(a′Px) = Pa1(x),

and

C(Px) =

p
∑

i=1

Si(Px)ai(Px)
(

ai(Px)
)′

=

p
∑

i=1

Si(x)(Pai)(Pai)
′

= P

[ p
∑

i=1

Si(x)aia
′
i

]

P ′

= PC(x)P ′.

Li and Chen (1985) showed that C(x) is affine equivariant when x ∼

EC(µ,Σ). The result implies the asymptotic unbiasedness of C(x) in the sense

of

C∞(x) = sΣ
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where C∞(x) is the asymptotic value of C(x) and s is a constant. Moreover,

because C(x) is defined to be
∑p

i=1 Si(x)aia
′
i and |ai| = 1 for all 1 ≤ i ≤ p, C(x)

has the same breakdown value as S(·). The RPP estimator will be high breakdown

if a high breakdown robust scale S(·) is used. Li and Chen (1985) used a HB Huber

M-estimator S(·) for their Monte Carlo simulation. However, the M-estimator is

not practical when the dimension p is not small. Croux, Filzmoser, Oliveira (2007)

discussed an algorithm using normalized median absolute deviation (NMAD) as the

robust scale

S(x) = NMAD = 1.48Med
(

|x− Med(x)|
)

where Med() is the median function. This PCA estimator is also impractical to

compute.

3.3 RPCA BASED ON ROBUST ESTIMATORS

The RPCA method performs the classical principal component analysis on the

RMVN subset, using either the sample covariance matrix CU = SU or the sample

correlation matrix RU applied to the RMVN subset. Under (E1), CU is a
√
n

consistent outlier resistant estimator of cΣ = dCov(X) where c > 0 and d > 0 are

some constants. For the sample correlation matrix, RU = D
−1/2
U SUD

−1/2
U , where

D
−1/2
U

(p×p)

=

























1√
s11

0 · · · 0

0 1√
s22

· · · 0

...
...

. . .
...

0 0 · · · 1√
spp

























and sii are diagonal entries of SU . SU
P→ dCov(X) implies that RU converges

to population correlation matrix in probability. Therefore the sample correlation
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matrix RU is a
√
n consistent estimator of the population correlation matrix.

Theorem 5. Under (E1), the correlation of the eigenvalues computed from the

classical PCA and RPCA converges to 1 in probability.

Proof. Let Σx denote the population covariance matrix, Cov(X). Let S be the clas-

sical sample covariance matrix and SU be the sample covariance matrix of RMVN

subset. Under (E1),

S
P→ Σx

and

SU
P→ dΣx.

It is a known fact that the eigenvalues are continuous functions of the disper-

sion estimator. Hence consistent estimators of dispersion give consistent estimators

of the population eigenvalues. That is, the eigenvalues of S converges to the eigenval-

ues of Σx in probability whereas the eigenvalues of SU converges to the eigenvalues

of dΣx in probability. See Eaton and Tyler (1991) and Bhatia, Elsner and Krause

(1990). If

Σx e = λe,

then

(dΣx) e = (dλ) e.

Hence the population eigenvalues of Σx and dΣx differ by a positive multiple

d. If Λ′ = [λ1, λ2, · · · , λp] is a vector of eigenvalues of Σx, then dΛ′ is a vec-

tor of eigenvalues of dΣx. Eigenvalues of S
P→ Λ′ and eigenvalues of SU

P→ dΛ′.

Therefore, correlation of eigenvalues computed from PCA and RPCA converges to

Corr(Λ′, dΛ′) = 1. The proof for R and RU is similar.

For principal components, a scree plot is a plot of component number versus

49



eigenvalue, and often there is a sharp bend in the plot when the components are

no longer important. See Cattell (1966). The above theorem suggests making the

robust scree plot and the classical scree plot.

Example 4. Buxton (1920) gives various measurements on 87 men including height,

head length, nasal height, bigonal breadth and cephalic index. Five heights were

recorded to be about 19mm with the true heights recorded under head length. Per-

forming a classical principal components analysis on these five variables using the

covariance matrix resulted in a first principal component that was created by the

outliers. See Figure 3.1 where the second principal component is plotted versus

the first. Significantly affected by outliers, Figure 3.1 provides false information

regarding the correlation between first two principal components. One should ex-

pect to see a random scatter plot since principal components are supposed to be

uncorrelated. The robust PCA, or the classical PCA performed after the outliers are

removed, resulted in a first principal component that was approximately − height

with ê1 ≈ (−1.000, 0.002,−0.023,−0.002,−0.009)T while the second robust princi-

pal component was based on the eigenvector ê2 ≈ (−0.005, 0.848,−0.054,

− 0.048, 0.525)T . The plot of the first two robust principal components, with the

outliers deleted, is shown in Figure 3.2. These two components explain about 86%

of the variance.

Figure 3.3 is a classical scree plot and Figure 3.4 is a robust scree plot with five

principal components. Both of them show the fifth eigenvalue is relatively small. It

appears that four principal components should be used in order to summarize the

total sample variance effectively .

The eigenvectors are not continuous functions of the dispersion estimator, and

the sample size may need to be massive before the robust and classical eigenvectors

or principal components have high absolute correlation. In the software, sign changes
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in the eigenvectors are common, since Σx e = λe implies that Σx (−e) = λ(−e).

The literature for robust PCA is large, but the “high breakdown” methods

are impractical or not backed by theory. Some of these methods may be useful as

outlier diagnostics. Spherical principal components is a bounded influence approach

suggested by Locantore, Marron, Simpson, Tripoli, Zhang and Cohen (1999). Boente

and Fraiman (1999) claim that basis of the eigenvectors is consistently estimated

by spherical principal components for elliptically contoured distributions. Also see

Maronna, Martin and Yohai (2006, pp. 212-213).

3.4 SIMULATION

In simulations for principal component analysis, FCH, RMVN, OGK and

FAST-MCD seem to estimate cΣx if x = Az + µ where z = (z1, ..., zp)
T and

the zi are iid from a continuous distribution with variance σ2. Here Σx = Cov(x) =

σ2AAT . The bias for the MB estimator seemed to be small. It is known that affine

equivariant estimators give unbiased estimators of cΣx if the distribution of zi is

also symmetric. DGK and FAST-MCD are affine equivariant. FCH and RMVN are

asymptotically equivalent to a scaled DGK estimator. But in the simulations the

results also held for skewed distributions.

The simulations used 1000 runs where x = Az and z ∼ Np(0, Ip), z ∼

LN(0, Ip) where the marginals are iid lognormal(0,1), or z ∼ MV Tp(1), a multi-

variate t distribution with 1 degree of freedom so the marginals are iid Cauchy(0,1).

The choice A = diag(
√

1, ...,
√
p) results in Σ = diag(1, ..., p). Note that the popula-

tion eigenvalues will be proportional to (p, p−1, ..., 1)T and the population “variance

explained” by the ith principal component is λi/
∑p

j=1 λj = 2(p+ 1 − i)/[p(p+ 1)].

For p = 4, these numbers are 0.4, 0.3 and 0.2 for the first three principal compo-

nents. If the “correlation” option is used, then the population “correlation matrix”

is the identity matrix Ip, the ith population eigenvalue is proportional to 1/p and
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the population “variance explained” by the ith principal component is 1/p.

Table 3.2 shows the mean “variance explained” along with the standard de-

viations for the first three principal components when p = 4. Also ai and pi are

the average absolute value of the correlation between the ith eigenvectors or the ith

principal components of the classical and robust methods. Two rows were used for

each “n–data type” combination. The ai are shown in the top row while the pi are

in the lower row. The values of ai and pi were similar. The standard deviations

were slightly smaller for the classical PCA for normal data. The classical method

failed to estimate (0.4,0.3,0.2) for the Cauchy data. For the lognormal data, RPCA

gave better estimates, and the pi were not high except for n = 10000. More PCA

simulation results for p ≤ 20 are available in Appendix A.

Table 3.2. Variance Explained by PCA and RPCA, p = 4

n type M/S vexpl rvexpl a1(p1) a2(p2) a3(p3)

40 N M 0.445,0.289,0.178 0.472,0.286,0.166 0.895 0.821 0.825
S 0.050,0.037,0.032 0.062,0.043,0.037 0.912 0.813 0.804

100 N M 0.419,0.295,0.191 0.425,0.293,0.189 0.952 0.926 0.963
S 0.033,0.030,0.024 0.040,0.032,0.027 0.956 0.923 0.953

400 N M 0.404,0.298,0.198 0.406,0.298,0.198 0.994 0.991 0.996
S 0.019,0.017,0.014 0.021,0.019,0.015 0.995 0.990 0.994

40 C M 0.765,0.159,0.056 0.514,0.275,0.147 0.563 0.519 0.511
S 0.165,0.112,0.051 0.078,0.055,0.040 0.776 0.383 0.239

100 C M 0.762,0.156,0.060 0.455,0.286,0.173 0.585 0.527 0.528
S 0.173,0.112,0.055 0.054,0.041,0.034 0.797 0.377 0.269

400 C M 0.756,0.162,0.060 0.413,0.296,0.194 0.608 0.562 0.575
S 0.172,0.113,0.054 0.030,0.025,0.022 0.796 0.397 0.308

40 L M 0.539,0.256,0.139 0.521,0.268,0.146 0.610 0.509 0.530
S 0.127,0.075,0.054 0.099,0.061,0.047 0.643 0.439 0.398

100 L M 0.482,0.270,0.165 0.459,0.279,0.172 0.647 0.555 0.566
S 0.180,0.063,0.052 0.077,0.047,0.041 0.654 0.492 0.474

400 L M 0.437,0.282,0.185 0.416,0.290,0.194 0.748 0.639 0.739
S 0.080,0.048,0.044 0.049,0.035,0.033 0.727 0.594 0.690

10000 L M 0.400,0.301,0.200 0.402,0.300,0.199 0.982 0.967 0.991
S 0.027,0.023,0.018 0.013,0.011,0.009 0.976 0.967 0.989

To compare affine equivariant and non-equivariant estimators, Maronna and
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Zamar (2002) suggest using Ai,i = 1 and Ai,j = ρ for i 6= j and ρ = 0, 0.5, 0.7, 0.9,

and 0.99. Then Σ = A2. If ρ is high, or if p is high and ρ ≥ 0.5, then the data are

concentrated about the line with direction 1 = (1, ..., 1)T . For p = 50 and ρ = 0.99,

the population variance explained by the first principal component is 0.999998. If

the “correlation” option is used, then there is still one extremely dominant principal

component unless both p and ρ are small.

Table 3.3 shows the mean “variance explained” along with the standard devi-

ations multiplied by 107 for the first principal component. The a1 value is given but

p1 was always 1.0 to many decimal places even with Cauchy data. Hence the eigen-

vectors from the robust and classical methods could have low absolute correlation,

but the data was so tightly clustered that the first principal components from the

robust and classical methods had absolute correlation near 1.

Table 3.3. Variance Explained by PCA and RPCA, SSD = 107 SD, p = 50

n type vexpl SSD rvexpl SSD a1

200 N 0.999998 1.958 0.999998 2.867 0.687
1000 N 0.999998 0.917 0.999998 0.971 0.944
1000 C 0.999996 161.3 0.999998 1.482 0.112
1000 L 0.999998 0.919 0.999998 1.508 0.175
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CHAPTER 4

HOTELLING’S T 2 TEST DIAGNOSTIC

In Multivariate Analysis, the Hotelling’s T 2 is a useful tool to make inference

about the center of multivariate normal data. The Hotelling’s T 2 test is used to test

H0 : µ = µ0 versus HA : µ 6= µ0. The test rejects H0 if

T 2 = n(x − µ0)
T S−1(x − µ0) >

(n− 1)p

n− p
Fp,n−p,1−α

and the data are iid from a MVN distribution with a nonsingular covariance matrix.

Note that

(n− 1)p

n− p
Fp,n−p,1−α → χ2

p,1−α

as sample size n→ ∞. So for a large sample, the test can be

T 2 = n(x − µ0)
T S−1(x − µ0) > χ2

p,1−α.

When using the classical location and dispersion estimator, the test can be adversely

affected by outliers. Therefore a robust estimator should be considered to replace

the classical one for a Hotelling’s T 2 Test.

If a location estimator T satisfies

√
n(T − µ)

d→ Np(0,D),

then a competing test rejects H0 if

T 2 = n(T − µ0)
T D̂

−1
(T − µ0) >

(n− 1)p

n− p
Fp,n−p,1−α → χ2

p,1−α
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if D̂ is a consistent estimator of D.

Now the RMVN estimator is asymptotically equivalent to a scaled DGK esti-

mator that uses 5 concentration steps from the start and two “reweight for efficiency”

steps.

We conjecture that

√
n(TRMV N − µ)

D→ Np(0, τpΣ)

for a wide variety of EC distributions where τp depends on both p and the underlying

distribution. Since the test is based on a conjecture, it is ad hoc, and should be

used as an outlier diagnostic rather than for inference. Willems, Pison, Rousseeuw,

and Van Aelst (2002) use similar reasoning for the MCD estimator, but their actual

statistic uses the FMCD estimator which is not high breakdown and may not even

be consistent.

For contaminated MVN data, simulations suggest that τp is close to 1 and gets

closer as p increases. The ad hoc test rejects H0 if

T 2
R/fn,p = n(TRMV N − µ0)

T Ĉ
−1

RMV N(TRMV N − µ0)/fn,p >
(n− 1)p

n− p
Fp,n−p,1−α

where fn,p = 1.04 + 0.12/p + 74/n gave fair results in the simulations for n ≥ 15p

and 2 ≤ p ≤ ∞.

As sample size gets larger, the χ2
p,1−α is often recommended for robust

Hotelling’s T 2 Test. One reason is the distribution (n−1)p
n−p

Fp,n−p,1−α converges to

the distribution χ2
p,1−α as n→ ∞.

