
Chapter 8

MLR with Heterogeneity

A multiple linear regression model with heterogeneity is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei (8.1)

for i = 1, ..., n where the ei are independent with E(ei) = 0 and V (ei) = σ2
i .

In matrix form, this model is

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix
of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1
vector of unknown errors. Also E(e) = 0 and Cov(e) = Σe = diag(σ2

i ) =
diag(σ2

1 , ..., σ
2
n) is an n× n positive definite matrix. In chapters 2 and 3, the

constant variance assumption was used: σ2
i = σ2 for all i. Hence heterogene-

ity means that the constant variance assumption does not hold. A common
assumption is that the ei = σiεi where the εi are independent and identically
distributed (iid) with V (εi) = 1.

Weighted least squares (WLS) would be useful if the σ2
i were known. Since

the σ2
i are not known, ordinary least squares (OLS) is often used, but the

large sample theory differs from that given in Chapter 2.

8.1 OLS Large Sample Theory

The OLS theory for MLR with heterogeneity often assume iid cases. For
the following theorem, see Romano and Wolf (2017), Freedman (1981), and
White (1980).

Theorem 8.1. Assume Yi = xT
i β + ei for i = 1, ..., n where the cases

(Yi,x
T
i )T are iid with “fourth moments,” Y = Xβ + e, the ei = ei(xi)

are independent, E[ei|xi] = 0, V −1 = E[xix
T
i ], E[e2i |xi] = v(xi) = σ2

i ,
Cov[e|X] = diag(v(x1), ..., v(xn)) and Ω = E[v(xi)xix

T
i ] = E[e2i xix

T
i ].
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376 8 MLR with Heterogeneity

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ). (8.2)

Remark 8.1. a) White (1980) showed that the iid cases assumption can
be weakened. Assume the cases are independent,

V n =
1

n

n∑

i=1

E[xix
T
i ]

P→ V −1,

and

Ωn =
1

n

n∑

i=1

E[e2i xixi]
P→ Ω.

Then √
n(β̂OLS − β)

D→ Np(0,V ΩV ).

b) Under the assumptions of Theorem 8.1,

1

n
XT X =

1

n

n∑

i=1

xix
T
i

P→ V −1.

Let D = diag(σ2
1 , ..., σ

2
n) = Σe and D̂ = diag(r21 , ..., r

2
n) where r2i is the

ith residual from OLS regression of Y on X . Then D̂ is not a consistent
estimator of D. The following theorem, due to White (1980), shows that

D̂ can be used to get a consistent estimator of Ω. This result leads to the
sandwich estimators given in the following section.

Theorem 8.2. Under strong regularity conditions,

1

n
(XT D̂X)

P→ Ω and
1

n
(XTDX)

P→ Ω.

Hence
n(XT

X)−1(XT
D̂X)(XT

X)−1 P→ V ΩV .

8.2 Bootstrap Methods and Sandwich Estimators

Under regularity conditions, the OLS estimator β̂ = β̂OLS = (XT X)−1XT Y

can be shown to be a consistent estimator of β with E(β̂) = β and

Cov(β̂) = (XT X)−1XT ΣeX(XT X)−1. See, for example, White (1980).

Assume nCov(β̂) → V ΩV as n → ∞. Assume XT X/n → V −1 and
XT ΣeX/n → Ω where convergence in probability is used if the xi are
random vectors. See Theorem 8.2. We assume that a constant β1 correspond-
ing to x1 ≡ 1 is in the model so that the OLS residuals sum to 0.
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A sandwich estimator is Ĉov(β̂OLS) = (XT X)−1XT D̂X(XT X)−1. Of-

ten D̂ is not a consistent estimator of D = Σe, but often XT D̂X/n
P→ Ω

under regularity conditions. For the wild bootstrap, we will use D̂W =
n diag(r21 , ..., r

2
n)/(n − p) where the ri are the OLS residuals. Often D̂ =

diag(d2
i r

2
i ), where D̂W uses d2

i = n/(n− p).
The nonparametric bootstrap = pairs bootstrap samples the cases (Yi,xi)

with replacement, and uses

Y ∗ = X∗β̂ + e∗

with e∗ = r∗ where (Yi,xi, ri) are selected with replacement to form Y ∗,X∗,

and r∗. Then β̂
∗

= (X∗T X∗)−1X∗T Y ∗ = β̂ + (X∗T X∗)−1X∗T r∗ = β̂ +

b∗ is obtained from the OLS regression of Y ∗ on X∗. Thus E(β̂
∗

) = β̂ +

E[(X∗T X∗)−1X∗T r∗] = β̂ + b where the expectation is with respect to
the bootstrap distribution and the bias vector b = E(b∗). Freedman (1981)
showed that the nonparametric bootstrap can be useful for model (8.1) with
the ei independent, suggesting that b∗ = op(n

