
Chapter 4

1D Regression Models Such as GLMs

... estimates of the linear regression coefficients are relevant to the linear
parameters of a broader class of models than might have been suspected.

Brillinger (1977, p. 509)

After computing β̂, one may go on to prepare a scatter plot of the points
(β̂xj, yj), j = 1, ..., n and look for a functional form for g(·).

Brillinger (1983, p. 98)

This chapter considers 1D regression models including additive error re-
gression (AER), generalized linear models (GLMs), and generalized additive
models (GAMs). Multiple linear regression is a special case of these four
models.

See Definition 1.2 for the 1D regression model, sufficient predictor (SP =

h(x)), estimated sufficient predictor (ESP = ĥ(x)), generalized linear model
(GLM), and the generalized additive model (GAM). When using a GAM to
check a GLM, the notation ESP may be used for the GLM, and EAP (esti-
mated additive predictor) may be used for the ESP of the GAM. Definition
1.3 defines the response plot of ESP versus Y .

Suppose the sufficient predictor SP = h(x). Often SP = xT β. If u only
contains the nontrivial predictors, then SP = β1 + uT β2 = α+ uT η is often
used where β = (β1 ,β

T
2 )T = (α,ηT )T and x = (1,uT )T .

4.1 Introduction

First we describe some regression models in the following three definitions.
The most general model uses SP = h(x) as defined in Definition 1.2. The
GAM with SP = AP will be useful for checking the model (often a GLM)
with SP = xT β. Thus the additive error regression model with SP = AP
is useful for checking the multiple linear regression model. The model with
SP = βT x = xT β tends to have the most theory for inference and variable

209



210 4 1D Regression Models Such as GLMs

selection. For the models below, the model estimated mean function and
often a nonparametric estimator of the mean function, such as lowess, will
be added to the response plot as a visual aid. For all of the models in the
following three definitions, Y1, ..., Yn are independent, but often the subscripts
are suppressed. For example, Y = SP + e is used instead of Yi = Yi|xi =
Yi|SPi = SPi + ei = h(xi) + ei for i = 1, ..., n.

Definition 4.1. i) The additive error regression (AER) model
Y = SP + e has conditional mean function E(Y |SP ) = SP and conditional
variance function V (Y |SP ) = σ2 = V (e). See Section 4.2. The response plot
of ESP versus Y and the residual plot of ESP versus r = Y − Ŷ are used
just as for multiple linear regression. The estimated model (conditional) mean
function is the identity line Y = ESP . The response transformation model
is Y = t(Z) = SP + e where the response transformation t(Z) can be found
using a graphical method similar to Section 1.2.

ii) The binary regression model is Y ∼ binomial

(
1, ρ =

eSP

1 + eSP

)
.

This model has E(Y |SP ) = ρ = ρ(SP ) and V (Y |SP ) = ρ(SP )(1 − ρ(SP )).

Then ρ̂ =
eESP

1 + eESP
is the estimated mean function. See Section 4.3.

iii) The binomial regression model is Yi ∼ binomial

(
mi, ρ =

eSP

1 + eSP

)
.

Then E(Yi|SPi) = miρ(SPi) and V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)), and

Ê(Yi|xi) = miρ̂ =
mie

ESP

1 + eESP
is the estimated mean function. See Section 4.3.

iv) The Poisson regression (PR) model Y ∼ Poisson
(
eSP

)
has

E(Y |SP ) = V (Y |SP ) = exp(SP ). The estimated mean and variance func-
tions are Ê(Y |x) = eESP . See Section 4.4.

v) Suppose Y has a gamma G(ν, λ) distribution so that E(Y ) = νλ and
V (Y ) = νλ2. The Gamma regression model Y ∼ G (ν, λ = µ(SP )/ν)
has E(Y |SP ) = µ(SP ) and V (Y |SP ) = [µ(SP )]2/ν. The estimated mean
function is Ê(Y |x) = µ(ESP ). The choices µ(SP ) = SP , µ(SP ) = exp(SP )
and µ(SP ) = 1/SP are common. Since µ(SP ) > 0, Gamma regression mod-
els that use the identity or reciprocal link run into problems if µ(ESP ) is
negative for some of the cases.

Alternatives to the binomial and Poisson regression models are needed
because often the mean function for the model is good, but the variance
function is not: there is overdispersion. See Section 4.8.

A useful alternative to the binomial regression model is a beta–binomial
regression (BBR) model. Following Simonoff (2003, pp. 93-94) and Agresti
(2002, pp. 554-555), let δ = ρ/θ and ν = (1 − ρ)/θ, so ρ = δ/(δ + ν) and
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θ = 1/(δ+ν). Let B(δ, ν) =
Γ (δ)Γ (ν)

Γ (δ + ν)
. If Y has a beta–binomial distribution,

Y ∼ BB(m, ρ, θ), then the probability mass function of Y is P (Y = y) =(
m

y

)
B(δ + y, ν +m− y)

B(δ, ν)
for y = 0, 1, 2, ..., m where 0 < ρ < 1 and θ > 0.

Hence δ > 0 and ν > 0. Then E(Y ) = mδ/(δ + ν) = mρ and V(Y ) =
mρ(1− ρ)[1 + (m− 1)θ/(1 + θ)]. If Y |π ∼ binomial(m, π) and π ∼ beta(δ, ν),
then Y ∼ BB(m, ρ, θ). As θ → 0, it can be shown that V (π) → 0, and the
beta–binomial distribution converges to the binomial distribution.

Definition 4.2. The BBR model states that Y1, ..., Yn are independent
random variables where Yi|SPi ∼ BB(mi, ρ(SPi), θ). Hence E(Yi|SPi) =
miρ(SPi) and

V (Yi|SPi) = miρ(SPi)(1− ρ(SPi))[1 + (mi − 1)θ/(1 + θ)].

The BBR model has the same mean function as the binomial regression
model, but allows for overdispersion. As θ → 0, it can be shown that the
BBR model converges to the binomial regression model.

A useful alternative to the PR model is a negative binomial regression
(NBR) model. If Y has a (generalized) negative binomial distribution, Y ∼
NB(µ, κ), then the probability mass function of Y is

P (Y = y) =
Γ (y+ κ)

Γ (κ)Γ (y+ 1)

(
κ

µ + κ

)κ (
1− κ

µ+ κ

)y

for y = 0, 1, 2, ... where µ > 0 and κ > 0. Then E(Y ) = µ and V(Y ) =
µ+µ2/κ. (This distribution is a generalization of the negative binomial (κ, ρ)
distribution where ρ = κ/(µ + κ) and κ > 0 is an unknown real parameter
rather than a known integer.)

Definition 4.3. The negative binomial regression (NBR) model is
Y |SP ∼ NB(exp(SP), κ). Thus E(Y |SP ) = exp(SP ) and

V (Y |SP ) = exp(SP )

(
1 +

exp(SP )

κ

)
= exp(SP ) + τ exp(2 SP ).

The NBR model has the same mean function as the PR model but allows
for overdispersion. Following Agresti (2002, p. 560), as τ ≡ 1/κ → 0, it can
be shown that the NBR model converges to the PR model.

Several important survival regression models are 1D regression models
with SP = xT β, including the Cox (1972) proportional hazards regression
model. The following survival regression models are parametric. The accel-
erated failure time model has log(Y ) = α + SPA + σe where SPA = uT βA,
V (e) = 1, and the ei are iid from a location scale family. If the Yi are log-
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normal, the ei are normal. If the Yi are loglogistic, the ei are logistic. If the
Yi are Weibull, the ei are from a smallest extreme value distribution. The
Weibull regression model is a proportional hazards model using Yi and an
accelerated failure time model using log(Yi) with βP = βA/σ. Let Y hav a
Weibull W (γ, λ) distribution if the pdf of Y is

f(y) = λγyγ−1 exp[−λyγ ]

for y > 0. Prediction intervals for parametric survival regression models are
for survival times Y , not censored survival times. See Sections 4.10 and 4.11.

Definition 4.4. The Weibull proportional hazards regression model is

Y |SP ∼W (γ = 1/σ, λ0 exp(SP )),

where λ0 = exp(−α/σ).

Generalized linear models are an important class of parametric 1D regres-
sion models that include multiple linear regression, logistic regression, and
Poisson regression. Assume that there is a response variable Y and a q × 1
vector of nontrivial predictors x. Before defining a generalized linear model,
the definition of a one parameter exponential family is needed. Let f(y) be
a probability density function (pdf) if Y is a continuous random variable,
and let f(y) be a probability mass function (pmf) if Y is a discrete random
variable. Assume that the support of the distribution of Y is Y and that the
parameter space of θ is Θ.

Definition 4.5. A family of pdfs or pmfs {f(y|θ) : θ ∈ Θ} is a
1-parameter exponential family if

f(y|θ) = k(θ)h(y) exp[w(θ)t(y)] (4.1)

where k(θ) ≥ 0 and h(y) ≥ 0. The functions h, k, t, and w are real valued
functions.

In the definition, it is crucial that k and w do not depend on y and that
h and t do not depend on θ. The parameterization is not unique since, for
example, w could be multiplied by a nonzero constant m if t is divided by m.
Many other parameterizations are possible. If h(y) = g(y)IY (y), then usually
k(θ) and g(y) are positive, so another parameterization is

f(y|θ) = exp[w(θ)t(y) + d(θ) + S(y)]IY (y) (4.2)

where S(y) = log(g(y)), d(θ) = log(k(θ)), and the support Y does not depend
on θ. Here the indicator function IY(y) = 1 if y ∈ Y and IY(y) = 0, otherwise.
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Definition 4.6. Assume that the data is (Yi,xi) for i = 1, ..., n. An impor-
tant type of generalized linear model (GLM) for the data states that the
Y1, ..., Yn are independent random variables from a 1-parameter exponential
family with pdf or pmf

f(yi|θ(xi)) = k(θ(xi))h(yi) exp

[
c(θ(xi))

a(φ)
yi

]
. (4.3)

Here φ is a known constant (often a dispersion parameter), a(·) is a known
function, and θ(xi) = η(xT

i β). Let E(Yi) ≡ E(Yi|xi) = µ(xi). The GLM
also states that g(µ(xi)) = xT

i β where the link function g is a differen-
tiable monotone function. Then the canonical link function is g(µ(xi)) =
c(µ(xi)) = βT xi, and the quantity βT x is called the linear predictor.

The GLM parameterization (4.3) can be written in several ways. By Equa-
tion (4.2), f(yi|θ(xi)) = exp[w(θ(xi))yi + d(θ(xi)) + S(y)]IY (y) =

exp

[
c(θ(xi))

a(φ)
yi −

b(c(θ(xi))

a(φ)
+ S(y)

]
IY(y)

= exp

[
νi

a(φ)
yi −

b(νi)

a(φ)
+ S(y)

]
IY(y)

where νi = c(θ(xi)) is called the natural parameter, and b(·) is some known
function.

Notice that a GLM is a parametric model determined by the 1-parameter
exponential family, the link function, and the linear predictor. Since the link
function is monotone, the inverse link function g−1(·) exists and satisfies

µ(xi) = g−1(xT
i β). (4.4)

Also notice that the Yi follow a 1-parameter exponential family where

t(yi) = yi and w(θ) =
c(θ)

a(φ)
,

and notice that the value of the parameter θ(xi) = η(xT
i β) depends on the

value of xi. Since the model depends on x only through the linear predictor
xT β, a GLM is a 1D regression model. Thus the linear predictor is also a
sufficient predictor.

The following three sections illustrate three of the most important gen-
eralized linear models. Inference and variable selection for these GLMs are
discussed in Sections 4.5 and 4.6. Their generalized additive model analogs
are discussed in Section 4.7.
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4.2 Additive Error Regression

The linear regression model Y = SP + e = xT β + e includes multiple linear
regression (MLR) and many experimental design models as special cases. See
Chapter 3 for MLR.

If Y is quantitative, a useful extension is the additive error regression
(AER) model Y = SP + e where SP = h(x). See Definition 4.1 i). If e ∼
N(0, σ2), then Y ∼ N(SP, σ2). If e ∼ N(0, σ2) and SP = xT β, then the
resulting multiple linear regression model is also a GLM and an additive
error regression model. The normality assumption is too restrictive since the
error distribution is rarely normal. If m is a smooth function, the additive
error single index model, where SP = h(x) = m(xT β), is an important
special case.

Response plots, residual plots, and response transformations for the addi-
tive error regression model are very similar to those for the multiple linear
regression model. See Olive (2004). To avoid overfitting, assume n ≥ 10d
where d is the model degrees of freedom, possibly estimated. Hence d = p for
multiple linear regression with OLS. Prediction intervals are given in Section
2.3.

The GAM additive error regression model is useful for checking the mul-
tiple linear regression (MLR) model. Let ESP = xT β̂ be the ESP for MLR
where x = (1, x2, ..., xp)

T . Let ESP = EAP = α̂+
∑p

j=2 Ŝj(xj) be the ESP
for the GAM additive error regression model.

After making the usual checks on the MLR model, there are two useful
plots that use the GAM. If the plotted points of the EE plot of EAP versus
ESP cluster tightly about the identity line, then the MLR and the GAM
produce similar fitted values. A plot of xj versus Ŝj(xj) can be useful for
visualizing whether a predictor transformation tj(xj) is needed for the jth
predictor xj. If the plot is linear then no transformation may be needed. If the
plot is nonlinear, the shape of the plot, along with the graphical methods of
Section 1.2, may be useful for suggesting the transformation tj. The additive
error regression GAM can be fit with all p of the Sj unspecified, or fit p GAMs
where Si is linear except for unspecified Sj where j = 2, ..., p. Some of these
applications for checking GLMs with GAMs will be discussed in Section 4.7.

Suppose n/p is large and SP = m(xT β). Olive (2008: ch. 12, 2010: ch.
15), Olive and Hawkins (2005), and Chang and Olive (2010) show that vari-
able selection methods using Cp and the partial F test, originally meant for
multiple linear regression, can be used (under regularity conditions) for the
additive error single index model.
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4.3 Binary, Binomial, and Logistic Regression

Multiple linear regression is used when the response variable is quantitative,
but for many data sets the response variable is categorical and takes on two
values: 0 or 1. The occurrence of the category that is counted is labelled as a
1 or a “success,” while the nonoccurrence of the category that is counted is
labelled as a 0 or a “failure.” For example, a “success” = “occurrence” could
be a person who contracted lung cancer and died within 5 years of detection.
Often the labelling is arbitrary, e.g., if the response variable is gender taking
on the two categories female and male. If males are counted then Y = 1 if the
subject is male and Y = 0 if the subject is female. If females are counted then
this labelling is reversed. For a binary response variable, a binary regression
model is often appropriate.

Definition 4.7. The binomial regression model states that Y1, ..., Yn

are independent random variables with Yi ∼ binomial(mi, ρ(xi)). The binary
regression model is the special case where mi ≡ 1 for i = 1, ..., n while the
logistic regression (LR) model is the special case of binomial regression
where

P (success|xi) = ρ(xi) =
exp(h(xi))

1 + exp(h(xi))
. (4.5)

If the sufficient predictor SP = h(x) = xT β, then the most used binomial
regression models are such that Y1, ..., Yn are independent random variables
with Yi ∼ binomial(mi, ρ(x

Tβ)), or

Yi|SPi ∼ binomial(mi, ρ(SPi)). (4.6)

Note that the conditional mean function E(Yi|SPi) = miρ(SPi) and the
conditional variance function V (Yi|SPi) = miρ(SPi)(1 − ρ(SPi)).

Thus the binary logistic regression model says that

Y |SP ∼ binomial(1, ρ(SP))

where

ρ(SP ) =
exp(SP )

1 + exp(SP )

for the LR model. Note that the conditional mean function E(Y |SP ) =
ρ(SP ) and the conditional variance function V (Y |SP ) = ρ(SP )(1− ρ(SP )).
For the LR model, the Y are independent and

Y |x ≈ binomial

(
1,

exp(ESP)

1 + exp(ESP)

)
,

or Y |SP ≈ Y |ESP ≈ binomial(1, ρ(ESP)).
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Although the logistic regression model is the most important model for
binary regression, several other models are also used. Notice that ρ(x) =
P (S|x) is the population probability of success S given x, while 1− ρ(x) =
P (F |x) is the probability of failure F given x. In particular, for binary re-
gression, ρ(x) = P (Y = 1|x) = 1−P (Y = 0|x). If this population proportion
ρ = ρ(h(x)), then the model is a 1D regression model. The model is a GLM if
the link function g is differentiable and monotone so that g(ρ(xT β)) = xT β
and g−1(xT β) = ρ(xT β). Usually the inverse link function corresponds to
the cumulative distribution function of a location scale family. For example,
for logistic regression, g−1(x) = exp(x)/(1 + exp(x)) which is the cdf of the
logistic L(0, 1) distribution. For probit regression, g−1(x) = Φ(x) which is the
cdf of the normal N(0, 1) distribution. For the complementary log-log link,
g−1(x) = 1 − exp[− exp(x)] which is the cdf for the smallest extreme value
distribution. For this model, g(ρ(x)) = log[− log(1− ρ(x))] = xT β.

Another important binary regression model is the discriminant function
model. See Hosmer and Lemeshow (2000, pp. 43–44). Assume that πj =
P (Y = j) and that x|Y = j ∼ Nk(µj,Σ) for j = 0, 1. That is, the conditional
distribution of x given Y = j follows a multivariate normal distribution with
mean vector µj and covariance matrix Σ which does not depend on j. Notice
that Σ = Cov(x|Y ) 6= Cov(x). Then as for the binary logistic regression
model with x = (1,uT )T and β = (α,ηT )T ,

P (Y = 1|x) = ρ(x) =
exp(α+ uT η)

1 + exp(α+ uT η)
=

exp(xT β)

1 + exp(xT β)
.

Definition 4.8. Under the conditions above, the discriminant function
parameters are given by

η = Σ−1(µ1 − µ0) (4.7)

and α = log

(
π1

π0

)
− 0.5(µ1 − µ0)

T Σ−1(µ1 + µ0).

The logistic regression (maximum likelihood) estimator also tends to per-
form well for this type of data. An exception is when the Y = 0 cases and
Y = 1 cases can be perfectly or nearly perfectly classified by the ESP. Let
the logistic regression ESP = xT β̂. Consider the response plot of the ESP
versus Y . If the Y = 0 values can be separated from the Y = 1 values by
the vertical line ESP = 0, then there is perfect classification. See Figure 4.1
b). In this case the maximum likelihood estimator for the logistic regression
parameters β does not exist because the logistic curve can not approximate
a step function perfectly. See Atkinson and Riani (2000, pp. 251-254). If only
a few cases need to be deleted in order for the data set to have perfect clas-
sification, then the amount of “overlap” is small and there is nearly “perfect
classification.”
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Ordinary least squares (OLS) can also be useful for logistic regression.
The ANOVA F test, partial F test, and OLS t tests are often asymptotically
valid when the conditions in Definition 4.8 are met, and the OLS ESP and
LR ESP are often highly correlated. See Haggstrom (1983). For binary data
the Yi only take two values, 0 and 1, and the residuals do not behave very
well. Hence the response plot will be used both as a goodness of fit plot and
as a lack of fit plot.

Definition 4.9. For binary logistic regression, the response plot or esti-
mated sufficient summary plot is the plot of the ESP = ĥ(xi) versus Yi with
the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid.

A scatterplot smoother such as lowess is also added as a visual aid. Alter-
natively, divide the ESP into J slices with approximately the same number
of cases in each slice. Then compute the sample mean = sample proportion
in slice s: ρ̂s = Y s =

∑
s Yi/

∑
s mi where mi ≡ 1 and the sum is over the

cases in slice s. Then plot the resulting step function.
Suppose that x = (1,uT )T is a p × 1 vector of predictors where q =

p − 1, N1 =
∑
Yi = the number of 1s and N0 = n − N1 = the number of

0s. Also assume that q ≤ min(N0, N1)/5. Then if the parametric estimated
mean function ρ̂(ESP ) looks like a smoothed version of the step function,
then the LR model is likely to be useful. In other words, the observed slice
proportions should scatter fairly closely about the logistic curve ρ̂(ESP ) =
exp(ESP )/[1 + exp(ESP )].

The response plot is a powerful method for assessing the adequacy of the
binary LR regression model. Suppose that both the number of 0s and the
number of 1s is large compared to the number of predictors q, that the ESP
takes on many values and that the binary LR model is a good approximation
to the data. Then Y |ESP ≈ binomial(1, ρ̂(ESP ). Unlike the response plot
for multiple linear regression where the mean function is always the identity
line, the mean function in the response plot for LR can take a variety of
shapes depending on the range of the ESP. For LR, the (estimated) mean
function is

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )
.

If the ESP = 0 then Y |SP ≈ binomial(1,0.5). If the ESP = −5, then Y |SP ≈
binomial(1,ρ ≈ 0.007) while if the ESP = 5, then Y |SP ≈ binomial(1,ρ ≈
0.993). Hence if the range of the ESP is in the interval (−∞,−5) then the
mean function is flat and ρ̂(ESP ) ≈ 0. If the range of the ESP is in the
interval (5,∞) then the mean function is again flat but ρ̂(ESP ) ≈ 1. If
−5 < ESP < 0 then the mean function looks like a slide. If −1 < ESP < 1
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then the mean function looks linear. If 0 < ESP < 5 then the mean function
first increases rapidly and then less and less rapidly. Finally, if−5 < ESP < 5
then the mean function has the characteristic “ESS” shape shown in Figure
4.1 c).

This plot is very useful as a goodness of fit diagnostic. Divide the ESP into
J “slices” each containing approximately n/J cases. Compute the sample
mean = sample proportion of the Y s in each slice and add the resulting
step function to the response plot. This is done in Figure 4.1 c) with J = 4
slices. This step function is a simple nonparametric estimator of the mean
function ρ(SP ). If the step function follows the estimated LR mean function
(the logistic curve) closely, then the LR model fits the data well. The plot
of these two curves is a graphical approximation of the goodness of fit tests
described in Hosmer and Lemeshow (2000, pp. 147–156).

The deviance test described in Section 4.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
binary LR model is a good approximation to the data but β = 0, then the
predictors x are not needed in the model and ρ̂(xi) ≡ ρ̂ = Y (the usual
univariate estimator of the success proportion) should be used instead of the
LR estimator

ρ̂(xi) =
exp(xT

i β̂)

1 + exp(xT
i β̂)

.

If the logistic curve clearly fits the step function better than the line Y = Y ,
then H0 will be rejected, but if the line Y = Y fits the step function about
as well as the logistic curve (which should only happen if the logistic curve
is linear with a small slope), then Y may be independent of the predictors.
See Figure 4.1 a).

For binomial logistic regression, the response plot needs to be modified
and a check for overdispersion is needed.

Definition 4.10. Let Zi = Yi/mi. Then the conditional distribution Zi|xi

of the LR binomial regression model can be visualized with a response plot

of the ESP = β̂
T
xi versus Zi with the estimated mean function

ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )

added as a visual aid. Divide the ESP into J slices with approximately the
same number of cases in each slice. Then compute ρ̂s =

∑
s Yi/

∑
smi where

the sum is over the cases in slice s. Then plot the resulting step function
or the lowess curve. For binary data the step function is simply the sample
proportion in each slice.

Both the lowess curve and step function are simple nonparametric estima-
tors of the mean function ρ(SP ). If the lowess curve or step function tracks
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the logistic curve (the estimated mean) closely, then the LR mean function
is a reasonable approximation to the data.

Checking the LR model in the nonbinary case is more difficult because
the binomial distribution is not the only distribution appropriate for data
that takes on values 0, 1, ...,m if m ≥ 2. Hence both the mean and variance
functions need to be checked. Often the LR mean function is a good approx-
imation to the data, the LR MLE is a consistent estimator of β, but the
LR model is not appropriate. The problem is that for many data sets where
E(Yi|xi) = miρ(SPi), it turns out that V (Yi|xi) > miρ(SPi)(1 − ρ(SPi)).
This phenomenon is called overdispersion. The BBR model of Definition 4.2
is a useful alternative to LR.

For both the LR and BBR models, the conditional distribution of Y |x can
still be visualized with a response plot of the ESP versus Zi = Yi/mi with the
estimated mean function Ê(Zi|xi) = ρ̂(SP ) = ρ(ESP ) and a step function
or lowess curve added as visual aids.