For the Hotelling’s T 2
H simulation, the data is Np(δ1, diag(1, 2, ..., p)) where

H0 : µ = 0 is being tested with 5000 runs at a nominal level of 0.05. In Table 4.1,

δ = 0 so H0 is true, while hcv and rhcv are the proportion of rejections by the T 2
H
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test and by the ad hoc robust test. Sample sizes are n = 15p, 20p and 30p. The

robust test is not recommended for n < 15p and appears to be conservative except

when n = 15p and 75 ≤ p ≤ 100. The nominal level is 0.05.

If δ > 0, then H0 is false and the proportion of rejections estimates the power

of the test. Table 4.2 shows that T 2
H has more power than the robust test, but

suggests that the power of both tests rapidly increases to one as δ increases. The

robust T 2
R statistic tends not to be as inflated as T 2

H when outliers are present, as

can be demonstrated with the rhotsim program referenced below. Ideally software

users would make a DD plot and other checks on the model, but users of statistical

software too often fail to make such checks. Since both statistics are easily computed,

if n ≥ 15n software could produce a warning if the two statistics differ.

In www.math.siu.edu/olive/rpack.txt, there is a function rhotsim. This R

function simulates an ad hod robust Hotelling’s T 2 test. Need p > 1. Outliers = 0

for no outliers and X ∼ N(0, diag(1, ..., p)); Outliers = 1 for outliers a tight cluster

at major axis (0, ..., 0, pm)′; Outliers = 2 for outliers a tight cluster at minor axis

(pm, 0, ..., 0)′; Outliers = 3 for outliers X ∼ N((pm, ..., pm)′, diag(1, ..., p)); Outliers

= 4 for outliers X[i, p] = pm; Outliers = 5 for outliers X[i, 1] = pm. Power can

be estimated by increasing delta so µ = δ(1, ..., 1) and µ0 = 0 ∗ µ. For outliers=0,

want hquant and rquant approx 1.

Simulations were done in R. The MASS library was used to compute FMCD

and the robustbase library was used to compute OGK. Programs are in the col-

lection of functions rpack.txt at (www.math.siu.edu/olive/ol-bookp.htm). Function

covrmvn computes the FCH, RMVN and MB estimators while covfch computes the

FCH, RFCH and MB estimators. More Hotelling simulation results are available in

Appendix B.
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Table 4.1. Hotelling simulation

p n=15p hcv rhcv n=20p hcv rhcv n=30p hcv rhcv

2 30 0.0502 0.0516 40 0.0498 0.0624 60 0.0540 0.0382
5 75 0.0500 0.0456 100 0.0474 0.0250 150 0.0542 0.0310
10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286
15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320
20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354
25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288
30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342
35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374
40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336
45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366
50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364
55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374
60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376
65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410
70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424
75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370
80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356
85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404
90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398
95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424
100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392
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Table 4.2. Hotelling power simulation

p n hcv rhcv δ n hcv rhcv δ n hcv rhcv δ

2 30 0.380 0.150 0.30 40 0.367 0.160 0.25 60 0.363 0.180 0.20
2 30 0.615 0.260 0.40 40 0.640 0.314 0.35 60 0.700 0.430 0.30
2 30 0.830 0.422 0.50 40 0.864 0.516 0.45 60 0.921 0.706 0.40
5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12
5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16
5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40
10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10
10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12
10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15
15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07
15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10
15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12
20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06
20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08
20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10
25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06
25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08
25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10
30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05
30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08
30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09
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CHAPTER 5

ROBUST CANONICAL CORRELATION ANALYSIS

5.1 INTRODUCTION

Canonical correlation analysis (CCA) is a multivariate statistical method to

identify and quantify the association between two sets of variables. It focuses on

the correlation between a linear combination of the variables in one set and a linear

combination of the variables in another set. First, a pair of linear combinations

is determined by maximizing the correlation. Next, a pair of linear combinations

uncorrelated to previously selected pair is determined by maximizing the correlation,

and so on. The pairs of combinations are called the canonical variables (canonical

variates), and their correlations are called canonical correlations.

Denote the first set of variables by the p-dimensional variable x and the second

set of variables by the q-dimensional variable y.

x = [X1, X2, · · ·Xp]
′ and y = [Y1, Y2, · · ·Yq]

′.

Without loss of generality, assume p ≤ q. For the random vectors x and y, let

E(x) = µ1 and E(y) = µ2,

Cov(x) = Σ11 and Cov(y) = Σ22,

Cov(x,y) = Σ12 = Σ′
21.
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Considering x and y jointly in a random vector W ,

W
((p+q)×1)

=









x

y









,

with mean vector

µ
((p+q)×1)

= E(W ) =









µ1

µ2









and covariance matrix

Σ
((p+q)×(p+q))

= E
[

(W − µ)(W − µ)′
]

=









Σ11 Σ12

Σ21 Σ22









. (5.1)

Then the canonical coefficients of the first pair of linear combination is determined

by

(α1,β1) = arg max
a,b

Corr(a′x, b′y) (5.2)

with the restriction Cov(a′x) = 1, Cov(b′y) = 1 and Cov(a′x, b′y) = 0. So the first

pair of canonical variates is the pair of the linear combinations

U1 = α′
1x and V1 = β′

1y

where Cov(U1) = 1, Cov(V1) = 1, and Cov(U1, V1) = 0. Higher order kth canonical

vectors is then recursively defined by

(αk,βk) = arg max
a,b

Corr(a′x, b′y) (5.3)
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with the restriction Cov(a′x) = 1, Cov(b′y) = 1, Cov(a′x, b′y) = 0 and (a′x, b′y) is

uncorrelated with all previous selected canonical variates (Ui, Vi) where 1 ≤ i ≤ k−1.

The canonical correlation ρk between the canonical variates of the kth pair is

ρk = Corr(Uk, Vk).

Johnson and Wichern (1998, Chapter 10) gives a simple solution to compute

the canonical variates. The kth pair of canonical variates, k = 1, 2, · · · , p can be

computed as

Uk = e′
kΣ

−1/2
11 x Vk = f ′

kΣ
−1/2
22 y (5.4)

and

Corr(Uk, Vk) = ρk

where ρ2
1 ≥ ρ2

2 ≥ · · · ≥ ρ2
p are the eigenvalues of the matrix

Σ
−1/2
11 Σ12Σ

−1
22 Σ21Σ

−1/2
11

with associated eigenvectors e1, e2, · · · , ep. Moreover, ρ1 ≥ ρ2 ≥ · · · ≥ ρp are also

the p largest eigenvalues of

Σ
−1/2
22 Σ21Σ

−1
11 Σ12Σ

−1/2
22

with associated eigenvectors f1,f2, · · · ,fp.

When the original variables to be studied by CCA have quite different mea-

sure scales or standard deviations, they usually will be standardized for bet-

ter analysis and interpretation before computing the canonical variates. Let

σii = Cov(Xi) and νii = Cov(Yi). Further let V 11 = diag(σ11, σ22, · · · , σpp) and
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V 22 = diag(ν11, ν22, · · · , νqq). Then the standardized random vectors are

zx = V
−1/2
11 (x − µx) and zy = V

−1/2
22 (y − µy).

Consequently the canonical variates standardized vectors, zx and zy have the form

U∗
k = (α∗

k)
′zx = e

′

kρ
−1/2
11 zx

and

V ∗
k = (β∗

k)
′zy = f

′

kρ
−1/2
22 zy

where Cov(zx) = ρ11, Cov(zy) = ρ22, Cov(zx, zy) = ρ12 = ρ
′

21, and ek and f k are

the eigenvectors of ρ
−1/2
11 ρ12ρ

−1
22 ρ21ρ

−1/2
11 and ρ

−1/2
22 ρ21ρ

−1
11 ρ12ρ

−1/2
22 respectively. The

canonical correlations is given by

Corr(U∗
k , V

∗
k ) = ρ∗k,

where ρ∗1 ≥ ρ∗2 ≥ · · · ≥ ρ∗p are the eigenvalues of the matrices of both

ρ
−1/2
11 ρ12ρ

−1
22 ρ21ρ

−1/2
11 and ρ

−1/2
22 ρ21ρ

−1
11 ρ12ρ

−1/2
22 .

Note that in accordance with the definition of the canonical variate,

(α∗
k,β

∗
k) = arg max

a∗,b
∗

Corr[(a∗)′zx, (b
∗)′zy]

= arg max
a∗,b

∗

Corr
(

(a′V
−1/2
11 )x, (b′V

−1/2
22 )y

)

= arg max
a,b

Corr(a′x, b′y)

= (V
−1/2
11 a, V

−1/2
22 b). (5.5)
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Therefore, unlike the principal component analysis, CCA has an equivariance prop-

erty since the canonical correlations are unchanged by the standardization. That is,

ρk ≡ ρ∗k for all 1 ≤ k ≤ p.

Canonical variates are generally artificial and have no physical meaning. They

are latent variables analogous to factors obtained in factor analysis. They often

are looked as subject-matter variables. If the original variables are standardized

to have zero means and unit variances, then the standardized canonical coefficients

are interpreted in a similar manner to standardized regression coefficients. Being

increased by one for a standardized variable is the same as being increased by one

standard deviation for the corresponding original variable.

Let A
(p×p)

= [α1,α2, · · · ,αp]
′ and B

(p×p)
= [β1,β2, · · · ,βp]

′ so that the vectors

of canonical variates are

U
(p×1)

= Ax and V
(q×1)

= By.

From (5.4), A = E′Σ
−1/2
11 and B = F ′Σ

−1/2
22 where E = [e1, e2, · · · , ep] and F =

[f 1,f2, · · · ,f q]. So

Cov(U) = Cov(Ax) = AΣ11A
′ = E′Σ

−1/2
11 Σ11Σ

−1/2
11 E = I.

Likewise,

Cov(V ) = Cov(By) = I.

Decompose Σ11 to get Σ11 = P 1Λ1P
′
1. It follows that

U = Ax = E′Σ
−1/2
11 x = E′P 1Λ

−1/2
1 P ′

1x.
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Hence, the canonical variates vector U can be geometrically interpreted as the three-

step transformation as follows. A similar geometrical interpretation can be made to

V .

(i) A transformation from x to uncorrelated standardized principal compo-

nents, Λ
−1/2
1 P ′

1x;

(ii) an orthogonal rotation P 1;

(iii) another orthogonal rotation E′.

The canonical coefficients are estimated by using sample covariance ma-

trix instead of population covariance matrix. Denote the data matrix X =

[X1, X2, · · · , Xp] and Y = [Y1, Y2, · · · , Yq]. (5.4) becomes

Ûk = ê′
kS

−1/2
11 X V̂k = f̂

′
kS

−1/2
22 Y (5.6)

where êk, for 0 ≤ k ≤ p, is an eigenvector of

S
−1/2
11 S12S

−1
22 S21S

−1/2
11

and f̂k, for 0 ≤ k ≤ p, is an eigenvector of

S
−1/2
22 S21S

−1
11 S12S

−1/2
22 .

Eigenvalues r1, r2, · · · , rp of S
−1/2
11 S12S

−1
22 S21S

−1/2
11 are the sample canonical corre-

lations. Muirhead and Waternaux (1980) shows that if the population canonical

correlation efficients are distinct and the underlying population distribution has fi-

nite fourth order cumulant, then the limit joint distribution of
√
n(r2

i − ρ2
i ), for

i = 1, · · · , p, is p-variate normal. In particular, if the data are drawn from an
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elliptical distribution with kurtosis 3κ, then the limiting joint distribution of

µi =
√
n

r2
i − ρ2

i

2ρi(1 − ρ2
i )
, i = 1, · · · , p

isN(0, (κ+1)Ip). As a more special case, when the data are drawn from multivariate

normal distribution (κ = 0), the ui’s are asymptotically iid with a standard normal

distribution.

However, these asymptotic results are nonrobust. The outliers have great

distorting effect on the classical sample covariance matrix since the eigenvalues and

eigenvectors are very sensitive to the presence of outliers. Replacing the classical

sample covariance matrix by a robust dispersion estimator, such as RMVN, and then

computing the eigenvalues and eigenvectors regularly from the robust dispersion

estimator is an approach not only intuitive but also effective for a robust CCA.

In the last section of this chapter, a simulation will be implemented to compare

the classical CCA and robust CCA based on Fast-MCD and RMVN dispersion

estimators. The next section discusses the projection pursuit (PP) approach. The

idea of the PP approach is to robustify the correlation measure in (5.2) rather than

robustify the classical dispersion matrix.

5.2 ROBUST CCA USING PROJECTION PURSUIT

In section 3.2, one has learned that the PCA can be looked as a PP-technique

since it searches for the directions that have maximum variances. The classical PCA

PP-technique uses the variance function as a projection index and robust PCA uses

a robust scale. A similar idea could be applied for canonical correlation analysis.

CCA can also be seen as a PP-technique since it seeks for two directions a and b

in which the correlation of two projections of the variables x and y, corr(a′x,b′y),

is maximized. The correlation measure in this case is the projection index. The
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robust PP-technique substitutes the classical correlation measure with a robust es-

timator of the correlation called robust projection index (RPI). Derivation from a

robust covariance matrix of two univariate variables is a common approach to ob-

tain a RPI. RMVN, Fast-MCD, and M-estimator robust projection indices will be

compared by Monte Carlo study in next section. Muirhead and Waternaux (1980)

provided a limit distribution for classical CCA when the underlying population dis-

tribution has finite fourth moment. However, so far there is still no asymptotic

theory of RPP available since it is very difficulty to work out the properties of the

robust CCA estimator analytically. Only simulation studies are conducted to esti-

mate those properties. Branco, Croux, Filzmoser, and Oliveira (2005) proposed an

algorithm to perform projection pursuit CCA without the backup of any rigorous

and consummate theories. The algorithm starts by estimating Σ using a robust

estimator. Then Σ is partitioned as

Σ
(p+q)×(p+q)

=











Σ11
(p×p)

Σ12
(p×q)

Σ21
(q×p)

Σ22
(q×q)











.

