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Abstract

Suppose there are two independent random samples from two populations or groups. A

common multivariate two sample test of hypotheses is H0 : µ1 = µ2 versus H1 : µ1 6= µ2

where µi is a population location measure of the ith population for i = 1, 2. The two sample

Hotelling’s T 2 test is the classical method, and is a special case of the one way MANOVA

model if the two populations are assumed to have the same population covariance matrix.

This paper suggests using the Olive (2016, 2017ab) bootstrap technique to develop analogs

of Hotelling’s T 2 test. The new tests can have considerable outlier resistance, and the tests

do not need the population covariance matrices to be equal.

1. Introduction

This paper develops analogs of the two sample Hotelling’s T 2 test that use a statistic Ti,

such as the coordinatewise median, applied to the ith sample for i = 1, 2. Suppose there

are two independent random samples x1,1, ..., xn1,1 and x1,2, ..., xn2,2 from two populations

or groups, and that it is desired to test H0 : µ1 = µ2 versus H1 : µ1 6= µ2 where the µi are

p×1 vectors. Assume that Ti satisfies a central limit type theorem
√

n(Ti−µi)
D→ Np(0,Σi)

for i = 1, 2 where the Σi are positive definite.
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To simplify large sample theory, assume n1 = kn2 for some positive real number k. Let

Σ̂i be a consistent nonsingular estimator of Σi. Then
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Hence
√

n2 [(T1 − T2) − (µ1 − µ2)]
D→ Np

(

0,
Σ1

k
+ Σ2

)

.

Using nB−1 =

(

B

n

)

−1

and n2k = n1, if µ1 = µ2, then

n2(T1 − T2)
T

(

Σ1

k
+ Σ2

)

−1

(T1 − T2) =

(T1 − T2)
T

(

Σ1

n1
+

Σ2

n2

)

−1

(T1 − T2)
D→ χ2

p.

Hence

T 2
0 = (T1 − T2)

T

(

Σ̂1

n1
+

Σ̂2

n2

)−1

(T1 − T2)
D→ χ2

p. (1)

Note that k drops out of the above result.

If the sequence of positive integers dn → ∞ and Yn ∼ Fp,dn
, then Yn

D→ χ2
p/p. Using an

Fp,dn
distribution instead of a χ2

p distribution is similar to using a tdn
distribution instead of a

standard normal N(0, 1) distribution for inference. Instead of rejecting H0 when T 2
0 > χ2

p,1−δ,

reject H0 when

T 2
0 > pFp,dn,1−δ =

pFp,dn,1−δ

χ2
p,1−δ

χ2
p,1−δ.

The term
pFp,dn,1−δ

χ2
p,1−δ

can be regarded as a small sample correction factor that improves the

test’s performance for small samples. For example, use dn = min(n1 − p, n2 − p). Here

P (Yn ≤ χ2
p,δ) = δ if Yn has a χ2

p distribution, and P (Yn ≤ Fp,dn,δ) = δ if Yn has an Fp,dn

distribution.
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The two sample Hotelling’s T 2 test is the classical method. If it is not assumed that the

population covariance matrices are equal, then this test uses the sample mean and sample

covariance matrix Ti = xi and Σ̂i = Si applied to each sample. This test has considerable

robustness to the assumption that both populations have a multivariate normal distribution

and to the assumption that the populations have a common population covariance matrix

Σ, but the test can be very poor if outliers are present.

Alternative statistics to the sample mean can be useful, but large sample tests of the form

of (1) need practical consistent estimators Σ̂i of the two asymptotic covariance matrices Σi.

Section 2.1 reviews the Olive (2016, 2017ab) method for bootstrapping hypothesis tests.

Section 2.2 shows how to apply the bootstrap to test the hypothesis H0 : µ1 −µ2 = 0 versus

H1 : µ1 − µ2 6= 0. These tests are useful if the asymptotic covariance matrix is unknown or

difficult to estimate. Section 3 gives some simulations and an example.