Since the binomial regression model is simpler than the BBR model, graph-
ical diagnostics for the goodness of fit of the LR model would be useful. The
following plot was suggested by Olive (2013b) to check for overdispersion.

Definition 4.11. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the LR model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi))
and Ê(Yi|SP ) = miρ(ESPi).

Numerical summaries are also available. The deviance G2 is a statistic
used to assess the goodness of fit of the logistic regression model much as R2

is used for multiple linear regression. When the mi are small, G2 may not be
reliable but the response plot is still useful. If the Yi are not too close to 0
or mi, if the response and OD plots look good, and the deviance G2 satisfies
G2/(n−p) ≈ 1, then the LR model is likely useful. If G2 > (n−p)+3

√
n− p,

then a more complicated count model may be needed.
Combining the response plot with the OD plot is a powerful method for

assessing the adequacy of the LR model. To motivate the OD plot, recall that
if a count Y is not too close to 0 or m, then a normal approximation is good
for the binomial distribution. Notice that if Yi = E(Y |SP ) + 2

√
V (Y |SP ),

then [Yi − E(Y |SP )]2 = 4V (Y |SP ). Hence if both the estimated mean and
estimated variance functions are good approximations, and if the counts are
not too close to 0 or mi, then the plotted points in the OD plot will scatter
about a wedge formed by the V̂ = 0 line and the line through the origin
with slope 4: V̂ = 4V̂ (Y |SP ). Only about 5% of the plotted points should
be above this line.

When the counts are small, the OD plot is not wedge shaped, but if the LR
model is correct, the least squares (OLS) line should be close to the identity
line through the origin with unit slope. If the data are binary, the response
plot is enough to check the binomial regression assumption.
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Suppose the bulk of the plotted points in the OD plot fall in a wedge.
Then the identity line, slope 4 line, and OLS line will be added to the plot
as visual aids. It is easier to use the OD plot to check the variance function
than the response plot since judging the variance function with the straight
lines of the OD plot is simpler than judging the variability about the logistic
curve. Also outliers are often easier to spot with the OD plot. For the LR
model, V̂ (Yi|SP ) = miρ(ESPi)(1 − ρ(ESPi)) and Ê(Yi|SP ) = miρ(ESPi).
The evidence of overdispersion increases from slight to high as the scale of the
vertical axis increases from 4 to 10 times that of the horizontal axis. There is
considerable evidence of overdispersion if the scale of the vertical axis is more
than 10 times that of the horizontal, or if the percentage of points above the
slope 4 line through the origin is much larger than 5%.

If the binomial LR OD plot is used but the data follows a beta–binomial re-
gression model, then V̂mod = V̂ (Yi|SP ) ≈ miρ(ESP )(1−ρ(ESP )) while V̂ =
[Yi −miρ(ESP )]2 ≈ (Yi − E(Yi))

2. Hence E(V̂ ) ≈ V (Yi) ≈ miρ(ESP )(1 −
ρ(ESP ))[1 + (mi − 1)θ/(1 + θ)], so the plotted points with mi = m should

scatter about a line with slope ≈ 1 + (m− 1)
θ

1 + θ
=

1 +mθ

1 + θ
.
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Fig. 4.1 Response Plots for Museum Data

The first example is for binary data. For binary data, G2 is not approxi-
mately χ2 and some plots of residuals have a pattern whether the model is
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correct or not. For binary data the OD plot is not needed, and the plotted
points follow a curve rather than falling in a wedge. The response plot is
very useful if the logistic curve and step function of observed proportions are
added as visual aids. The logistic curve gives the estimated LR probability of
success. For example, when ESP = 0, the estimated probability is 0.5. The
following three examples used SP = xT β.

Example 4.1. Schaaffhausen (1878) gives data on skulls at a museum.
The 1st 47 skulls are humans while the remaining 13 are apes. The response
variable ape is 1 for an ape skull. The response plot in Figure 4.1a) uses
the predictor face length. The model fits very poorly since the probability
of a 1 decreases then increases. The response plot in Figure 4.1b) uses the
predictor head height and perfectly classifies the data since the ape skulls can
be separated from the human skulls with a vertical line at ESP = 0. The
response plot in Figure 4.1c uses predictors lower jaw length, face length, and
upper jaw length. None of the predictors is good individually, but together
provide a good LR model since the observed proportions (the step function)
track the model proportions (logistic curve) closely. The OD plot in Figure
4.1d) is curved and is not needed for a binary response.
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Fig. 4.2 Visualizing the Death Penalty Data

Example 4.2. Abraham and Ledolter (2006, pp. 360-364) describe death
penalty sentencing in Georgia. The predictors are aggravation level from 1 to
6 (treated as a continuous variable) and race of victim coded as 1 for white
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and 0 for black. There were 362 jury decisions and 12 level race combinations.
The response variable was the number of death sentences in each combination.
The response plot (ESSP) in Figure 4.2a shows that the Yi/mi are close to
the estimated LR mean function (the logistic curve). The step function based
on 5 slices also tracks the logistic curve well. The OD plot is shown in Figure
4.2b with the identity, slope 4, and OLS lines added as visual aids. The
vertical scale is less than the horizontal scale, and there is no evidence of
overdispersion.
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Fig. 4.3 Plots for Rotifer Data

Example 4.3. Collett (1999, pp. 216-219) describes a data set where the
response variable is the number of rotifers that remain in suspension in a
tube. A rotifer is a microscopic invertebrate. The two predictors were the
density of a stock solution of Ficolli and the species of rotifer coded as 1
for polyarthra major and 0 for keratella cochlearis. Figure 4.3a shows the
response plot (ESSP). Both the observed proportions and the step function
track the logistic curve well, suggesting that the LR mean function is a good
approximation to the data. The OD plot suggests that there is overdispersion
since the vertical scale is about 30 times the horizontal scale. The OLS line
has slope much larger than 4 and two outliers seem to be present.
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4.4 Poisson Regression

If the response variable Y is a count, then the Poisson regression model is
often useful. For example, counts often occur in wildlife studies where a region
is divided into subregions and Yi is the number of a specified type of animal
found in the subregion.

Definition 4.12. The Poisson regression (PR) model states that
Y1, ..., Yn are independent random variables with Yi ∼ Poisson(µ(xi)) where
µ(xi) = exp(h(xi)). Thus Y |SP ∼ Poisson(exp(SP)). Notice that Y |SP =
0 ∼ Poisson(1). Note that the conditional mean and variance functions are
equal: E(Y |SP ) = V (Y |SP ) = exp(SP ).

In the response plot for Poisson regression, the shape of the estimated
mean function µ̂(ESP ) = exp(ESP ) depends strongly on the range of the
ESP. The variety of shapes occurs because the plotting software attempts
to fill the vertical axis. Hence if the range of the ESP is narrow, then the
exponential function will be rather flat. If the range of the ESP is wide, then
the exponential curve will look flat in the left of the plot but will increase
sharply in the right of the plot.

Definition 4.13. The estimated sufficient summary plot (ESSP) or re-

sponse plot, is a plot of the ESP = ĥ(xi) versus Yi with the estimated mean
function

µ̂(ESP ) = exp(ESP )

added as a visual aid. A scatterplot smoother such as lowess is also added as
a visual aid.

This plot is very useful as a goodness of fit diagnostic. The lowess curve
is a nonparametric estimator of the mean function and is represented as a
jagged curve to distinguish it from the estimated PR mean function (the
exponential curve). See Figure 4.4 a). If the number of notrivial predictors
q < n/10, if there is no overdispersion, and if the lowess curve follows the
exponential curve closely (except possibly for the largest values of the ESP),
then the PR mean function may be a useful approximation for E(Y |x). A
useful lack of fit plot is a plot of the ESP versus the deviance residuals
that are often available from the software.

The deviance test described in Section 4.5 is used to test whether β = 0,
and is the analog of the ANOVA F test for multiple linear regression. If the
PR model is a good approximation to the data but β = 0, then the predictors
x are not needed in the model and µ̂(xi) ≡ µ̂ = Y (the sample mean) should
be used instead of the PR estimator

µ̂(xi) = exp(xT
i β̂).



224 4 1D Regression Models Such as GLMs

If the exponential curve clearly fits the lowess curve better than the line
Y = Y , then H0 should be rejected, but if the line Y = Y fits the lowess
curve about as well as the exponential curve (which should only happen if
the exponential curve is approximately linear with a small slope), then Y
may be independent of the predictors. See Figure 4.6 a).

Warning: For many count data sets where the PR mean function is
good, the PR model is not appropriate but the PR MLE is still a con-
sistent estimator of β. The problem is that for many data sets where
E(Y |x) = µ(x) = exp(SP ), it turns out that V (Y |x) > exp(SP ). This
phenomenon is called overdispersion. Adding parametric and nonparamet-
ric estimators of the standard deviation function to the response plot can
be useful. See Cook and Weisberg (1999, pp. 401-403). The NBR model of
Definition 4.3 is a useful alternative to PR.

Since the Poisson regression model is simpler than the NBR model, graph-
ical diagnostics for the goodness of fit of the PR model would be useful. The
following plot was suggested by Winkelmann (2000, p. 110).

Definition 4.14. To check for overdispersion, use the OD plot of the
estimated model variance V̂M ≡ V̂ (Y |SP ) versus the squared residuals V̂ =
[Y − Ê(Y |SP )]2. For the PR model, V̂ (Y |SP ) = exp(ESP ) = Ê(Y |SP ) and
V̂ = [Y − exp(ESP )]2.

Numerical summaries are also available. The deviance G2, described in
Section 4.5, is a statistic used to assess the goodness of fit of the Poisson
regression model much asR2 is used for multiple linear regression. For Poisson
regression, G2 is approximately chi-square with n − p degrees of freedom.
Since a χ2

d random variable has mean d and standard deviation
√

2d, the 98th

percentile of the χ2
d distribution is approximately d+3

√
d ≈ d+2.121

√
2d. If

the response and OD plots look good, and G2/(n−p) ≈ 1, then the PR model
is likely useful. If G2 > (n − p) + 3

√
n− p, then a more complicated count

model than PR may be needed. A good discussion of such count models is in
Simonoff (2003).

For PR, Winkelmann (2000, p. 110) suggested that the plotted points in
the OD plot should scatter about the identity line through the origin with unit
slope and that the OLS line should be approximately equal to the identity
line if the PR model is appropriate. But in simulations, it was found that the
following two observations make the OD plot much easier to use for Poisson
regression.

First, recall that a normal approximation is good for both the Poisson
and negative binomial distributions if the count Y is not too small. Notice
that if Y = E(Y |SP ) + 2

√
V (Y |SP ), then [Y − E(Y |SP )]2 = 4V (Y |SP ).

Hence if both the estimated mean and estimated variance functions are good
approximations, the plotted points in the OD plot for Poisson regression will
scatter about a wedge formed by the V̂ = 0 line and the line through the
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origin with slope 4: V̂ = 4V̂ (Y |SP ). If the normal approximation is good,
only about 5% of the plotted points should be above this line.

Second, the evidence of overdispersion increases from slight to high as the
scale of the vertical axis increases from 4 to 10 times that of the horizontal
axis. (The scale of the vertical axis tends to depend on the few cases with
the largest V̂ (Y |SP ), and P [(Y − Ê(Y |SP ))2 > 10V̂ (Y |SP )] can be ap-
proximated with a normal approximation or Chebyshev’s inequality.) There
is considerable evidence of overdispersion if the scale of the vertical axis is
more than 10 times that of the horizontal, or if the percentage of points above
the slope 4 line through the origin is much larger than 5%. Hence the identity
line and slope 4 line are added to the OD plot as visual aids, and one should
check whether the scale of the vertical axis is more than 10 times that of the
horizontal.

Combining the response plot with the OD plot is a powerful method for
assessing the adequacy of the Poisson regression model. It is easier to use the
OD plot to check the variance function than the response plot since judging
the variance function with the straight lines of the OD plot is simpler than
judging two curves. Also outliers are often easier to spot with the OD plot.

For Poisson regression, judging the mean function from the response plot
may be rather difficult for large counts since the mean function is curved
and lowess does not track the exponential function very well for large counts.
Definition 4.16 will give some useful plots. Since P (Yi = 0) > 0, the estima-
tors given in the following definition are used. Let Zi = Yi if Yi > 0, and let
Zi = 0.5 if Yi = 0. Let x = (1,uT )T .

Definition 4.15. The minimum chi–square estimator of the param-
eters β = (α,ηT )T in a Poisson regression model are (α̂M , η̂M ), and are
found from the weighted least squares regression of log(Zi) on ui with weights
wi = Zi. Equivalently, use the ordinary least squares (OLS) regression (with-
out intercept) of

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

The minimum chi–square estimator tends to be consistent if n is fixed
and all n counts Yi increase to ∞, while the Poisson regression maximum
likelihood estimator β̂ = (α̂, η̂T )T tends to be consistent if the sample size
n → ∞. See Agresti (2002, pp. 611-612). However, the two estimators are
often close for many data sets.

The basic idea of the following two plots for Poisson regression is to trans-
form the data towards a linear model, then make the response plot of Ŵ
versus W and residual plot of the residuals W − Ŵ for the transformed re-
sponse variable W . The mean function is the identity line and the vertical
deviations from the identity line are the WLS residuals. If ESP = xT

i β̂, The
plots are based on weighted least squares (WLS) regression. Use the equiva-
lent OLS regression (without intercept) ofW =

√
Zi log(Zi) on

√
Zi(1,u

T
i )T .

Then the plot of the “fitted values” Ŵ =
√
Zi(α̂M + η̂T

Mui) versus the “re-
sponse”

√
Zi log(Zi) should have points that scatter about the identity line.
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These results and the equivalence of the minimum chi–square estimator to
an OLS estimator suggest the following diagnostic plots.

Definition 4.16. For a Poisson regression model, a weighted fit re-
sponse plot is a plot of

√
ZiESP versus

√
Zi log(Zi). The weighted

residual plot is a plot of
√
ZiESP versus the “WLS” residuals rWi =√

Zi log(Zi)−
√
ZiESP .

If the Poisson regression model is appropriate and the PR estimator is
good, then the plotted points in the weighted fit response plot should follow
the identity line. When the counts Yi are small, the “WLS” residuals can
not be expected to be approximately normal. Often the larger counts are fit
better than the smaller counts and hence the residual plots have a “left open-
ing megaphone” shape. This fact makes residual plots for Poisson regression
rather hard to use, but cases with large “WLS” residuals may not be fit very
well by the model. Both the weighted fit response and residual plots perform
better for simulated PR data with many large counts than for data where all
of the counts are less than 10. The following three examples use SP = xT β.

Example 4.4. For the Ceriodaphnia data of Myers et al. (2002, pp.
136-139), the response variable Y is the number of Ceriodaphnia organisms
counted in a container. The sample size was n = 70, and the predictors were
a constant (x1), seven concentrations of jet fuel (x2), and an indicator for
two strains of organism (x3). The jet fuel was believed to impair reproduc-
tion so high concentrations should have smaller counts. Figure 4.4 shows the
4 plots for this data. In the response plot of Figure 4.4a, the lowess curve is
represented as a jagged curve to distinguish it from the estimated PR mean
function (the exponential curve). The horizontal line corresponds to the sam-
ple mean Y . The OD plot in Figure 4.4b suggests that there is little evidence
of overdispersion. These two plots as well as Figures 4.4c and 4.4d suggest
that the Poisson regression model is a useful approximation to the data.

Example 4.5. For the crab data, the response Y is the number of satellites
(male crabs) near a female crab. The sample size n = 173 and the predictor
variables were the color, spine condition, caparice width, and weight of the
female crab. Agresti (2002, pp. 126-131) first uses Poisson regression, and
then uses the NBR model with κ̂ = 0.98 ≈ 1. Figure 4.5a suggests that
there is one case with an unusually large value of the ESP. The lowess curve
does not track the exponential curve all that well. Figure 4.5b suggests that
overdispersion is present since the vertical scale is about 10 times that of
the horizontal scale and too many of the plotted points are large and greater
than the slope 4 line. Figure 4.5c also suggests that the Poisson regression
mean function is a rather poor fit since the plotted points fail to cover the
identity line. Although the exponential mean function fits the lowess curve
better than the line Y = Y , an alternative model to the NBR model may fit
the data better. In later chapters, Agresti uses binomial regression models
for this data.
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Fig. 4.4 Plots for Ceriodaphnia Data
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Fig. 4.5 Plots for Crab Data
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Fig. 4.6 Plots for Popcorn Data

Example 4.6. For the popcorn data of Myers et al. (2002, p. 154), the
response variable Y is the number of inedible popcorn kernels. The sample
size was n = 15 and the predictor variables were temperature (coded as 5,
6, or 7), amount of oil (coded as 2, 3, or 4), and popping time (75, 90, or
105). One batch of popcorn had more than twice as many inedible kernels
as any other batch and is an outlier. Ignoring the outlier in Figure 4.6a
suggests that the line Y = Y will fit the data and lowess curve better than
the exponential curve. Hence Y seems to be independent of the predictors.
Notice that the outlier sticks out in Figure 4.6b and that the vertical scale is
well over 10 times that of the horizontal scale. If the outlier was not detected,
then the Poisson regression model would suggest that temperature and time
are important predictors, and overdispersion diagnostics such as the deviance
would be greatly inflated. However, we probably need to delete the high
temperature, low oil, and long popping time combination, to conclude that
the response is independent of the predictors.

4.5 GLM Inference, n/p Large

This section gives a very brief discussion of inference for the logistic regression
(LR) and Poisson regression (PR) models. Inference for these two models is
very similar to inference for the multiple linear regression (MLR) model. For
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all three of these models, Y is independent of the p × 1 vector of predictors
x = (x1, x2, ..., xp)

T given the sufficient predictor xT β where the constant
x1 ≡ 1.

To perform inference for LR and PR, computer output is needed. Shown
below is output using symbols and output from a real data set with p = 3
nontrivial predictors. This data set is the banknote data set described in Cook
and Weisberg (1999, p. 524). There were 200 Swiss bank notes of which 100
were genuine (Y = 0) and 100 counterfeit (Y = 1). The goal of the analysis
was to determine whether a selected bill was genuine or counterfeit from
physical measurements of the bill.

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β2 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for H0 : βp = 0

Number of cases: n

Degrees of freedom: n - p

Pearson X2:

Deviance: D = Gˆ2

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169

Point estimators for the mean function are important. Given values of
x = (x1, ..., xp)

T , a major goal of binary logistic regression is to estimate the
success probability P (Y = 1|x) = ρ(x) with the estimator

ρ̂(x) =
exp(xT β̂)

1 + exp(xT β̂)
. (4.8)



230 4 1D Regression Models Such as GLMs

Similarly, a major goal of Poisson regression is to estimate the mean
E(Y |x) = µ(x) with the estimator

µ̂(x) = exp(xT β̂). (4.9)

For tests, pval, the estimated p–value, is an important quantity. Again
what output labels as p–value is typically pval. Recall that H0 is rejected if
the pval ≤ δ. A pval between 0.07 and 1.0 provides little evidence that H0

should be rejected, a pval between 0.01 and 0.07 provides moderate evidence
and a pval less than 0.01 provides strong statistical evidence that H0 should
be rejected. Statistical evidence is not necessarily practical evidence, and
reporting the pval along with a statement of the strength of the evidence is
more informative than stating that the pval is less than some chosen value
such as δ = 0.05. Nevertheless, as a homework convention, use δ = 0.05 if
δ is not given.

Investigators also sometimes test whether a predictor xj is needed in the
model given that the other p−1 predictors are in the model with the following
4 step Wald test of hypotheses.
i) State the hypotheses H0 : βj = 0 HA : βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j ) or obtain it from output.
iii) The pval = 2P (Z < −|zoj |) = 2P (Z > |zoj |). Find the pval from output
or use the standard normal table.
iv) State whether you reject H0 or fail to reject H0 and give a nontechnical
sentence restating your conclusion in terms of the story problem.

If H0 is rejected, then conclude that xj is needed in the GLM model for
Y given that the other p− 1 predictors are in the model. If you fail to reject
H0, then conclude that xj is not needed in the GLM model for Y given that
the other p− 1 predictors are in the model. (Or there is not enough evidence
to conclude that xj is needed in the model.) Note that xj could be a very
useful GLM predictor, but may not be needed if other predictors are added
to the model.

The Wald confidence interval (CI) for βj can also be obtained using the

output: the large sample 100 (1− δ) % CI for βj is β̂j ± z1−δ/2 se(β̂j ).

The Wald test and CI tend to give good results if the sample size n is large.
Here 1− δ refers to the coverage of the CI. A 90% CI uses z1−δ/2 = 1.645, a
95% CI uses z1−δ/2 = 1.96, and a 99% CI uses z1−δ/2 = 2.576.

For a GLM, often 3 models are of interest: the full model that uses all
p of the predictors xT = (xT

R,x
T
O), the reduced model that uses the r

predictors xR, and the saturated model that uses n parameters θ1, ..., θn

where n is the sample size. For the full model the p parameters β1, ..., βp are
estimated while the reduced model has r+1 parameters. Let lSAT (θ1 , ..., θn)
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be the likelihood function for the saturated model and let lFULL(β) be the

likelihood function for the full model. Let LSAT = log lSAT (θ̂1 , ..., θ̂n) be the
log likelihood function for the saturated model evaluated at the maximum
likelihood estimator (MLE) (θ̂1, ..., θ̂n) and let LFULL = log lFULL(β̂) be the

log likelihood function for the full model evaluated at the MLE (β̂). Then
the deviance D = G2 = −2(LFULL − LSAT ). The degrees of freedom for
the deviance = dfFULL = n− p where n is the number of parameters for the
saturated model and p is the number of parameters for the full model.

The saturated model for logistic regression states that for i = 1, ..., n, the
Yi|xi are independent binomial(mi, ρi) random variables where ρ̂i = Yi/mi.
The saturated model is usually not very good for binary data (all mi = 1)
or if the mi are small. The saturated model can be good if all of the mi are
large or if ρi is very close to 0 or 1 whenever mi is not large.

The saturated model for Poisson regression states that for i = 1, ..., n,
the Yi|xi are independent Poisson(µi) random variables where µ̂i = Yi. The
saturated model is usually not very good for Poisson data, but the saturated
model may be good if n is fixed and all of the counts Yi are large.

If X ∼ χ2
d then E(X) = d and VAR(X) = 2d. An observed value of

X > d + 3
√
d is unusually large and an observed value of X < d − 3

√
d is

unusually small.

When the saturated model is good, a rule of thumb is that the logistic or
Poisson regression model is ok if G2 ≤ n − p (or if G2 ≤ n − p+ 3

√
n− p).

For binary LR, the χ2
n−p approximation for G2 is rarely good even for large

sample sizes n. For LR, the response plot is often a much better diagnostic
for goodness of fit, especially when ESP = xT

i β takes on many values and
when p << n. For PR, both the response plot and G2 ≤ n − p + 3

√
n− p

should be checked.

Response = Y
Terms = (x1, ..., xp)
Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones n− 1 = dfo G2
o

x2 n− 2 1
x3 n− 3 1
...

...
...

...
xp n− p = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance
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Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484

The above output, shown in symbols and for a real data set, is used for the
deviance test described below. Assume that the response plot has been made
and that the logistic or Poisson regression model fits the data well in that the
nonparametric step or lowess estimated mean function follows the estimated
model mean function closely and there is no evidence of overdispersion. The
deviance test is used to test whether β2 = 0 where β = (β1 ,β

T
2 )T = (α,ηT )T .

If this is the case, then the nontrivial predictors are not needed in the GLM
model. IfH0 : β2 = 0 is not rejected, then for Poisson regression the estimator

µ̂ = Y should be used while for logistic regression ρ̂ =

n∑

i=1

Yi/

n∑

i=1

mi should

be used. Note that ρ̂ = Y for binary logistic regression since mi ≡ 1 for
i = 1, ..., n. This test is similar to the ANOVA F test for multiple liner
regression.

The 4 step deviance test is
i) H0 : β2 = 0 HA : β2 6= 0,
ii) test statistic G2(o|F ) = G2

o −G2
FULL.

iii) The pval = P (χ2 > G2(o|F )) where χ2 ∼ χ2
q has a chi–square dis-

tribution with q = p − 1 degrees of freedom. Note that q = q + 1 − 1 =
dfo − dfFULL = n− 1− (n− q − 1).

iv) Reject H0 if the pval≤ δ and conclude that there is a GLM relationship
between Y and the predictors X2, ..., Xp. If pval> δ, then fail to reject H0 and
conclude that there is not a GLM relationship between Y and the predictors
X2, ..., Xp. (Or there is not enough evidence to conclude that there is a GLM
relationship between Y and the predictors.)