Performing a spectral decomposition of Σ11 and Σ22,

Σ11 = AMA′ and Σ22 = BNB ′,

where M , N are diagonal and A, B are orthogonal matrices. Transform the original

data x and y into

(x∗,y∗) =
(

M−1/2A′x,N−1/2B′y
)

.
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Note that

arg max
a∗,b

∗

PI[(a∗)′x∗, (b∗)′y∗] = arg max
a∗,b

∗

PI
[

(a∗)′M−1/2A′x, (b∗)′N−1/2B′y
]

= arg max
a∗,b

∗

PI

[

(

AM−1/2a∗)′x,
(

BN−1/2b∗)′y

]

= arg max
a,b

PI[a′x, b′y].

where PI is a robust projection index. So the robust CCA has the equivariance

property, meaning new data (x∗,y∗) have the same canonical correlation as the

original data (x,y), and their canonical coefficients satisfy

ai = AM−1/2a∗
i and bi = BN−1/2b∗

i ,

for i = 1, · · · , p. Note that for any a and b,

Var(a′x∗) = a′ Var(x)a = a′ Var(M−1/2A′x)a

= a′(M−1/2A) Var(x)(A′M−1/2)a

= a′(M−1/2A′)(AMA′)AM−1/2)a

= a′a.

Similarly, Var(b′y∗) = b′b. So to find the first canonical coefficients (a∗
1, b

∗
1), the

projection index PI(a′x∗, b′y∗) must be maximized subject to a′a = 1 and b′b = 1.

One can write a and b in polar coordinates with norm 1 so that the constraint

a′a = 1 and b′b = 1 can be satisfied automatically. See Branco, Croux, Filzmoser

and Oliveira (2005) for more details. The projection index is then maximized, over

the polar angle vectors (θ1, · · · , θp−1), by a standard maximization routine, mlminb

in R. Once two angle vectors are determined by mlminb, they will be converted back
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to (a∗
1, b

∗
1).

Now assume that the first k − 1 pairs of canonical coefficients are already

obtained. To get kth pair (ak, bk), the projection index PI(a′x∗, b′y∗) must be

maximized subject to a′a = 1, b′b = 1, Cov(akx
∗,aix

∗) = 0, and Cov(bky
∗, biy

∗) =

0 for i = 1, · · · , (k − 1). Note that

Cov(a′
kx

∗,a′
ix

∗) = a′
kCov(x∗,x∗)ai

= a′
kIai = a′

kai

Likewise, Cov(bky
∗, biy

∗) = b′
kbi. Hence (ak, bk) can be obtained by maximizing

the RPI in two subspaces that are orthogonal to a1, · · · ,ak−1 and b1, · · · , bk−1 re-

spectively. Using Gram-Schmidt process, one can construct two orthogonal matrices

U and V such that

U = [a∗
1, · · · ,a∗

k−1|Û ] and V = [b∗
1, · · · , b∗

k−1|V̂ ],

where Û and V̂ are orthogonal bases of the subspaces that are orthogonal to

a1, · · · ,ak−1 and b1, · · · , bk−1 respectively. Next project the original data to these

two subspaces, one gets

(x∗∗,y∗∗) = (Û
′
x∗, V̂

′
y∗).

Now one can obtain (a∗∗, b∗∗) with the data (x∗∗,y∗∗) by maximizing

PI(a′x∗∗, b′y∗∗) subject to a′a = 1 and b′b = 1. After (a∗∗, b∗∗) is determined,

it is transformed back to get (a∗
k, b

∗
k) by

a∗
k = Ûa∗∗ and b∗

k = V̂ a∗∗.
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And then

ak = AM−1/2a∗
k and bk = BN−1/2b∗

k.

The k-th canonical correlation is estimated by ρk = PI(a′
kx, b

′
ky) for 1 ≤ k ≤ p.

Once the k-th canonical covariate is obtained, a robust covariance matrix with

dimension 2 × 2 is computed based on two univariate variables a′
kx and b′

ky. The

off-diagonal entry of this matrix is then taken to be the estimator of ρk.

One obvious advantage of projecting onto subspaces (Û , V̂ ) is their lower

dimensions. The maximization in a lower dimensional space can be much more

computationally efficient. Another advantage is that the canonical coefficient a∗
k

and b∗
k are orthogonal to all previously found a∗

i and b∗
i respectively so that the

constraint of PI maximization is automatically satisfied.

5.3 SIMULATION STUDY

Two simulation studies in this section are conducted to compare eight different

CCA methods, based on:

1. the classical sample covariance matrix,

2. FMCD covariance matrix estimator,

3. M covariance matrix estimator,

4. RMVN covariance matrix estimator,

5. PP-C (using the classical correlation function as the PI),

6. PP-FMCD (using the FMCD correlation estimator as the PI),

7. PP-M (using the M correlation estimator as the PI),

8. PP-RMVN (using the RMVN correlation estimator as the PI).
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Simulation 1

UCLA: Academic Technology Services (2011) provides a data analysis example

of CCA at http://www.ats.ucla.edu/stat/R/dae/canonical.htm. The example uses a

data file, mmreg.csv, available at http://www.ats.ucla.edu/stat/R/dae/mmreg.csv.

The dataset consists of 600 observations on eight variables. They are locus of control,

self-concept, motivation, reading, writing, math, science, and female. The first three

variables are a group of psychological variables. The next four variables are a group

of academic variables. The last variable female is a categorical indicator. The first

simulation studies the canonical correlation between these two groups of variables.

The female variable is not included in the simulation study since the FMCD is

likely to be singular when some of the variables are categorical. See Olive (2004).

In fact, two Fast-MCD algorithms, cov.mcd and covMcd, failed to generate a FMCD

estimator when the female variable was included. The DD plot of the mmreg dataset

from Figure 5.1 shows the data follows a multivariate normal distribution since

all points tightly cluster about the identity line. With the absence of apparent

outliers, it is reasonable to assume this dataset is “clean”. Hence, the classical

canonical covariates and correlations obtained from this “clean” dataset will be

used as benchmarks for a comparison of different CCA methods.

Let (T,C) be the sample mean and covariance matrix of the mmreg dataset.

The following different types of outliers are considered:

0. No outliers are added to original “clean” dataset.

1. 30% (in probability) of the data values are trippled.

2. 10% (in probability) of the data values are trippled.

4. 30% (in probability) of the observations are replaced by the data generated

from a multivariate normal distribution, N(T, 5C).
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Figure 5.1. RMVN DD Plot for mmreg Data

5. 10% (in probability) of the observations are replaced by the data generated

from a multivariate normal distribution, N(T, 5C).

Note that when some observations are replaced by outliers, their original values of

the motivation variable are retained on purpose since it is categorical.

Denote the k-th canonical coefficients and correlation for the i-th replication

by âi
k, b̂

i

k and ρ̂i
k where k = 1, · · · , p and i = 1, · · · , m. Then the final estimators of

k-th canonical coefficients and correlation are computed by

âk =
1

m

m
∑

i

âi
k, b̂k =

1

m

m
∑

i

b̂
i

k, and ρ̂k =
1

m

m
∑

i

ρi
k.

Denote the classical canonical coefficients and correlation computed from the “clean”

mmreg dataset by ak, bk and ρk. In the first simulation study, ak, bk and ρk are used

as benchmarks for a comparison of different CCA methods. The correlation, such

as corr(âk,ak), between a canonical covariate and its benchmark will be used as one

robustness measure. The mean squared error (MSE) of ρ̂k, as another robustness
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measure, is defined by

MSE(ρ̂k) =
1

m

m
∑

i=1

(

tanh-1(ρ̂i
k) − tanh-1(ρk)

)2
(5.7)

where tanh-1 is the inverse hyperbolic function known as the Fisher transforma-

tion in Statistics. The Fisher transformation turns the distribution of correlation

coefficients toward a normal distribution. The MSE of ak is defined by

MSE(âk) =
1

m

m
∑

i=1

cos−1

( |âi
ka

k|
‖âi

k‖ · ‖ak‖

)

, (5.8)

and the MSE of bk is defined in a similar manner by

MSE(b̂k) =
1

m

m
∑

i=1

cos−1

( |b̂i

kb
k|

‖b̂i

k‖ · ‖bk‖

)

. (5.9)

See Branco, Croux, Filzmoser and Oliveira (2005).

The simulation program written in R language can be seen in Appendix E.

The main function for the first simulation is ccasim1. To obtain RMVN disper-

sion estimator, this simulation program calls the covrmvn function available at

http://www.math.siu.edu/olive/rpack.txt. For using the CCA PP method, the sim-

ulation program calls the routine pp and its subroutines which can be found at

http://www.statistik.tuwien.ac.at/public/filz/programs.html. However, these orig-

inal routines are not up to date and in need of many modifications as well as cor-

rections. Furthermore, the RMVN estimator is added to the pp routine as one of

the projection indices. Also the algorithm cov.mcd is substituted with covMcd in

order to greatly increase computational speed. Finally, these modified routines are

collected in a single file, ccapp.r. This file can be provided upon request. To run

the simulation program, one needs to install and load some R libraries including
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robustbase, CCA and splus2R. The program also requires the working directory set

to be “C:/work/MyDt0627/sim”. One can modify the program to change the work-

ing directory setting. Before running the program, two source files, “rpack.txt” and

“ccapp.r”, should be included in the working directory. After running the program,

the output files are put in the working directory.

The results of the simulation, with the number of replications m = 150, are

shown in tables 5.1 and 5.2. In table 5.1, the column with header “ra1” gives the

value of corr(â1,a1). All other columns to the right are similar. Table 5.1 shows

all CCA methods except PP-FMCD perform well on a clean dataset (outlier = 0)

since corr(âk,ak) and corr(b̂k, bk) are quite close to 1 for k = 1, 2. When 30% the

values are trippled, the PP-FMCD and PP-M estimators failed quite badly. RMVN

works well both as PI and as robust dispersion estimator. In table 5.2, the column

with header “Mr1” gives the value 1000 ∗MSE(ρ̂1). The “Mr2” and “Mr3” columns

are similar. The column with header “Ma1” gives the value MSE(â1). The rest of

the columns to the right are similar. The PP-FMCD MSEs really stand out. It has

larger MSEs than all other approaches for all different types of outliers. Table 5.1

and 5.2 are consistent regarding two aspects: (i) as a whole, the CCA methods using

projection pursuit are not as good as the CCA methods based on robust dispersion

estimators; (ii) PP-FMCD does not work well as a robust CCA technique. It was in

doubt whether the performance of PP-FMCD is significantly impacted by the cat-

egorical variable, motiviation. So another simulation program ccasim11 was run on

the mmreg dataset with both categorical variables motivation and female removed.

The result of ccasim11 can be seen in Appendix C. Moreover, the simulation pro-

gram tracking shows that the running time of the projection pursuit approach is at

least 10 times longer than the approaches based on covariance matrices. Among all

RPP approaches, the PP-M is the most computationally inefficient.
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Simulation 2

In the second CCA simulation study, the following sampling distributions are

considered:

1. normal distribution, Np+q(0,Σ),

2. normal mixture, .8Np+q(0,Σ) + .2Np+q(0, 8Σ),

3. normal mixture, .95Np+q(0,Σ) + .05Np+q(0, 8Σ),

4. mixture distribution, .8Np+q(0,Σ) + .2δ
(

tr(Σ)1′),

5. mixture distribution, .95Np+q(0,Σ) + .05δ
(

tr(Σ)1′),

6. mixture distribution, .8Np+q(0,Σ) + .2δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

,

7. mixture distribution, .95Np+q(0,Σ) + .05δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

,

where tr(Σ) represents the trace of the Σ and δ() represents a point mass distribu-

tion. To form the covariance matrix Σ, let Σ11 = Ip, Σ22 = Iq and Σ12 be one of

the following:

1. Σ12
(2×4)

=









.9 0 0 0

0 .3 0 0









, Σ11 = I2, Σ22 = I4;

2. Σ12
(3×3)

=

















.9 0 0

0 .5 0

0 0 .2

















, Σ11 = I3, Σ22 = I3;

76



Table 5.1. Robust CCA with Correlation Measure

outlier method ra1 ra2 ra3 rb1 rb2 rb3

0 1 1.00 1.00 1.00 1.00 1.00 1.00
0 2 1.00 -1.00 -0.99 0.99 1.00 -0.73
0 3 1.00 -1.00 -0.97 -0.99 -0.98 -0.55
0 4 1.00 -1.00 0.99 -0.98 -0.98 -0.16
0 5 1.00 -1.00 1.00 -1.00 1.00 -0.62
0 6 0.60 -0.46 0.43 -0.62 0.71 0.06
0 7 1.00 -1.00 0.96 -0.99 0.99 -0.51
0 8 0.96 -0.96 -0.86 -0.85 0.99 0.00
1 1 0.99 -0.99 0.78 -0.54 0.82 0.73
1 2 0.99 -0.99 0.96 0.81 -0.99 0.48
1 3 0.97 0.99 -0.93 0.99 0.98 -0.14
1 4 0.99 -1.00 -0.97 -0.96 0.99 0.28
1 5 0.95 -0.99 0.69 -0.93 0.90 0.00
1 6 0.27 0.69 0.52 -0.67 0.73 0.00
1 7 -0.18 0.96 -0.85 -0.06 -0.98 -0.42
1 8 0.98 0.37 0.56 -0.70 0.36 0.35
2 1 0.71 -1.00 0.52 -0.19 0.92 0.17
2 2 0.96 -1.00 0.97 0.96 0.99 0.99
2 3 0.99 -1.00 -0.99 0.98 0.99 0.35
2 4 1.00 -1.00 -0.99 -0.96 -0.97 0.41
2 5 -0.30 -0.81 0.66 -0.06 0.45 0.01
2 6 0.98 0.42 0.60 -0.34 -0.86 0.38
2 7 -0.98 -1.00 -0.88 0.91 0.99 0.07
2 8 0.92 1.00 -0.97 -0.54 -0.92 0.30
3 1 0.49 -0.95 -0.65 -0.40 0.97 0.28
3 2 0.74 0.01 -0.44 0.91 -0.57 -0.55
3 3 0.95 -0.97 -0.87 -0.89 0.93 -0.86
3 4 1.00 0.98 -0.52 -0.89 0.89 0.69
3 5 -0.81 -0.99 0.06 -0.20 0.90 -0.51
3 6 -0.51 0.67 -0.45 -0.33 0.55 -0.51
3 7 -1.00 -0.76 0.57 0.52 0.70 0.63
3 8 0.98 -0.50 -0.62 -0.86 -0.21 -0.74
4 1 0.89 1.00 1.00 0.96 0.71 0.47
4 2 1.00 -1.00 -0.96 1.00 1.00 0.59
4 3 1.00 -1.00 -0.93 0.99 0.96 0.61
4 4 1.00 1.00 1.00 0.87 0.97 0.41
4 5 1.00 -1.00 0.98 -0.99 0.87 -0.84
4 6 -0.30 0.33 -0.38 -1.00 -0.94 -0.21
4 7 -0.99 1.00 -1.00 0.84 -0.90 0.93
4 8 0.75 0.94 0.96 -0.55 -0.98 -0.35
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Table 5.2. Robust CCA with MSE Measure