2. Method

2.1 Bootstrapping hypothesis tests and the prediction region method

Olive (2016, 2017b) shows that there is a useful relationship between prediction regions

and confidence regions. Consider predicting a future p×1 test vector xf , given past training

data x1, ..., xn. A large sample 100(1 − δ)% prediction region is a set An such that P (xf ∈
An) → 1 − δ while a large sample 100(1 − δ)% confidence region for a parameter µ is a set

An such that P (µ ∈ An) → 1− δ as n → ∞. Consider testing H0 : µ = c versus H1 : µ 6= c

where c is a known p × 1 vector.

Some notation is needed to describe the Olive (2013) prediction region for the multivariate

location and dispersion model. Let the p × 1 column vector T be a multivariate location

estimator, and let the p× p symmetric positive definite matrix C be a dispersion estimator.

Then the ith squared sample Mahalanobis distance is the scalar

D2
i = D2

i (T, C) = D2
xi

(T, C) = (xi − T )TC−1(xi − T ) (2)

for each observation xi. Notice that the Euclidean distance of xi from the estimate of center

T is Di(T, Ip) where Ip is the p×p identity matrix. The classical Mahalanobis distance uses
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(T, C) = (x, S), the sample mean and sample covariance matrix where

x =
1

n

n
∑

i=1

xi and S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T. (3)

A large sample 100(1 − δ)% prediction region is the hyperellipsoid

{w : D2
w(x, S) ≤ D2

(c)} = {w : Dw(x, S) ≤ D(c)} (4)

for appropriate c. Using c = dn(1 − δ)e covers about 100(1 − δ)% of the training data

cases xi, but the prediction region will have coverage lower than the nominal coverage of

1 − δ for moderate n. This result is not surprising since empirically statistical methods

perform worse on test data. Increasing c will improve the coverage for moderate samples.

Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and

qn = min(1 − δ/2, 1 − δ + 10δp/n), otherwise. (5)

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ.

Let D(Un) be the 100qnth percentile of the Di. Then the Olive (2013) large sample

100(1 − δ)% nonparametric prediction region for a future value xf given iid data x1, ..., , xn

is

{w : D2
w(x, S) ≤ D2

(Un)}, (6)

while the classical large sample 100(1 − δ)% prediction region is

{w : D2
w(x, S) ≤ χ2

p,1−δ}. (7)

The Olive (2016, 2017ab) prediction region method obtains a confidence region for µ by

applying the nonparametric prediction region (6) to the bootstrap sample T ∗

1 , ..., T ∗

B, and the

theory for the method is sketched below. Let T
∗

and S∗

T be the sample mean and sample

covariance matrix of the bootstrap sample. Following Bickel and Ren (2001), let the vector

of parameters µ = T (F ), the statistic Tn = T (Fn), and T ∗ = T (F ∗

n) where F is the cdf of

iid x1, ..., xn, Fn is the empirical cdf, and F ∗

n is the empirical cdf of x∗

1, ..., x
∗

n, a sample from

Fn using the nonparametric bootstrap. If
√

n(Fn − F )
D→ zF , a Gaussian random process,
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and if T is sufficiently smooth (Hadamard differentiable with a Hadamard derivative Ṫ (F )),

then
√

n(Tn−µ)
D→ X and

√
n(T ∗

i −T
∗

)
D→ X with X = Ṫ (F )zF . Olive (2016, 2017b) uses

these results to show that if X ∼ Np(0,ΣT ), then
√

n(T
∗ − Tn)

D→ 0,
√

n(T
∗ − µ)

D→ X,

and that the prediction region method large sample 100(1 − δ)% confidence region for µ is

{w : (w − T
∗

)T [S∗

T ]−1(w − T
∗

) ≤ D2
(UB)} = {w : D2

w(T
∗

, S∗

T ) ≤ D2
(UB)} (8)

where D2
(UB) is computed from D2

i = (T ∗

i − T
∗

)T [S∗

T ]−1(T ∗

i − T
∗

) for i = 1, ..., B. Note that

the corresponding test for H0 : µ = µ0 rejects H0 if (T
∗ − µ0)

T [S∗

T ]−1(T
∗ − µ0) > D2

(UB).