This test can be performed in R by obtaining output from the full and
null model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outn <- glm(Y˜1,family = binomial)

anova(outn,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** k Gˆ2(0|F) pvalue

The output below, shown both in symbols and for a real data set, can be
used to perform the change in deviance test. If the reduced model leaves out
a single variable xi, then the change in deviance test becomes H0 : βi = 0
versus HA : βi 6= 0. This test is a competitor of the Wald test. This change in
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deviance test is usually better than the Wald test if the sample size n is not
large, but the Wald test is often easier for software to produce. For large n
the test statistics from the two tests tend to be very similar (asymptotically
equivalent tests).

If the reduced model is good, then the EE plot of ESP (R) = xT
Riβ̂R

versus ESP = xT
i β̂ should be highly correlated with the identity line with

unit slope and zero intercept.

Response = Y Terms = (x1, ..., xp) (Full Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for H0 : β1 = 0
...

...
...

...
...

xp β̂q se(β̂p) zo,p = β̂p/se(β̂p) for H) : βp = 0
Degrees of freedom: n− p = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (x1, ..., xr) (Reduced Model)

Label Estimate Std. Error Est/SE p-value

Constant β̂1 se(β̂1) zo,1 for H0 : β1 = 0

x2 β̂2 se(β̂2) zo,2 = β̂2/se(β̂2) for H0 : β1 = 0
...

...
...

...
...

xr β̂r se(β̂r) zo,r = β̂k/se(β̂r) for H0 : βr = 0
Degrees of freedom: n− r = dfRED

Deviance: D = G2
RED

(Full Model) Response = Status,

Terms = (Diagonal Bottom Top)

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

(Reduced Model) Response = Status, Terms = (Diagonal)

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000
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Degrees of freedom: 198

Deviance: 21.109

After obtaining an acceptable full model where

SP = β1 + β2x2 + · · ·+ βpxp = xT β = xT
RβR + xT

OβO

try to obtain a reduced model

SP (red) = β1 + βR2xR2 + · · ·+ βRrxRr = xT
RβR

where the reduced model uses r of the predictors used by the full model and
xO denotes the vector of p − r predictors that are in the full model but not
the reduced model. For logistic regression, the reduced model is Yi|xRi ∼
independent Binomial(mi, ρ(xRi)) while for Poisson regression the reduced
model is Yi|xRi ∼ independent Poisson(µ(xRi)) for i = 1, ..., n.

Assume that the response plot looks good. Then we want to test H0: the
reduced model is good (can be used instead of the full model) versus HA:
use the full model (the full model is significantly better than the reduced
model). Fit the full model and the reduced model to get the deviances G2

FULL

and G2
RED. The next test is similar to the partial F test for multiple linear

regression.

The 4 step change in deviance test is
i) H0: the reduced model is good HA: use the full model,
ii) test statistic G2(R|F ) = G2

RED −G2
FULL.

iii) The pval = P (χ2 > G2(R|F )) where χ2 ∼ χ2
p−r has a chi–square

distribution with p− r degrees of freedom. Note that p− 1 is the number of
nontrivial predictors in the full model while r− 1 is the number of nontrivial
predictors in the reduced model. Also notice that p− r = dfRED − dfFULL =
n− r − (n− p) = (p− 1)− (r − 1).

iv) Reject H0 if the pval ≤ δ and conclude that the full model should be
used. If pval > δ, then fail to reject H0 and conclude that the reduced model
is good.

This test can be performed in R by obtaining output from the full and
reduced model.

outf <- glm(Y˜x2 + x3 + ... + xp, family = binomial)

outr <- glm(Y˜ x4 + x6 + x8,family = binomial)

anova(outr,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****
2 *** **** p-r Gˆ2(R|F) pvalue

Interpretation of coefficients: if x2, ..., xi−1, xi+1, ..., xp can be held fixed,
then increasing xi by 1 unit increases the sufficient predictor SP by βi units.
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As a special case, consider logistic regression. Let ρ(x) = P (success|x) = 1−
P(failure|x) where a “success” is what is counted and a “failure” is what is not
counted (so if the Yi are binary, ρ(x) = P (Yi = 1|x)). Then the estimated

odds of success is Ω̂(x) =
ρ̂(x)

1− ρ̂(x)
= exp(xT β̂). In logistic regression,

increasing a predictor xi by 1 unit (while holding all other predictors fixed)

multiplies the estimated odds of success by a factor of exp(β̂i).

Output for Full Model, Response = gender, Terms =

(age log[age] breadth circum headht

height length size log[size])

Number of cases: 267, Degrees of freedom: 257,

Deviance: 234.792

Logistic Regression Output for Reduced Model,

Response = gender, Terms = (height size)

Label Estimate Std. Error Est/SE p-value

Constant -6.26111 1.34466 -4.656 0.0000

height -0.0536078 0.0239044 -2.243 0.0249

size 0.0028215 0.000507935 5.555 0.0000

Number of cases: 267, Degrees of freedom: 264

Deviance: 313.457

Example 4.7. Let the response variable Y = gender = 0 for F and 1 for
M. Let x2 = height (in inches) and x3 = size of head (in mm3). Logistic
regression is used, and data is from Gladstone (1905). There is output above.

a) Predict ρ̂(x) if height = x2 = 65 and size = x3 = 3500.

b) The full model uses the predictors listed above to the right of Terms.
Perform a 4 step change in deviance test to see if the reduced model can be
used. Both models contain a constant.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 = −6.26111 − 0.0536078(65) +
0.0028215(3500) = 0.1296. So

ρ̂(x) =
eESP

1 + eESP
=

1.1384

1 + 1.1384
= 0.5324.

b) i) H0: the reduced model is good HA: use the full model
ii) G2(R|F ) = 313.457− 234.792 = 78.665
iii) Now df = 264− 257 = 7, and comparing 78.665 with χ2

7,0.999 = 24.32
shows that the pval = 0 < 1− 0.999 = 0.001.

iv) Reject H0, use the full model.

Example 4.8. Suppose that Y is a 1 or 0 depending on whether the
person is or is not credit worthy. Let x2 through x7 be the predictors and
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use the following output to perform a 4 step deviance test. The credit data is
available from the text’s website as file credit.lsp, and is from Fahrmeir and
Tutz (2001).

Response = y

Sequential Analysis of Deviance

All fits include an intercept.

Total Change

Predictor df Deviance | df Deviance

Ones 999 1221.73 |

x2 998 1177.11 | 1 44.6148

x3 997 1176.55 | 1 0.561629

x4 996 1168.33 | 1 8.21723

x5 995 1168.20 | 1 0.137583

x6 994 1163.44 | 1 4.75625

x7 993 1158.22 | 1 5.21846

Solution: i) H0 : β2 = · · · = β7 HA: not H0

ii) G2(0|F ) = 1221.73− 1158.22 = 63.51
iii) Now df = 999 − 993 = 6, and comparing 63.51 with χ2

6,0.999 = 22.46
shows that the pval = 0 < 1− 0.999 = 0.001.

iv) Reject H0, there is a LR relationship between Y = credit worthiness
and the predictors x2, ..., x7.

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -5.84211 1.74259 -3.353 0.0008

jaw ht 0.103606 0.0383650 ? ??

Example 4.9. A museum has 60 skulls, some of which are human and
some of which are from apes. Consider trying to estimate whether the skull
type is human or ape from the height of the lower jaw. Use the above logistic
regression output to answer the following problems. The museum data is
available from the text’s website as file museum.lsp, and is from Schaaffhausen
(1878). Here x = x2.

a) Predict ρ̂(x) if x = 40.0.
b) Find a 95% CI for β2.
c) Perform the 4 step Wald test for H0 : β2 = 0.

Solution: a) exp[ESP ] = exp[β̂1+β̂2(40)] = exp[−5.84211+0.103606(40)] =
exp[−1.69787] = 0.1830731. So

ρ̂(x) =
eESP

1 + eESP
=

0.1830731

1 + 0.1830731
= 0.1547.

b) β̂2 ± 1.96SE(β̂2) = 0.103606± 1.96(0.03865) = 0.103606± 0.0751954 =
[0.02841, 0.1788].
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c) i) H0 : β2 = 0 HA : β2 6= 0

ii) Z0 =
β̂2

SE(β̂2)
=

0.103606

0.038365
= 2.7005.

iii) Using a standard normal table, pval = 2P (Z < −2.70) = 2(0.0035) =
0.0070.

iv) Reject H0, jaw height is a useful LR predictor for whether the skull is
human or ape (so is needed in the LR model).

Label Estimate Std. Error Est/SE p-value

Constant -0.406023 0.877382 -0.463 0.6435

bombload 0.165425 0.0675296 2.450 0.0143

exper -0.0135223 0.00827920 -1.633 0.1024

type 0.568773 0.504297 1.128 0.2594

Example 4.10. Use the above output to perform inference on the num-
ber of locations where aircraft was damaged. The output is from a Poisson
regression. The variable exper = total months of aircrew experience while
type of aircraft was coded as 0 or 1. There were n = 30 cases. Data is from
Montgomery et al. (2001).

a) Predict µ̂(x) if bombload = x2 = 7.0, exper = x3 = 80.2, and type
= x4 = 1.0.

b) Perform the 4 step Wald test for H0 : β3 = 0.

c) Find a 95% confidence interval for β4.

Solution: a) ESP = β̂1 + β̂2x2 + β̂3x3 + β̂4x4 = −0.406023+0.165426(7)−
0.0135223(80.2)+0.568773(1) = 0.2362. So µ̂(x) = exp(ESP ) = exp(0.2360) =
1.2665.

b) i) H0 : β3 = 0 HA : β3 6= 0
ii) t03 = −1.633.
iii) pval = 0.1024
iv) Fail to reject H0, exper in not needed in the PR model for number of

locations given that bombload and type are in the model.
c) β̂4 ± 1.96SE(β̂4) = 0.568773± 1.96(0.504297) = 0.568773± 0.9884 =

[−0.4196, 1.5572].

4.6 Variable and Model Selection

4.6.1 When n/p is Large

This subsection gives some rules of thumb for variable selection for logistic
and Poisson regression when SP = xT β. Before performing variable selection,
a useful full model needs to be found. The process of finding a useful full
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model is an iterative process. Given a predictor x, sometimes x is not used
by itself in the full model. Suppose that Y is binary. Then to decide what
functions of x should be in the model, look at the conditional distribution of
x|Y = i for i = 0, 1. The rules shown in Table 4.1 are used if x is an indicator
variable or if x is a continuous variable. Replace normality by “symmetric
with similar spreads” and “symmetric with different spreads” in the second
and third lines of the table. See Cook and Weisberg (1999, p. 501) and Kay
and Little (1987).

The full model will often contain factors and interactions. If w is a nominal
variable with K levels, make w into a factor by using K − 1 (indicator or)
dummy variables x1,w, ..., xK−1,w in the full model. For example, let xi,w = 1
if w is at its ith level, and let xi,w = 0, otherwise. An interaction is a product
of two or more predictor variables. Interactions are difficult to interpret.
Often interactions are included in the full model, and then the reduced model
without any interactions is tested. The investigator is often hoping that the
interactions are not needed.

Table 4.1 Building the Full Logistic Regression Model

distribution of x|y = i variables to include in the model
x|y = i is an indicator x
x|y = i ∼ N(µi, σ2) x
x|y = i ∼ N(µi, σ2

i ) x and x2

x|y = i has a skewed distribution x and log(x)
x|y = i has support on (0,1) log(x) and log(1 − x)

A scatterplot matrix is used to examine the marginal relationships of
the predictors and response. Place Y on the top or bottom of the scatterplot
matrix. Variables with outliers, missing values, or strong nonlinearities may
be so bad that they should not be included in the full model. Suppose that
all values of the variable x are positive. The log rule says add log(x) to the
full model if max(xi)/min(xi) > 10. For the binary logistic regression model,
it is often useful to mark the plotted points by a 0 if Y = 0 and by a + if
Y = 1.

To make a full model, use the above discussion and then make a response
plot to check that the full model is good. The number of predictors in the
full model should be much smaller than the number of data cases n. Suppose
that the Yi are binary for i = 1, ..., n. Let N1 =

∑
Yi = the number of 1s and

N0 = n−N1 = the number of 0s. A rough rule of thumb is that the full model
should use no more than min(N0, N1)/5 predictors and the final submodel
should have r predictor variables where r is small with r ≤ min(N0, N1)/10.
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For Poisson regression, a rough rule of thumb is that the full model should
use no more than n/5 predictors and the final submodel should use no more
than n/10 predictors.

Variable selection is the search for a subset of predictor variables that
can be deleted without important loss of information. A model for variable
selection for many models, including GLMs, is given is Section 2.1. Let ESP
correspond to the full model and let ESP (I) correspond to the submodel I.

Definition 4.17. An EE plot is a plot of ESP (I) versus ESP .

Variable selection is closely related to the change in deviance test for
a reduced model. You are seeking a subset I of the variables to keep in the
model. The AIC(I) statistic is used as an aid in backward elimination and
forward selection. The full model and the model Imin found with the smallest
AIC are always of interest. Burnham and Anderson (2004) suggest that if
∆(I) = AIC(I) − AIC(Imin), then models with ∆(I) ≤ 2 are good, models
with 4 ≤ ∆(I) ≤ 7 are borderline, and models with ∆(I) > 10 should not be
used as the final submodel. Create a full model. The full model has a deviance
at least as small as that of any submodel. The final submodel should have an
EE plot that clusters tightly about the identity line. As a rough rule of thumb,
a good submodel I has corr(ESP (I), ESP ) ≥ 0.95. Find the submodel II
with the smallest number of predictors such that ∆(II) ≤ 2. Then submodel
II is the initial submodel to examine. Also examine submodels I with fewer
predictors than II with ∆(I) ≤ 7.

Backward elimination starts with the full model with q = p − 1 non-
trivial variables, and the predictor that optimizes some criterion is deleted. A
constant x∗1 = x1 ≡ 1 is always in the model. Then there are q− 1 nontrivial
variables left, and the predictor that optimizes some criterion is deleted. This
process continues for models with q − 2, q − 3, ..., 2, and 1 predictors.

Forward selection starts with the model with a constant x∗1 = x1 ≡ 1,
and the predictor that optimizes some criterion is added. Then there are 2
variables in the model, and the predictor that optimizes some criterion is
added. This process continues for models with 2, 3, ..., p−1, and p predictors.
Both forward selection and backward elimination result in a sequence, often
different, of p models {x∗1}, {x∗1, x∗2}, ..., {x∗1, x∗2, ..., x∗p−1}, {x∗1, x∗2, ..., x∗p} =
full model.

All subsets variable selection can be performed with the following pro-
cedure. Compute the ESP of the GLM and compute the OLS ESP found by
the OLS regression of Y on x. Check that |corr(ESP, OLS ESP)| ≥ 0.95.This
high correlation will exist for many data sets. Then perform multiple linear
regression and the corresponding all subsets OLS variable selection with the
Cp(I) criterion. If the sample size n is large and Cp(I) ≤ 2r where the subset
I has r variables including a constant, then corr(OLS ESP, OLS ESP(I))
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will be high by Olive and Hawkins (2005), and hence corr(ESP, ESP(I))
will be high. In other words, if the OLS ESP and GLM ESP are highly
correlated, then performing multiple linear regression and the corresponding
MLR variable selection (e.g. forward selection, backward elimination, or all
subsets selection) based on the Cp(I) criterion may provide many interesting
submodels.

Know how to find good models from output. The following rules of thumb
(roughly in order of decreasing importance) may be useful. It is often not
possible to have all 12 rules of thumb to hold simultaneously. Let submodel
I have rI predictors, including a constant. Do not use more predictors than
submodel II , which has no more predictors than the minimum AIC model.
It is possible that II = Imin = Ifull . Assume the response plot for the full
model is good. Then the submodel I is good if
i) the response plot for the submodel looks like the response plot for the full
model.
ii) corr(ESP,ESP(I)) ≥ 0.95.
iii) The plotted points in the EE plot cluster tightly about the identity line.
iv) Want the pval ≥ 0.01 for the change in deviance test that uses I as the
reduced model.
v) For binary LR want rI ≤ min(N1 , N0)/10. For PR, want rI ≤ n/10.
vi) Fit OLS to the full and reduced models. The plotted points in the plot of
the OLS residuals from the submodel versus the OLS residuals from the full
model should cluster tightly about the identity line.
vii) Want the deviance G2(I) ≥ G2(full) but close. (G2(I) ≥ G2(full) since
adding predictors to I does not increase the deviance.)
viii) Want AIC(I) ≤ AIC(Imin) + 7 where Imin is the minimum AIC model
found by the variable selection procedure.
ix) Want hardly any predictors with pvals > 0.05.
x) Want few predictors with pvals between 0.01 and 0.05.
xi) Want G2(I) ≤ n− rI + 3

√
n− rI .

xii) The OD plot should look good.

Heuristically, forward selection tries to add the variable that will decrease
the deviance the most. A decrease in deviance less than 4 (if the predictor
has 1 degree of freedom) may be troubling in that a bad predictor may have
been added. In practice, the forward selection program may add the variable
such that the submodel I with j nontrivial predictors has a) the smallest
AIC(I), b) the smallest deviance G2(I), or c) the smallest pval (preferably
from a change in deviance test but possibly from a Wald test) in the test
H0 : βi = 0 versus HA : βi 6= 0 where the current model with j terms plus
the predictor xi is treated as the full model (for all variables xi not yet in
the model).

Suppose that the full model is good and is stored in M1. Let M2, M3,
M4, and M5 be candidate submodels found after forward selection, backward



4.6 Variable and Model Selection 241

elimination, etc. Make a scatterplot matrix of the ESPs for M2, M3, M4,
M5, and M1. Good candidates should have estimated sufficient predictors
that are highly correlated with the full model estimated sufficient predictor
(the correlation should be at least 0.9 and preferably greater than 0.95). For
binary logistic regression, mark the symbols (0 and +) using the response
variable Y .

The final submodel should have few predictors, few variables with large
Wald pvals (0.01 to 0.05 is borderline), a good response plot, and an EE plot
that clusters tightly about the identity line. If a factor has K − 1 dummy
variables, either keep all K − 1 dummy variables or delete all K − 1 dummy
variables, do not delete some of the dummy variables.

Some logistic regression output can be unreliable if ρ̂(x) = 1 or ρ̂(x) = 0
exactly. Then ESP = ∞ or ESP = −∞ respectively. Some binary logistic
regression output can also be unreliable if there is perfect classification of 0s
and 1s so that the 0s are to the left and the 1s to the right of ESP = 0 in
the response plot. Then the logistic regression MLE β̂LR does not exist, and
variable selection rules of thumb may fail. Note that when there is perfect
classification, the logistic regression model is very useful, but the logistic
curve can not approximate a step function rising from 0 to 1 at ESP = 0,
arbitrarily closely.

Example 4.11. The following output is for forward selection. All models
use a constant. For forward selection, the min AIC model uses {F}LOC,
TYP, AGE, CAN, SYS, PCO, and PH. Model II uses {F}LOC, TYP, AGE,
CAN, and SYS. Let model I use {F}LOC, TYP, AGE, and CAN. This model
may be good, so for forward selection, models II and I are the first models
to examine. {F}LOC is notation used for a factor with K − 1 = 3 dummy
variables, while k is the number of variables in I, including a constant. Output
is from the Cook and Weisberg (1999) Arc software.

Forward Selection comment

Base terms: ({F}LOC TYP)

Deviance Pearson X2 | k AIC > min AIC + 7

Add:AGE 141.873 187.84 | 5 151.873

Base terms: ({F}LOC TYP AGE)

Deviance Pearson X2| k AIC < min AIC + 7

Add:CAN 134.595 170.367 | 6 146.595

({F}LOC TYP AGE CAN) could be a good model

Base terms: ({F}LOC TYP AGE CAN)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:SYS 128.441 179.753 | 7 142.441
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({F}LOC TYP AGE CAN SYS) could be a good model

Base terms: ({F}LOC TYP AGE CAN SYS)

Deviance Pearson X2 | k AIC < min AIC + 2

Add:PCO 126.572 186.71 | 8 142.572

PCO not important since AIC < min AIC + 2

Base terms: ({F}LOC TYP AGE CAN SYS PCO)

Deviance Pearson X2 | k AIC

Add:PH 123.285 191.264 | 9 141.285 min AIC

PH not important since AIC < min AIC + 2

B1 B2 B3 B4

df 255 258 259 263
# of predictors 11 8 7 3

# with 0.01 ≤ Wald p-value ≤ 0.05 2 1 0 0
# with Wald p-value > 0.05 4 0 0 0

G2 233.765 237.212 243.482 278.787
AIC 257.765 255.212 259.482 286.787

corr(ESP,ESP(I)) 1.0 0.99 0.97 0.80
p-value for change in deviance test 1.0 0.328 0.045 0.000

Example 4.12. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. One pre-
dictor was a factor, and a factor was considered to have a bad Wald p-value
> 0.05 if all of the dummy variables corresponding to the factor had p-values
> 0.05. Similarly the factor was considered to have a borderline p-value with
0.01 ≤ p-value ≤ 0.05 if none of the dummy variables corresponding to the
factor had a p-value < 0.01 but at least one dummy variable had a p-value
between 0.01 and 0.05. The response was binary and logistic regression was
used. The response plot for the full model B1 was good. Model B2 was the
minimum AIC model found. There were 267 cases: for the response, 113 were
0’s and 154 were 1’s.

Which two models are the best candidates for the final submodel? Explain
briefly why each of the other 2 submodels should not be used.

Solution: B2 and B3 are best. B1 has too many predictors with rather
large p-values. For B4, the AIC is too high and the corr and p-value are too
low.

Example 4.13. The ICU data is available from the text’s website and
from STATLIB (http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html). Also
see Hosmer and Lemeshow (2000, pp. 23-25). The survival of 200 patients
following admission to an intensive care unit was studied with logistic regres-
sion. The response variable was STA (0 = Lived, 1 = Died). Predictors were
AGE, SEX (0 = Male, 1 = Female), RACE (1 = White, 2 = Black, 3 =
Other), SER= Service at ICU admission (0 = Medical, 1 = Surgical), CAN=



4.6 Variable and Model Selection 243

−20 −10 0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ESP

Y

Response Plot

Fig. 4.7 Visualizing the ICU Data

−5 0 5 10 15 20

−
2
0

−
1
0

0
1
0

2
0

3
0

4
0

ESPS

E
S

P

EE PLOT for Model without Race

Fig. 4.8 EE Plot Suggests Race is an Important Predictor



244 4 1D Regression Models Such as GLMs

Is cancer part of the present problem? (0 = No, 1 = Yes), CRN= History
of chronic renal failure (0 = No, 1 = Yes), INF= Infection probable at ICU
admission (0 = No, 1 = Yes), CPR= CPR prior to ICU admission (0 = No, 1
= Yes), SYS= Systolic blood pressure at ICU admission (in mm Hg), HRA=
Heart rate at ICU admission (beats/min), PRE= Previous admission to an
ICU within 6 months (0 = No, 1 = Yes), TYP= Type of admission (0 =
Elective, 1 = Emergency), FRA= Long bone, multiple, neck, single area, or
hip fracture (0 = No, 1 = Yes), PO2= PO2 from initial blood gases (0 if >60,
1 if ≤ 60), PH= PH from initial blood gases (0 if ≥ 7.25, 1 if <7.25), PCO=
PCO2 from initial blood gases (0 if ≤ 45, 1 if >45), Bic= Bicarbonate from
initial blood gases (0 if ≥ 18, 1 if <18), CRE= Creatinine from initial blood
gases (0 if ≤ 2.0, 1 if >2.0), and LOC= Level of consciousness at admission
(0 = no coma or stupor, 1= deep stupor, 2 = coma).
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Fig. 4.9 EE Plot Suggests Race is an Important Predictor

Factors LOC and RACE had two indicator variables to model the three
levels. The response plot in Figure 4.7 shows that the logistic regression
model using the 19 predictors is useful for predicting survival, although the
output has ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases. Note that the
step function of slice proportions tracks the model logistic curve fairly well.
Variable selection, using forward selection and backward elimination with
the AIC criterion, suggested the submodel using AGE, CAN, SYS, TYP, and
LOC. The EE plot of ESP(sub) versus ESP(full) is shown in Figure 4.8. The
plotted points in the EE plot should cluster tightly about the identity line
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if the full model and the submodel are good. Since this clustering did not
occur, the submodel seems to be poor. The lowest cluster of points and the
case on the right nearest to the identity line correspond to black patients.
The main cluster and upper right cluster correspond to patients who are not
black.