outlier method Mr1 Mr2 Mr3 Ma1 Ma2 Ma3 Mb1 Mb2 Mb3

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 2 0.05 0.01 0.03 0.00 0.00 0.76 0.00 0.00 0.76
0 3 0.75 0.69 0.45 0.09 0.20 1.01 0.09 0.20 1.01
0 4 0.40 0.46 0.13 0.00 0.04 1.41 0.00 0.04 1.41
0 5 0.00 0.00 0.13 0.00 0.00 0.98 0.00 0.00 0.98
0 6 158.65 23.27 25.13 0.68 1.14 1.44 0.68 1.14 1.44
0 7 0.10 0.01 0.29 0.25 0.00 1.06 0.25 0.00 1.06
0 8 0.17 1.19 0.49 0.55 0.00 1.40 0.55 0.00 1.40
1 1 51.41 1.04 1.23 1.10 1.12 1.23 1.10 1.12 1.23
1 2 30.84 0.64 0.26 1.08 0.72 1.02 1.08 0.72 1.02
1 3 1.19 1.06 0.58 0.53 0.59 1.06 0.53 0.59 1.06
1 4 1.26 1.47 1.06 0.13 0.17 1.03 0.13 0.17 1.03
1 5 54.21 1.37 0.30 1.06 1.14 1.45 1.06 1.14 1.45
1 6 122.09 34.32 25.89 0.74 1.26 1.38 0.74 1.26 1.38
1 7 27.64 2.92 1.34 1.10 0.93 1.42 1.10 0.93 1.42
1 8 35.43 25.91 9.35 0.27 1.01 1.32 0.27 1.01 1.32
2 1 41.87 1.69 1.88 0.85 0.96 1.12 0.85 0.96 1.12
2 2 27.12 0.19 0.08 0.34 0.28 0.83 0.34 0.28 0.83
2 3 1.70 0.71 0.33 0.28 0.37 0.99 0.28 0.37 0.99
2 4 0.60 0.77 0.42 0.07 0.06 1.19 0.07 0.06 1.19
2 5 42.18 1.28 0.41 0.86 0.94 1.40 0.86 0.94 1.40
2 6 175.89 19.64 37.28 0.70 1.19 1.44 0.70 1.19 1.44
2 7 24.08 1.71 0.97 0.77 0.41 1.29 0.77 0.41 1.29
2 8 27.41 15.95 9.63 0.26 0.93 1.33 0.26 0.93 1.33
3 1 3.08 2.10 1.00 0.94 1.05 1.19 0.94 1.05 1.19
3 2 1.95 1.76 1.14 0.78 0.80 1.03 0.78 0.80 1.03
3 3 2.27 1.53 0.97 0.58 0.65 1.02 0.58 0.65 1.02
3 4 1.93 1.81 0.93 0.26 0.40 0.94 0.26 0.40 0.94
3 5 2.81 2.25 0.29 0.96 1.04 1.40 0.96 1.04 1.40
3 6 246.93 23.08 31.15 0.87 1.19 1.42 0.87 1.19 1.42
3 7 2.32 2.13 0.93 0.80 0.93 1.35 0.80 0.93 1.35
3 8 33.57 23.21 11.04 0.58 1.00 1.30 0.58 1.00 1.30
4 1 1.42 1.81 1.08 0.64 0.72 0.98 0.64 0.72 0.98
4 2 0.56 0.75 0.38 0.38 0.38 0.85 0.38 0.38 0.85
4 3 1.85 0.74 0.39 0.32 0.39 0.90 0.32 0.39 0.90
4 4 0.62 0.66 0.52 0.10 0.13 1.13 0.10 0.13 1.13
4 5 1.85 1.26 0.24 0.67 0.69 1.37 0.67 0.69 1.37
4 6 225.93 24.20 33.37 0.76 1.12 1.45 0.76 1.12 1.45
4 7 1.61 1.41 0.44 0.46 0.49 1.26 0.46 0.49 1.26
4 8 31.97 18.19 8.31 0.37 0.93 1.31 0.37 0.93 1.31
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3. Σ12
(5×5)

=

































.9 0 0 0 0

0 .7 0 0 0

0 0 .4 0 0

0 0 0 .3 0

0 0 0 0 .1

































, Σ11 = I5, Σ22 = I5.

Σ11 and Σ22 are set to be identity matrices due to the equivariant property of CCA.

The sample size of the simulation is n = 1000 and the number of replications is

m = 200. The benchmarks in simulation 2 are the true values of ρk, ak and bk

computed from the matrix Σ. The main function for the simulation is ccasim2. See

Appendix E.

The result of simulation 2 when Σ is formed by the third choice above is pre-

sented in table 5.3. The “cov” column indicates the choice of Σ, the “std” column in-

dicates the type of sampling distribution, and the “mdt” column indicates the CCA

methods. Although p = q = 5 in this case, only the results of first two canonical

covariates are listed due to the limit of the space. Table 5.3 shows that the MSE(ρk)

of classical CCA (as well as classical PP) increases rapidly when the point mass out-

liers are introduced. For the normal mixture sampling distribution, only PP-MCD

does not work well. For the mixture distribution .8Np+q(0,Σ) + .2δ
(

tr(Σ)1′), only

RMVN and PP-RMVN CCA perform well. The result of the mixture distribution

.8Np+q(0,Σ) + .2δ
(

tr(Σ) ∗ [1, 0, · · · , 0]′
)

is quite similar. In general, it is observed

that RMVN and PP-RMVN have the best performance when the underlying distri-

bution has the multivariate normality. Between them, the CCA based on RMVN

approach should be adopted since it has the computational efficiency advantage.

The results of simulation 2 with Σ using the other two choices are very similar and

can be seen in Appendix C.
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Table 5.3. Robust CCA Simulation 2, cov type=3

cov sdt mdt ra1 ra2 rb1 rb2 Mr1 Mr2 Ma1 Ma2 Mb1 Mb2
3 1 1 1.00 1.00 1.00 1.00 3.21 1.35 0.32 0.22 0.32 0.22
3 1 2 1.00 1.00 1.00 1.00 2.96 1.25 0.30 0.22 0.30 0.22
3 1 3 1.00 1.00 1.00 0.99 2.92 0.48 0.28 0.27 0.28 0.27
3 1 4 1.00 1.00 1.00 0.99 2.24 0.63 0.26 0.25 0.26 0.25
3 1 5 1.00 1.00 1.00 1.00 3.21 1.35 0.32 0.22 0.32 0.22
3 1 6 0.83 0.81 0.84 0.80 1755.97 791.31 0.53 0.58 0.53 0.58
3 1 7 1.00 1.00 1.00 1.00 2.42 1.04 0.30 0.22 0.30 0.22
3 1 8 1.00 1.00 1.00 1.00 1.46 0.22 0.27 0.24 0.27 0.24
3 2 1 1.00 1.00 1.00 0.99 0.65 0.51 0.91 0.91 0.91 0.91
3 2 2 1.00 1.00 1.00 1.00 0.19 0.41 0.47 0.47 0.47 0.47
3 2 3 1.00 1.00 1.00 1.00 0.89 2.50 0.48 0.44 0.48 0.44
3 2 4 1.00 1.00 1.00 1.00 1.64 3.91 0.15 0.09 0.15 0.09
3 2 5 1.00 1.00 1.00 0.99 0.65 0.51 0.91 0.91 0.91 0.91
3 2 6 0.86 0.86 0.90 0.81 932.23 323.75 0.62 0.72 0.62 0.72
3 2 7 1.00 1.00 1.00 1.00 2.10 0.02 0.53 0.53 0.53 0.53
3 2 8 1.00 1.00 1.00 1.00 3.12 0.28 0.14 0.09 0.14 0.09
3 3 1 0.99 0.99 0.99 0.98 1.49 1.28 0.51 0.57 0.51 0.57
3 3 2 1.00 1.00 1.00 0.99 1.20 4.75 0.25 0.31 0.25 0.31
3 3 3 1.00 1.00 1.00 1.00 1.32 2.21 0.26 0.30 0.26 0.30
3 3 4 1.00 1.00 1.00 1.00 1.61 1.90 0.21 0.21 0.21 0.21
3 3 5 0.99 0.99 0.99 0.98 1.49 1.28 0.51 0.57 0.51 0.57
3 3 6 0.82 0.78 0.77 0.69 1235.39 1014.15 0.60 0.77 0.60 0.77
3 3 7 1.00 1.00 1.00 0.99 1.18 6.41 0.26 0.33 0.26 0.33
3 3 8 1.00 1.00 1.00 1.00 2.75 10.68 0.21 0.20 0.21 0.20
3 4 1 0.97 0.62 0.98 0.63 3154.60 124.85 1.43 0.90 1.43 0.90
3 4 2 0.97 0.62 0.98 0.62 3281.19 133.00 1.43 0.88 1.43 0.88
3 4 3 1.00 0.68 0.99 0.62 4684.50 223.34 1.44 0.81 1.44 0.81
3 4 4 1.00 0.99 1.00 1.00 1.50 0.23 0.27 0.00 0.27 0.00
3 4 5 0.97 0.62 0.98 0.63 3154.60 124.85 1.43 0.90 1.43 0.90
3 4 6 0.83 0.72 0.85 0.60 108.47 723.71 1.14 0.88 1.14 0.88
3 4 7 0.98 0.63 0.98 0.61 3252.78 133.14 1.42 0.90 1.42 0.90
3 4 8 1.00 0.99 1.00 1.00 0.60 0.08 0.27 0.00 0.27 0.00
3 5 1 0.97 0.61 0.97 0.59 1416.06 89.40 1.32 0.99 1.32 0.99
3 5 2 0.98 0.68 0.98 0.65 404.06 69.29 1.09 0.90 1.09 0.90
3 5 3 1.00 1.00 1.00 0.99 1.35 0.30 0.33 0.18 0.33 0.18
3 5 4 1.00 1.00 1.00 0.99 1.30 0.40 0.22 0.00 0.22 0.00
3 5 5 0.97 0.61 0.97 0.59 1416.06 89.40 1.32 0.99 1.32 0.99
3 5 6 1.00 0.86 1.00 0.87 4.72 425.08 0.33 0.45 0.33 0.45
3 5 7 1.00 0.62 1.00 0.60 62.54 96.29 1.17 0.98 1.17 0.98
3 5 8 1.00 1.00 1.00 1.00 2.30 0.79 0.22 0.00 0.22 0.00
3 6 1 0.30 0.46 0.31 0.46 384.04 159.29 1.53 1.43 1.53 1.43
3 6 2 0.30 0.45 0.31 0.45 389.42 156.69 1.52 1.43 1.52 1.43
3 6 3 1.00 1.00 1.00 1.00 1.49 0.34 0.43 0.34 0.43 0.34
3 6 4 1.00 1.00 1.00 1.00 1.61 0.68 0.20 0.00 0.20 0.00
3 6 5 0.30 0.46 0.31 0.46 384.04 159.29 1.53 1.43 1.53 1.43
3 6 6 0.87 0.80 0.83 0.80 564.07 362.96 0.62 0.66 0.62 0.66
3 6 7 0.30 0.45 0.29 0.43 375.30 152.88 1.54 1.44 1.54 1.44
3 6 8 1.00 0.95 1.00 0.98 1.23 6.55 0.19 0.15 0.19 0.15
3 7 1 0.23 0.35 0.29 0.43 395.83 231.61 1.55 1.48 1.55 1.48
3 7 2 0.24 0.39 0.32 0.49 412.43 223.62 1.54 1.45 1.54 1.45
3 7 3 1.00 0.99 1.00 0.99 0.55 2.30 0.13 0.31 0.13 0.31
3 7 4 1.00 1.00 1.00 0.99 1.11 1.83 0.00 0.02 0.00 0.02
3 7 5 0.23 0.35 0.29 0.43 395.83 231.61 1.55 1.48 1.55 1.48
3 7 6 0.75 0.77 0.79 0.77 2121.97 552.10 0.51 0.66 0.51 0.66
3 7 7 0.23 0.38 0.30 0.44 397.27 217.56 1.54 1.50 1.54 1.50
3 7 8 1.00 1.00 1.00 1.00 0.03 1.53 0.00 0.00 0.00 0.00
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CHAPTER 6

CONCLUSIONS

Robust outlier resistant estimators of MLD should be i)
√
n consistent for

a large class of distributions, ii) easy to compute, iii) effective at detecting cer-

tain types of outliers and iv) outlier resistant. Although Hawkins and Olive (2002)

showed that almost all of the literature focuses either on i) and iv) or on ii) and

iii), Olive and Hawkins (2010) shows that it is simple to construct estimators sat-

isfying i)–iv) provided that n > 20p and p ≤ 40. These results represent both a

computational and theoretical breakthrough in the field of robust MLD.

The new FCH, RFCH and RMVN estimators use information from both lo-

cation and dispersion criteria and are more effective at screening attractors than

estimators such as MBA and FMCD that only use the MCD dispersion criterion.

The new estimators are roughly two orders of magnitude faster than FMCD.

The collection of easily computed “robust estimators” for MLD that have not

been shown to be both HB and consistent is enormous, but without theory the

methods should be classified as outlier diagnostics rather than robust statistics.