This procedure is basically the one sample Hotelling’s T 2 test applied to the T ∗

i using S∗

T as

the estimated covariance matrix and replacing the χ2
p,1−δ cutoff by D2

(UB).

The prediction region method for testing H0 : µ = c versus H1 : µ 6= c is simple. Let µ̂

be a consistent estimator of µ and make a bootstrap sample wi = µ̂∗

i − c for i = 1, ..., B.

Make the nonparametric prediction region (8) for the wi and fail to reject H0 if 0 is in the

prediction region, reject H0 otherwise.

The Bickel and Ren (2001) hypothesis testing method is equivalent to using confidence

region (8) with T
∗

replaced by Tn and UB replaced by dB(1 − δ)e. If region (8) or the

Bickel and Ren (2001) region is a large sample 100(1 − δ)% confidence region, then so is the

other region if
√

n(T
∗ − Tn)

D→ 0. Hadamard differentiability and asymptotic normality are

sufficient conditions for both regions to be large sample confidence regions if nS∗

T

D→ ΣT , but

Bickel and Ren (2001) showed that their method can work when Hadamard differentiability

fails.

The location model with coordinatewise means, medians, and trimmed means is one

example where the Bickel and Ren (2001, p. 96) method works. Since the univariate

sample mean, sample median, and sample trimmed mean are Hadamard differentiable and

asymptotically normal, each coordinate satisfies
√

n(Tin − T
∗

i )
D→ 0 for i = 1, ..., p. Hence

√
n(Tn − T

∗

)
D→ 0, and (8) is a large sample 100(1 − δ)% confidence region if Tn is the

coordinatewise sample mean, median, or trimmed mean.

Fréchet differentiability implies Hadamard differentiability, and many statistics are shown

to be Hadamard differentiable in Bickel and Ren (2001), Clarke (1986, 2000), Fernholtz
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(1983), and Gill (1989).

2.2 Applying the prediction region method to the two sample test

The two sample test of H0 : µ1 = µ2 versus H1 : µ1 6= µ2 uses µ = µ1 − µ2 = c = 0

with wi = T ∗

i1 − T ∗

i2 for i = 1, ..., B. Make the prediction region (8) where T ∗

i = wi. Fail to

reject H0 if 0 is in the prediction region, reject H0 otherwise. A sample of size ni is drawn

with replacement from x1,i, ..., xni,i for i = 1, 2 to obtain the bootstrap sample.

For illustrative purposes, the simulation study will take Ti to be the coordinatewise

median, the (Olive (2017b, ch. 4), Olive and Hawkins (2010), and Zhang, Olive, and Ye

(2012)) RMVN estimator TRMV N , the sample mean, and the 25% trimmed mean. The

asymptotic covariance matrix of the coordinatewise median is difficult to estimate, while

that of the RMVN estimator is unknown. The RMVN estimator has been shown to be
√

n

consistent on a large class of elliptically contoured distributions, but has not yet been shown

to be asymptotically normal. Hence the bootstrap “test” for the RMVN estimator should

be used for exploratory purposes.

The RMVN estimator (TRMV N , CRMV N) uses a concentration algorithm. Let (T−1,j, C−1,j)

be the jth start (initial estimator) and compute all n Mahalanobis distances Di(T−1,j, C−1,j).

At the next iteration, the classical estimator (T0,j, C0,j) = (x0,j, S0,j) is computed from the

cn ≈ n/2 cases corresponding to the smallest distances. This iteration can be continued for k

concentration steps resulting in the sequence of estimators (T−1,j, C−1,j), (T0,j, C0,j), ..., (Tk,j,

Ck,j). The result of the iteration (Tk,j, Ck,j) is called the jth attractor. The algorithm es-

timator uses one of the attractors. The RMVN estimator uses the same two starts as the

Olive (2004) MBA estimator: (x, S) and (MED(n), Ip) where MED(n) is the coordinate-

wise median. Then the location estimator TRMV N can be used to test H0 : µ1 = µ2.

3. Simulation and an Example

The simulation used 5000 runs with B bootstrap samples. Olive (2016, 2017b) suggests

that the prediction region method can give good results when the number of bootstrap

samples B ≥ 50p if n ≥ 50p, and the simulation used various values of B.