Figure 4.9 shows the EE plot when RACE is added to the submodel.
Then all of the points cluster about the identity line. Although numerical
variable selection did not suggest that RACE is important, perhaps since
output had ρ̂(x) = 1 or ρ̂(x) = 0 exactly for some cases, the two EE plots
suggest that RACE is important. Also the RACE variable could be replaced
by an indicator for black. This example illustrates how the plots can be
used to quickly improve and check the models obtained by following logistic
regression with variable selection even if the MLE β̂LR does not exist.

P1 P2 P3 P4

df 144 147 148 149
# of predictors 6 3 2 1

# with 0.01 ≤ Wald p-value ≤ 0.05 1 0 0 0
# with Wald p-value > 0.05 3 0 1 0

G2 127.506 131.644 147.151 149.861
AIC 141.506 139.604 153.151 153.861

corr(ESP,ESP(I)) 1.0 0.954 0.810 0.792
p-value for change in deviance test 1.0 0.247 0.0006 0.0

Example 4.14. The above table gives summary statistics for 4 models
considered as final submodels after performing variable selection. Poisson
regression was used. The response plot for the full model P1 was good. Model
P2 was the minimum AIC model found.

Which model is the best candidate for the final submodel? Explain briefly
why each of the other 3 submodels should not be used.

Solution: P2 is best. P1 has too many predictors with large pvalues and
more predictors than the minimum AIC model. P3 and P4 have corr and
pvalue too low and AIC too high.

Warning. Variable selection for GLMs is very similar to that for multiple
linear regression. Finding a model II from variable selection, and using GLM
output for model II does not give valid tests and confidence intervals. If there
is a good full model that was found before examining the response, and if II
is the minimum AIC model, then Section 4.9 describes how to do inference
after variable selection. If the model needs to be built using the response, use
data splitting. A pilot study can also be useful.



246 4 1D Regression Models Such as GLMs

4.6.2 When n/p is Not Necessarily Large

Forward selection with EBIC, lasso, and/or elastic net can be used for the
Cox proportional hazards regression model and for some GLMs, including
binomial and Poisson regression. The relaxed lasso = VS-lasso and relaxed
elastic net = VS-elastic net estimators apply the GLM or Cox regression
model to the predictors with nonzero lasso or elastic net coefficients. As
with multiple linear regression, the population number of active nontrivial
predictors = kS, but for a GLM, model I with SP = xT

I βI has k active
nontrivial predictors. See Section 2.1.

Remark 4.1. Most of the plots in this chapter that use ESP = xT β̂, and
can also be made using ESP (I) = xT

I β̂I . Obtaining a good ESP becomes
more difficult as n/p becomes smaller.

Remark 4.2. Suppose the 1D regression model, such as a GLM, has SP =
xT β. If n > 10p, then fit the model using Chapter 3 MLR type methods, such
as relaxed lasso and forward selection (using Cp), to find a subset of predictors
I. If n < 10p, fit the model with MLR lasso. (Limited experience suggests that
MLR with EBIC leads to severe underfitting if n < 10p if the 1D regression
model is not MLR.) Then fit the 1D regression with Y and xI . Check the
model with the response plot and the EE plot of the MLR ESP versus the 1D
regression ESP. High correlation in the EE plot suggests MLR model selection
may be useful for the 1D regression model selection. For some GLMs, make
the OD plot. If xI is an a × 1 vector, we want n ≥ Ja where J ≥ 5 and
preferably J ≥ 10. For binary logistic regression, we want a ≥ J min(N0, N1).
Note that if n < 5p, the EE plot of the submodel ESP versus the full model
ESP should not be used since the full model is overfitting. This method should
be best when the predictors are linearly related: there should be no strong
nonlinear relationships. See Olive and Hawkins (2005) for this method when
n > 10p.

Some R commands for GLM lasso and Remark 4.2 are shown below. Note
that the family command indicates whether a binomial regression (including
binary regression) or a Poisson regression is being fit. The default for GLM
lasso uses 10-fold CV with a deviance criterion.

set.seed(1976) #Binary regression

library(glmnet)

n<-100

m<-1 #binary regression

q <- 100 #100 nontrivial predictors, 95 inactive

k <- 5 #k_S = 5 population active predictors

y <- 1:n

mv <- m + 0 * y

vars <- 1:q
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beta <- 0 * 1:q

beta[1:k] <- beta[1:k] + 1

beta

alpha <- 0

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

SP <- alpha + x[,1:k] %*% beta[1:k]

pv <- exp(SP)/(1 + exp(SP))

y <- rbinom(n,size=m,prob=pv)

y

out<-cv.glmnet(x,y,family="binomial")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

tem <- glm(y˜.,family="binomial",data=ind)

tem$coef

(Inter) V2 V3 V4 V5 V6

0.2103 1.0037 1.4304 0.6208 1.8805 0.3831

V7 V8 V9 V10 V11 V12

0.8971 0.4716 0.5196 0.8900 0.6673 -0.7611

V13 V14

-0.5918 0.6926

lrplot3(tem=tem,x=x[,vin]) #binary response plot

#now use MLR lasso

outm<-cv.glmnet(x,y)

lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0] #1 more variable than GLM lasso

vm

[1] 1 2 3 4 5 6 16 35 59 61 74 75 76 96

vin

[1] 1 2 3 4 5 6 16 59 61 74 75 76 96

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vm]) #binary response plot

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit
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[1] 4

inm <- as.data.frame(cbind(y,x[,vin]))

tm <- glm(y˜.,family="binomial",data=inm)

lrplot3(tem=tm,x=x[,vin]) #binary response plot

#Poisson regression, using same x and beta as above

y <- rpois(n,lambda=exp(SP))

out<-cv.glmnet(x,y,family="poisson")

lam <- out$lambda.min

bhat <- as.vector(predict(out,type="coefficients",s=lam))

ahat <- bhat[1] #alphahat

bhat<-bhat[-1]

vin <- vars[bhat!=0] #want 1-5, overfit

vin

[1] 1 2 3 4 5 7 9 10 13 16 17 18 21 23 25

26 27 30 37 39 40 42 44 46 51 53 57 59 62 71 74 84 85 93 95 97 99

ind <- as.data.frame(cbind(y,x[,vin])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=ind)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots

#now use MLR lasso

outm<-cv.glmnet(x,y)

lamm <- outm$lambda.min

bm <- as.vector(predict(outm,type="coefficients",s=lamm))

am <- bm[1] #alphahat

bm<-bm[-1]

vm <- vars[bm!=0]

vm #much less overfit than GLM lasso

[1] 1 2 3 4 5 9 17 21 22 27 29 60 75 95

inm <- as.data.frame(cbind(y,x[,vm])) #relaxed lasso GLM

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vm],y) #response and OD plots

#Now use MLR forward selection with EBIC since n < 10p.

library(leaps)

out<-fsel(x,y)

vin<-out$vin

vin #severe underfit causes poor fit and overdispersion

[1] 5

inm <- as.data.frame(cbind(y,x[,vin]))

out <- glm(y˜.,family="poisson",data=inm)

ESP <- predict(out)

prplot2(ESP,x=x[,vin],y) #response and OD plots
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4.7 Generalized Additive Models

There are many alternatives to the binomial and Poisson regression GLMs.
Alternatives to the binomial GLM of Definition 4.7 include the discriminant
function model of Definition 4.8, the quasi-binomial model, the binomial gen-
eralized additive model (GAM), and the beta-binomial model of Definition
4.2.

Alternatives to the Poisson GLM of Definition 4.12 include the quasi-
Poisson model, the Poisson GAM, and the negative binomial regression model
of Definition 4.3. Other alternatives include the zero truncated Poisson model,
the zero truncated negative binomial model, the hurdle or zero inflated Pois-
son model, the hurdle or zero inflated negative binomial model, the hurdle or
zero inflated additive Poisson model, and the hurdle or zero inflated additive
negative binomial model. See Zuur et al. (2009), Simonoff (2003), and Hilbe
(2011).

Many of these models can be visualized with response plots. An interesting
research project would be to make response plots for these models, adding
the conditional mean function and lowess to the plot. Also make OD plots to
check whether the model handled overdispersion. This section will examine
several of the above models, especially GAMs. A GAM is a 1D regression
model with SP=AP and ESP=EAP. We may use ESP for a GLM and EAP
for a GAM.

Definition 4.18. In a 1D regression, Y is independent of x given the
sufficient predictor SP = h(x) where SP = xT β for a GLM. In a general-
ized additive model, Y is independent of x = (x1, ..., xp)

T given the additive
predictor AP = α +

∑p
j=2 Sj(xj) for some (usually unknown) functions Sj .

The estimated sufficient predictor ESP = ĥ(x) and ESP = xT β̂ for a GLM.
The estimated additive predictor EAP = α̂+

∑p
j=2 Ŝj(xj). An ESP–response

plot is a plot of ESP versus Y while an EAP–response plot is a plot of EAP
versus Y .

Note that a GLM is a special case of the GAM using Sj(xj) = βjxj for j =
2, ..., p with α = β1. A GLM with SP = α+β2x2 +β3x3 +β4x1x2 is a special
case of a GAM with x4 ≡ x1x2. A GLM with SP = α+ β2x2 + β3x

2
2 + β4x3

is a special case of a GAM with S2(x2) = β2x2 + β3x
2
2 and S3(x3) = β4x3.

A GLM with p terms may be equivalent to a GAM with k terms w1, ..., wk

where k < p.
The plotted points in the EE plot defined below should scatter tightly

about the identity line if the GLM is appropriate and if the sample size is
large enough so that the ESP is a good estimator of the SP and the EAP is a
good estimator of the AP. If the clustering is not tight but the GAM gives a
reasonable approximation to the data, as judged by the EAP–response plot,
then examine the Ŝj of the GAM to see if some simple terms such as x2

i can
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be added to the GLM so that the modified GLM has a good ESP–response
plot. (This technique is easiest if the GLM and GAM have the same p terms
x1, ..., xp. The technique is more difficult, for example, if the GLM has terms
x1, x2, x

2
2, and x3 while the GAM has terms x1, x2 and x3.)

Definition 4.19. An EE plot is a plot of EAP versus ESP.

Definition 4.20. Recall the binomial GLM

Yi|SPi ∼ binomial
(
mi,

exp(SPi)

1 + exp(SPi)

)
.

Let ρ(w) = exp(w)/[1 + exp(w)].

i) The binomial GAM is Yi|APi ∼ binomial

(
mi,

exp(APi)

1 + exp(APi)

)
. The

EAP–response plot adds the estimated mean function ρ(EAP ) and a step
function to the plot as done for the ESP–response plot of Section 4.3.

ii) The quasi-binomial model is a 1D regression model with E(Yi|xi) =
miρ(SPi) and V (Yi|xi) = φ mi ρ(SPi)(1 − ρ(SPi)) where the dispersion
parameter φ > 0. Note that this model and the binomial GLM have the
same conditional mean function, and the conditional variance functions are
the same if φ = 1.

Definition 4.21. Recall the Poisson GLM Y |SP ∼ Poisson(exp(SP )).
i) The Poisson GAM is Y |AP ∼ Poisson(exp(AP )). The EAP–response

plot adds the estimated mean function exp(EAP ) and lowess to the plot as
done for the ESP–response plot of Section 4.4.

ii) The quasi-Poisson model is a 1D regression model with E(Y |x) =
exp(SP ) and V (Y |x) = φ exp(SP ) where the dispersion parameter φ > 0.
Note that this model and the Poisson GLM have the same conditional mean
function, and the conditional variance functions are the same if φ = 1.

For the quasi-binomial model, the conditional mean and variance functions
are similar to those of the binomial distribution, but it is not assumed that
Y |SP has a binomial distribution. Similarly, it is not assumed that Y |SP
has a Poisson distribution for the quasi-Poisson model.

Next, some notation is needed to derive the zero truncated Poisson re-
gression model. Y has a zero truncated Poisson distribution, Y ∼ ZTP (µ),

if the probability mass function (pmf) of Y is f(y) =
e−µ µy

(1− eµ) y!
for

y = 1, 2, 3, ... where µ > 0. The ZTP pmf is obtained from a Poisson distri-
bution where y = 0 values are truncated, so not allowed. If W ∼ Poisson(µ)
with pmf fW (y), then P (W = 0) = e−µ, so

∑∞
y=1 fW (y) = 1 − e−µ =∑∞

y=0 fW (y) −∑∞
y=1 fW (y). So the ZTP pmf f(y) = fW (y)/(1 − eµ) for

y 6= 0.
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Now E(Y ) =
∑∞

y=1 yf(y) =
∑∞

y=0 yf(y) =
∑∞

y=0 yfW (y)/(1 − e−µ) =

E(W )/(1− e−µ) = µ/(1− e−µ).
Similarly, E(Y 2) =

∑∞
y=1 y

2f(y) =
∑∞

y=0 y
2f(y) =

∑∞
y=0 y

2fW (y)/(1 −
e−µ) = E(W 2)/(1− e−µ) = [µ2 + µ]/(1− e−µ). So

V (Y ) = E(Y 2)− (E(Y ))2 =
µ2 + µ

1− e−µ
−

(
µ

1− e−µ

)2

.

Definition 4.22. The zero truncated Poisson regression model has Y |SP ∼
ZTP (exp(SP )). Hence the parameter µ(SP ) = exp(SP ),

E(Y |x) =
exp(SP )

1− exp(− exp(SP ))
and

V (Y |SP ) =
[exp(SP )]2 + exp(SP )

1− exp(− exp(SP ))
−

(
exp(SP )

1− exp(− exp(SP ))

)2

.

The quasi-binomial, quasi-Poisson, and zero truncated Poisson regression
models have GAM analogs that replace SP by AP. Definitions 4.1, 4.2, and
4.3 give important GAM models where SP = AP. Several of these models are
GAM analogs of models discussed in Sections 4.2, 4.3, and 4.4.

4.7.1 Response Plots

For a 1D regression model, there are several useful plots using the ESP. A
GAM is a 1D regression model with ESP = EAP . It is well known that the
residual plot of ESP or EAP versus the residuals (on the vertical axis) is
useful for checking the model. Similarly, the response plot of ESP or EAP
versus the response Y is useful. Assume that the ESP or EAP takes on many
values. For a GAM, substitute EAP for ESP for the plots in Definitions 4.9,
4.10, 4.11, 4.13, 4.14, and 4.16.

The response plot for the beta-binomial GAM is similar to that for the
binomial GAM. The plots for the negative binomial GAM are similar to
those of the Poisson regression GAM, including the plots in Definition 4.16.
See Examples 4.4, 4.5, and 4.6.

4.7.2 The EE Plot for Variable Selection

Variable selection is the search for a subset of variables that can be deleted
without important loss of information. Olive and Hawkins (2005) make an
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EE plot of ESP (I) versus ESP where ESP (I) is for a submodel I and ESP
is for the full model. This plot can also be used to complement the hypothesis
test that the reduced model I (which is selected before gathering data) can
be used instead of the full model. The obvious extension to GAMs is to make
the EE plot of EAP (I) versus EAP . If the fitted full model and submodel
I are good, then the plotted points should follow the identity line with high
correlation (use correlation ≥ 0.95 as a benchmark).

To justify this claim, assume that there exists a subset S of predictor
variables such that if xS is in the model, then none of the other predictors
is needed in the model. Write E for these (‘extraneous’) variables not in S,
partitioning x = (xT

S ,x
T
E)T . Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj)+
∑

k∈E

Sk(xk) = α+
∑

j∈S

Sj(xj). (4.10)

The extraneous terms that can be eliminated given that the subset S is in
the model have Sk(xk) = 0 for k ∈ E.

Now suppose that I is a candidate subset of predictors and that S ⊆ I.
Then

AP = α+

p∑

j=2

Sj(xj) = α+
∑

j∈S

Sj(xj) = α+
∑

k∈I

Sk(xk) = AP (I),

(if I includes predictors from E, these will have Sk(xk) = 0). For any subset
I that includes all relevant predictors, the correlation corr(AP,AP(I)) = 1.
Hence if the full model and submodel are reasonable and if EAP and EAP(I)
are good estimators of AP and AP(I), then the plotted points in the EE plot
of EAP(I) versus EAP will follow the identity line with high correlation.

4.7.3 An EE Plot for Checking the GLM

One useful application of a GAM is for checking whether the corresponding
GLM has the correct form of the predictors xj in the model. Suppose a GLM
and the corresponding GAM are both fit with the same link function where
at least one general Sj(xj) was used. Since the GLM is a special case of the
GAM, the plotted points in the EE plot of EAP versus ESP should follow
the identity line with very high correlation if the fitted GLM and GAM are
roughly equivalent. If the correlation is not very high and the GAM has some
nonlinear Ŝj(xj), update the GLM, and remake the EE plot. For example,
update the GLM by adding terms such as x2

j and possibly x3
j , or add log(xj)

if xj is highly skewed. Then remake the EAP versus ESP plot.
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4.7.4 Examples

For the binary logistic GAM, the EAP will not be a consistent estimator
of the AP if the estimated probability ρ̂(AP ) = ρ(EAP ) is exactly zero or
one. The following example will show that GAM output and plots can still
be used for exploratory data analysis. The example also illustrates that EE
plots are useful for detecting cases with high leverage and clusters of cases.
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Fig. 4.10 Visualizing the ICU GAM

Example 4.15. For the ICU data of Example 4.13, a binary general-
ized additive model was fit with unspecified functions for AGE, SYS, and
HRA, and linear functions for the remaining 16 variables. Output suggested
that functions for SYS and HRA are linear but the function for AGE may
be slightly curved. Several cases had ρ̂(AP ) equal to zero or one, but the
response plot in Figure 4.10 suggests that the full model is useful for predict-
ing survival. Note that the ten slice step function closely tracks the logistic
curve. To visualize the model with the response plot, use Y |x ≈ binomial[1,
ρ(EAP ) = eEAP /(1+eEAP )]. When x is such that EAP < −5, ρ(EAP ) ≈ 0.
If EAP > 5, ρ(EAP ) ≈ 1, and if EAP = 0, then ρ(EAP ) = 0.5. The logistic
curve gives ρ(EAP ) ≈ P (Y = 1|x) = ρ(AP ). The different estimated bi-
nomial distributions have ρ̂(AP ) = ρ(EAP ) that increases according to the
logistic curve as EAP increases. If the step function tracks the logistic curve
closely, the binary GAM gives useful smoothed estimates of ρ(AP ) provided
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Fig. 4.11 GAM and GLM give Similar Success Probabilities

that the number of 0s and 1s are both much larger than the model degrees
of freedom so that the GAM is not overfitting.

A binary logistic regression was also fit, and Figure 4.11 shows the plot of
EAP versus ESP. The plot shows that the near zero and near one probabilities
are handled differently by the GAM and GLM, but the estimated success
probabilities for the two models are similar: ρ̂(ESP ) ≈ ρ̂(EAP ). Hence we
used the GLM and perform variable selection as in Example 4.13. Some R
code is below.

##ICU data from Statlib or URL

#http://parker.ad.siu.edu/Olive/ICU.lsp

#delete header of ICU.lsp and delete last parentheses

#at the end of the file. Save the file on F drive as

#icu.txt.

icu <- read.table("F:\\icu.txt")

names(icu) <- c("ID", "STA", "AGE", "SEX", "RACE",

"SER", "CAN", "CRN", "INF", "CPR", "SYS", "HRA",

"PRE", "TYP", "FRA", "PO2", "PH", "PCO", "Bic",

"CRE", "LOC")

icu[,5] <- as.factor(icu[,5])
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icu[,21] <- as.factor(icu[,21])

icu2<-icu[,-1]

outf <- glm(formula=STA˜.,family=binomial,data=icu2)

ESP <- predict(outf)

library(mgcv)

outgam <- gam(STA ˜ s(AGE)+SEX+RACE+SER+CAN+CRN+INF+

CPR+s(SYS)+s(HRA)+PRE+TYP+FRA+PO2+PH+PCO+Bic+CRE+LOC,

family=binomial,data=icu2)

EAP <- predict.gam(outgam)

plot(EAP,ESP)

abline(0,1)

#Figure 4.11

Y <- icu2[,1]

lrplot3(ESP=EAP,Y,slices=18)

#Figure 4.10

lrplot3(ESP,Y,slices=18)

#Figure 4.7

Example 4.16. For binary data, Kay and Little (1987) suggest examining
the two distributions x|Y = 0 and x|Y = 1. Use predictor x if the two
distributions are roughly symmetric with similar spread. Use x and x2 if the
distributions are roughly symmetric with different spread. Use x and log(x)
if one or both of the distributions are skewed. The log rule says add log(x)
to the model if min(x) > 0 and max(x)/min(x) > 10. The Gladstone (1905)
data is useful for illustrating these suggestions. The response was gender with
Y = 1 for male and Y = 0 for female. The predictors were age, height, and
the head measurements circumference, length, and size. When the GAM was
fit without log(age) or log(size), the Ŝj for age, height, and circumference
were nonlinear. The log rule suggested adding log(age), and log(size) was
added because size is skewed. The GAM for this model had plots of Ŝj(xj)
that were fairly linear. The response plot is not shown but was similar to
Figure 4.10, and the step function tracked the logistic curve closely. When
EAP = 0, the estimated probability of Y = 1 (male) is 0.5. When EAP > 5
the estimated probability is near 1, but near 0 for EAP < −5. The response
plot for the binomial GLM, not shown, is similar.

Example 4.17. Wood (2017, pp. 125-130) describes heart attack data
where the response Y is the number of heart attacks for mi patients suspected
of suffering a heart attack. The enzyme ck (creatine kinase) was measured for
the patients and it was determined whether the patient had a heart attack
or not. A binomial GLM with predictors x1 = ck, x2 = [ck]2, and x3 = [ck]3

was fit and had AIC = 33.66. The binomial GAM with predictor x1 was fit
in R, and Figure 4.12 shows that the EE plot for the GLM was not too good.
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Fig. 4.13 EE plot with log(ck) in the GLM



4.8 Overdispersion 257

−2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ESPl

Z

Fig. 4.14 Response Plot for Heart Attack Data

The log rule suggests using ck and log(ck), but ck was not significant. Hence
a GLM with the single predictor log(ck) was fit. Figure 4.13 shows the EE
plot, and Figure 4.14 shows the response plot where the Zi = Yi/mi track the
logistic curve closely. There was no evidence of overdispersion and the model
had AIC = 33.45. The GAM using log(ck) had a linear Ŝ, and the correlation
of the plotted points in the EE plot, not shown, was one. See Problem 4.8.

4.8 Overdispersion

Definition 4.23. Overdispersion occurs when the actual conditional vari-
ance function V (Y |x) is larger than the model conditional variance function
VM (Y |x).

Overdispersion can occur if the model underfits, if the response variables
are correlated, if the population follows a mixture distribution, or if outliers
are present. Typically it is assumed that the model is correct so V (Y |x) =
VM (Y |x). Hence the subscript M is usually suppressed. A GAM has condi-
tional mean and variance functions EM(Y |AP ) and VM (Y |AP ) where the
subscript M indicates that the function depends on the model. Then overdis-
persion occurs if V (Y |x) > VM (Y |AP ) where E(Y |x) and V (Y |x) denote
the actual conditional mean and variance functions. Then the assumptions
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that E(Y |x) = EM(Y |x) ≡ m(AP ) and V (Y |x) = VM (Y |AP ) ≡ v(AP )
need to be checked.

First check that the assumption E(Y |x) = m(SP ) is a reasonable approx-
imation to the data using the response plot with lowess and the estimated
conditional mean function ÊM(Y |x) = m̂(SP ) added as visual aids. Overdis-
persion can occur even if the model conditional mean function E(Y |SP )
is a good approximation to the data. For example, for many data sets
where E(Yi|xi) = miρ(SPi), the binomial regression model is inappropriate
since V (Yi|xi) > miρ(SPi)(1− ρ(SPi)). Similarly, for many data sets where
E(Y |x) = µ(x) = exp(SP ), the Poisson regression model is inappropriate
since V (Y |x) > exp(SP ). If the conditional mean function is adequate, then
we suggest checking for overdispersion using the OD plot.