Examine the estimator on many “benchmark data sets.” FCH was examined

on 30 such data sets. Outlier performance was competitive with estimators such

as FMCD. For any given estimator, it is easy to find outlier configurations where

the estimator fails. For the modified wood data of Rousseeuw (1984), MB detected

the planted outliers but FCH used DGK. For another data set, 2 clean cases had

larger MB distances than 4 of 5 planted outliers that FMCD can detect. For small

p, elemental methods can be used as outlier diagnostics.

Simulations were done in R. Majority of the programs are in the collection

of functions rpack.txt at (www.math.siu.edu/olive/ol-bookp.htm). The robustbase

library was used to compute FMCD. Function covrmvn computes the FCH, RMVN
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and MB estimators while covfch computes the FCH, RFCH and MB estimators.

Function covesim computes the Σ̂ on contaminated normal data. Function rhotsim

does the robust Hotelling’s T 2 test and function pcasim does the robust PCA based

on RMVN. The robust CCA simulation program is attached in Appendix E.
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APPENDIX A: MEAN “VARIANCE EXPLAINED”’ BY PCA AND

RPCA

Table 6.1: Variance Explained by PCA and RPCA, p=3

n vexpl rvexpl a1 a2 a3

60 0.5258 0.3146 0.1596 0.5359 0.3146 0.1495 0.951 0.918 0.975

0.0444 0.0376 0.0296 0.0563 0.0457 0.0341

100 0.5174 0.3250 0.1576 0.5241 0.3214 0.1545 0.958 0.954 0.988

0.0429 0.0343 0.0252 0.0491 0.0399 0.0278

200 0.5084 0.3323 0.1592 0.5085 0.3289 0.1626 0.952 0.937 0.986

0.0372 0.0344 0.0234 0.0396 0.0333 0.0235

300 0.5113 0.3291 0.1596 0.5098 0.3276 0.1627 0.948 0.953 0.983

0.0334 0.0318 0.0191 0.0334 0.0302 0.0210

400 0.5038 0.3297 0.1665 0.5107 0.3301 0.1592 0.949 0.929 0.987

0.0265 0.0249 0.0131 0.0484 0.0413 0.0261

500 0.5140 0.3254 0.1606 0.5065 0.3297 0.1638 0.954 0.955 0.987

0.0457 0.0389 0.0234 0.0227 0.0215 0.0116

350 0.5177 0.3197 0.1626 0.5108 0.3258 0.1634 0.951 0.944 0.986

0.0407 0.0356 0.0212 0.0280 0.0224 0.0179

500 0.5265 0.3144 0.1591 0.5086 0.3279 0.1635 0.950 0.923 0.979

0.0650 0.0475 0.0324 0.0287 0.0252 0.0165

200 0.5084 0.3323 0.1592 0.5085 0.3289 0.1626 0.952 0.937 0.986

0.0372 0.0344 0.0234 0.0396 0.0333 0.0235

1500 0.5119 0.3223 0.1658 0.5005 0.3322 0.1673 0.949 0.892 0.988

0.0654 0.0531 0.0361 0.0372 0.0334 0.0203

2000 0.7711 0.1749 0.0540 0.4995 0.3328 0.1677 0.746 0.691 0.796

0.1541 0.1190 0.0497 0.0175 0.0158 0.0095
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Table 6.2: Variance Explained by PCA and RPCA, p=5

n vexpl rvexpl a1 a2 a3

100 0.3566 0.2653 0.1897 0.3617 0.2678 0.1873 0.953 0.930 0.928

0.0284 0.0244 0.0225 0.0326 0.0257 0.0227

1000 0.3381 0.2649 0.1992 0.3359 0.2663 0.1979 0.958 0.931 0.957

0.0155 0.0129 0.0110 0.0162 0.0132 0.0126

1600 0.3381 0.2665 0.1988 0.3405 0.2684 0.1981 0.968 0.953 0.971

0.0105 0.0100 0.0071 0.0161 0.0160 0.0134

1600 0.3400 0.2652 0.1977 0.3356 0.2654 0.1997 0.952 0.920 0.952

0.0190 0.0172 0.0144 0.0093 0.0093 0.0074

1500 0.3392 0.2663 0.1966 0.3351 0.2654 0.2000 0.944 0.917 0.943

0.0198 0.0170 0.0139 0.0096 0.0096 0.0079

1600 0.3374 0.2669 0.2002 0.3346 0.2674 0.1982 0.946 0.943 0.973

0.0147 0.0121 0.0108 0.0126 0.0096 0.0079

8000 0.3482 0.2624 0.1948 0.3338 0.2664 0.1992 0.952 0.934 0.959

0.0328 0.0162 0.0129 0.0061 0.0046 0.0043

1200 0.3351 0.2680 0.1985 0.3346 0.2662 0.1996 0.948 0.936 0.974

0.0160 0.0147 0.0098 0.0108 0.0118 0.0098

200 0.3464 0.2655 0.1958 0.3496 0.2642 0.1947 0.951 0.912 0.949

0.0213 0.0180 0.0163 0.0238 0.0214 0.0179

20000 0.7708 0.1390 0.0536 0.3337 0.2669 0.1993 0.538 0.474 0.462

0.1734 0.1001 0.0528 0.0043 0.0035 0.0028

9000 0.3330 0.2682 0.1970 0.3327 0.2678 0.1996 0.950 0.920 0.973

0.0220 0.0216 0.0156 0.0108 0.0102 0.0082
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Table 6.3: Variance Explained by PCA and RPCA, p=8

n vexpl rvexpl a1 a2 a3

200 0.2372 0.1959 0.1644 0.2398 0.1968 0.1634 0.948 0.894 0.887

0.0149 0.0109 0.0102 0.0157 0.0116 0.0104

4000 0.2240 0.1945 0.1670 0.2240 0.1951 0.1668 0.959 0.937 0.956

0.0055 0.0051 0.0046 0.0054 0.0044 0.0044

3300 0.2232 0.1951 0.1673 0.2257 0.1957 0.1672 0.951 0.923 0.946

0.0056 0.0052 0.0047 0.0077 0.0078 0.0070

5000 0.2256 0.1959 0.1656 0.2225 0.1954 0.1666 0.948 0.912 0.925

0.0072 0.0074 0.0073 0.0040 0.0034 0.0036

4500 0.2244 0.1947 0.1666 0.2234 0.1949 0.1660 0.949 0.931 0.954

0.0059 0.0060 0.0053 0.0045 0.0040 0.0036

30000 0.2328 0.1940 0.1645 0.2223 0.1945 0.1667 0.920 0.907 0.905

0.0355 0.0108 0.0104 0.0024 0.0021 0.0020

2800 0.2255 0.1947 0.1664 0.2237 0.1954 0.1659 0.955 0.926 0.936

0.0067 0.0066 0.0061 0.0056 0.0060 0.0050

600 0.2300 0.1951 0.1660 0.2297 0.1966 0.1661 0.950 0.930 0.941

0.0112 0.0080 0.0069 0.0121 0.0089 0.0082

60000 0.6703 0.1650 0.0737 0.2223 0.1946 0.1668 0.409 0.384 0.401

0.1934 0.0899 0.0560 0.0021 0.0016 0.0017

25000 0.2218 0.1946 0.1675 0.2231 0.1944 0.1659 0.946 0.885 0.910

0.0099 0.0088 0.0088 0.0053 0.0049 0.0039
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Table 6.4: Variance Explained by PCA and RPCA, p=12

n vexpl rvexpl a1 a2 a3

500 0.1610 0.1444 0.1294 0.1621 0.1449 0.1296 0.964 0.936 0.934

0.0060 0.0054 0.0055 0.0061 0.0058 0.0056

10000 0.1553 0.1411 0.1282 0.1545 0.1411 0.1283 0.957 0.941 0.949

0.0026 0.0027 0.0021 0.0024 0.0027 0.0022

5000 0.1550 0.1409 0.1284 0.1564 0.1415 0.1284 0.948 0.903 0.918

0.0031 0.0028 0.0029 0.0041 0.0037 0.0036

15000 0.1557 0.1418 0.1281 0.1543 0.1409 0.1283 0.957 0.934 0.944

0.0036 0.0033 0.0030 0.0019 0.0018 0.0013

15000 0.1547 0.1409 0.1285 0.1542 0.1411 0.1283 0.954 0.940 0.954

0.0028 0.0025 0.0022 0.0019 0.0018 0.0017

60000 0.1681 0.1406 0.1261 0.1542 0.1411 0.1281 0.869 0.841 0.863

0.0498 0.0093 0.0079 0.0013 0.0009 0.0011

8000 0.1551 0.1417 0.1283 0.1551 0.1408 0.1284 0.952 0.935 0.941

0.0037 0.0031 0.0027 0.0030 0.0026 0.0023

2000 0.1554 0.1406 0.1280 0.1562 0.1410 0.1279 0.958 0.931 0.932

0.0048 0.0040 0.0033 0.0051 0.0040 0.0036

80000 0.6984 0.1448 0.0641 0.1540 0.1410 0.1282 0.365 0.315 0.321

0.2065 0.1026 0.0541 0.0013 0.0011 0.0012

70000 0.1534 0.1412 0.1284 0.1543 0.1412 0.1283 0.918 0.853 0.901

0.0059 0.0043 0.0045 0.0031 0.0026 0.0021
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Table 6.5: Variance Explained by PCA and RPCA, p=20

n vexpl rvexpl a1 a2 a3

800 0.1014 0.0943 0.0874 0.1022 0.0945 0.0876 0.956 0.922 0.915

0.0029 0.0029 0.0026 0.0029 0.0028 0.0024

30000 .0957 0.0906 0.0859 0.0957 0.0907 0.0857 0.958 0.937 0.946

0.0010 0.0010 0.0009 0.0009 0.0009 0.0009

10000 0.0962 0.0910 0.0860 0.0970 0.0913 0.0863 0.948 0.895 0.879

0.0015 0.0013 0.0013 0.0018 0.0016 0.0017

40000 0.0959 0.0909 0.0858 0.0954 0.0905 0.0857 0.946 0.900 0.901

0.0013 0.0015 0.0012 0.0008 0.0007 0.0006

40000 0.0957 0.0907 0.0859 0.0954 0.0905 0.0857 0.961 0.944 0.950

0.0012 0.0010 0.0009 0.0007 0.0008 0.0007

60000 0.1076 0.0913 0.0856 0.0954 0.0906 0.0858 0.727 0.686 0.671

0.0319 0.0038 0.0035 0.0006 0.0007 0.0008

80000 0.6557 0.1546 0.0617 0.0953 0.0905 0.0858 0.236 0.246 0.251

0.2381 0.1096 0.0502 0.0007 0.0007 0.0007

80000 0.0956 0.0905 0.0859 0.0956 0.0906 0.0859 0.813 0.656 0.723

0.0030 0.0023 0.0023 0.0016 0.0014 0.0012
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APPENDIX B: HOTELLING T TEST SIMULATION

Table 6.6: Hotelling Simulation (i)

p n hcv rhcvr p n hcv rhcvr

5 40 0.06 0.04 60 660 0.06 0.16

5 41 0.08 0.12 60 700 0.07 0.14

5 42 0.07 0.05 60 750 0.10 0.16

5 43 0.02 0.04 60 800 0.05 0.08

10 40 0.04 0.21 60 840 0.05 0.06

10 80 0.03 0.08 60 850 0.04 0.11

10 90 0.06 0.05 60 900 0.07 0.06

10 100 0.02 0.01 60 950 0.04 0.06

10 95 0.10 0.06 60 980 0.03 0.04

10 97 0.04 0.04 60 970 0.05 0.05

10 96 0.04 0.03 65 1100 0.07 0.12

15 120 0.06 0.08 65 1200 0.05 0.06

15 150 0.05 0.04 65 1300 0.02 0.02

15 140 0.08 0.05 65 1240 0.04 0.07

15 145 0.08 0.05 65 1250 0.03 0.03

15 149 0.03 0.06 70 1300 0.07 0.05

20 180 0.05 0.06 70 1350 0.08 0.07

20 200 0.03 0.05 70 1400 0.11 0.12

20 190 0.06 0.03 70 1500 0.07 0.07

20 195 0.02 0.03 70 1600 0.03 0.06

20 194 0.06 0.05 70 1650 0.07 0.07

25 230 0.08 0.06 70 1700 0.05 0.06

25 250 0.09 0.08 70 1740 0.08 0.06

25 250 0.04 0.04 70 1750 0.03 0.02

30 290 0.09 0.07 75 1750 0.04 0.06

30 300 0.06 0.06 75 1760 0.04 0.04

30 300 0.07 0.06 80 1800 0.02 0.03

30 310 0.05 0.05 80 1750 0.04 0.11
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35 340 0.03 0.08 85 1900 0.05 0.04