Four types of data distributions wi were considered that were identical for i = 1, 2.
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Then x1 = Aw1 + δ1 and x2 = σAw2 where 1 = (1, .., 1)T is a vector of ones and

A = diag(1,
√

2, ...,
√

p). The wi distributions were the multivariate normal distribution

Np(0, I), the multivariate t distribution with 4 degrees of freedom, the mixture distribu-

tion 0.6Np(0, I)+0.4Np(0, 25I), and the multivariate lognormal distribution shifted to have

nonzero mean µ = 0.649 1, but a population coordiatewise median of 0. Note that Cov(x2)

= σ2 Cov(x1), and for the first three distributions, E(xi) = E(wi) = 0 if δ = 0.

Adding the same type and proportion of outliers to groups one and two often resulted in

two distributions that were still similar. Hence outliers were added to the first group but not

the second, making the covariance structures of the two groups quite different. The outlier

proportion was 100γ%. Let x1 = (x11, ..., xp1)
T . The five outlier types for group 1 were type

1: a tight cluster at the major axis (0, ..., 0, pm)T , type 2: a tight cluster at the minor axis

(pm, 0, ..., 0)T , type 3: a mean shift N((pm, ..., pm)T , diag(1, ..., p)), type 4: x1p replaced by

pm, and type 5: x11 replaced by pm. The quantity pm determines how far the outliers are

from the clean data.

Let the coverage be the proportion of times that H0 is rejected. We want the coverage

near 0.05 when H0 is true and the coverage close to 1.0 for good power when H0 is false.

With 5000 runs, an observed coverage inside of (0.04, 0.06) suggests that the true coverage

is close to the nominal 0.05 coverage when H0 is true.

3.1 Type I error rates with clean data

Tables 1, 2, and 3 were for clean elliptically contoured distributions (no outliers present),

where H0 is true and the different location estimators estimate µ = 0, the point of symmetry

for the distribution. The chi–square cutoffs when p = 5 and p = 15 were 11.071 and 24.996,

respectively. The coverages were often near the nominal value of 0.05, but the RMVN

coverages were a bit low for Table 3. The classical Hotelling’s T 2 test does not use the

bootstrap, and performed poorly when H0 was true and both the sample sizes and the

population covariance matrices were different.

For clean multivariate lognormal data, H0 is true when σ = 1 (identical distributions

for both groups), but H0 is not true for the population mean when σ = 2. For σ = 2, the
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coordinatewise median had coverages near the nominal, while the sample mean had good

power with coverages near 1. The RMVN coverage was a bit low when σ = 1 with power

that was often less than that of the sample mean when σ = 2. See Table 4. The simulated

cutoffs were quite similar to the chi-square cutoffs for Tables 1 through 4.

Table 1: coverages for clean multivariate normal data

p n1 n2 σ B Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0470 0.0554 0.0568 0.0402 0.0560

1000 0.0440 0.0606 0.0540 0.0414

2 250 0.0472 0.0550 0.0574 0.0422 0.0498

1000 0.0420 0.0568 0.0538 0.0392

5 250 500 1 250 0.0490 0.0524 0.0496 0.0394 0.0552

1000 0.0462 0.0588 0.0584 0.0448

2 250 0.0460 0.0540 0.0524 0.0436 0.0070

1000 0.0470 0.0500 0.0534 0.0386

15 750 750 1 750 0.0462 0.0626 0.0622 0.0466 0.0450

1000 0.0390 0.0514 0.0470 0.0378

2 750 0.0492 0.0598 0.0608 0.0464 0.0516

1000 0.0474 0.0556 0.0568 0.0446

15 750 1500 1 750 0.0466 0.0538 0.0550 0.0466 0.0480

1000 0.0492 0.0556 0.0548 0.0444

2 750 0.0424 0.0538 0.0520 0.0454 0.0014

1000 0.0514 0.0532 0.0542 0.0426

3.2 Type I error rates with contaminated data

Table 5 illustrates the simulated results where group 1 had outliers. The coordinatewise

median worked with a little higher type I error rate (around 0.08) than the nominal level of