Definition 4.24. For 1D regression, the OD plot is a plot of the estimated
model variance V̂M (Y |SP ) versus the squared residuals
V̂ = [Y − ÊM(Y |SP )]2. Replace SP by AP for a GAM.

The OD plot has been used by Winkelmann (2000, p. 110) for the Poisson
regression model where V̂M (Y |SP ) = ÊM(Y |SP ) = exp(ESP ). For binomial
and Poisson regression, the OD plot can be used to complement tests and
diagnostics for overdispersion such as those given in Cameron and Trivedi
(2013), Collett (1999, ch. 6), and Winkelmann (2000). See discussion below
Definitions 4.11 and 4.14 for how to interpret the OD plot with the identity
line, OLS line, and slope 4 line added as visual aids, and for discussion of the
numerical summaries G2 and X2 for GLMs.

Definition 4.1, with SP = AP, gives EM(Y |AP ) = m(AP ) and VM (Y |AP )
= v(AP ) for several models. Often m̂(AP ) = m(EAP ) and v̂(AP ) =
v(EAP ), but additional parameters sometimes need to be estimated. Hence

v̂(AP ) = miρ(EAPi)(1−ρ(EAPi))[1+(mi−1)θ̂/(1+θ̂)], v̂(AP ) = exp(EAP )+
τ̂ exp(2 EAP ), and v̂(AP ) = [m(EAP )]2/ν̂ for the beta-binomial, nega-
tive binomial, and gamma GAMs, respectively. The beta-binomial regres-
sion model is often used if the binomial regression is inadequate because of
overdispersion, and the negative binomial GAM is often used if the Poisson
GAM is inadequate.

Since the Poisson regression (PR) model is simpler than the negative bi-
nomial regression (NBR) model, and the binomial logistic regression (LR)
model is simpler beta-binomial regression (BBR) model, the graphical di-
agnostics for the goodness of fit of the PR and LR models are very useful.
Combining the response plot with the OD plot is a powerful method for as-
sessing the adequacy of the Poisson and logistic regression models. NBR and
BBR models should also be checked with response and OD plots. See Ex-
amples 4.2–4.6 and the R code at the end of Section 4.6 (where q = p − 1).

Example 4.18. The species data is from Cook and Weisberg (1999,
pp. 285-286) and Johnson and Raven (1973). The response variable is the
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total number of species recorded on each of 29 islands in the Galápagos
Archipelago. Predictors include area of island, areanear = the area of the
closest island, the distance to the closest island, the elevation, and endem =
the number of endemic species (those that were not introduced from else-
where). A scatterplot matrix of the predictors suggested that log transfor-
mations should be taken. Poisson regression suggested that log(endem) and
log(areanear) were the important predictors, but the deviance and Pear-
son X2 statistics suggested overdispersion was present since both statistics
were near 71.4 with 26 degrees of freedom. The residual plot also suggested
increasing variance with increasing fitted value. A negative binomial regres-
sion suggested that only log(endem) was needed in the model, and had a
deviance of 26.12 on 27 degrees of freedom. The residual plot for this model
was roughly ellipsoidal. The negative binomial GAM with log(endem) had
an Ŝ that was linear and the plotted points in the EE plot had correlation
near 1.
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Fig. 4.15 Response Plot for Negative Binomial GAM

The response plot with the exponential and lowess curves added as vi-
sual aids is shown in Figure 4.15. The interpretation is that Y |x ≈ negative
binomial with E(Y |x) ≈ exp(EAP ). Hence if EAP = 0, E(Y |x) ≈ 1. The
negative binomial and Poisson GAM have the same conditional mean func-
tion. If the plot was for a Poisson GAM, the interpretation would be that
Y |x ≈ Poisson(exp(EAP )). Hence if EAP = 0, Y |x ≈ Poisson(1).
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Fig. 4.16 OD Plot for Negative Binomial GAM

Figure 4.16 shows the OD plot for the negative binomial GAM with the
identity line and slope 4 line through the origin added as visual aids. The
plotted points fall within the “slope 4 wedge,” suggesting that the negative
binomial regression model has successfully dealt with overdispersion. Here
Ê(Y |AP ) = exp(EAP ) and V̂ (Y |AP ) = exp(EAP ) + τ̂ exp(2EAP ) where
τ̂ = 1/37.

4.9 Inference After Variable Selection for GLMs

Inference after variable selection for GLMs is very similar to inference after
variable selection for multiple linear regression. AIC, BIC, EBIC, lasso, and
elastic net can be used for variable selection. Read Section 4.2 for the large
sample theory for β̂Imin,0. We assume that n >> p. Theorem 4.4, the Vari-
able Selection CLT, still applies, as does Remark 4.4. Hence if lasso or elastic
net is consistent, then relaxed lasso or relaxed elastic net is

√
n consistent.

The geometric argument of Theorem 4.5 also applies. We follow Rathnayake
and Olive (2019) closely. Read Sections 4.2, 4.5, and 4.6 before reading this
section. We will describe the parametric bootstrap, and then consider boot-
strapping variable selection.
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4.9.1 The Parametric and Nonparametric Bootstrap

Consider a parametric 1D regression model Y |x ∼ D(xT β, γ) where D is a
parametric distribution that depends on the p×1 vector of predictors x only
through SP = xT β, and γ is a q × 1 vector of parameters.

Suppose Yi|xi ∼ D(xT
i β, γ),

√
n(β̂ − β)

D→ Np(0,V (β)), and that

V (β̂)
P→ V (β) as n→∞. These assumptions tend to be mild for a parametric

regression model where the maximum likelihood estimator (MLE) β̂ is used.
Then V (β) = I−1(β), the inverse Fisher information matrix. If In(β) is the

Fisher information matrix based on a sample of size n, then In(β)/n
P→ I(β).

For GLMs, see, for example, Sen and Singer (1993, p. 309). For the paramet-

ric regression model, we regress Y on X to obtain (β̂, γ̂) where the n × 1
vector Y = (Yi) and the ith row of the n× p design matrix X is xT

i .

The parametric bootstrap uses Y ∗
j = (Y ∗

i ) where Y ∗
i |xi ∼ D(xT

i β̂, γ̂)

for i = 1, ...., n. Regress Y ∗
j on X to get β̂

∗

j for j = 1, ..., B. The large

sample theory for β̂
∗

is simple. Note that if Y ∗
i |xi ∼ D(xT

i b, γ̂) where b
does not depend on n, then (Y ∗,X) follows the parametric regression model

with parameters (b, γ̂). Hence
√
n(β̂

∗ − b)
D→ Np(0,V (b)). Now fix large

integer n0, and let b = β̂no
. Then

√
n(β̂

∗ − β̂no
)

D→ Np(0,V (β̂no
)). Since

Np(0,V (β̂))
D→ Np(0,V (β)), we have

√
n(β̂

∗ − β̂)
D→ Np(0,V (β)) (4.11)

as n→∞.
Now suppose S ⊆ I. Without loss of generality, let β = (βT

I ,β
T
O)T and β̂ =

(β̂(I)T , β̂(O)T )T . Then (Y ,XI) follows the parametric regression model with

parameters (βI , γ). Hence
√
n(β̂I − βI)

D→ NaI
(0,V (βI)). Now (Y ∗,XI)

only follows the parametric regression model asymptotically, since β̂(O) 6= 0.

However, under regularity conditions, E(β̂
∗

I) ≈ β̂I and Cov(β̂
∗

I)− Cov(β̂I)→
0 as n, B →∞.

To see the above claim for GLMs, consider a GLM with ηi = SPi = xT
i β =

g(µi) where µi = E(Yi|xi) = g−1(ηi). Let Vi = V (Yi|xi). Let

zi = g(µi) + g′(µi)(Yi − µi) = ηi +
∂ηi

∂µi
(Yi − µi), Z = (zi),

wi =

(
∂µi

∂ηi

)2
1

Vi
, W = diag(wi), Ŵ = W | ˆβ , and Ẑ = Z| ˆβ .

Then

β̂ = (XT ŴX)−1XT Ŵ Ẑ and β̂I = (XT
I Ŵ IXI)

−1XT
I Ŵ IẐI
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while
β̂
∗

I = (XT
I Ŵ

∗

IXI)
−1XT

I Ŵ
∗

IẐ
∗

I (4.12)

where β̂
∗

I is fit as if (Y ∗,XI) follows the GLM with parameters (β̂(I), γ̂).

If S ⊆ I, then this approximation is correct asymptotically since
√
nβ̂(O) =

OP (1). Hence η∗iI = xT
iI β̂(I) = g(µ∗

iI), and V ∗
iI = VM (Y ∗

i |xiI) where VM

is the model variance from the GLM with parameters (β̂(I), γ̂). Also, the
estimated asymptotic covariance matrices are

Ĉov(β̂) = (XT ŴX)−1 and Ĉov(β̂I) = (XT
I Ŵ IX I)

−1.

See, for example, Agresti (2002, pp. 138, 147), Hillis and Davis (1994),
and McCullagh and Nelder (1989). From Sen and Singer (1994, p. 307),

n(XT
I Ŵ IXI)

−1 P→ I−1(βI) as n→∞ if S ⊆ I.
Let β̃ = (XT WX)−1XT WZ. Then E(β̃) = β since E(Z) = Xβ, and

Cov(Y ) = Cov(Y |X) = diag(Vi). Since

∂µi

∂ηi
=

1

g′(µi)
and

∂ηi

∂µi
= g′(µi),

Cov(Z) = Cov(Z|X) = W−1. Thus Cov(β̃) = (XWX)−1. Although

β̂ − β = OP (n−1/2), we have n(XT ŴX)−1 − n(XT WX)−1 P→ I−1(β) −
I−1(β) = 0 as n→∞.

Let β̃
∗

I = (XT
I W ∗

IXI)
−1XT

I W ∗
IZ

∗
I where W ∗

i and Z∗
I are evaluated using

β̂(I). Then Cov(Y ∗) = diag(V ∗
i )→ diag(V ∗

iI). Hence Cov(Z∗
I)→W ∗−1

I and

Cov(β̃
∗

I)→ (XT
I W ∗

IXI)
−1 as n, B →∞. Hence Cov(β̂

∗

I)− Cov(β̂I)→ 0 as
n, B →∞ if S ⊆ I.

As an example, consider the Poisson regression model from Section 4.4.
Then µ∗

iI = exp(xT
iI β̂(I)) = exp(η∗iI) = V ∗

iI . Hence

∂µ∗
iI

∂η∗iI
= exp(η∗iI) = µ∗

iI = V ∗
iI ,

w∗
iI = exp(xT

iI β̂(I)), and ŵ∗
iI = exp(xT

iIβ̂
∗

I). Similarly, η∗iI = log(µ∗
iI),

z∗iI = η∗iI +
∂η∗iI
∂µ∗

iI

(Y ∗
i − µ∗

iI) = η∗iI +
1

µ∗
iI

(Y ∗
i − µ∗

iI), and

ẑ∗iI = xT
iI β̂

∗

I +
1

exp(xT
iI β̂

∗

I)
(Y ∗

i − exp(xT
iI β̂

∗

I)).

Note that for (Y ,XI ), the formulas are the same with the asterisks removed
and µiI = exp(xT

iIβI).
The nonparametric bootstrap samples cases (Yi,xi) with replacement to

form (Y ∗
j ,X

∗
j ), and regresses Y ∗

j on X∗
j to get β̂

∗

j for j = 1, ..., B. The
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nonparametric bootstrap can be useful even if heteroscedasticity or overdis-
persion is present, if the cases are an iid sample from some population, a very
strong assumption.

4.9.2 Bootstrapping Variable Selection

Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ is g × 1. Let the
variable selection estimator Tn = Aβ̂Imin,0 with θ = Aβ. Recall Tn is equal
to the estimator Tjn with probability πjn for j = 1, ..., J . Here A is a known

full rank g × p matrix with 1 ≤ g ≤ p. We have
√
n(Tn − θ)

D→ v by (2.6)
where E(v) = 0, and Σv =

∑
j πjAV j,0A

T . Hence geometric argument
Theorem 2.5 holds: if we had iid data T1, ..., TB, then the prediction region
applied to the iid data and centered at a randomly chosen Tn would be a
large sample confidence region for θ.

Next use the argument for multiple linear regression in Section 2.6.4. For
the bootstrap, suppose that T ∗

i is equal to T ∗
ij with probability ρjn for j =

1, ..., J where
∑

j ρjn = 1, and ρjn → πj as n → ∞. Let Bjn count the
number of times T ∗

i = T ∗
ij in the bootstrap sample. Then the bootstrap

sample T ∗
1 , ..., T

∗
B can be written as

T ∗
1,1, ..., T

∗
B1n,1, ..., T

∗
1,J, ..., T

∗
BJn,J

where the Bjn follow a multinomial distribution and Bjn/B
P→ ρjn as B →

∞. Denote T ∗
1j , ..., T

∗
Bjn,j as the jth bootstrap component of the bootstrap

sample with sample mean T
∗
j and sample covariance matrix S∗

T,j. Then

T
∗

=
1

B

B∑

i=1

T ∗
i =

∑

j

Bjn

B

1

Bjn

Bjn∑

i=1

T ∗
ij =

∑

j

ρ̂jnT
∗
j .

Similarly, we can define the jth component of the iid sample T1, ..., TB to
have sample mean T j and sample covariance matrix ST,j.

Suppose the jth component of an iid sample T1, ..., TB and the jth compo-
nent of the bootstrap sample T ∗

1 , ..., T
∗
B have the same variability asymptot-

ically. Since E(Tjn) ≈ θ, each component of the iid sample is approximately
centered at θ. The bootstrap components are centered at E(T ∗

jn), and often
E(T ∗

jn) = Tjn. Geometrically, separating the component clouds so that they
are no longer centered at one value makes the overall data cloud larger. Thus
the variability of T ∗

n is larger than that of Tn for a mixture distribution,
asymptotically. Hence the prediction region applied to the bootstrap sample
is slightly larger than the prediction region applied to the iid sample, asymp-
totically (we want n ≥ 20p). Hence cutoff D̂2

1,1−δ = D2
(UB) gives coverage

close to or higher than the nominal coverage for confidence regions (2.30)
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and (2.32), using the geometric argument. The deviation T ∗
i − Tn tends to

be larger in magnitude than the deviation and T ∗
i − T

∗
. Hence the cutoff

D̂2
2,1−δ = D2

(UB,T ) tends to be larger than D2
(UB), and region (2.31) tends to

have higher coverage than region (2.32) for a mixture distribution.
The full model should be checked with the response plot before do-

ing variable selection inference. Assume p is fixed and n ≥ 20p. Assume
P (S ⊆ Imin) → 1 as n → ∞, and that S ⊆ Ij . For multiple linear re-
gression with the residual bootstrap that uses residuals from the full OLS
model, Chapter 2 showed that the components of the iid sample and boot-
strap sample have the same variability asymptotically. The components of the
iid sample are centered at Aβ while the components of the bootstrap sample
are centered at Aβ̂Ij ,0. Now consider regression models with Y x|xT β.

Assume
√
nA(β̂Ij,0−β)

D→ Naj
(0,Σj) where Σj = AV j,0A

T . For the non-

parametric bootstrap, assume
√
n(Aβ̂

∗

Ij ,0−Aβ̂Ij,0)
D→ Naj

(0,Σj). Then the
components of the iid sample and bootstrap sample have the same variability
asymptotically. The components of iid sample are centered at Aβ while the
components of the bootstrap sample are centered at Aβ̂Ij ,0. For the nonpara-

metric bootstrap, the above results tend to hold if
√
n(β̂ − β)

D→ Np(0,V )

and if
√
n(β̂

∗ − β̂)
D→ Np(0,V ). Assumptions for the nonparametric boot-

strap tend to be rather strong: often one assumption is that the n cases
(Yi,x

T
i )T are iid from some population. See Shao and Tu (1995, pp. 335-349)

for the nonparametric bootstrap for GLMs, nonlinear regression, and Cox’s
proportional hazards regression. Also see Burr (1994), Efron and Tibshirani
(1993), Freedman (1981), and Tibshirani (1997).

For the parametric bootstrap, Section 4.9.1 showed that under regular-

ity conditions, Cov(β̂
∗

I)− Cov(β̂I) → 0 as n, B → ∞ if S ⊆ I. Hence

Cov(Tjn) − Cov(T ∗
jn) → 0 as n, B → ∞ if S ⊆ I. Here Tn = Aβ̂Imin,0,

Tjn = Aβ̂Ij,0, T
∗
n = Aβ̂

∗

Imin,0, and T ∗
jn = Aβ̂

∗

Ij ,0. Then E(Tjn) ≈ Aβ = θ

while the E(T ∗
jn) are more variable than the E(Tjn) with E(T ∗

jn) ≈ Aβ̂(Ij , 0),

roughly, where β̂(Ij , 0) is formed from β̂(Ij) by adding zeros corresponding
to variables not in Ij . Hence the jth component of an iid sample T1, ..., TB

and the jth component of the bootstrap sample T ∗
1 , ..., T

∗
B have the same

variability asymptotically.
In simulations for n ≥ 20p for H0 : AβS = θ0, the coverage tended to

get close to 1 − δ for B ≥ max(200, 50p) so that S∗
T is a good estimator of

Cov(T ∗). In the simulations where S is not the full model, inference with
backward elimination with Imin using AIC was often more precise than in-
ference with the full model if n ≥ 20p and B ≥ 50p. It is possible that S∗

T is
singular if a column of the bootstrap sample is equal to 0. If the regression
model has a q× 1 vector of parameters γ , we may need to replace p by p+ q.

Undercoverage can occur if bootstrap sample data cloud is less variable
than the iid data cloud, e.g., if (n−p)/n is not close to one. Coverage can be
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higher than the nominal coverage for two reasons: i) the bootstrap data cloud
is more variable than the iid data cloud of T1, ..., TB, and ii) zero padding.

To see the effect of zero padding, consider H0 : Aβ = βO = 0 where
βO = (βi1 , ...., βig

)T and O ⊆ E in (2.1) so that H0 is true. Suppose a
nominal 95% confidence region is used and UB is the 96th percentile. Hence
the confidence region (2.30) or (2.31) covers at least 96% of the bootstrap

sample. If β̂
∗

O,j = 0 for more than 4% of the β̂
∗

O,1, ..., β̂
∗

O,B, then 0 is in the
confidence region and the bootstrap test fails to reject H0. If this occurs for
each run in the simulation, then the observed coverage will be 100%.

Now suppose β̂
∗

O,j = 0 for j = 1, ..., B. Then S∗
T is singular, but the

singleton set {0} is the large sample 100(1 − δ)% confidence region (2.30),
(2.31), or (2.32) for βO and δ ∈ (0, 1), and the pvalue for H0 : βO = 0 is

one. (This result holds since {0} contains 100% of the β̂
∗

O,j in the bootstrap
sample.) For large sample theory tests, the pvalue estimates the population
pvalue. Let I denote the other predictors in the model so β = (βT

I ,β
T
O)T . For

the Imin model from variable selection, there may be strong evidence that xO

is not needed in the model given xI is in the model if the “100%” confidence
region is {0}, n ≥ 20p, and B ≥ 50p. (Since the pvalue is one, this technique
may be useful for data snooping: applying MLE theory to submodel I may
have negligible selection bias.)

Remark 4.3. As in Chapter 2, another way to look at the bootstrap con-
fidence region for variable selection estimators is to consider the estimator
T2,n that chooses Ij with probability equal to the observed bootstrap propor-
tion ρ̂jn. The bootstrap sample T ∗

1 , ..., T
∗
B tends to be slightly more variable

than an iid sample T2,1, ..., T2,B, and the geometric argument suggests that
the large sample coverage of the nominal 100(1− δ)% confidence region will
be at least as large as the nominal coverage 100(1− δ)%.

4.9.3 Examples and Simulations

Pelawa Watagoda and Olive (2019a) have an example and simulations for
multiple linear regression using the residual bootstrap. See Chapter 2. We
will use Poisson and binomial regression.

Example 4.19. Lindenmayer et al. (1991) and Cook and Weisberg (1999,
p. 533) give a data set with 151 cases where Y is the number of possum
species found in a tract of land in Australia. The predictors are acacia=basal
area of acacia + 1, bark=bark index, habitat=habitat score, shrubs=number
of shrubs + 1, stags= number of hollow trees + 1, stumps=indicator for
presence of stumps, and a constant. Inference for the full Poisson regression
model is shown along with the shorth(c) nominal 95% confidence intervals for
βi computed using the parametric bootstrap with B = 1000. As expected, the
bootstrap intervals are close to the large sample GLM confidence intervals
≈ β̂i ± 2SE(β̂i).
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The minimum AIC model from backward elimination used a constant,
bark, habitat, and stags. The shorth(c) nominal 95% confidence intervals for
βi using the parametric bootstrap are shown. Note that most of the confidence
intervals contain 0 when closed intervals are used instead of open intervals.
The Poisson regression output is also shown, but should only be used for
inference if the model was selected before looking at the data.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -1.0428 0.2480 -4.205 0.0000 [-1.562,-0.538]

acacia 0.0166 0.0103 1.612 0.1070 [-0.004, 0.035]

bark 0.0361 0.0140 2.579 0.0099 [ 0.007, 0.065]

habitat 0.0762 0.0375 2.032 0.0422 [-0.003, 0.144]

shrubs 0.0145 0.0205 0.707 0.4798 [-0.028, 0.056]

stags 0.0325 0.0103 3.161 0.0016 [ 0.013, 0.054]

stumps -0.3907 0.2866 -1.364 0.1727 [-1.010, 0.171]

output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -0.8994 0.2135 -4.212 0.0000 [-1.438,-0.428]

acacia 0 [ 0.000, 0.037]

bark 0.0336 0.0121 2.773 0.0056 [ 0.000, 0.060]

habitat 0.1069 0.0297 3.603 0.0003 [ 0.000, 0.156]

shrubs 0 [ 0.000, 0.060]

stags 0.0302 0.0094 3.210 0.0013 [ 0.000, 0.054]

stumps 0 [-0.970, 0.000]

We tested H0 : β2 = β5 = β7 = 0 with the Imin model selected by
backward elimination. (Of course this test would be easy to do with the
full model using GLM theory.) Then H0 : Aβ = (β2 , β5, β7)

T = 0. Using
the prediction region method with the full model had [0, D(UB)] = [0, 2.836]

with D0 = 2.135. Note that
√
χ2

3,0.95 = 2.795. So fail to reject H0. Using

the prediction region method with the Imin backward elimination model had
[0, D(UB)] = [0, 2.804] while D0 = 1.269. So fail to reject H0. The ratio of
the volumes of the bootstrap confidence regions for this test was 0.322. (Use
(3.35) with S∗

T and D from backward elimination for the numerator, and
from the full model for the denominator.) Hence the backward elimination
bootstrap test was more precise than the full model bootstrap test.