35 350 0.08 0.10 85 1850 0.04 0.05

35 360 0.08 0.06 85 1840 0.08 0.06

35 370 0.05 0.10 90 1900 0.06 0.12

35 380 0.05 0.05 90 2000 0.05 0.06

40 400 0.03 0.09 90 2040 0.06 0.07

40 440 0.07 0.07 90 2050 0.04 0.01

40 460 0.07 0.04 95 2050 0.07 0.06

40 470 0.03 0.02 95 2100 0.03 0.07

45 500 0.05 0.11 95 2120 0.08 0.06

45 550 0.03 0.07 95 2200 0.07 0.11

45 560 0.07 0.09 95 2250 0.07 0.06

45 570 0.01 0.02 95 2300 0.09 0.10

50 500 0.01 0.07 95 2350 0.04 0.05

50 550 0.06 0.04 95 2340 0.04 0.05

50 560 0.09 0.11 95 2330 0.06 0.06

50 600 0.04 0.03 100 2400 0.04 0.08

50 590 0.05 0.08 100 2450 0.03 0.07

55 600 0.05 0.13 100 2500 0.05 0.07

55 800 0.08 0.06 100 2550 0.08 0.12

55 840 0.08 0.07 100 2600 0.06 0.05

55 850 0.04 0.05 100 2610 0.01 0.03
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Table 6.7: Hotelling Simulation (ii)

p n=15p hcv rhcvr n=20p hcv rhcvr n=30p hcv rhcvr

2 30 0.0502 0.0516 40 0.0498 0.0624 60 0.0540 0.0382

5 75 0.0500 0.0456 100 0.0474 0.0250 150 0.0542 0.0310

10 150 0.0476 0.0300 200 0.0516 0.0304 300 0.0498 0.0286

15 225 0.0474 0.0318 300 0.0506 0.0308 450 0.0492 0.0320

20 300 0.0540 0.0368 400 0.0548 0.0314 600 0.0520 0.0354

25 375 0.0444 0.0334 500 0.0462 0.0296 750 0.0456 0.0288

30 450 0.0472 0.0324 600 0.0516 0.0358 900 0.0484 0.0342

35 525 0.0490 0.0384 700 0.0522 0.0358 1050 0.0502 0.0374

40 600 0.0534 0.0440 800 0.0486 0.0354 1200 0.0526 0.0336

45 675 0.0406 0.0390 900 0.0544 0.0390 1350 0.0512 0.0366

50 750 0.0498 0.0430 1000 0.0522 0.0394 1500 0.0512 0.0364

55 825 0.0504 0.0502 1100 0.0496 0.0392 1650 0.0510 0.0374

60 900 0.0482 0.0514 1200 0.0488 0.0404 1800 0.0474 0.0376

65 975 0.0568 0.0602 1300 0.0524 0.0414 1950 0.0548 0.0410

70 1050 0.0462 0.0530 1400 0.0558 0.0432 2100 0.0522 0.0424

75 1125 0.0474 0.0632 1500 0.0502 0.0486 2250 0.0490 0.0370

80 1200 0.0524 0.0620 1600 0.0524 0.0432 2400 0.0468 0.0356

85 1275 0.0482 0.0758 1700 0.0496 0.0456 2550 0.0520 0.0404

90 1350 0.0504 0.0746 1800 0.0484 0.0454 2700 0.0484 0.0398

95 1425 0.0524 0.0892 1900 0.0472 0.0506 2850 0.0538 0.0424

100 1500 0.0554 0.0808 2000 0.0452 0.0506 3000 0.0488 0.0392
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Table 6.8: Hotelling Simulation (iii)

p n=15p δ hcv n=20p δ hcv n=30p δ hcv

2 30 0.30 0.32 40 0.20 0.30 60 0.20 0.41

2 30 0.40 0.57 40 0.40 0.79 60 0.30 0.75

2 30 0.60 0.90 40 0.50 0.93 60 0.12 0.94

5 75 0.20 0.33 100 0.15 0.25 150 0.10 0.27

5 75 0.22 0.60 100 0.20 0.66 150 0.15 0.56

5 75 0.30 0.82 100 0.30 0.94 150 0.20 0.87

10 150 0.10 0.32 200 0.10 0.29 300 0.10 0.38

10 150 0.15 0.62 200 0.15 0.76 300 0.13 0.73

10 150 0.20 0.89 200 0.18 0.84 300 0.15 0.86

15 225 0.10 0.27 300 0.10 0.36 450 0.07 0.38

15 225 0.15 0.61 300 0.12 0.69 450 0.10 0.74

15 225 0.18 0.90 300 0.15 0.91 450 0.12 0.82

20 300 0.10 0.34 400 0.10 0.46 600 0.06 0.36

20 300 0.13 0.62 400 0.12 0.78 600 0.08 0.56

20 300 0.17 0.92 400 0.13 0.87 600 0.10 0.82

25 375 0.08 0.39 500 0.08 0.39 750 0.06 0.43

25 375 0.10 0.54 500 0.10 0.77 750 0.08 0.68

25 375 0.15 0.90 500 0.12 0.87 750 0.10 0.94

30 450 0.08 0.40 600 0.08 0.48 900 0.05 0.32

30 450 0.10 0.65 600 0.10 0.70 900 0.08 0.72

30 450 0.12 0.82 600 0.12 0.94 900 0.09 0.90
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Table 6.9: Hotelling Simulation (iv)

p n=15p hcv rhcvr δ n=20p hcv rhcvr δ n=30p hcv rhcvr δ

2 30 0.380 0.150 0.30 40 0.367 0.160 0.25 60 0.363 0.180 0.20

2 30 0.615 0.260 0.40 40 0.640 0.314 0.35 60 0.700 0.430 0.30

2 30 0.830 0.422 0.50 40 0.864 0.516 0.45 60 0.921 0.706 0.40

5 75 0.459 0.245 0.20 100 0.366 0.184 0.15 150 0.333 0.208 0.12

5 75 0.682 0.416 0.25 100 0.599 0.368 0.20 150 0.577 0.394 0.16

5 75 0.840 0.588 0.30 100 0.816 0.587 0.30 150 0.860 0.708 0.40

10 150 0.221 0.113 0.10 200 0.312 0.182 0.10 300 0.469 0.340 0.10

10 150 0.621 0.400 0.17 200 0.655 0.467 0.15 300 0.647 0.504 0.12

10 150 0.888 0.729 0.22 200 0.848 0.692 0.18 300 0.872 0.767 0.15

15 225 0.314 0.188 0.10 300 0.442 0.294 0.10 450 0.317 0.228 0.07

15 225 0.714 0.543 0.15 300 0.623 0.449 0.12 450 0.648 0.522 0.10

15 225 0.881 0.738 0.18 300 0.858 0.755 0.15 450 0.853 0.762 0.12

20 300 0.408 0.276 0.10 400 0.341 0.230 0.08 600 0.291 0.216 0.06

20 300 0.691 0.525 0.13 400 0.674 0.534 0.11 600 0.554 0.433 0.08

20 300 0.935 0.852 0.17 400 0.858 0.742 0.13 600 0.790 0.701 0.10

25 375 0.304 0.214 0.08 500 0.434 0.319 0.08 750 0.354 0.266 0.06

25 375 0.728 0.580 0.12 500 0.676 0.531 0.10 750 0.660 0.556 0.08

25 375 0.926 0.837 0.15 500 0.868 0.771 0.12 750 0.887 0.815 0.10

30 450 0.374 0.264 0.08 600 0.395 0.290 0.07 900 0.290 0.217 0.05

30 450 0.602 0.467 0.10 600 0.639 0.517 0.09 900 0.743 0.642 0.08

30 450 0.883 0.763 0.13 600 0.867 0.770 0.11 900 0.876 0.808 0.09
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APPENDIX C: ROBUST CCA SIMULATION RESULTS

Table 6.10: Robust CCA Simulation 1 (Categorical Variables Removed)

outlier method ra1 ra2 rb1 rb2 Mr1 Mr2 Ma1 Ma2 Mb1 Mb2

0 1 1 1 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0 2 1 1 0.99 0.95 0.07 0.14 0.00 0.29 0.00 0.29

0 3 1 1 0.99 0.89 1.09 3.60 0.01 0.48 0.01 0.48

0 4 1 1 0.99 0.81 0.12 2.21 0.00 0.56 0.00 0.56

0 5 1 1 1.00 0.91 0.00 0.06 0.00 0.47 0.00 0.47

0 6 1 1 0.55 0.92 207.71 22.22 0.62 0.72 0.62 0.72

0 7 1 1 0.99 0.90 0.08 0.77 0.02 0.42 0.02 0.42

0 8 1 1 0.23 0.55 53.53 46.70 0.96 1.37 0.96 1.37

1 1 1 1 0.92 0.92 17.04 4.15 1.13 1.07 1.13 1.07

1 2 1 1 0.90 0.96 6.73 6.14 1.09 0.68 1.09 0.68

1 3 1 1 0.81 0.67 0.03 0.00 0.68 0.91 0.68 0.91

1 4 1 1 0.70 0.39 0.03 0.02 0.40 1.11 0.40 1.11

1 5 1 1 0.92 0.71 17.04 0.61 1.13 1.17 1.13 1.17

1 6 1 1 0.71 0.69 0.57 0.62 0.73 1.07 0.73 1.07

1 7 1 1 0.99 0.72 3.64 2.16 1.11 1.01 1.11 1.01

1 8 1 1 0.54 0.69 0.00 0.18 0.49 0.91 0.49 0.91

2 1 1 1 0.21 0.72 28.44 1.35 1.27 0.90 1.27 0.90

2 2 1 1 0.90 0.97 10.67 0.21 0.72 0.20 0.72 0.20

2 3 1 1 0.99 0.90 5.58 2.84 0.08 0.55 0.08 0.55

2 4 1 1 0.96 0.91 2.70 2.66 0.00 0.37 0.00 0.37

2 5 1 1 0.21 0.82 28.44 0.03 1.27 0.86 1.27 0.86

2 6 1 1 0.53 0.89 320.79 24.33 0.72 0.83 0.72 0.83

2 7 1 1 0.92 0.91 7.21 0.13 0.91 0.41 0.91 0.41

2 8 1 1 0.97 0.91 0.91 9.29 0.00 0.33 0.00 0.33

3 1 1 1 0.93 0.72 0.69 2.60 1.05 1.05 1.05 1.05

3 2 1 1 0.81 0.93 0.92 4.07 0.89 0.74 0.89 0.74

3 3 1 1 0.81 0.71 3.52 10.60 0.73 0.90 0.73 0.90

3 4 1 1 0.68 0.70 4.95 2.73 0.47 0.79 0.47 0.79
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3 5 1 1 0.93 0.68 0.69 0.58 1.05 1.12 1.05 1.12

3 6 1 1 0.49 0.64 317.72 55.97 0.92 1.16 0.92 1.16

3 7 1 1 0.92 0.71 1.35 3.19 1.09 1.09 1.09 1.09

3 8 1 1 0.87 0.75 3.22 16.17 0.96 0.83 0.96 0.83

4 1 1 1 0.43 0.59 0.02 0.77 0.56 1.04 0.56 1.04

4 2 1 1 0.77 0.47 0.13 0.34 0.22 1.08 0.22 1.08

4 3 1 1 0.99 0.81 0.66 2.87 0.26 0.67 0.26 0.67

4 4 1 1 0.92 0.68 0.00 1.29 0.00 0.77 0.00 0.77

4 5 1 1 0.43 0.80 0.02 3.54 0.56 0.97 0.56 0.97

4 6 1 1 0.51 0.77 331.07 38.52 0.79 1.03 0.79 1.03

4 7 1 1 0.66 0.79 0.23 0.09 0.34 0.75 0.34 0.75

4 8 1 1 0.43 0.86 107.15 10.70 1.07 0.87 1.07 0.87
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Table 6.11: Robust CCA Simulation 2, cov type=1