0.05 for the mixture, multivariate t, and multivariate log normal distributions, but failed for

the multivariate normal data when γ = 0.4. The sample mean (classical and bootstrap) and
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Table 2: coverages for clean 0.6Np(0, I) + 0.4Np(0, 25I) data

p n1 n2 σ B Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0420 0.0560 0.0480 0.0394 0.0462

1000 0.0386 0.0532 0.0464 0.0336

2 250 0.0454 0.0550 0.0476 0.0416 0.0476

1000 0.037 0.0484 0.0400 0.0368

250 500 1 250 0.0460 0.0542 0.0538 0.0416 0.0470

1000 0.0368 0.0502 0.0416 0.0404

2 250 0.0480 0.0600 0.0474 0.0390 0.0060

1000 0.0416 0.0598 0.0498 0.0416

15 750 750 1 750 0.0434 0.0536 0.0540 0.0448 0.0496

1000 0.0406 0.0598 0.0474 0.0396

2 750 0.0468 0.0626 0.0518 0.0456 0.0464

1000 0.0456 0.0566 0.0490 0.0454

15 750 1500 1 750 0.0456 0.0584 0.0568 0.0488 0.0502

1000 0.0426 0.0550 0.0478 0.0438

2 750 0.0456 0.0576 0.0508 0.0442 0.0004

1000 0.0416 0.0572 0.0488 0.0510
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Table 3: coverages for clean multivariate t4 data

p n1 n2 σ B Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0442 0.0574 0.0570 0.0266 0.0456

1000 0.0426 0.0570 0.0530 0.0282

2 250 0.0496 0.0618 0.0614 0.0328 0.0542

1000 0.0480 0.0558 0.0578 0.0292

5 250 500 1 250 0.0484 0.0512 0.0540 0.0346 0.0504

1000 0.0420 0.0488 0.0494 0.0310

2 250 0.0408 0.0580 0.0526 0.0348 0.0058

1000 0.0410 0.0492 0.0510 0.0348

15 750 750 1 750 0.0470 0.0550 0.0562 0.0232 0.0414

1000 0.0382 0.0526 0.0476 0.0228

2 750 0.0472 0.0572 0.0542 0.0248 0.0442

1000 0.0502 0.0496 0.0556 0.0258

15 750 1500 1 750 0.0482 0.0556 0.0528 0.0224 0.0446

1000 0.0464 0.0496 0.0528 0.0254

2 750 0.0442 0.0534 0.0502 0.0314 0.0016

1000 0.0452 0.0508 0.0554 0.0262
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Table 4: coverages for clean lognormal data

p n1 n2 σ B Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0408 0.0460 0.0514 0.0274 0.0470

1000 0.0388 0.0494 0.0474 0.0254

2 250 0.0436 0.9816 0.0858 0.1108 0.9968

1000 0.0398 0.9846 0.0788 0.1168

5 250 500 1 250 0.0398 0.0540 0.0496 0.0316 0.0472

1000 0.0368 0.0588 0.0446 0.0292

2 250 0.0418 0.9998 0.1192 0.2492 0.9964

1000 0.0424 0.9994 0.1158 0.2520

15 750 750 1 750 0.0402 0.0506 0.0480 0.0216 0.0502

1000 0.0410 0.0444 0.0490 0.0238

2 750 0.0506 1.0000 0.3670 1.0000 1.0000

1000 0.0510 1.0000 0.3748 1.0000

15 750 1500 1 750 0.0420 0.0580 0.0514 0.0258 0.0514

1000 0.0478 0.0558 0.0608 0.0284

2 750 0.0446 1.0000 0.6110 1.0000 1.0000

1000 0.0464 1.0000 0.6256 1.0000
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25% trimmed mean failed to achieve the nominal level with any of the distributions used

when H0 was true for the clean data. The RMVN estimator worked with all four distributions

with a better type I error rate compared to the other estimators. The chi–square cutoff was

9.488 since p = 4.