Example 4.20. For binary logistic regression, the MLE tends to converge
if max(|xT

i β̂|) ≤ 7 and if the Y values of 0 and 1 are not nearly perfectly

classified by the rule Ŷ = 1 if xT
i β̂ > 0.5 and Ŷ = 0, otherwise. If there

is perfect classification, the MLE does not exist. Let ρ̂(x) = P̂ (Y = 1|x)

under the binary logistic regression. If |xT
i β̂|) ≥ 10, some of the ρ̂(xi) tend

to be estimated to be exactly equal to 0 or 1, which causes problems for
the MLE. The Flury and Riedwyl (1988, pp. 5-6) banknote data consists of
100 counterfeit and 100 genuine Swiss banknote. The response variable is
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an indicator for whether the banknote is counterfeit. The six predictors are
measurements on the banknote: bottom, diagonal, left, length, right, and top.
When the logistic regression model is fit with these predictors and a constant,
there is almost perfect classification and backward elimination had problems.
We deleted diagonal, which is likely an important predictor, so backward
elimination would run. For this full model, classification is very good, but
the xT

i β̂ run from −20 to 20. In a plot of xT
i β̂ versus Y on the vertical axis

(not shown), the logistic regression mean function is tracked closely by the
lowess scatterplot smoother. The full model and backward elimination output
is below. Inference using the logistic regression normal approximation appears
to greatly underestimate the variability of β̂ compared to the parametric full
model bootstrap variability. We tested H0 : β2 = β3 = β4 = 0 with the Imin

model selected by backward elimination. Using the prediction region method
with the full model had [0, D(UB)] = [0, 1.763] with D0 = 0.2046. Note that√
χ2

3,0.95 = 2.795. So fail to reject H0. Using the prediction region method

with the Imin backward elimination model had [0, D(UB)] = [0, 1.511] while
D0 = 0.2297. So fail to reject H0. The ratio of the volumes of the bootstrap
confidence regions for this test was 16.2747. Hence the full model bootstrap
inference was much more precise. Backward elimination produced many zeros,
but also produced many estimates that were very large in magnitude.

large sample full model inference

Est. SE z Pr(>|z|) 95% shorth CI

int -475.581 404.913 -1.175 0.240 [-83274.99,1939.72]

length 0.375 1.418 0.265 0.791 [ -98.902,137.589]

left -1.531 4.080 -0.375 0.708 [ -364.814,611.688]

right 3.628 3.285 1.104 0.270 [ -261.034,465.675]

bottom 5.239 1.872 2.798 0.005 [ 3.159,567.427]

top 6.996 2.181 3.207 0.001 [ 4.137,666.010]

output and shorth intervals for the min AIC submodel

Est. SE z Pr(>|z|) 95% shorth CI

int -472.999 269.271 -1.757 0.079 [-168131.6,35623.9]

length 0 [ -110.850,286.265]

left 0 [ -752.695,724.702]

right 2.725 2.050 1.329 0.184 [-656.1549,906.136]

bottom 5.005 1.657 3.020 0.003 [ 2.985,1428.346]

top 6.821 2.071 3.294 0.001 [ 4.333,1957.107]

Binary regression data sets like the one in Example 4.20 are common: the
response plot of xT

i β̂ versus Y suggests that the logistic regression mean

function is good, but the range of xT
i β̂ is such that the GLM normal ap-

proximation to the MLE β̂ is likely invalid. Since the parametric bootstrap
produces datasets very similar to the actual dataset, the bootstrap distri-
bution of the logistic regression MLE may be superior to the GLM normal
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approximation. For Example 4.20, the GLM and bootstrap inference for the
full model both suggest that bottom and top are important predictors.

The results of the following simulation are similar to those of Chapter 2
for multiple linear regression using the residual bootstrap with residuals from
the OLS full model. This simulation was for Poisson regression and binomial
regression, using B = max(200, n/10, 50p) and 5000 runs. The simulation
used p = 4, 6, 7, 8, and 10; n = 25p, n = 50p; ψ = 0, 1/

√
p, and 0.9; and

k = 1 and p − 2 where k and ψ are defined in the following paragraph. A
larger simulation study is in Rathnayake (2019). In the simulations, we used
θ = Aβ = βi, θ = Aβ = βS = (β1, 1, ..., 1)T and θ = Aβ = βE = 0.

Let x = (1,uT )T where u is the (p−1)×1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
q = p − 1 elements of the vector wi are iid N(0,1). Let the q × q matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal
entries σii = [1+(q−1)ψ2] and the off diagonal entries σij = [2ψ+(q−2)ψ2].
Hence the correlations are cor(zi, zj) = ρ = (2ψ+ (q− 2)ψ2)/(1 + (q− 1)ψ2)

for i 6= j. Then
∑k

j=1 zj ∼ N(0, kσii+k(k−1)σij) = N(0, v2). Let u = az/v.
Then cor(xi, xj) = ρ for i 6= j where xi and xj are nontrivial predictors. If
ψ = 1/

√
cp, then ρ→ 1/(c+ 1) as p→∞ where c > 0. As ψ gets close to 1,

the predictor vectors ui cluster about the line in the direction of (1, ..., 1)T .
Let SP = xT β = β1 +1xi,2 + · · ·+1xi,k+1 ∼ N(β1, a

2) for i = 1, ..., n. Hence
β = (β1 , 1, ..., 1, 0, ..., 0)

T with β1, k ones, and p − k − 1 zeros. Binomial
regression used β1 = 0, a = 5/3, and mi = m with m = 1 or 20. Poisson
regression used β1 = 1 = a and β1 = 5 with a = 2.

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = (β1, 1, ..., 1)T where β2 =
· · · = βk+1 = 1, and H0 : βE = 0 (whether the last p − k − 1 βi = 0). The
nominal coverage was 0.95 with δ = 0.05. Observed coverage between 0.94
and 0.96 would suggest coverage is close to the nominal value. The parametric
bootstrap was used with AIC.

In the tables, there are two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for backward
elimination. The last six columns give results for the tests. The terms pr,
hyb, and br are for the prediction region method (2.30), hybrid region (2.32),
and Bickel and Ren region (2.31). The 0 indicates the test was H0 : βE = 0,
while the 1 indicates that the test was H0 : βS = (β1, 1..., 1)T. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests for βS if k = 1.
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Volume ratios of the three confidence regions can be compared using (2.35),
but there is not enough information in the tables to compare the volume of
the confidence region for the full model regression versus that for the variable
selection regression since the two methods have different determinants |S∗

T |.
The inference for backward elimination was often as precise or more precise

than the inference for the full model. The coverages tended to be near 0.95
for the parametric bootstrap on the full model. Variable selection coverage
tended to be near 0.95 unless the β̂i could equal 0. An exception was binary
logistic regression with m = 1 where variable selection and the full model
often had higher coverage than the nominal 0.95 for the hypothesis tests,
especially for n = 25p. Compare Tables 4.2 and 4.3. For binary regression,
the bootstrap confidence regions using smaller a and larger n resulted in
coverages closer to 0.95 for the full model, and convergence problems caused
the programs to fail for a > 4. The Bickel and Ren (2.31) average cutoffs
were at least as high as those of the hybrid region (2.32).

If βi was a component of βE , then the backward elimination confidence
intervals had higher coverage but were shorter than those of the full model
due to zero padding. The zeros in β̂E tend to result in higher than nominal
coverage for the variable selection estimator, but can greatly decrease the
volume of the confidence region compared to that of the full model.

For the simulated data, when ψ = 0, the asymptotic covariance matrix
I−1(β) is diagonal. Hence β̂S has the same multivariate normal limiting
distribution for Imin and the full model by Remark 2.4. For Tables 4.2-4.5,
βS = (β1, β2)

T , and βp−1 and βp are components of βE . For Table 4.6,
βS = (β1, ..., β9)

T . Hence β1 , β2, and βp−1 are components of βS , while
βE = β10. For the n in the tables and ψ = 0, the coverages and “lengths”
did tend to be close for the βi that are components of βS , and for pr1, hyb1,
and br1.

Table 4.2 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 200, n = 100, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9516 0.9328 0.9524 0.9504 0.9724 0.9872 0.9920 0.9802 0.9838 0.9888
len 1.1605 1.0953 0.7171 0.7151 2.5225 2.5225 2.5476 2.5173 2.5173 2.6893
vs,0 0.9564 0.9322 0.9976 0.9976 0.9960 0.9964 0.9988 0.9774 0.9794 0.9948
len 1.1483 1.0798 0.6143 0.6204 2.7329 2.7329 3.0386 2.5160 2.5160 2.6899

reg,0.5 0.9538 0.9428 0.9440 0.9544 0.9680 0.9854 0.9896 0.9724 0.9828 0.9858
len 1.1622 1.6737 1.4547 1.4588 2.5221 2.5221 2.5475 2.5165 2.5165 2.6037

vs,0.5 0.9528 0.9662 0.9978 0.9982 0.9948 0.9918 0.9978 0.9760 0.9756 0.9872
len 1.1462 1.6714 1.2879 1.2883 2.7230 2.7230 3.0170 2.5379 2.5379 2.6860

reg,0.9 0.9662 0.9578 0.9520 0.9500 0.9690 0.9846 0.9884 0.9724 0.9848 0.9876
len 1.1606 9.4523 9.4241 9.4379 2.5220 2.5220 2.5454 2.5142 2.5142 2.5389

vs,0.9 0.9566 0.9422 0.9960 0.9974 0.9958 0.9972 0.9982 0.9866 0.9932 0.9956
len 1.1502 8.4654 8.4806 8.4951 2.7700 2.7700 3.0182 2.6176 2.6176 2.7644
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Table 4.3 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 200, n = 200, p = 4, k = 1, and m = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9504 0.9440 0.9552 0.9544 0.9584 0.9662 0.9674 0.9580 0.9662 0.9728
len 0.7539 0.6771 0.4583 0.4587 2.4884 2.4884 2.4992 2.4846 2.4846 2.5745
vs,0 0.9552 0.9490 0.9986 0.9978 0.9954 0.9908 0.9968 0.9600 0.9698 0.9762
len 0.7510 0.6736 0.3909 0.3926 2.7226 2.7226 3.0310 2.4814 2.4814 2.5740

reg,0.5 0.9538 0.9508 0.9550 0.9578 0.9590 0.9686 0.9690 0.9578 0.9658 0.9714
len 0.7548 1.0543 0.9337 0.9309 2.4858 2.4858 2.4958 2.4828 2.4828 2.5266

vs,0.5 0.9538 0.9602 0.9984 0.9974 0.9930 0.9922 0.9958 0.9708 0.9786 0.9828
len 0.7501 1.0607 0.8064 0.8047 2.7022 2.7023 2.9948 2.5004 2.5004 2.6164

reg,0.9 0.9462 0.9536 0.9522 0.9496 0.9548 0.9642 0.9658 0.9496 0.9610 0.9626
len 0.7546 6.0844 6.0691 6.0800 2.4888 2.4888 2.4990 2.4860 2.4860 2.4967

vs,0.9 0.9562 0.9520 0.9958 0.9954 0.9936 0.9922 0.9968 0.9822 0.9870 0.9896
len 0.7502 5.3338 5.3737 5.3847 2.7934 2.7934 3.0392 2.5873 2.5873 2.7225

Table 4.4 Bootstrapping Binomial Logistic Regression, Backward Elimination with
AIC, B = 500, n = 250, p = 10, k = 1, and m = 20

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9576 0.9502 0.9520 0.9548 0.9500 0.9528 0.9530 0.9480 0.9496 0.9502
len 0.1428 0.1232 0.0860 0.0860 3.9837 3.9837 3.9876 2.4538 2.4538 2.4653
vs,0 0.9510 0.9510 0.9992 0.9978 0.9980 0.9982 0.9998 0.9412 0.9458 0.9478
len 0.1424 0.1229 0.0706 0.0707 4.3081 4.3081 4.7454 2.4531 2.4531 2.4747

reg,0.32 0.9536 0.9534 0.9514 0.9548 0.9496 0.9524 0.9530 0.9474 0.9490 0.9506
len 0.1426 0.1833 0.1609 0.1610 3.9840 3.9840 3.9884 2.4528 2.4528 2.4589

vs,0.32 0.9534 0.9620 0.9966 0.9976 0.9968 0.9976 0.9988 0.9534 0.9544 0.9582
len 0.1424 0.1837 0.1347 0.1352 4.2607 4.2607 4.6891 2.4527 2.4527 2.5042

reg,0.9 0.9514 0.9432 0.9552 0.9498 0.9434 0.9448 0.9446 0.9430 0.9440 0.9450
len 0.1427 2.2178 2.2170 2.2175 3.9846 3.9846 3.9887 2.4530 2.4530 2.4553

vs,0.9 0.9590 0.9656 0.9982 0.9986 0.9982 0.9978 0.9996 0.9532 0.9478 0.9654
len 0.1425 2.0342 1.8778 1.8862 4.2368 4.2368 4.6742 2.4449 2.4449 2.5661

Table 4.5 Bootstrapping Poisson Regression, Backward Elimination with AIC, B =
500, n = 250, p = 10, k = 1, a = 1, β1 = 1

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9480 0.9526 0.9526 0.9520 0.9502 0.9512 0.9524 0.9432 0.9454 0.9472
len 0.1752 0.1325 0.1275 0.1276 3.9859 3.9859 3.9901 2.4528 2.4528 2.4740
vs,0 0.9552 0.9574 0.9982 0.9982 0.9984 0.9982 0.9998 0.9524 0.9574 0.9628
len 0.1752 0.1323 0.1051 0.1047 4.3004 4.3004 4.7408 2.4543 2.4543 2.5009

reg,0.32 0.9552 0.9518 0.9520 0.9536 0.9538 0.9536 0.9538 0.9510 0.9532 0.9552
len 0.1752 0.2419 0.2390 0.2386 3.9852 3.9852 3.9894 2.4518 2.4518 2.4689

vs,0.32 0.9562 0.9632 0.9986 0.9992 0.9980 0.9982 0.9992 0.9630 0.9644 0.9712
len 0.1750 0.2419 0.2005 0.2004 4.2618 4.2618 4.6811 2.4520 2.4520 2.5384

reg,0.9 0.9478 0.9530 0.9570 0.9554 0.9458 0.9478 0.9484 0.9448 0.9448 0.9476
len 0.1754 3.2873 3.2859 3.2912 3.9831 3.9831 3.9872 2.4536 2.4536 2.4691

vs,0.9 0.9500 0.9574 0.9984 0.9994 0.9970 0.9966 0.9984 0.9638 0.9626 0.9742
len 0.1752 2.8710 2.7922 2.7879 4.2597 4.2597 4.6886 2.4809 2.4809 2.6402
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Table 4.6 Bootstrapping Poisson Regression, Backward Elimination with AIC, B =
500, n = 250, p = 10, k = 8, a = 2, β1 = 5

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.9522 0.9468 0.9540 0.9518 0.9496 0.9492 0.9488 0.9474 0.9464 0.9478
len 0.0210 0.0146 0.0146 0.0142 1.9593 1.9593 1.9609 4.1633 4.1633 4.1675
vs,0 0.9544 0.9546 0.9518 0.9980 0.9966 0.9374 0.9966 0.9534 0.9524 0.9552
len 0.0210 0.0146 0.0146 0.0117 2.1470 2.1470 2.3955 4.1655 4.1655 4.1880

reg,0.32 0.9522 0.9510 0.9486 0.9540 0.9494 0.9504 0.9516 0.9460 0.9468 0.9472
len 0.0210 0.0664 0.0664 0.0663 1.9595 1.9595 1.9614 4.1636 4.1636 4.1684

vs,0.32 0.9508 0.9596 0.9496 0.9992 0.9986 0.9434 0.9986 0.9634 0.9646 0.9696
len 0.0210 0.0663 0.0662 0.0541 2.1434 2.1434 2.3960 4.1970 4.1970 4.2703

reg,0.9 0.9536 0.9580 0.9550 0.9584 0.9538 0.9538 0.9548 0.9496 0.9512 0.9524
len 0.0210 1.0357 1.0361 1.0336 1.9585 1.9585 1.9605 4.1603 4.1603 4.1643

vs,0.9 0.9486 0.9484 0.9492 0.9988 0.9982 0.9492 0.9982 0.9688 0.9546 0.9676
len 0.0212 1.0742 1.0745 0.8793 2.1387 2.1387 2.3860 4.2883 4.2883 4.3818

4.10 Prediction Intervals

We use two prediction intervals from Olive et al. (2019). The first predic-
tion interval for Yf applies the shorth prediction interval of Section 2.3 to
the parametric bootstrap sample Y ∗

1 , ..., Y
∗
B where the Y ∗

i are iid from the

distribution D(ĥ(xf ), γ̂). If the regression method produces a consistent es-

timator (ĥ(x), γ̂) of (h(x), γ), then this new prediction interval is a large
sample 100(1− δ)% PI that is a consistent estimator of the shortest popula-
tion interval [L, U ] that contains at least 1− δ of the mass as B, n→∞. The
new large sample 100(1− δ)% PI using Y ∗

1 , ..., Y
∗
B uses the shorth(c) PI with

c = min(B, dB[1 − δ + 1.12
√
δ/B ] e). (4.13)

For models with a linear predictor xT β, we will want prediction intervals
after variable selection or model selection. Refer to Equation (2.1) and Section
4.6.1. Forward selection or backward elimination with the Akaike (1973) AIC
criterion or Schwarz (1978) BIC criterion are often used for GLM variable
selection. The Chen and Chen (2008) EBIC criterion can be useful, especially
if n/p is not large. GLM model selection with lasso and the elastic net is
also common. See Hastie et al. (2015, ch. 3), Tibshirani (1996), Friedman et
al. (2007), and Friedman et al. (2010). Relaxed lasso applies the regression
method, such as a GLM, to the active predictors with nonzero coefficients
selected by lasso. For n ≥ 10p, Olive and Hawkins (2005) suggested using
multiple linear regression variable selection software with the Mallows (1973)
Cp criterion to get a subset I, then fit the GLM using Y and xI . If the
regression model contains a q × 1 vector of parameters γ , then we may need
n ≥ 10(p+ q).
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The prediction interval (4.13) can have undercoverage if n is small com-
pared to the number of estimated parameters. The modified shorth PI (4.14)
inflates PI (4.13) to compensate for parameter estimation and model selec-
tion. Let d be the number of variables x∗1, ..., x

∗
d used by the full model, for-

ward selection, lasso, or relaxed lasso. (We could let d = j if j is the degrees
of freedom of the selected model if that model was chosen in advance without
model or variable selection. Hence d = j is not the model degrees of freedom
if model selection was used. For a GAM full model, suppose the “degrees of
freedom” di for S(xi) is bounded by k. We could let d = 1 +

∑p
i=2 di with

p ≤ d ≤ pk.) We want n ≥ 10d, and the prediction interval length will be
increased (penalized) if n/d is not large. Let qn = min(1−δ+0.05, 1−δ+d/n)
for δ > 0.1 and

qn = min(1− δ/2, 1− δ + 10δd/n), otherwise.

If 1 − δ < 0.999 and qn < 1 − δ + 0.001, set qn = 1 − δ. Then compute the
shorth PI with

cmod = min(B, dB[qn + 1.12
√
δ/B ] e). (4.14)

Olive (2007, 2018) and Pelawa Watagoda and Olive (2019b) used similar
correction factors since the maximum simulated undercoverage was about
0.05 when n = 20d. If a q × 1 vector of parameters γ is also estimated, we
may need to replace d by dq = d+ q.

If β̂I is a×1, form the p×1 vector β̂I,0 from β̂I by adding 0s corresponding

to the omitted variables. For example, if p = 4 and β̂Imin
= (β̂1, β̂3)

T is the

estimator that minimized the variable selection criterion, then β̂Imin,0 =

(β̂1, 0, β̂3, 0)T .
Hong et al. (2018) explain why classical PIs after AIC variable selection

may not work. Fix p and let Imin correspond to the predictors used after
variable selection, including AIC, BIC, and relaxed lasso. Suppose P (S ⊆
Imin) → 1 as n → ∞. See Charkhi and Claeskens (2018), Claeskens and
Hjort (2008, pp. 70, 101, 102, 114, 232), Hastie et al. (2015, pp. 295-302)
and Haughton (1988, 1989) for more information and references about this
assumption. For relaxed lasso, the assumption holds if lasso is a consistent
estimator. Suppose model (2.1) holds, and that if S ⊆ Ij , then

√
n(β̂Ij

−
βIj

)
D→ Naj

(0,V j). Hence

√
n(β̂Ij,0 − β)

D→ Np(0,V j,0) (4.15)

where V j,0 adds columns and rows of zeros corresponding to the xi not

in Ij . Then β̂Imin,0 is a
√
n consistent estimator of β under model (2.1)

if the variable selection criterion is used with forward selection, backward
elimination, or all subsets. Hence (4.13) and (4.14) are large sample PIs.
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Rathnayake and Olive (2019) gave the limiting distribution of
√
n(β̂Imin,0 −

β), generalizing the Pelawa Watagoda and Olive (2019a) result for multiple
linear regression. See Theorem 2.4. Regularity conditions for (4.13) and (4.14)
to be large sample PIs when p > n are much stronger.

Prediction intervals (4.13) and (4.14) often have higher than the nominal
coverage if n is large and Yf can only take on a few values. Consider binary
regression where Yf ∈ {0, 1} and the PIs (4.13) and (4.14) are [0,1] with
100% coverage, [0,0], or [1,1]. If [0,0] or [1,1] is the PI, coverage tends to be
higher than nominal coverage unless P (Yf = 1|xf ) is near δ or 1− δ, e.g., if
P (Yf = 1|xf) = 0.01, then [0,0] has coverage near 99% even if 1− δ < 0.99.

Example 4.21. For the Ceriodaphnia data of Example 4.4, Figure 4.17
shows the response plot of ESP versus Y for this data. In this plot, the lowess
curve is represented as a jagged curve to distinguish it from the estimated
Poisson regression mean function (the exponential curve). The horizontal line
corresponds to the sample mean Y . The circles correspond to the Yi and the
×’s to the PIs (4.13) with d = p = 3. The n large sample 95% PIs contained
97% of the Yi. There was no evidence of overdispersion: see Example 4.4.
There were 5 replications for each of the 14 strain–species combinations,
which helps show the bootstrap PI variability when B = 1000. This example
illustrates a useful goodness of fit diagnostic: if the model D is a useful
approximation for the data and n is large enough, we expect the coverage on
the training data to be close to or higher than the nominal coverage 1 − δ.
For example, there may be undercoverage if a Poisson regression model is
used when a negative binomial regression model is needed.

Example 4.22. For the banknote data of Example 4.20, after variable
selection, we decided to use a constant, right, and bottom as predictors. The
response plot for this submodel is shown in the left plot of Figure 4.18 with
Z = Zi = Yi/mi = Yi and the large sample 95% PIs for Zi = Yi. The circles
correspond to the Yi and the ×’s to the PIs (4.13) with d = 3, and 199 of the
200 PIs contain Yi. The PI [0,0] that did not contain Yi corresponds to the
circle in the upper left corner. The PIs were [0,0], [0,1], or [1,1] since the data
is binary. The mean function is the smooth curve and the step function gives
the sample proportion of ones in the interval. The step function approximates
the smooth curve closely, hence the binary logistic regression model seems
reasonable. The right plot of Figure 4.18 shows the GAM using right and
bottom with d = 3. The coverage was 100% and the GAM had many [1,1]
intervals.

Example 4.23. For the species data of Examples 4.18, we used a constant
and log(endem), log(area), log(distance), and log(areanear). The response
plot looks good, but the OD plot (not shown) suggests overdispersion. When
the response plot for the Poisson regression model was made, the n large
sample 95% PIs (4.13) contained 89.7% of the Yi.
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For the simulations, generating xT β is important. For example, for bino-
mial logistic regression, typically −5 ≤ xT β ≤ 5 or there can be problems
with the MLE. We used the same simulated data as that used for variable
selection in Section 4.9.3. Thus SP = xT β = β1 + 1xi,2 + · · · + 1xi,k+1 ∼
N(β1, a

2) for i = 1, ..., n. Hence β = (β1 , 1, .., 1, 0, ..., 0)T with β1, k ones and
p − k − 1 zeros. The default settings for Poisson regression use β1 = 1 = a.
The default settings for binomial regression use β1 = 0 and a = 5/3.