−1/2) or b∗ = Op(n
−1/2). With

respect to the bootstrap distribution, Cov(β̂
∗

) = Cov[(X∗T X∗)−1X∗T r∗] =
E[(X∗T X∗)−1X∗T r∗r∗T X∗(X∗T X∗)−1] − bbT . This result suggests that

Cov(β̂
∗

) is estimating the sandwich estimator

(XT X)−1XT rrT X(XT X)−1,

which replaces diag(r2i ) by rrT . Also, with respect to the bootstrap distri-
bution, the cases (Y ∗

i ,x
∗T
i )T are iid with V (e∗i ) = V (r∗i ) depending on x∗

i .
A version of the wild bootstrap uses

Y ∗ = Xβ̂ + e∗

with e∗i = Wicnri where P (Wi = ±1) = 0.5, E(Wi) = 0, V (Wi) = 1 and cn =√
n/(n− p). Note that Wi = 2Zi−1 where Zi ∼ binomial(m= 1, p = 0.5) ∼

Bernoulli(p = 0.5). See Flachaire (2005). With respect to the bootstrap dis-
tribution, the cnri are constants, and the e∗i are independent with E(e∗i ) =
E(Wi)cnri = 0, and V (e∗i ) = E(e∗2i ) = E(W 2

i )c2nr
2
i = c2nr

2
i . Thus E(e∗) = 0

and Cov(e∗) = D̂W . Then β̂
∗

= (XT X)−1XT Y ∗ with E(β̂
∗

) = β̂ and

Cov(β̂
∗

) = Ĉov(β̂OLS) = (XT X)−1XT D̂W X(XT X)−1, a sandwich esti-

mator. Note that Cov(β̂
∗

) = Cov(β̂)+(XT X)−1XT [D̂W −Σe]X(XT X)−1.
The following method is due to Rajapaksha and Olive (2022). For the OLS

model of chapter 2, V (ei) = V (Yi|xi) = V (Yi|xT
i β) = σ2. Hence Yi = Yi|xi =

Yi|xT
i β = xT

i β + ei with V (ei) = σ2. For model (8.1), Yi = Yi|xi = xT
i β + ei

with V (ei) = σ2
i , while Yi = Yi|xT

i β = xT
i β + εi with V (εi) = τ2

i . The τ2
i

can be estimated as follows. Make the residual plot of Ŷi = xiβ̂ versus ri

on the vertical axis. Divide the ordered xT
i β̂ into ms slices each containing

approximately n/ms cases, and find the variance of the residuals v2
j in the
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jth slice for j = 1, ..., ms. Then τ̂2
i = nv2

j /(n−p) if case i is in the jth slice. If

the xi are bounded, the maximum slice width → 0, if V (Y |xT β) is smooth,
and the number of cases in each slice → ∞ as n → ∞, then τ̂2

i is a consistent
estimator of τ2

i . This method acts as if the variance τ2
j is constant within

each slice j, and replaces D̂W = n diag(r21 , ..., r
2
n)/(n−p) by diag(τ̂2

1 , ..., τ̂
2
n),

a smoothed version of D̂W . Another option would use a scatterplot smoother
in a plot of Ŷi vs. r2i .

The parametric bootstrap does not assume that the ei are normal, but
uses

Y
∗ = Xβ̂ + e∗

where the e∗i ∼ N(0, τ̂2
i ) are independent. Hence β̂

∗

= (XT
X)−1X

T
Y

∗ ∼

Np[β̂, (X
T X)−1XT diag(τ̂2

1 , ..., τ̂
2
n) X(XT X)−1].

8.3 Simulations

Next, we describe a small simulation study that was done using B =
max(200, 50p) and 5000 runs. The simulation is similar to that for the full
OLS model done by Pelawa Watagoda and Olive (2021). The simulation used
p = 4, 6, 7, 8, and 10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and

p− 2 where k and ψ are defined in the following paragraph.
Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ + (m − 2)ψ2)/(1 + (m −
1)ψ2) for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp,

then ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the
predictor vectors cluster about the line in the direction of (1, ..., 1)T . Let
Yi = 1 + 1xi,2 + · · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T

with k + 1 ones and p− k − 1 zeros.
The zero mean iid errors εi were iid from five distributions: i) N(0,1), ii)

t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) + 0.1 N(0,100).
Only distribution iii) is not symmetric. Then wtype = 1 if ei = εi (the WLS
model is the OLS model), 2 if ei = |xT