The coordinatewise median can achieve better coverages for smaller proportions of out-

liers with higher values of pm (not shown in the tables), i.e. the outliers had to be far from

the clean data compared to the RMVN estimator. The RMVN estimator can handle higher

proportions of outliers as shown in the Table 5.

3.3 Power simulation

In the power simulation, δ > 0 was used. Hence for the first three distributions µ2 = 0

and µ1 = δ(1, ..., 1)T . Then the Euclidean distance between the two means was
√

pδ, where p

is the number of parameters. Therefore the distance increases as p increase. The value of δ

had to be fairly small so that the simulated power was not always 1. Also see Table 4 with

σ = 2.

For Table 6, the sample mean (bootstrap and classical) had the best power while the

sample median had the worst power. For Table 5, the RMVN estimator had the best power

while the sample mean has the worst power. The trimmed mean had the best power for

Table 7. For Table 8, the RMVN estimator had poor power when p = 5, n = 250, and

σ = 2. No method was always best or worst.

3.4. Real data example

The Johnson (1996) STATLIB bodyfat data consists of 252 observations on 15 variables

including the density determined from underwater weighing and the percent body fat mea-

surement. Consider these two variables with two age groups: age ≤ 50 and age > 50. The

test with the RMVN estimator had D0 = 1.78 while the test with the coordinatewise median

had D0 = 1.35. Both tests had cutoffs near 2.37 and fail to reject H0. The classical two

sample Hotelling’s T 2 test rejects H0 with a test statistic of 4.74 and a p-value of 0.001.

The DD plots, shown in Figures 1 and 2, reveal five outliers. After deleting the outliers,

the three tests all fail to reject H0. The RMVN test had D0 = 1.63 with cutoff 2.25, the
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Table 5: Coverages and cutoffs with outliers: p = 4, n1 = n2 = 200, B = 200

Dist. Otype γ pm Med Mean Tr.Me RMVN Class

MVN 1 0.4 10 Cov 0.6946 1.0000 1.0000 0.0330 1.0000

cut 10.158 9.769 9.798 10.701

2 0.4 20 Cov 0.5232 1.0000 1.0000 0.0382 1.0000

cut 9.836 9.776 9.809 9.268

3 0.4 20 Cov 0.8578 1.0000 1.0000 0.0402 1.0000

cut 10.214 9.761 9.760 9.288

4 0.1 10 Cov 0.0980 0.8654 0.1450 0.0382 0.8684

cut 9.898 9.771 9.777 9.851

Mix 2 0.4 20 Cov 0.0828 1.0000 1.0000 0.0144 1.0000

cut 10.542 9.788 9.878 11.300

5 0.1 10 Cov 0.0820 0.5306 0.1228 0.0184 0.5276

cut 9.933 9.779 9.881 11.056

MVT 1 0.4 10 Cov 0.0854 0.6700 0.1548 0.0204 1.0000

cut 10.232 9.799 9.787 10.200

5 0.1 20 Cov 0.0864 1.0000 0.1418 0.0304 1.0000

cut 9.924 9.795 9.795 9.830

Log 3 0.4 20 Cov 0.0778 1.0000 1.0000 0.0162 1.0000

cut 13.689 9.822 9.827 12.607

4 0.1 10 Cov 0.0842 0.3158 0.1482 0.0234 0.3044

cut 10.013 9.875 9.872 10.416
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Table 6: Coverages when H0 is false for MVN data.

p n1 = n2 σ B δ Med Mean Tr.Me RMVN Class

5 250 1 250 0.35 0.9598 0.9990 0.9928 0.9942 0.9988

1000 0.35 0.9684 0.9994 0.9970 0.9978

2 250 0.35 0.5958 0.8442 0.7672 0.7604 0.8402

1000 0.35 0.5832 0.8346 0.7438 0.7470

15 750 1 750 0.15 0.7394 0.9552 0.9012 0.9268 0.9556

1000 0.15 0.7474 0.9522 0.8984 0.9178

2 750 0.15 0.3078 0.5318 0.4550 0.4468 0.5156

1000 0.15 0.3118 0.5218 0.4430 0.4464

Table 7: Coverages when H0 is false for mixture data.