Table 4.7 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 4, β1 = 1 = a

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9712 0.9714 0.9810 0.9800 0.9792 0.9734

len 6.6448 6.6118 7.2770 7.2004 7.0680 6.6632
400 0 1 cov 0.9692 0.9694 0.9728 0.9714 0.9722 0.9665

len 6.6392 6.6474 6.7996 6.7722 6.7588 6.6778
100 0.5 1 cov 0.9642 0.9644 0.9796 0.9786 0.9760 0.9689

len 6.6922 6.6806 7.3136 7.2824 7.1160 6.7767
400 0.5 1 cov 0.9668 0.9670 0.9722 0.9716 0.9702 0.9754

len 6.6720 6.6896 6.8342 6.8140 6.7992 6.7802
100 0.9 1 cov 0.9672 0.9674 0.9766 0.9768 0.9738 0.9665

len 6.6038 6.6186 7.1480 7.1214 7.0002 6.5789
400 0.9 1 cov 0.9660 0.9662 0.9734 0.9700 0.9692 0.9798

len 6.5838 6.5746 6.7526 6.7196 6.7004 6.7443
100 0 3 cov 0.9696 0.9698 0.9848 0.9834 0.9818 0.9654

len 6.7080 6.7084 7.5632 7.5442 7.5348 6.7408
400 0 3 cov 0.9728 0.9730 0.9750 0.9746 0.9748 0.9657

len 6.5718 6.5684 6.7690 6.7356 6.7406 6.7063
100 0.5 3 cov 0.9672 0.9674 0.9842 0.9838 0.9736 0.9592

len 6.6992 6.7044 7.5804 7.5494 7.3810 6.7128
400 0.5 3 cov 0.9682 0.9684 0.9730 0.9722 0.9702 0.9772

len 6.6794 6.6890 6.8726 6.8520 6.8466 6.7504
100 0.9 3 cov 0.9664 0.9666 0.9804 0.9810 0.9750 0.9678

len 6.6704 6.6646 7.2880 7.2672 7.0722 6.7635
400 0.9 3 cov 0.9690 0.9692 0.9744 0.9742 0.9736 0.9667

len 6.7960 6.8092 6.9696 6.9682 6.9120 6.6987

The simulation used 5000 runs, so an observed coverage in [0.94, 0.96]
gives no reason to doubt that the PI has the nominal coverage of 0.95. The
simulation used B = 1000; p = 4, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and

k = 1, 19, or p − 1. The simulated data sets are rather small since the R
estimators are rather slow. For binomial and Poisson regression, we only
computed the GAM for p = 4 with SP = AP = α+S2(x2)+S2(x3)+S4(x4)
and d = p = 4. We only computed the full model GLM if n ≥ 5p. Lasso and
relaxed lasso were computed for all cases. The regression model was computed
from the training data, and a prediction interval was made for the test case
Yf given xf . The “length” and “coverage” were the average length and the
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Table 4.8 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 4, β1 = 5, a = 2

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9500 0.9440 0.7730 0.9664 0.9654 0.9520

len 77.6072 77.6306 84.1066 81.8374 82.4752 84.1432
400 0 1 cov 0.9580 0.9564 0.7566 0.9622 0.9628 0.9534

len 82.0126 82.0212 85.5704 83.2692 83.4374 80.9897
100 0.5 1 cov 0.9456 0.9424 0.7646 0.9634 0.9408 0.9512

len 83.0236 82.9034 90.5822 88.3060 88.6700 79.6887
400 0.5 1 cov 0.9530 0.9500 0.7584 0.9604 0.9566 0.9678

len 83.8588 83.8292 87.4336 85.1042 85.1434 79.9855
100 0.9 1 cov 0.9492 0.9452 0.7688 0.9646 0.7712 0.9654

len 78.3554 78.3798 87.0086 84.6072 83.4980 81.5432
400 0.9 1 cov 0.9550 0.9574 0.7606 0.9606 0.7928 0.9513

len 76.7028 76.7594 80.5070 78.2308 78.2538 80.1298
100 0 3 cov 0.9544 0.9466 0.7798 0.9708 0.9404 0.9487

len 80.1476 80.1362 92.1372 89.8532 90.3456 79.4565
400 0 3 cov 0.9560 0.9548 0.7514 0.9582 0.9566 0.9567

len 80.7868 80.8976 85.0642 82.7982 82.7912 79.4522
100 0.5 3 cov 0.9516 0.9478 0.7848 0.9694 0.3324 0.9515

len 77.1120 77.1130 88.9346 86.4680 85.8634 81.5643
400 0.5 3 cov 0.9568 0.9558 0.7534 0.9636 0.5214 0.9528

len 80.4226 80.4932 84.7646 82.5590 83.7526 79.9786
100 0.9 3 cov 0.9492 0.9456 0.7882 0.9620 0.7510 0.9554

len 79.5374 79.6172 91.2052 89.0692 84.5648 81.8544
400 0.9 3 cov 0.9544 0.9546 0.7638 0.9554 0.7384 0.9586

len 79.7384 79.6906 83.8318 81.6862 81.0882 80.7521

Table 4.9 Simulated Large Sample 95% PI Coverages and Lengths for Poisson Re-
gression, p = 50, β1 = 5, a = 2

n ψ k GLM lasso RL OHFS BE
500 0 1 cov 0.9352 0.7564 0.9598 0.9640 0.9476

len 81.2668 84.3188 81.8934 85.2922 81.1010
500 0.14 1 cov 0.9370 0.7508 0.9580 0.9628 0.9458

len 81.1820 84.4530 82.1894 85.2304 81.1146
500 0.9 1 cov 0.9368 0.7630 0.9620 0.8994 0.9456

len 80.4568 86.3506 84.4942 84.1448 80.4202
500 0 19 cov 0.9388 0.7592 0.9756 0.3778 0.9472

len 81.6922 96.8546 94.6350 99.7436 81.7218
500 0.14 19 cov 0.9368 0.7556 0.9730 0.2770 0.9438

len 80.0654 95.2964 93.2748 87.3814 80.1276
500 0.9 19 cov 0.9350 0.7544 0.9536 0.9480 0.9352

len 79.7324 86.3448 84.0674 83.2958 79.6172
500 0 49 cov 0.9386 0.7104 0.9666 0.1004 0.9364

len 81.1422 96.4304 94.8818 108.0518 81.2516
500 0.14 49 cov 0.9396 0.7194 0.9558 0.2858 0.9402

len 79.7874 94.8908 93.2538 86.4234 79.8692
500 0.9 49 cov 0.9380 0.7640 0.9480 0.9512 0.9430

len 78.8146 85.5786 83.2812 82.4104 78.8316
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proportion of the 5000 prediction intervals that contained Yf . Two rows per
table were used to display these quantities.

Tables 4.7 to 4.9 show some simulation results for Poisson regression. Lasso
minimized 10-fold cross validation and relaxed lasso was applied to the se-
lected lasso model. The full GLM, full GAM and backward elimination (BE
in the tables) used PI (4.13) while lasso, relaxed lasso (RL in the tables),
and forward selection using the Olive and Hawkins (2005) method (OHFS
in the tables) used PI (4.14). For n ≥ 10p, coverages tended to be near or
higher than the nominal value of 0.95, except for lasso and the Olive and
Hawkins (2005) method in Tables 4.8 and 4.9. In Table 4.7, coverages were
high because the Poisson counts were small and the Poisson distribution is
discrete. In Table 4.8, the Poisson counts were not small, so the discreteness
of the distribution did not affect the coverage much. For Table 4.9, p = 50,
and PI (4.13) has slight undercoverage for the full GLM since n = 10p. Table
4.9 helps illustrate the importance of the correction factor: PI (4.14) would
have higher coverage and longer average length. Lasso was good at choosing
subsets that contain S since relaxed lasso had good coverage. The Olive and
Hawkins (2005) method is partly graphical, and graphs were not used in the
simulation.

Tables 4.10 and 4.11 are for binomial regression where only PI (4.13)
was used. For large n, coverage is likely to be higher than the nominal if the
binomial probability of success can get close to 0 or 1. For binomial regression,
neither lasso nor the Olive and Hawkins (2005) method had undercoverage
in any of the simulations with n ≥ 10p.

For n ≤ p, good performance needed stronger regularity conditions, and
Table 4.12 shows some results with n = 100 and p = 200. For k = 1, relaxed
lasso performed well as did lasso except in the second to last column of
Table 4.12. With k = 19 and ψ = 0, there was undercoverage since n <
10(k + 1). For the dense models with k = 199 and ψ = 0, there was often
severe undercoverage, lasso sometimes picked 100 predictors including the
constant, and then relaxed lasso caused the program to fail with 5000 runs.
Coverage was usually good for ψ > 0 except for the second to last column
and sometimes the last column of Table 4.12. With ψ = 0.9, each predictor
was highly correlated with the one dominant principal component.

4.11 Survival Analysis

Regression methods for survival analysis focus on the survival function rather
than the mean function, and the data can be right censored.

Definition 10.25. Let Y ≥ 0 be the time until an event occurs. Then Y is
called the survival time or time until event. The survival time is censored
if the event of interest has not been observed. Let Yi be the ith survival time.
Let Zi be the time the ith observation (possibly an individual or machine)
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Table 4.10 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 4, m = 40

n ψ k GLM GAM lasso RL OHFS BE
100 0 1 cov 0.9786 0.9788 0.9774 0.9744 0.9720 0.9726

len 10.7696 10.7656 10.5332 10.4430 10.1990 10.2016
400 0 1 cov 0.9708 0.9700 0.9696 0.9708 0.9702 0.9688

len 9.8374 9.8426 9.8292 9.7866 9.7518 9.7548
100 0.5 1 cov 0.9792 0.9720 0.9742 0.9750 0.9724 0.9708

len 10.6668 10.6426 10.3790 10.3282 10.1060 10.1012
400 0.5 1 cov 0.9678 0.9676 0.9692 0.9670 0.9668 0.9656

len 9.8352 9.8452 9.8196 9.7890 9.7612 9.7590
100 0.9 1 cov 0.9780 0.9766 0.9762 0.9742 0.9704 0.9714

len 10.7324 10.7222 10.3774 10.3186 10.1438 10.1602
400 0.9 1 cov 0.9688 0.9672 0.9680 0.9674 0.9684 0.9672

len 9.7554 9.7646 9.7392 9.7012 9.6778 9.6790
100 0 3 cov 0.9790 0.9750 0.9782 0.9772 0.9780 0.9776

len 10.6974 10.6960 10.7388 10.7030 10.6956 10.7020
400 0 3 cov 0.9652 0.9652 0.9654 0.9656 0.9650 0.9626

len 9.7838 9.7878 9.8244 9.7864 9.7800 9.7722
100 0.5 3 cov 0.9780 0.9734 0.9776 0.9766 0.9770 0.9784

len 10.7224 10.7034 10.7482 10.7042 10.7162 10.7134
400 0.5 3 cov 0.9686 0.9688 0.9726 0.9702 0.9704 0.9706

len 9.7250 9.7170 9.7460 9.7172 9.7152 9.7290
100 0.9 3 cov 0.9800 0.9798 0.9802 0.9786 0.9698 0.9720

len 10.6978 10.6994 10.5820 10.5414 10.0660 10.1802
400 0.9 3 cov 0.9682 0.9684 0.9696 0.9674 0.9678 0.9676

len 9.8146 9.8074 9.8364 9.8190 9.7594 9.7764

Table 4.11 Simulated Large Sample 95% PI Coverages and Lengths for Binomial
Regression, p = 50, m = 7

n ψ k GLM lasso RL OHFS BE
1000 0 1 cov 0.9896 0.9838 0.9802 0.9798 0.9798

len 4.0008 3.6666 3.5744 3.5838 3.5842
1000 0.14 1 cov 0.9868 0.9818 0.9782 0.9774 0.9770

len 4.0422 3.6836 3.6158 3.6226 3.6312
1000 0.9 1 cov 0.9894 0.9794 0.9796 0.9800 0.9798

len 4.0214 3.5994 3.5794 3.6122 3.6114
1000 0 19 cov 0.9888 0.9870 0.9848 0.9814 0.9812

len 4.0294 3.9730 3.8438 3.7110 3.7030
1000 0.14 19 cov 0.9872 0.9846 0.9852 0.9804 0.9806

len 4.0376 3.8350 3.7834 3.7170 3.7066
1000 0.9 19 cov 0.9884 0.9804 0.9808 0.9802 0.9772

len 4.0348 3.6170 3.5948 3.6226 3.6216
1000 0 49 cov 0.990 0.9904 0.9904 0.9900 0.9904

len 4.0428 4.0726 4.0528 4.0490 4.0460
1000 0.14 49 cov 0.9866 0.9866 0.9856 0.9806 0.9796

len 4.0396 3.9044 3.8640 3.7046 3.6988
1000 0.9 49 cov 0.9874 0.9808 0.9792 0.9790 0.9772

len 4.0660 3.6444 3.6230 3.6556 3.6490
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Table 4.12 Simulated Large Sample 95% PI Coverages and Lengths, n = 100, p =
200

BR m=7 BR m=40 PR,a=1 β1 = 1 PR,a=2 β1 = 5
ψ,k lasso RL lasso RL lasso RL lasso RL
0 cov 0.9912 0.9654 0.9836 0.9602 0.9816 0.9612 0.7620 0.9662
1 len 4.2774 3.8356 11.3482 11.001 7.8350 7.5660 93.7318 91.4898

0.07 cov 0.9904 0.9698 0.9796 0.9644 0.9790 0.9696 0.7652 0.9706
1 len 4.2570 3.9256 11.4018 11.1318 7.8488 7.6680 92.0774 89.7966

0.9 cov 0.9844 0.9832 0.9820 0.9820 0.9880 0.9858 0.7850 0.9628
1 len 3.8242 3.7844 10.9600 10.8716 7.6380 7.5954 98.2158 95.9954
0 cov 0.9146 0.8216 0.8532 0.7874 0.8678 0.8038 0.1610 0.6754
19 len 4.7868 3.8632 12.0152 11.3966 7.8126 7.5188 88.0896 90.6916

0.07 cov 0.9814 0.9568 0.9424 0.9208 0.9620 0.9444 0.3790 0.5832
19 len 4.1992 3.8266 11.3818 11.0382 7.9010 7.7828 92.3918 92.1424
0.9 cov 0.9858 0.9840 0.9812 0.9802 0.9838 0.9848 0.7884 0.9594
19 len 3.8156 3.7810 10.9194 10.8166 7.6900 7.6454 97.744 95.2898

0.07 cov 0.9820 0.9640 0.9604 0.9390 0.9720 0.9548 0.3076 0.4394
199 len 4.1260 3.7730 11.2488 10.9248 8.0784 7.9956 90.4494 88.0354
0.9 cov 0.9886 0.9870 0.9822 0.9804 0.9834 0.9814 0.7888 0.9586
199 len 3.8558 3.8172 10.9714 10.8778 7.6728 7.6602 97.0954 94.7604

leaves the study for any reason other than the event of interest. Then Zi

is the time until the ith observation is censored. Then the right censored
survival time Ti of the ith observation is Ti = min(Yi, Zi). Let δi = 0 if Ti

is (right) censored (Ti = Zi) and let δi = 1 if Ti is not censored (Ti = Yi).

We will assume that the censoring mechanism is independent of the time to
event: Yi and Zi are independent. Often censoring occurs because of cost and
time constraints. In the definition below, F (t) is the cdf and f(t) is the pdf
of a univariate survival time random variable Y that satisfies P (Y ≥ 0) = 1.

Definition 10.26. i) The survival function of Y is S(t) = P (Y > t) =
1− F (t). S(0) = 1, S(∞) = 0 and S(t) is nonincreasing.

ii) The hazard function of Y is h(t) =
f(t)

1− F (t)
for t > 0 and F (t) < 1.

Note that h(t) ≥ 0 if F (t) < 1.

Next, we will consider an important class of survival regression models.

Definition 10.27. The Cox proportional hazards regression (PH)
model is

hi(t) = hYi|xi
(t) = h

Yi|β
T xi

(t) = exp(βT xi)h0(t)

where h0(t) is the unknown baseline function and exp(βT xi) is the haz-
ard ratio. The sufficient predictor SP = βT xi =

∑p
j=1 βjxij.

The Cox PH model (= Cox PH regression model = Cox regression model
= Cox proportional hazards regression model) is a 1D regression model since
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the conditional distribution Y |x is completely determined by the hazard func-
tion, and the hazard function only depends on x through βT x. Inference for
the PH model uses computer output that is used almost exactly as the out-
put for generalized linear models such as the logistic and Poisson regression
models. The Cox PH model is semiparametric: the conditional distribution
Y |x depends on the sufficient predictor βT x, but the parametric form of
the hazard function hY |x(t) is not specified. The Cox PH model is the most
widely used survival regression model in survival analysis. For the Cox PH
model, often we will use β = βC.

Survival data is usually right censored so Y is not observed. Instead, the
survival time Ti = min(Yi, Zi) where Yi Zi and Zi is the censoring time.
Also δi = 0 if Ti = Zi is censored and δi = 1 if Ti = Yi is uncensored. Hence
the data is (Ti, δi,xi) for i = 1, ..., n.

The Weibull PH regression model of Definition 4.4 is an important para-
metric PH regression model. Theorem 4.4 still holds for the Cox PH regression
model with AIC. The relaxed lasso estimator is the lasso variable selection
model that fits the Cox PH regression model to the predictors with nonzero
lasso coefficients. The relaxed lasso estimator is

√
n consistent by Theorem

4.4 if the lasso estimator is consistent.

4.11.1 Simulations

For variable selection with the p × 1 vector β̂Imin,0, consider testing H0 :
Aβ = θ0 versus H1 : Aβ 6= θ0 with θ = Aβ where often θ0 = 0. Then let

Tn = Aβ̂Imin,0 and let T ∗
i = Aβ̂

∗

Imin,0,i for i = 1, ..., B. The shorth estimator

can be applied to a bootstrap sample β̂∗
i1, ..., β̂

∗
iB to get a confidence interval

for βi. Here Tn = β̂i and θ = βi.
Next, we describe a small simulation study that was done using B =

max(1000, n/25, 50p) and 5000 runs. The simulation used p = 4, 6, 7, 8, and
10; n = 25p and 50p; ψ = 0, 1/

√
p, and 0.9; and k = 1 and p − 2 where

k and ψ are defined in the following paragraph. In the simulations, we use
θ = Aβ = βi, θ = Aβ = βS = 1 and θ = Aβ = βE = 0.

In the simulations, for i = 1, ..., n, we generated wi ∼ Np(0, I) where the
p elements of the vector wi are iid N(0,1). Let the p × p matrix A = (aij)
with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the vector

zi = Awi so that Cov(zi) = Σz = AAT = (σij) where the diagonal entries
σii = [1+(p−1)ψ2] and the off diagonal entries σij = [2ψ+(p−2)ψ2 ]. Then∑k

j=1 zj ∼ N(0, kσii + k(k − 1)σij) = N(0, v2). Let x = az/v. Hence the

correlations are Cor(xi, xj) = ρ = (2ψ+(p− 2)ψ2)/(1 + (p− 1)ψ2) for i 6= j.
If ψ = 1/

√
cp, then ρ→ 1/(c+1) as p→∞ where c > 0. As ψ gets close to 1,

the predictor vectors cluster about the line in the direction of (1, ..., 1)T. Let
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SP = xT
i β = 1xi,1 + · · ·+ 1xi,k ∼ N(0, a2) for i = 1, ..., n. The simulations

use a = 1 where β = (1, ..., 1, 0, ..., 0)T with k ones and p− k zeros.
Then the Yi were generated such that Y |x follows a Weibull proportional

hazards regression model with the above β. We used R code similar to that
of Zhou (2001) to obtain (Zi, δi,xi) where some of the Zi are right censored.
Some functions from survpack were useful. The function phdata2 generates
a data set as described above. We used the nonparametric bootstrap and the
Cox PH model. The function PHboot bootstraps the full Cox PH model.
The function PHbootsim is used to simulate the bootstrap for the full Cox
PH model. The functions LPHboot and RLPHboot bootstraps a Cox PH
model with lasso and relaxed lasso. The function RLPHbootsim is used to
simulate the bootstrap for relaxed lasso. The shorth3 function computes
the shorth(c) intervals with the Frey (2013) correction used when g = 1.
Some R code is shown below.

library(survival)

library(MASS)

library(glmnet)

out<- phdata2(n=100,p=4,k=1,psi=0,a=1,gam=1,clam = 0.1)

out$beta

$betaP

[1] 1 0 0 0

#out$x gives the matrix of predictors

out$time

$time

[1] 10.5015 2.5748 2.1266 0.4238 0.4454

[6] 0.1165 0.0233 0.3108 0.0856 0.3908

.

.

.

[96] 5.4669 0.1603 0.1510 0.1206 0.6356

out$status

$status #0 means right censored

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0

0 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1

RLPHbootsim(nruns=100,B=200,k=2) #slow 3 runs per minute

$mndd

[1] 3.01 #relaxed lasso used 3 predictors on average

$cicov

[1] 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95

$avelen
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[1] 0.8642748 0.8473142 0.7334978 0.7219106 2.5561583

2.5561583 2.6622667 2.5124382 2.5124382 2.6253967

$beta

[1] 1 1 0 0

$k

[1] 2

PHbootsim(nruns=100,B=200,k=2) #fairly fast

$cicov

[1] 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99

$avelen

[1] 0.8571470 0.8582906 0.7541797 0.7416362 2.5247451

2.5247451 2.5558537 2.5021201 2.5021201 2.6243971

$beta

[1] 1 1 0 0

$k

[1] 2

The simulation computed the Frey shorth(c) interval for each βi and used
bootstrap confidence regions to test H0 : βS = 1 (whether first k βi = 1) and
H0 : βE = 0 (whether the last p− k βi = 0). The nominal coverage was 0.95
with δ = 0.05. Observed coverage between 0.94 and 0.96 suggests coverage
is close to the nominal value. The number of runs = 100 is tiny since the
relaxed lasso simulation is slow. Using 5000 runs would be much better.

The regression models used the nonparamtric bootstrap on the relaxed
lasso estimator β̂Imin,0. Table 4.13 gives results with n = 100, p = 4, and
k = 1. Table 4.13 shows two rows for each model giving the observed confi-
dence interval coverages and average lengths of the confidence intervals. The
term “reg” is for the full model regression, and the term “vs” is for variable
selection with relaxed lasso. The last six columns give results for the tests.
The terms pr, hyb, and br are for the prediction region method (2.30), hybrid
region (2.32), and Bickel and Ren region (2.31). The 0 indicates the test was
H0 : βE = 0, while the 1 indicates that the test was H0 : βS = 1. The length
and coverage = P(fail to reject H0) for the interval [0, D(UB)] or [0, D(UB,T )]
where D(UB) or D(UB ,T ) is the cutoff for the confidence region. The cutoff

will often be near
√
χ2

g,0.95 if the statistic T is asymptotically normal. Note

that
√
χ2

2,0.95 = 2.448 is close to 2.45 for the full model regression bootstrap

tests.
Volume ratios of the three confidence regions can be compared using (2.35),

but there is not enough information in Table 4.13 to compare the volume of
the confidence region for the full model regression versus that for the relaxed
lasso since the two methods have different determinants |S∗

T |. Table 4.13
corresponds to the above R output with k = 2.

The inference for forward selection was often as precise or more precise
than the inference for the full model. The coverages were near 0.95 for the
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Table 4.13 Bootstrapping Cox PH Regression With Relaxed Lasso

ψ β1 β2 βp−1 βp pr0 hyb0 br0 pr1 hyb1 br1
reg,0 0.96 0.95 0.92 0.92 0.91 0.94 0.94 0.95 0.99 0.99
len 0.857 0.858 0.754 0.742 2.525 2.525 2.556 2.502 2.502 2.624
vs,0 0.94 0.96 0.97 0.99 0.95 0.97 0.97 0.93 0.95 0.95
len 0.864 0.847 0.733 0.722 2.556 2.556 2.662 2.512 2.512 2.625

regression bootstrap on the full model, although there was slight undercov-
erage for the tests since (n − p)/n = 0.96 when n = 25p. Suppose ψ = 0.

Then it may be true that β̂S has the same limiting distribution for Imin and
the full model. Note that the average lengths and coverages were similar for
the full model and forward selection Imin for β1, β2, and βS = (β1, β2)

T .
Forward selection inference was more precise for βE = (β3, β4)

T . The Bickel
and Ren (2.31) cutoffs and coverages were at least as high as those of the
hybrid region (2.32).

See Olive (2020) for results on survival analysis that are similar to the
results given in these online notes for MLR and GLMS. In particular, graphs
for checking and visualizing the model, prediction intervals, inference, and
inference after variable selection, including lasso variable selection, are given.
See Tibshirani (1997) and Simon et al. (2011) for lasso and elastic net with
the Cox PH regression model.

4.12 Regression Trees

A regression tree is a flexible method for Y = m(x)+e or for Yi = m(xi)+σiei

where the zero mean errors ei are iid. The method produces a graph called a
tree. Each branch has a label like xi > 7.56 if xi is quantitative, or xj ∈ {a, c}
(written xj = ac) where xj is a factor taking on values a, b, c, d, e, f, say.
Unless told otherwise, go to the left branch if the condition is true, go to
the right branch if the condition is false. (Some software switches this. Check
the story problem.) The bottom of the tree has leaves that give Ŷ = Ŷ |x.
The root is the top node, a leaf is a terminal node, and a split is a rule for
creating new branches. Each node has a left and right branch.