cov sdt mdt ra1 ra2 rb1 rb2 Mr1 Mr2 Ma1 Ma2 Mb1 Mb2

1 1 1 1 1 1.00 0.99 0.03 1.10 0.11 0.29 0.11 0.29

1 1 2 1 1 1.00 0.99 0.07 0.99 0.15 0.30 0.15 0.30

1 1 3 1 1 1.00 1.00 0.20 0.39 0.16 0.30 0.16 0.30

1 1 4 1 1 1.00 0.99 0.13 0.62 0.17 0.31 0.17 0.31

1 1 5 1 1 1.00 0.99 0.03 1.09 0.11 0.29 0.11 0.29

1 1 6 1 1 0.88 0.87 4068.37 72.51 0.44 0.50 0.44 0.50

1 1 7 1 1 1.00 0.99 0.13 0.88 0.13 0.30 0.13 0.30

1 1 8 1 1 1.00 0.99 0.75 0.40 0.17 0.31 0.17 0.31

1 2 1 1 1 1.00 0.95 1.55 0.65 0.86 0.88 0.86 0.88

1 2 2 1 1 1.00 0.97 4.42 0.25 0.55 0.51 0.55 0.51

1 2 3 1 1 1.00 0.98 7.59 1.18 0.55 0.44 0.55 0.44

1 2 4 1 1 1.00 0.97 6.05 0.57 0.28 0.00 0.28 0.00

1 2 5 1 1 1.00 0.98 1.55 0.22 0.86 0.88 0.86 0.88

1 2 6 1 1 0.98 0.96 363.32 6.06 0.58 0.46 0.58 0.46

1 2 7 1 1 1.00 0.99 4.47 0.90 0.61 0.58 0.61 0.58

1 2 8 1 1 1.00 0.98 19.03 0.11 0.29 0.00 0.29 0.00

1 3 1 1 1 1.00 0.99 0.35 1.97 0.51 0.51 0.51 0.51

1 3 2 1 1 1.00 1.00 0.07 0.00 0.20 0.00 0.20 0.00

1 3 3 1 1 1.00 0.99 0.09 1.04 0.24 0.02 0.24 0.02

1 3 4 1 1 1.00 1.00 0.03 0.64 0.12 0.00 0.12 0.00

1 3 5 1 1 1.00 0.98 0.35 0.41 0.51 0.47 0.51 0.47

1 3 6 1 1 0.67 0.58 2413.04 280.64 0.89 0.91 0.89 0.91

1 3 7 1 1 1.00 0.99 0.35 0.37 0.22 0.15 0.22 0.15

1 3 8 1 1 1.00 0.99 0.07 0.73 0.12 0.00 0.12 0.00

1 4 1 1 1 1.00 0.66 1430.24 187.04 1.24 0.87 1.24 0.87

1 4 2 1 1 1.00 0.66 1506.14 216.81 1.25 0.85 1.25 0.85

1 4 3 1 1 1.00 0.69 2096.80 362.33 1.32 0.80 1.32 0.80

1 4 4 1 1 1.00 0.99 0.96 5.46 0.22 0.00 0.22 0.00

1 4 5 1 1 1.00 0.68 1430.24 173.17 1.24 0.86 1.24 0.86

1 4 6 1 1 0.96 0.70 73.49 786.32 1.23 0.83 1.23 0.83

1 4 7 1 1 1.00 0.68 1484.25 204.07 1.24 0.85 1.24 0.85

99



1 4 8 1 1 1.00 0.98 3.83 15.45 0.22 0.94 0.22 0.94

1 5 1 1 1 1.00 0.70 392.18 170.29 1.02 0.89 1.02 0.89

1 5 2 1 1 1.00 0.87 49.81 65.45 0.63 0.65 0.63 0.65

1 5 3 1 1 1.00 1.00 2.93 4.39 0.43 0.28 0.43 0.28

1 5 4 1 1 1.00 1.00 3.28 4.59 0.32 0.00 0.32 0.00

1 5 5 1 1 1.00 0.71 392.18 92.11 1.02 0.93 1.02 0.93

1 5 6 1 1 1.00 1.00 1.37 0.51 0.43 0.28 0.43 0.28

1 5 7 1 1 1.00 0.86 78.96 6.75 0.70 0.74 0.70 0.74

1 5 8 1 1 1.00 1.00 1.89 1.32 0.32 0.00 0.32 0.00

1 6 1 1 1 0.32 0.45 1538.62 27.72 1.45 1.42 1.45 1.42

1 6 2 1 1 0.33 0.48 1531.15 26.87 1.45 1.41 1.45 1.41

1 6 3 1 1 1.00 0.98 0.02 4.01 0.41 0.54 0.41 0.54

1 6 4 1 1 1.00 0.99 0.21 2.46 0.00 0.24 0.00 0.24

1 6 5 1 1 0.32 0.43 1538.62 30.89 1.45 1.44 1.45 1.44

1 6 6 1 1 0.99 0.96 8149.64 24.24 0.42 0.55 0.42 0.55

1 6 7 1 1 0.35 0.37 1550.74 26.78 1.50 1.54 1.50 1.54

1 6 8 1 1 1.00 0.99 0.48 11.49 0.00 0.29 0.00 0.29

1 7 1 1 1 0.98 0.97 1254.89 1.04 0.19 0.13 0.19 0.13

1 7 2 1 1 1.00 1.00 196.15 1.40 0.00 0.00 0.00 0.00

1 7 3 1 1 1.00 1.00 0.10 2.53 0.10 0.27 0.10 0.27

1 7 4 1 1 1.00 1.00 0.32 2.57 0.00 0.12 0.00 0.12

1 7 5 1 1 0.98 0.98 1254.89 1.20 0.19 0.22 0.19 0.22

1 7 6 1 1 0.81 0.75 2506.06 99.60 0.54 0.68 0.54 0.68

1 7 7 1 1 1.00 0.99 49.39 1.06 0.00 0.00 0.00 0.00

1 7 8 1 1 1.00 0.99 0.16 0.92 0.00 0.18 0.00 0.18
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Table 6.12: Robust CCA Simulation 2, cov type=2

cov sdt mdt ra1 ra2 rb1 rb2 Mr1 Mr2 Ma1 Ma2 Mb1 Mb2

2 1 1 1.00 1.00 1.00 1.00 0.03 0.58 0.00 0.00 0.00 0.00

2 1 2 1.00 1.00 1.00 1.00 0.05 0.18 0.00 0.00 0.00 0.00

2 1 3 1.00 1.00 1.00 1.00 0.32 0.01 0.00 0.00 0.00 0.00

2 1 4 1.00 1.00 1.00 1.00 0.10 0.00 0.00 0.00 0.00 0.00

2 1 5 1.00 1.00 1.00 1.00 0.03 0.58 0.00 0.00 0.00 0.00

2 1 6 1.00 0.73 1.00 0.81 0.77 277.79 0.00 0.65 0.00 0.65

2 1 7 1.00 1.00 1.00 1.00 0.13 0.02 0.00 0.00 0.00 0.00

2 1 8 1.00 1.00 1.00 1.00 0.94 1.02 0.00 0.00 0.00 0.00

2 2 1 1.00 0.98 1.00 0.97 3.05 0.03 0.87 0.94 0.87 0.94

2 2 2 1.00 1.00 1.00 1.00 5.72 0.13 0.53 0.56 0.53 0.56

2 2 3 1.00 1.00 1.00 1.00 3.62 0.46 0.52 0.52 0.52 0.52

2 2 4 1.00 1.00 1.00 1.00 4.54 0.07 0.29 0.29 0.29 0.29

2 2 5 1.00 0.98 1.00 0.97 3.05 0.03 0.87 0.94 0.87 0.94

2 2 6 0.78 0.84 0.82 0.83 1675.48 96.58 0.88 0.77 0.88 0.77

2 2 7 1.00 1.00 1.00 0.99 11.86 1.20 0.59 0.61 0.59 0.61

2 2 8 1.00 1.00 1.00 0.99 2.13 0.31 0.29 0.34 0.29 0.34

2 3 1 1.00 1.00 1.00 1.00 5.28 0.40 0.60 0.58 0.60 0.58

2 3 2 1.00 1.00 1.00 1.00 0.18 0.12 0.36 0.27 0.36 0.27

2 3 3 1.00 1.00 1.00 0.99 1.05 0.49 0.33 0.29 0.33 0.29

2 3 4 1.00 1.00 1.00 0.99 0.26 0.67 0.23 0.00 0.23 0.00

2 3 5 1.00 1.00 1.00 1.00 5.28 0.40 0.60 0.58 0.60 0.58

2 3 6 0.98 0.92 0.97 0.91 701.73 155.87 0.36 0.43 0.36 0.43

2 3 7 1.00 0.99 1.00 1.00 0.43 0.18 0.38 0.34 0.38 0.34

2 3 8 1.00 1.00 1.00 0.99 0.12 0.61 0.23 0.08 0.23 0.08

2 4 1 1.00 0.73 1.00 0.72 1327.37 130.05 1.24 0.84 1.24 0.84

2 4 2 1.00 0.72 1.00 0.71 1408.11 127.17 1.25 0.84 1.25 0.84

2 4 3 1.00 0.90 1.00 0.89 747.55 37.11 0.74 0.63 0.74 0.63

2 4 4 1.00 1.00 1.00 1.00 0.00 2.20 0.00 0.30 0.00 0.30

2 4 5 1.00 0.73 1.00 0.72 1327.37 130.05 1.24 0.84 1.24 0.84

2 4 6 0.98 0.89 0.98 0.85 30.21 517.26 0.70 0.64 0.70 0.64

2 4 7 1.00 0.74 1.00 0.73 1383.14 126.77 1.24 0.83 1.24 0.83
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2 4 8 1.00 1.00 1.00 1.00 0.05 1.35 0.00 0.30 0.00 0.30

2 5 1 1.00 0.70 1.00 0.72 340.35 106.30 0.99 0.87 0.99 0.87

2 5 2 1.00 0.86 1.00 0.86 28.46 22.08 0.52 0.62 0.52 0.62

2 5 3 1.00 1.00 1.00 0.99 0.25 0.59 0.25 0.31 0.25 0.31

2 5 4 1.00 1.00 1.00 1.00 0.37 0.94 0.00 0.05 0.00 0.05

2 5 5 1.00 0.70 1.00 0.72 340.35 106.30 0.99 0.87 0.99 0.87

2 5 6 0.85 0.91 0.84 0.90 1556.93 57.06 0.57 0.45 0.57 0.45

2 5 7 0.95 0.19 0.95 0.30 315.15 770.22 0.98 1.33 0.98 1.33

2 5 8 1.00 1.00 1.00 1.00 0.09 0.00 0.00 0.00 0.00 0.00

2 6 1 0.51 0.51 0.48 0.52 825.86 95.73 1.54 1.53 1.54 1.53

2 6 2 0.50 0.51 0.47 0.51 819.97 97.72 1.55 1.52 1.55 1.52

2 6 3 1.00 1.00 1.00 1.00 0.66 0.34 0.50 0.50 0.50 0.50

2 6 4 1.00 1.00 1.00 1.00 0.54 0.84 0.14 0.18 0.14 0.18

2 6 5 0.51 0.51 0.48 0.52 825.86 95.73 1.54 1.53 1.54 1.53

2 6 6 0.94 0.94 0.93 0.95 349.30 35.51 0.62 0.58 0.62 0.58

2 6 7 0.51 0.52 0.45 0.57 821.94 91.78 1.57 1.53 1.57 1.53

2 6 8 1.00 1.00 1.00 1.00 1.27 0.16 0.14 0.18 0.14 0.18

2 7 1 0.68 0.42 0.74 0.11 874.71 66.67 1.41 1.32 1.41 1.32

2 7 2 1.00 0.99 1.00 0.98 172.37 0.20 0.00 0.00 0.00 0.00

2 7 3 1.00 0.98 1.00 0.97 3.67 0.01 0.00 0.30 0.00 0.30

2 7 4 1.00 0.99 1.00 0.98 3.16 0.08 0.00 0.21 0.00 0.21

2 7 5 0.68 0.42 0.74 0.11 874.71 66.67 1.41 1.32 1.41 1.32

2 7 6 1.00 1.00 1.00 0.99 2.65 1.35 0.00 0.25 0.00 0.25

2 7 7 1.00 0.98 1.00 0.98 54.44 0.32 0.00 0.00 0.00 0.00

2 7 8 1.00 1.00 1.00 0.99 5.49 0.47 0.00 0.14 0.00 0.14
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APPENDIX D: OUTLIER RESISTANCE SIMULATION RESULT

dt: outlier type, F: FCH, RF: RFCH, C: CMVE, RC: RCMVE

Table 6.13: Outlier Resistance Simulation

n p dt pm F RF C RC MB n p dt pm F RF C RC MB

50 2 1 6 74 34 74 34 97 200 50 3 10 1 1 28 28 95

50 2 1 7 96 74 96 74 99 200 50 3 33 92 92 88 88 100

50 5 1 13 92 90 92 90 93 200 55 3 11 0 0 31 31 96

50 10 1 22 91 91 91 91 91 200 55 3 35 84 84 90 90 100

50 15 1 31 90 87 90 87 90 200 60 3 11 0 0 36 36 95

100 20 1 36 92 90 92 90 92 200 60 3 37 92 92 96 96 100

100 25 1 45 91 91 91 91 91 200 65 3 11 0 0 27 27 91

100 30 1 55 92 89 92 89 92 200 65 3 38 82 82 90 90 100

150 35 1 60 87 90 87 90 87 250 70 3 11 0 0 26 26 91

150 40 1 65 93 91 93 91 93 250 70 3 38 76 76 91 91 100

150 45 1 77 95 96 95 96 95 250 75 3 12 0 0 30 30 93

200 50 1 78 92 89 92 89 92 250 75 3 39 72 72 91 91 100

200 55 1 89 92 91 92 91 92 250 80 3 12 0 0 40 40 99

200 60 1 99 92 92 92 92 92 250 80 3 40 75 75 90 90 100

200 65 1 106 90 87 90 87 90 300 85 3 12 0 0 32 32 94

250 75 1 117 92 92 92 92 92 300 90 3 12 0 0 32 32 90

250 85 1 138 92 92 92 92 92 300 95 3 13 0 0 26 26 99

300 90 1 139 92 91 92 91 92 350 100 3 13 0 0 38 38 95

350 100 1 148 92 93 92 93 92 50 2 4 6 72 41 45 35 94

50 2 2 6 80 62 80 62 98 50 2 4 7 91 61 61 52 98

50 2 2 7 100 99 100 99 100 50 5 4 12 43 40 19 18 91

50 5 2 7 25 25 28 28 97 50 5 4 17 92 94 44 44 98

50 5 2 9 100 100 100 100 100 50 10 4 24 30 32 15 15 92

50 10 2 11 2 2 96 96 96 50 10 4 35 90 90 73 73 100

50 15 2 15 0 0 99 99 99 50 15 4 35 32 30 24 25 92

100 20 2 19 0 0 100 100 100 50 15 4 55 91 91 89 89 98

100 25 2 23 0 0 100 100 100 100 20 4 38 8 8 8 8 92
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100 30 2 27 0 0 99 99 99 100 20 4 65 94 94 88 88 100

150 35 2 30 0 0 100 100 100 100 25 4 47 5 5 13 11 92

150 40 2 33 0 0 96 96 96 100 25 4 77 91 91 84 84 100

150 45 2 38 0 0 98 98 98 100 30 4 60 7 7 20 20 93

200 55 2 46 0 0 99 99 99 150 35 4 57 1 1 9 9 91

200 60 2 49 0 0 97 97 97 150 35 4 105 89 89 91 91 100

200 65 2 53 0 0 99 99 99 150 40 4 69 0 0 14 14 93

250 70 2 57 0 0 99 99 99 150 40 4 111 86 86 91 91 100

250 75 2 60 0 0 95 95 95 150 45 4 81 0 0 17 16 92

250 80 2 64 0 0 99 99 99 150 45 4 125 85 95 92 92 100

300 85 2 68 0 0 100 100 100 200 50 4 80 0 0 11 11 93

300 90 2 71 0 0 94 94 94 200 50 4 135 91 91 92 92 100

300 95 2 75 0 0 99 99 99 200 55 4 85 0 0 9 9 91

350 100 2 78 0 0 91 91 91 200 55 4 149 90 90 93 93 100

50 2 3 5 93 65 87 64 94 200 60 4 101 0 0 14 14 94

50 5 3 6 95 95 49 49 99 200 60 4 158 87 87 93 93 100

50 10 3 10 90 90 42 42 100 200 65 4 109 0 0 24 24 93

50 15 3 8 47 47 39 39 98 200 65 4 166 88 88 90 90 100

50 15 3 16 90 90 71 71 100 250 70 4 108 0 0 11 11 93

100 20 3 16 93 93 60 60 100 250 75 4 116 0 0 13 13 92

100 25 3 9 26 26 32 32 99 250 75 4 190 87 87 90 90 100

100 25 3 22 91 91 75 75 100 250 80 4 128 0 0 13 12 93

100 30 3 9 9 9 33 33 91 250 80 4 201 88 88 92 92 100

100 30 3 26 86 86 90 90 100 300 85 4 126 0 0 12 12 96

100 35 3 29 94 94 90 90 100 300 90 4 133 0 0 18 18 92

150 35 3 9 10 10 22 22 96 300 90 4 223 89 89 90 90 100

150 35 3 26 90 90 82 82 100 300 95 4 144 0 0 14 14 91

150 40 3 10 5 5 35 35 98 300 95 4 235 91 91 91 91 100

150 40 3 30 93 93 91 91 100 350 100 4 138 0 0 10 10 97

150 45 3 10 1 1 29 29 91 350 100 4 240 85 85 90 90 100

150 45 3 32 90 90 89 89 100
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APPENDIX E: PROGRAM FOR ROBUST CCA SIMULATION