p n1 = n2 σ B δ Med Mean Tr.Me RMVN Class

5 250 1 250 0.45 0.8826 0.4062 0.9304 0.9938 0.4032

1000 0.45 0.8858 0.4058 0.9338 0.9948

2 250 0.45 0.4458 0.1910 0.5222 0.7454 0.1642

1000 0.45 0.4656 0.1890 0.5386 0.7626

15 750 1 750 0.20 0.6204 0.2274 0.7148 0.9492 0.2114

1000 0.20 0.6316 0.2228 0.7190 0.9494

2 750 0.20 0.2318 0.1154 0.2894 0.5034 0.1042

1000 0.20 0.2438 0.1092 0.2916 0.4980
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Table 8: Coverages when H0 is false for multivariate t4 data.

p n1 = n2 σ B δ Med Mean Tr.Me RMVN Class

5 250 1 250 0.38 0.9642 0.9562 0.9916 0.9878 0.9548

1000 0.38 0.9728 0.9572 0.9944 0.9880

2 250 0.38 0.5958 0.5960 0.7198 0.6488 0.6074

1000 0.38 0.6188 0.6152 0.7490 0.6636

15 750 1 750 0.20 0.9418 0.9270 0.9868 0.9714 0.9232

1000 0.20 0.9422 0.9304 0.9860 0.9724

2 750 0.20 0.4934 0.4932 0.6422 0.5384 0.4754

1000 0.20 0.4842 0.4916 0.6362 0.5252

Table 9: Coverages when H0 is false for lognormal data.

p n1 = n2 σ B δ Median Mean Tr.Me RMVN Class

5 250 1 250 0.45 0.9982 0.8256 0.9994 0.879 0.8208

1000 0.45 0.9980 0.8324 0.9996 0.883

2 250 0.45 0.8210 0.4704 0.6488 0.0914 0.4630

1000 0.45 0.8378 0.4646 0.6624 0.1038

15 750 1 750 0.30 1.0000 0.9186 1.0000 0.8514 0.9120

1000 0.30 1.0000 0.9178 1.0000 0.8544

2 750 0.30 0.9436 1.0000 0.5042 0.9438 1.0000

1000 0.30 0.9484 1.0000 0.5022 0.9424
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coordinatewise median test had D0 = 1.22 with cutoff 2.38, and the classical test had test

statistic 2.39 with a p-value of 0.09.
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Figure 1: DD plot for the age ≤ 50 group.
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Figure 2: DD plot for the age > 50 group.

4. Discussion

This paper suggests a practical method to perform a multivariate two sample test when

the asymptotic covariance matrix of the statistic Ti is difficult to estimate. Such tests may

be useful when the data distribution is unknown or outliers are present. The method was
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illustrated with the coordinatewise median, sample mean, 25% trimmed mean, and RMVN

estimators. All four estimators work well when the prediction region method was applied to

the clean data, although care needs to be taken with the multivariate lognormal distribution

where the four estimators Ti are estimating different parameters µTi
.

Both the sample mean and the 25% trimmed mean failed to achieve the nominal coverage

when H0 is true with the contaminated data. The coordinatewise median could handle up to

10% outliers, while the RMVN estimator could handle up to 40% outliers. Both estimators

were robust to the equal covariance assumption.

Konietschke, Bathke, Harrar, and Pauly (2015) suggest a method for bootstrapping the

MANOVA model, and Willems, Pison, Rousseeuw, and Van Aelst (2002) suggest a robust

one sample Hotelling’s T 2 type test. References for robust one way MANOVA tests are in

Finch and French (2013), Todorov and Filzmoser (2010), Van Aelst and Willems (2011), and

Wilcox (1995).

The R software was used in the simulation. See R Core Team (2016). Programs are in the

Olive (2017b) collection of R functions mpack.txt available from (http://lagrange.math.siu.edu

/Olive/mpack.txt). The function hot2sim was used to simulate the tests of hypotheses, and

predreg computes the confidence region given the bootstrap values from rhot2boot. The

Curran (2013) R package Hotelling was used to perform the classical 2 sample Hotelling’s

T 2 test.
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