Example 4.19. Given a tree and x values, find Ŷ . The Venables and
Ripley (1997, p. 420) and Ein-Dor and Feldmesser (1987) cpu data has Y =
perf = central processing unit (CPU) performance with predictor variables
x1 = cach = cache size in kilobytes, x2 = mmax = maximum main memory
in kilobytes, x3 = syct = cycle time in nanoseconds, and x4 = chmin =
minimum number of channels. The regression tree is shown on the following
page.

a) Predict Y if cach = 30 and mmax = 25000.
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|
cach < 27

mmax < 6100

mmax < 1750 syct < 360

chmin < 5.5

mmax < 28000

cach < 56

1.089 1.427
1.699 1.974

1.280

2.062
2.268 2.667

Fig. 4.19 Regression Tree for Example 4.19.

Solution: Since cach = 30, the cach < 27 condition is false. Go to the right
branch. Since mmax = 25000, the condition for the next node is true. Go to
the left branch where Ŷ = 2.062.

b) Predict Y if cach = 25, mmax = 7000, syct = 200, and chmin = 5.
Solution: Go to the left, then right, then left, then left where Ŷ = 1.699.

Regression trees have some advantages. Trees can be easier to interpret
than competing methods when some predictors are numerical and some are
categorical. Trees are invariant to monotone (increasing or decreasing) trans-
formations of the predictor variable xi. Regression trees can handle missing
values better than MLR and can beat MLR if there is nonadditive behavior.
Trees can handle complex unknown interactions. Regression trees i) give pre-
diction rules that can be rapidly and repeatedly evaluated, ii) are useful for
screening predictors (interactions, variable selection), iii) can be used to as-
sess the adequacy of linear models, and iv) can summarize large multivariate
data sets.

Trees that use recursive partitioning for classification and regression trees
use the CART algorithm. (Classification trees are very similar to regression
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trees. See Section 5.9.) In growing a tree, the binary partitioning algorithm
recursively splits the data in each node until either the node is homogeneous
(Y ≈ constant for a regression tree) or the node contains too few observations
(default ≤ 5). The deviance is a measure of node homogeneity, and deviance
= 0 for a perfectly homogeneous node. For a regression tree, often Ŷ is the
mean of the node observations.

Trees divide the predictor space (set of possible values of the training
data xi) into J distinct and nonoverlapping regions R1, ..., RJ that are high
dimensional boxes. Then for every observation that falls in Rj, make the same

prediction. Hence ŶRj
= sample mean of training data Yi in Rj. Choose Rj

so RSS =
∑J

j=1

∑
i∈Rj

(yi − ŶRj
)2 is small. Let {x|xj < s} be the region in

the predictor space such that xj < s where x = (x1, ..., xp)
T . Define 2 regions

R1(j, s) = {x|xj < s} and R2(j, s) = {x|xj ≥ s}. Then seek cutpoint s and
variable xj to minimize

∑

i:xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i:xi∈R2(j,s)

(yi − ŷR2
)2.

This can be done “quickly” if p is small (could use order statistics). Then
repeat the process looking for the best predictor and the best cutpoint in
order to split the data further so as to minimize the RSS within each of the
resulting regions. Only split one of the regions, R1, R2, and R3. Continue this
process until a stopping criterion is reached such as no region contains more
than 5 observations (and stop if the region is homogeneous). If J is too large,
the tree overfits.

Since a regression tree uses J regions, the response plot of ESP = Ŷ =
m̂(x) versus Y consists of J dot plots that scatter about the identity line.
A dot plot of z1, ..., zm consists of an axis and m points corresponding to
the vaules of zi. The regression tree response plot has a dotplot of nm cases
with Ŷ = ŶRm

for each of the J regions. The residual plot consists of J
dot plots that scatter about the r = 0 line. If Y = m(x) + e, we can make
prediction intervals for Yf with the regression tree using Ŷ = ESP = m̂(x)

and r = Y − Ŷ as before.
If Y = α +

∑
j = 1pSj(xj) + e or Y = g(α + βT x) + e, then slicing

the ESP α̂+
∑
j = 1pŜj(xj) or α̂+ β̂

T
x is more effective than partitioning

the predictor space with hyperboxes Rk. Consider the response plot of ESP
versus Y with the identity line or lowess added as a visual aid.

4.12.1 Boosting

This subsection follow James et al. (2013) closely. Techniques that can be used
to improve both regression and classification trees are discussed in Section
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5.9. A technique for improving regression trees is boosting. Like bagging,
boosting can be applied to many statistical models, including regression and
classification trees.

The boosting algorithm for regression trees follows. i) Set f̂(x) = 0 and
ri − Yi for i = 1, ..., n. Hence the step i) residuals are the training data. ii)

For b = 1, ..., B repeat: a) fit tree f̂b with d splits (d + 1 teminal nodes) to
the training data (X, r) where the predictors are collected in matrix X . b)

Update f̂(x) by adding a shrunken version of the new tree: f̂(x) ← f̂(x) +

λf̂b(x), and update the residuals ri ← ri − λf̂(x). iii) The boosted model

f̂(x) =

B∑

b=1

λf̂b(x).

The tree is fit to updated residuals rather than Y . This technique slowly
improves f̂ in areas where it does not perform well, and λ slows the learning
process further. As a rule of thumb, iterative techniques that learn slowly
tend to perform well. Often d = 1 is used where a d = 1 tree is called a
“stump. The value d is called the interaction depth. The value λ tends to be
0.01 or 0.001. Very small λ tends to need very large B for good performance.
Using the d = 1 stumps leads to an additive model

f̂(x) =

p∑

j=1

f̂j(xj)

which is a competitor for the additive error regression GAM.

4.13 Data Splitting

Data splitting is used for inference after model selection. Use a training set
to select a full model, and a validation set for inference with the selected full
model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and
Rinaldo et al. (2019). Typically when training and validation sets are used,
the training set is bigger than the validation set or half sets are used, often
causing large efficiency loss.

Let J be a positive integer and let bxc be the integer part of x, e.g.,
b7.7c = 7. Initially divide the data into two sets H1 with n1 = bn/(2J)c
cases and V1 with n − n1 cases. If the fitted model from H1 is not good
enough, randomly select n1 cases from V1 to add to H1 to form H2. Let V2

have the remaining cases from V1. Continue in this manner, possibly forming
sets (H1, V1), (H2, V2), ..., (HJ, VJ) where Hi has ni = in1 cases. Stop when
Hd gives a reasonable model Id with ad predictors if d < J . Use d = J ,
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otherwise. Use the model Id as the full model for inference with the data in
Vd.

This procedure is simple for a fixed data set, but it would be good to
automate the procedure. For example, if n = 500000 and p = 90, using
n1 = 900 would result in a much smaller loss of efficiency than n1 = 250000.

4.14 Complements

This chapter used material from Chang and Olive (2010), Olive (2013b,
2017a: ch. 13), Olive et al. (2020), and Rathnayake and Olive (2019). GLMs
were introduced by Nelder and Wedderburn (1972). Useful references for
generalized additive models include Hastie and Tibshirani (1986, 1990), and
Wood (2017). Zhou (2001) is useful for simulating the Weibull regression
model. Also see McCullagh and Nelder (1989), Agresti (2013, 2015), and Cook
and Weisberg (1999, ch. 21-23). Collett (2003) and Hosmer and Lemeshow
(2000) are excellent texts on logistic regression while Cameron and Trivedi
(2013) and Winkelmann (2008) cover Poisson regression. Alternatives to Pois-
son regression mentioned in Section 4.7 are covered by Zuur et al. (2009),
Simonoff (2003), and Hilbe (2011). Cook and Zhang (2015) show that enve-
lope methods have the potential to significantly improve GLMs. Some GLM
large sample theory is given by Claeskens and Hjort (2008, p. 27), Cook and
Zhang (2015), and Sen and Singer (1993, p. 309).

An introductions to 1D regression and regression graphics is Cook and
Weisberg (1999a, ch. 18, 19, and 20), while Olive (2010) considers 1D regres-
sion. A more advanced treatment is Cook (1998). Important papers include
Brillinger (1977, 1983) and Li and Duan (1989). Li (1997) shows that OLS F
tests can be asymptotically valid for model (4.18) if u is multivariate normal
and Σ−1

u ΣuY 6= 0.

In Section 4.9, the functions binregbootsim and pregbootsim are
useful for the full binomial regression and full Poisson regression models. The
functions vsbrbootsim and vsprbootsim were used to bootstrap back-
ward elimination for binomial and Poisson regression. The functions LRboot
and vsLRboot bootstrap the logistic regression full model and backward
elimination. The functions PRboot and vsPRboot bootstrap the Poisson
regression full model and backward elimination.

In Section 4.10, table entries for Poisson regression were made with
prpisim2 while entries for binomial regression were made with brpisim.
The functions prpiplot2 and lrpiplot were used to make Figures 4.17
and 4.18. The function prplot can be used to check the full Poisson regres-
sion model for overdispersion. The function prplot2 can be used to check
other Poisson regression models such as a GAM or lasso.
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i) Resistant regression: Suppose the regression model has anm×1 response
vector y, and a p × 1 vector of predictors x. Assume that predictor trans-
formations have been performed to make x, and that w consists of k ≤ p
continuous predictor variables that are linearly related. Find the RMVN set
based on the w to obtain nu cases (yci,xci), and then run the regression
method on the cleaned data. Often the theory of the method applies to the
cleaned data set since y was not used to pick the subset of the data. Effi-
ciency can be much lower since nu cases are used where n/2 ≤ nu ≤ n, and
the trimmed cases tend to be the “farthest” from the center of w.

The method will have the most outlier resistance if k = p (or k = p− 1 if
there is a trivial predictor X1 ≡ 1). If m = 1, make the response plot of Ŷc

versus Yc with the identity line added as a visual aid, and make the residual
plot of Ŷc versus rc = Yc − Ŷc.

In R, assume Y is the vector of response variables, x is the data matrix of
the predictors (often not including the trivial predictor), and w is the data
matrix of the wi. Then the following R commands can be used to get the
cleaned data set. We could use the covmb2 set B instead of the RMVN set
U computed from the w by replacing the command getu(w) by getB(w).

indx <- getu(w)$indx #often w = x

Yc <- Y[indx]

Xc <- x[indx,]

#example

indx <- getu(buxx)$indx

Yc <- buxy[indx]

Xc <- buxx[indx,]

outr <- lsfit(Xc,Yc)

MLRplot(Xc,Yc) #right click Stop twice

a) Resistant additive error regression: An additive error regression model
has the form Y = h(x)+e where there is m = 1 response variable Y , and the
p× 1 vector of predictors x is assumed to be known and independent of the
additive error e. An enormous variety of regression models have this form,
including multiple linear regression, nonlinear regression, nonparametric re-
gression, partial least squares, lasso, ridge regression, etc. Find the RMVN
set (or covmb2 set) based on the w to obtain nU cases (Yci,xci), and then
run the additive error regression method on the cleaned data.

b) Resistant Additive Error Multivariate Regression
Assume y = g(x)+ε = E(y|x)+ε where g : R

p → R
m, y = (Y1, ..., Ym)T ,

and ε = (ε1, ..., εm)T . Many models have this form, including multivariate
linear regression, seemingly unrelated regressions, partial envelopes, partial
least squares, and the models in a) with m = 1 response variable. Clean the
data as in a) but let the cleaned data be stored in (Zc,Xc). Again, the theory
of the method tends to apply to the method applied to the cleaned data since
the response variables were not used to select the cases, but the efficiency is
often much lower. In the R code below, assume the y are stored in z.
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indx <- getu(w)$indx #often w = x

Zc <- z[indx]

Xc <- x[indx,]

#example

ht <- buxy

t <- cbind(buxx,ht);

z <- t[,c(2,5)];

x <- t[,c(1,3,4)]

indx <- getu(x)$indx

Zc <- z[indx,]

Xc <- x[indx,]

mltreg(Xc,Zc) #right click Stop four times

4.15 Problems

Output for problem 4.1: Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -18.3500 3.42582 -5.356 0.0000

circum 0.0345827 0.00633521 5.459 0.0000

4.1. Consider trying to estimate the proportion of males from a population
of males and females by measuring the circumference of the head. Use the
above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if x = 550.0.

b) Find a 95% CI for β.

c) Perform the 4 step Wald test for Ho : β = 0.

Output for Problem 4.2 Response = sex

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -19.7762 3.73243 -5.298 0.0000

circum 0.0244688 0.0111243 2.200 0.0278

length 0.0371472 0.0340610 1.091 0.2754

4.2∗. Now the data is as in Problem 4.1, but try to estimate the proportion
of males by measuring the circumference and the length of the head. Use the
above logistic regression output to answer the following problems.

a) Predict ρ̂(x) if circumference = x1 = 550.0 and length = x2 = 200.0.

b) Perform the 4 step Wald test for Ho : β1 = 0.
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c) Perform the 4 step Wald test for Ho : β2 = 0.

Output for Problem 4.3

Data set = Possums, Response = possums

Terms = (Habitat Stags)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -0.652653 0.195148 -3.344 0.0008

Habitat 0.114756 0.0303273 3.784 0.0002

Stags 0.0327213 0.00935883 3.496 0.0005

Number of cases: 151 Degrees of freedom: 148

Pearson X2: 110.187

Deviance: 138.685

4.3∗. Use the above output to perform inference on the number of possums
in a given tract of land. The output is from a Poisson regression, and the
possums data is from Cook and Weisberg (1999).

a) Predict µ̂(x) if habitat = x1 = 5.8 and stags = x2 = 8.2.

b) Perform the 4 step Wald test for Ho : β1 = 0.

c) Find a 95% confidence interval for β2.

B1 B2 B3 B4

df 945 956 968 974
# of predictors 54 43 31 25

# with 0.01 ≤ Wald p-value ≤ 0.05 5 3 2 1
# with Wald p-value > 0.05 8 4 1 0

G2 892.96 902.14 929.81 956.92
AIC 1002.96 990.14 993.81 1008.912

corr(B1:ETA’U,Bi:ETA’U) 1.0 0.99 0.95 0.90
p-value for change in deviance test 1.0 0.605 0.034 0.0002

4.4∗. The above table gives summary statistics for 4 models considered as
final submodels after performing variable selection. (Several of the predictors
were factors, and a factor was considered to have a bad Wald p-value > 0.05
if all of the dummy variables corresponding to the factor had p-values > 0.05.
Similarly the factor was considered to have a borderline p-value with 0.01 ≤
p-value ≤ 0.05 if none of the dummy variables corresponding to the factor
had a p-value < 0.01 but at least one dummy variable had a p-value between
0.01 and 0.05.) The response was binary and logistic regression was used. The
response plot for the full model B1 was good. Model B2 was the minimum
AIC model found. There were 1000 cases: for the response, 300 were 0s and
700 were 1s.
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a) For the change in deviance test, if the p-value ≥ 0.07, there is little
evidence that Ho should be rejected. If 0.01 < p-value < 0.07 then there is
moderate evidence that Ho should be rejected. If p-value ≤ 0.01 then there
is strong evidence that Ho should be rejected. For which models, if any, is
there strong evidence that “Ho: reduced model is good” should be rejected.

b) For which plot is “corr(B1:ETA’U,Bi:ETA’U)” (using notation from
Arc: ηT u instead of βT x) relevant?

c) Which model should be used as the final submodel? Explain briefly why
each of the other 3 submodels should not be used.

4.5. The smoothing spline simulation in Problem 4.7 compares the PI
lengths and coverages of 3 large sample 95% PIs for Y = m(x) + e and a
single measurement x. Values for the first PI were denoted by scov and slen,
values for 2nd PI were denoted by ocov and olen, and values for third PI
by dcov and dlen. The average degrees of freedom of the smoothing spline
was recorded as adf. The number of runs was 5000. The len was the average
length of the PI and the cov was the observed coverage. One student got the
following results shown in Table 4.2.

Table 4.14 Results for 3 PIs

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

5 100 18.028 17.300 18.741 0.9438 0.9382 0.9508 9.017

For the PIs with coverage ≥ 0.94, which PI was the most precise (best)?

4.6. James et al. (2013. p.p. 327-328) consider the 1978 Boston housing
data where Yi = median house price (in $1000’s so 74 = 74000) in the ith
suburb. The predictors are x1 = lstat = percentage of individuals with lower
socioeconomic status, and x2 = RM = average number of rooms per dwelling.
The pruned regression tree shown in Figure 4.6 used a training set of half of
the cases.

a) Predict the median price (multiply by 1000) if x1 = 7 and x2 = RM = 8.
b) Predict the median price (multiply by 1000) if x1 > 22.

R Problems

Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the slpack function,
e.g. lrplot2, will display the code for the function. Use the args com-
mand, e.g. args(lrplot2), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.
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|
lstat < 9.715

rm < 7.437

rm < 6.7815

lstat < 21.49

25.52 32.05

46.38

19.16 11.10

Fig. 4.20 Regression Tree for Problem 4.6.
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4.7. The Rousseeuw and Leroy (1987, p. 26) Belgian telephone data has
response Y = number of international phone calls (in tens of millions) made
per year in Belgium. The predictor variable x = year (1950-1973). From 1964
to 1969 total number of minutes of calls was recorded instead, and years 1963
and 1970 were also partially effected. Hence there are 6 large outliers and 2
additional cases that have been corrupted.

a) The simple linear regression model is Y = α + βx + e = SP + e.
Copy and paste the R commands for this part to make a response plot of
ESP = Ŷ = α̂+ β̂x versus Y for this model. Include the plot in Word.

b) The additive model is Y = α + S(x) + e = AP + e where S is some
unknown function of x. The R commands make a response plot of EAP =
α̂+ Ŝ(x) versus Y for this model. Include the plot in Word.

c) The simple linear regression model is a special case of the additive model
with S(x) = βx. The additive model is a special case of the additive error
regression model Y = m(x) + e where m(x) = α+ S(x). The response plots
for these three models are used in the same way as the response plot for the
multiple linear regression model: if the model is good, then the plotted points
should cluster about the identity line with no other pattern. Which response
plot is better for showing that something is wrong with the model? Explain
briefly.

4.8. In a generalized additive model (GAM), Y x|AP where AP =

α +
∑k

i=1 Si(xi). In a generalized linear model (GLM), Y x|SP where

SP = α+βT x. Note that a GLM is a special case of a GAM where Si(xi) =
βixi. A GAM is useful for showing that the predictors x1, ..., xk in a GLM
have the correct form, or if predictor transformations or additional terms
such as x2

i are needed. If the plot of Ŝi(xi) is linear, do not change xi in the

GLM, but if the plot is nonlinear, use the shape of Ŝi to suggest functions of
xi to add to the GLM, such as log(xi), x

2
i , and x3

i . Refit the GAM to check
the linearity of the terms in the updated GLM. Wood (2017, pp. 125-130)
describes heart attack data where the response Y is the number of heart
attacks for mi patients suspected of suffering a heart attack. The enzyme ck
(creatine kinase) was measured for the patients. A binomial logistic regression
(GLM) was fit with predictors x1 = ck, x2 = [ck]2, and x3 = [ck]3. Call this
the Wood model I2. The predictor ck is skewed suggesting log(ck) should
be added to the model. Then output suggested that ck is not needed in the
model. Let the binomial logistic regression model that uses x = log(ck) as the
only predictor be model I1. a) The R code for this problem from the URL
above Problem 4.7 makes 4 plots. Plot a) shows Ŝ for the binomial GAM
using ck as a predictor is nonlinear. Plot b) shows that Ŝ for the binomial
GAM using log(ck) as a predictor is linear. Plot c) shows the EE plot for the
binomial GAM using ck as the predictor and model I1. Plot d) shows the
response plot of ESP versus Zi = Yi/mi, the proportion of patients suffering
a heart attack for each value of xi = ck. The logistic curve = Ê(Zi|xi) is
added as a visual aid. Include these plots in Word.
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Do the plotted proportions fall about the logistic curve closely?
b) The command for b) gives AIC(outw) for model I2 and AIC(out) for

model I1. Include the two AIC values below the plots in a).
A model I1 with j fewer predictors than model I2 is “better” than model

I2 if AIC(I1) ≤ AIC(I2) + 2j. Is model I1 “better” than model I2?

4.9. The smoothing spline simulation compares the PI lengths and cover-
ages of 3 PIs for Y = m(x) + e and a single measurement x. Values for the
first PI were denoted by scov and slen, values for 2nd PI were denoted by
ocov and olen, and values for third PI (2.7) by dcov and dlen. The second PI
replaces d by 1 in PI (2.7). Three model types were used 1) m(x) = x + x2,
2) m(x) = sin(x) + cos(x) + log(|x|), and 3) m(x) = 3

√
|x|. The smoothing

spline is flexible so the df > p. The estimated df is given by adf. Copy and
paste the R commands for this problem and make a table like the one below.
The pimenlen gives slen, olen, and dlen.

Table 4.15 Table for Problem 4.8: PIs for modt = 1,

error 95% PI 95% PI 95% PI
type n slen olen dlen scov ocov dcov adf

1 100 4.7095 4.6949 5.0585 0.9660 0.9604 0.9736 6.27

a) For Table 4.3, which PI worked best?
b) For the table you make from the R output, which PI worked best?

4.10. This problem does lasso for binary regression for artificial data
with n = 100, p = 101 and 5 active population nontrivial predictors. If
SP = α + xT β, then the 100 nontrivial predictors are in x and β =
(1, 1, 1, 1, 1, 0, ..., 0)T.

a) Copy and paste the source and library commands into R. Then copy
and paste the commands for this part into R. Relaxed lasso gets the binary
logistic regression model to the predictors corresponding to the nonzero lasso
coefficients. Then the response plot is made. Include the plot in Word.

Does the step function track the logistic curve?
b) Copy and paste the commands for this part into R. These commands

to MLR lasso, then the relaxed lasso gets the binary logistic regression model
to the predictors corresponding to the nonzero lasso coefficients. Then the
response plot is made. For this data set, one more predictor was used than
that in a). Include the plot in Word.

Does the step function track the logistic curve?
c) Copy and paste the commands for this part into R. The commands for

this part use MLR forward selection with EBIC, and only nontrivial predictor
x4 was selected. Then the binary logistic regression if fit using this variable
and the response plot is made. Include the plot in Word.

Is the plot in c) worse than the plots in a) and b)?
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4.11. This problem does lasso for Poisson regression for artificial data
with n = 100, p = 101 and 5 active population nontrivial predictors. If
SP = α + xT β, then the 100 nontrivial predictors are in x and β =
(1, 1, 1, 1, 1, 0, ..., 0)T.

a) Copy and paste the source and library commands into R. Then copy
and paste the commands for this part into R. Relaxed lasso gets the Pois-
son regression model to the predictors corresponding to the nonzero lasso
coefficients. Then the response plot is made. Include the plot in Word. The
horizontal line is Y and the jagged curve is lowess which tracked the expo-
nential curve well until ESP > 3. Lasso overfit using 26 variables instead of
5.

b) Copy and paste the commands for this part into R. These commands
to MLR lasso, then the relaxed lasso gets the Poisson regression model to the
predictors corresponding to the nonzero lasso coefficients. Then the response
plot is made. For this data set, 20 variables were used. Include the plot in
Word.

c) Copy and paste the commands for this part into R. The commands for
this part use MLR forward selection with EBIC, and only nontrivial predictor
x5 was selected. Then the Poisson regression if fit using this variable and the
response plot is made. Include the plot in Word.

If the Poisson regression model is good, we would like the vertical scale to
be not more than 10 times the horizontal scale in the OD plot. (This happened
in a) and b).) Is the vertical scale more than 10 times the horizontal scale in
the OD plot for this model?

4.12. This problem on regression trees is taken from the vignettes for the
R package rpart. See Therneau and Atkinson (2017).

The dataset contains 34 variables on n = 111 cars from April, 1990 Con-
sumer Reports. The variables “tire size” and “model name” were omitted and
“rim size” was also deleted because it was too good a predictor of price. The
response Y = price/1000. The four variables used it the tree construction
were Country, Disp, HP.revs and Type.

a) Use the R code for this part to print the regression tree. Then predict the
car price (in dollars so multiply Ŷ by 1000) ifDisp = 200 and Hp.res = 5000.

b) Predict the car price 1000Ŷ if Disp = 100, Country = a, and Type = a.
Note that you go to the left of the tree branch if the label condition is true,
and to the right of the tree branch if the label condition is not true.