########################################################################

# Funtion: invtanh #

# Description: Fisher Transformation. turn a distribution of #

# correlation coeffcients towards normality #

# Variables: rho <- correlation #

########################################################################

"invtanh" <- function (rho)

{

0.5 * log((1 + rho)/(1 - rho))

}

########################################################################

# Function: ccacov #

# Description: compute canonical correlation and covariats from #

# a covariance matrix #

# Variables: mx <- covariance matrix #

# p <- number of first group of variables #

# q <- number of second group of variables #

########################################################################

"ccacov" <- function(mx=mx, p=1, q=1) {

mx <- as.matrix(mx)

if (dim(mx)[1]!=dim(mx)[2]) {

cat ("must input a positive definite covariance matrix\n")

return(-1)

}

else if (dim(mx)[1]!= (p+q)) {

cat ("dimensions not match\n")

return(-1)

}

##partition mx

S11 <- mx[1:p, 1:p]

S22 <- mx[(p+1):dim(mx)[1], (p+1):dim(mx)[1]]

S12 <- mx[1:p, (p+1):dim(mx)[1]]

S21 <- t(S12)
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##get eigenvalues and eigen vectors

EigS11 <- eigen(S11)

EigS22 <- eigen(S22)

InvS11 <- solve(S11) #S11^(-1)

InvS22 <- solve(S22)

##get S11^(-1/2) and S22^(-1/2)

InvRtS11 <- EigS11$vec %*% diag(1/sqrt(EigS11$val)) %*% t(EigS11$vec)

InvRtS22 <- EigS22$vec %*% diag(1/sqrt(EigS22$val)) %*% t(EigS22$vec)

Ems <- InvRtS11 %*% S12 %*% InvS22 %*% S21 %*% InvRtS11

Fms <- InvRtS22 %*% S21 %*% InvS11 %*% S12 %*% InvRtS22

CcaE <- eigen(Ems)

CcaF <- eigen(Fms)

CcaCor <- sqrt(CcaE$val)

CcaCovE <- t(InvRtS11) %*% CcaE$vec

CcaCovF <- t(InvRtS22) %*% CcaF$vec

list(cor=CcaCor, xcoef=CcaCovE, ycoef=CcaCovF)

}

########################################################################

# Function: ccadata1 #

# Description: add outliers to "ucla" clean dataset #

# Variables: outlier <- outlier types #

# x <- original clean data #

# Comment: no outliers added if the outlier type is not 1,2,3,4 #

########################################################################

"ccadata1" <- function(x, outlier=outlier) {

x <- as.matrix(x)

xcov <- cov(x)

xm <- apply(x, 2, mean)

unf <- runif(dim(x)[1]) #get uniform dist

dx <- x

if (outlier == 1)

dx[unf < .3, ] <- x[unf < .3, ]*3

else if (outlier == 2)

dx[unf < .1, ] <- x[unf < .1, ]*3

else if (outlier == 3) {
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outnorm <- mvrnorm(n=600, xm, 5*xcov)

dx[unf < .3, ] <- outnorm[unf < .3, ]

}

else if ( outlier == 4) {

outnorm <- mvrnorm(n=600, xm, 5*xcov)

dx[unf < .1, ] <- outnorm[unf < .1, ]

}

return(dx)

}

########################################################################

# Function: ccadata2 #

# Description: generate data based on covariance matrices #

# Variables: n <- sample size #

# stp <- covariance matrix type #

# dtp <- distribution type #

# Comment: output includes the data and benchmark #

########################################################################

"ccadata2" <- function(n=n, stp=stp, dtp=dtp) {

if (stp == 1) {

sgm12 <- cbind(diag(c(.9, .3)), matrix(rep(0,4),nrow=2, ncol=2))

sgm11 <- diag(2)

sgm22 <- diag(4)

p <- 2

q <- 4

}

else if (stp==2) {

sgm12 <- diag(c(.9, .5, .2))

sgm11 <- diag(3)

sgm22 <- diag(3)

p <- 3

q <- 3

}

else {

sgm12 <- diag(c(.9, .7, .4, .3, .1))

sgm11 <- diag(5)

sgm22 <- diag(5)
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p <- 5

q <- 5

}

sgm <- rbind(cbind(sgm11, sgm12), cbind(t(sgm12), sgm22))

bm <- ccacov(sgm, p=p, q=q)

dx <- mvrnorm(n=n, rep(0,p+q), sgm)

unf <- runif(n)

if (dtp == 2) {

xo <- mvrnorm(n=n, rep(0,p+q), 8*sgm)

dx[unf < .2, ] <- xo[unf < .2, ]

}

else if (dtp == 3) {

xo <- mvrnorm(n=n, rep(0,p+q), 8*sgm)

dx[unf < .05, ] <- xo[unf < .05, ]

}

else if (dtp == 4)

dx[unf < .2, ] <- sum(diag(sgm))

else if (dtp == 5)

dx[unf < .05, ] <- sum(diag(sgm))

else if (dtp == 6)

dx[unf < .2, 1] <- 2*sum(diag(sgm))

else if (dtp == 7)

dx[unf < .05, 1] <- 2*sum(diag(sgm))

list(dx=dx, p=p, q=q, bm=bm)

}

########################################################################

# Function: ccarun #

# Description: output canonical covariates and coefficients #

# based on robust cca methods #

# Variables: dx <- contaminated dataset #

# est <- type of robust cca estimator #

# p <- number of first group of variables #

# q <- number of second group of variables #

# Comment: there are eight different robust cca methods #

########################################################################
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"ccarun" <- function(dx=dx, est=est, p=p, q=q) {

dx <- as.matrix(dx)

if ( est == 1) {

dxcov <- cov(dx) #classical cov estimator

outdx <- ccacov(dxcov, p=p, q=q)

}

else if (est == 2) {

dxcov <- mesthub(dx)$cov #Huber cov M-estimator

outdx <- ccacov(dxcov, p=p, q=q)

}

else if (est == 3) {

dxcov <- covMcd(dx)$cov #F-MCD cov estimator

outdx <- ccacov(dxcov, p=p, q=q)

}

else if (est == 4) {

dxcov <- covrmvn(dx)$cov #Huber cov M-estimator

outdx <- ccacov(dxcov, p=p, q=q)

}

else if (est == 5)

outdx <- pp(p=p,q=q,dx, inds=1,indp=1) #PP-Classical

else if (est ==6)

outdx <- pp(p=p,q=q,dx, inds=2,indp=2) #PP-FMCD

else if (est == 7)

outdx <- pp(p=p,q=q,dx, inds=3,indp=3) #PP-M

else if (est == 8)

outdx <- pp(p=p,q=q,dx, inds=4,indp=4) #PP-RMVN

return(outdx)

}

########################################################################

# Function: ccaind #

# Description: compute MSE of canonical correlation and covariates, #

# compute correlation as robustness measure #

# Variables: dx <- contaminated dataset #

# nrun <- number of replications #
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# est <- type of robust cca estimator #

# phrb <- Fisher Transformation of correlation benchmark #

# p <- number of first group of variables #

# q <- number of second group of variables #

# bm <- benchmark ("ture value") #

# Comment: MSE and correlation are both used as measures of robustness#

# and correlation measure only works when p>2 #

########################################################################

"ccaind" <- function(dx=dx, nrun=nrun, est=est,

phrb=phrb, p=p, q=q, bm=bm)

{

MSEr <- rep(0, p)

alfr <- MSEr

betr <- MSEr

alfrt <- MSEr

betrt <- MSEr

MSEca <- MSEr

MSEcb <- MSEr

MSEcat <- MSEr

MSEcbt <- MSEr

bmx <- bm$xcoef

bmy <- bm$ycoef

for (i in 1:nrun) {

outdx <- ccarun(dx=dx, est=est, p=p, q=q)

phri <- invtanh(outdx$cor)

MSEr <- MSEr + (phri - phrb)^2

cvcx <- outdx$xcoef

cvcy <- outdx$ycoef

for (k in 1:p) {

alfr[k] <- cor(bmx[,k], cvcx[,k])

betr[k] <- cor(bmy[,k], cvcy[,k])

knanx <- abs(t(bmy[,k]) %*% cvcy[,k]) /

(vecnorm(bmy[,k]) * vecnorm(bmy[,k]))

knany <- abs(t(bmy[,k]) %*% cvcy[,k]) /

(vecnorm(bmy[,k]) * vecnorm(bmy[,k]))

if (knanx > 1) MSEca[k]<-0

else MSEca[k] <- acos(knanx)

if (knany > 1) MSEcb[k]<-0
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else MSEcb[k] <- acos(knany)

}

MSEcat <- MSEcat + MSEca

MSEcbt <- MSEcbt + MSEcb

alfrt <- alfrt + abs(alfr)

betrt <- betrt + abs(betr)

}

MSEr <- MSEr / nrun

MSEcat <- MSEcat / nrun

MSEcbt <- MSEcbt / nrun

alfrt <- alfrt / nrun

betrt <- betrt / nrun

list(MSEr=MSEr, alfr=alfrt, betr=betrt, Mcat=MSEcat, Mcbt=MSEcbt)

}

########################################################################

# Function: ccasim1 #

# Description: input dataset and output results #

# Variables: nrun <- number of replications #

# nout <- number of types of outliers #

# nest <- number of robust cca methods #

# p <- number of first group of variables #

# q <- number of second group of variables #

# Comment: categorical variable, gender, is removed for #

# a better performance of the F-MCD estimator #

########################################################################

"ccasim1" <- function(nrun=nrun, nout=4, nest=8, p=3, q=4) {

setwd("c:/work/MyDt0627/sim")

source("rpack.txt")

source("ccapp.r")

mm <- read.table("mmreg.csv", sep = ",", header = TRUE)

x <- mm[, 1:7]

bm <- ccarun(x, est=1, p=p, q=q) #get benchmark

phrb <- invtanh(bm$cor)
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cat("--------------------", date(), "--------------------------\n",

file="ccasim1.txt", append=T)

for (i in 0:nout)

{

dx <- ccadata1(x, outlier=i) #get contaminated data

for (j in 1:nest)

{

out <- ccaind(dx=dx, nrun=nrun, est=j, phrb=phrb,

p=p, q=q, bm=bm) #get covariates and corrs

cat("outlier=", i, " est=", j, " MSEr=", out$MSEr, "\n")

cat(i, j, " MSEr ", out$MSEr, " alfr ", out$alfr, " betr ", out$betr,

" MSEca", out$Mcat, "MSEcb", out$Mcbt, "\n",

file="ccasim1.txt", append=T)

}

}

cat("--------------------", date(), "--------------------------\n",

file="ccasim1.txt", append=T)

}

########################################################################

# Function: ccasim11 #

# Description: input dataset and output results #

# Variables: nrun <- number of replications #

# nout <- number of types of outliers #

# nest <- number of robust cca methods #

# p <- number of first group of variables #

# q <- number of second group of variables #

# Comment: two categorical variables, gender and motivation are #

# removed for a better performance of the F-MCD estimator #

########################################################################

"ccasim11" <- function(nrun=nrun, nout=4, nest=8, p=2, q=4) {

setwd("c:/work/MyDt0627/sim")

source("rpack.txt")

source("ccapp.r")

mm <- read.table("mmreg.csv", sep = ",", header = TRUE)
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x <- mm[, c(1,2,4,5,6,7)]

bm <- ccarun(x, est=1, p=p, q=q) #get the benchmark

phrb <- invtanh(bm$cor)

cat("--------------------", date(), "--------------------------\n",

file="ccasim11.txt", append=T)

for (i in 0:nout)

{

dx <- ccadata1(x, outlier=i) #get contaminated data

for (j in 1:nest)

{

out <- ccaind(dx=dx, nrun=nrun, est=j, phrb=phrb,

p=p, q=q, bm=bm) #get covariates and corrs

cat("outlier=", i, " est=", j, " MSEr=", out$MSEr, "\n")

cat(i, j, " MSEr ", out$MSEr, " alfr ", out$alfr, " betr ", out$betr,

" MSEca", out$Mcat, "MSEcb", out$Mcbt, "\n",

file="ccasim11.txt", append=T)

}

}

cat("--------------------", date(), "--------------------------\n",

file="ccasim11.txt", append=T)

}

########################################################################

# Function: ccasim2 #

# Description: Data are created based on given convariance matirx, #

# then apply robust cca on the generated data #

# Variables: nrun <- number of replications #

# n <- sample size #

# Comment: Monte Carlo study (3 covriance matrices, #

# 7 distributions, and 8 robust cca methods #

########################################################################

"ccasim2" <- function(nrun=1, n=100) {

setwd("c:/work/MyDt0627/sim")

source("rpack.txt")

source("ccapp.r")
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cat("--------------------", date(), "--------------------------\n",

file="ccasim2.txt", append=T)

for (i in 1:3)

{

for (j in 1:7) {

out <- ccadata2(n=n, stp=i, dtp=j)

bm <- out$bm #get the benchmark

phrb <- invtanh(bm$cor)

dx <- out$dx #get contaminated data

p <- out$p

q <- out$q

for (k in 1:8)

{

out <- ccaind(dx=dx, nrun=nrun, est=k, phrb=phrb,

p=p, q=q, bm=bm) #get covariates and corrs

cat("stp=", i, " dtp=", j, " est=", k, " MSEr=", out$MSEr, "\n")

cat(i, j, k, " MSEr ", out$MSEr, " alfr ", out$alfr, " betr ",

out$betr, " MSEca", out$Mcat, "MSEcb", out$Mcbt, "\n",

file="ccasim2.txt", append=T)

}

}

}

cat("--------------------", date(), "--------------------------\n",

file="ccasim2.txt", append=T)

}
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