i β − 5|εi, 3 if ei =
√

(1 + 0.5x2
i2)εi, 4

if ei = exp[1 + log(|xi2|) + ...+ log(|xip|)]εi, 5 if ei = [1 + log(|xi2|) + ...+
log(|xip|)]εi, 6 if ei = [exp([log(|xi2|) + ...+ log(|xip|)]/(p − 1))]εi, 7 if ei =
[[log(|xi2|) + ...+ log(|xip|)]/(p− 1)]εi, The last four types were special cases
of types suggested by Romano and Wolf (2017). For type 6, the weighting
function is the geometric mean of |xi2|, ..., |xip|.
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When ψ = 0 and wtype = 1, the full model least squares confidence inter-
vals for βi should have length near 2t96,0.975σ/

√
n ≈ 2(1.96)σ/10 = 0.392σ

when n = 100 and the iid zero mean errors have variance σ2. The simula-
tion computed the Frey shorth(c) interval for each βi and used bootstrap
confidence regions to test H0 : βS = 1 (whether first k + 1 βi = 1) and
H0 : βE = 0 (whether the last p − k − 1 βi = 0). The nominal coverage
was 0.95 with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests
coverage is close to the nominal value.

Table 8.1 shows two rows for each model giving the observed confidence
interval coverages and average lengths of the confidence intervals. The terms
“npar”, “wild”, and “par” are for the nonparametric, wild and parametric
bootstrap. The last six columns give results for the tests. The terms pr, hyb,
and br are for the prediction region method, hybrid region, and Bickel and
Ren region. The 0 indicates the test was H0 : βE = 0, while the 1 indicates
that the test was H0 : βS = 1. The length and coverage = P(fail to reject
H0) for the interval [0, D(UB)] or [0, D(UB,T )] where D(UB) or D(UB,T ) is the

cutoff for the confidence region. The cutoff will often be near
√
χ2

g,0.95 if the

statistic T is asymptotically normal. Note that
√
χ2

2,0.95 = 2.448 is close to

2.45 for the full model regression bootstrap tests.

Table 8.1 Bootstrapping WLS, wtype = 1, etype= N(0,1)

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
npar,0 0.946 0.950 0.947 0.948 0.940 0.941 0.941 0.937 0.936 0.937

len 0.396 0.399 0.399 0.398 2.451 2.451 2.452 2.450 2.450 2.451
wild,0 0.948 0.950 0.997 0.996 0.991 0.979 0.991 0.938 0.939 0.940

len 0.395 0.398 0.323 0.323 2.699 2.699 3.002 2.450 2.450 2.457
par,0 0.946 0.944 0.946 0.945 0.938 0.938 0.938 0.934 0.936 0.936
len 0.396 0.661 0.661 0.661 2.451 2.451 2.452 2.451 2.451 2.452

npar,0.5 0.947 0.968 0.997 0.998 0.993 0.984 0.993 0.955 0.955 0.963
len 0.395 0.658 0.537 0.539 2.703 2.703 2.994 2.461 2.461 2.577

wild,0.9 0.946 0.941 0.944 0.950 0.940 0.940 0.940 0.935 0.935 0.935
len 0.396 3.257 3.253 3.259 2.451 2.451 2.452 2.451 2.451 2.452

par,0.9 0.947 0.968 0.994 0.996 0.992 0.981 0.992 0.962 0.959 0.970
len 0.395 2.751 2.725 2.735 2.716 2.716 2.971 2.497 2.497 2.599

Simulations in Rajapaksha (2021) suggest that the nonparametric boot-
strap works better than the other methods used in Section 8.3.
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8.4 OPLS in Low and High Dimensions

Under iid cases, OPLS theory does not depend on whether the error variance
is constant or not. Hence the Olive and Zhang (2023) OPLS theory still
applies. See Olive (2023f).

8.5 Summary

8.6 Complements

There is a large literature on regression with heterogeneity and sandwich
estimators. See, for example, Buja et al. (2019), Eicker (1963, 1967), Hinkley
(1977), Huber (1967), Long and Ervin (2000), MacKinnon and White (1985),
Pötscher and Preinerstorfer (2022), White (1980), and Wu (1986). For more
on the wild bootstrap, see Mammen (1992, 1993) and Wu (1986). Flachaire
(2005) compares the wild and nonparametric bootstrap. Feasible weighted
least squares estimates σ2

i or v(xi), and is a competitor for OLS. See Romano
and Wolf (2017).

8.7 Problems

PROBLEMS WITH AN ASTERISK * ARE ESPECIALLY USE-

FUL.

8.1.


