
Chapter 3

Statistical Learning Alternatives to OLS

This chapter considers several alternatives to OLS for the multiple linear
regression model. Large sample theory is give for p fixed, but the prediction
intervals can have p > n.

3.1 The MLR Model

From Definition 1.34, the multiple linear regression (MLR) model is

Yi = β1 + xi,2β2 + · · ·+ xi,pβp + ei = xT
i β + ei (3.1)

for i = 1, ..., n. This model is also called the full model. Here n is the
sample size and the random variable ei is the ith error. Assume that the ei

are iid with expected value E(ei) = 0 and variance V (ei) = σ2. In matrix
notation, these n equations become Y = Xβ +e where Y is an n× 1 vector
of dependent variables, X is an n×p matrix of predictors, β is a p×1 vector
of unknown coefficients, and e is an n× 1 vector of unknown errors. In this
chapter, we will often use the MLR model

Yi = α+ xi,1β1 + · · ·+ xi,pβp + ei = α+ xT
i β + ei (3.2)

for i = 1, ..., n. For this model, we may use φ = (α,βT )T with Y = Xφ + e.
Ordinary least squares (OLS) large sample theory will be useful for this

chapter. Also see Theorem 2.11. Let X = (1 X1). For model (3.1), the
ith row of X is (1, xi,2, ..., xi,p) while for model (3.2), the ith row of X is
(1, xi,1, ..., xi,p), and Y = α1 + X1β + e = Xφ + e.

Definition 3.1. Using the above notation for model (3.2), let xT
i =

(xi1, ..., xip), let α be the intercept, and let the slopes vector β = (β1, ..., βp)
T .

Let the population covariance matrices
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150 3 Statistical Learning Alternatives to OLS

Cov(x) = E[(x− E(x))(x − E(x))T ] = Σx, and

Cov(x, Y ) = E[(x−E(x))(Y −E(Y ))] = ΣxY .

If the cases (xi, Yi) are iid from some population where ΣxY exists and Σx
is nonsingular, then the population coefficients from an OLS regression of Y
on x (even if a linear model does not hold) are

α = αOLS = E(Y ) − βTE(x) and β = βOLS = Σ−1
x ΣxY .

Definition 3.2. Let the sample covariance matrices be

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)T and Σ̂xY =
1

n− 1

n∑

i=1

(xi − x)(Yi − Y ).

Let the method of moments estimators be Σ̃x =
1

n

n∑

i=1

(xi−x)(xi−x)T and

Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ) =
1

n

n∑

i=1

xiYi − x Y .

The method of moment estimators are often called the maximum likelihood
estimators, but are the MLE if the (Yi,x

T
i )T are iid from a multivariate

normal distribution, a very strong assumption. In Theorem 3.1, note that

D = XT
1 X1 − nx xT = (n− 1)Σ̂

−1

x .

Theorem 3.1: Seber and Lee (2003, p. 106). Let X = (1 X1). Then

XT Y =

(
nY

XT
1 Y

)
=

(
nY∑n

i=1 xiYi

)
, XT X =

(
n nxT

nx XT
1 X1

)
,

and (XT X)−1 =

(
1
n

+ xT D−1x −xT D−1

−D−1x D−1

)

where the p× p matrix D−1 = [(n− 1)Σ̂x]−1 = Σ̂
−1

x /(n− 1).

Under model (3.2), φ̂ = φ̂OLS = (XT X)−1XT Y .

Theorem 3.2: Second way to compute φ̂:

a) If Σ̂
−1

x exists, then α̂ = Y − β̂
T
x and

β̂ =
n

n− 1
Σ̂

−1

x Σ̃xY = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY .

b) Suppose that (Yi,x
T
i )T are iid random vectors such that σ2

Y , Σ−1
x , and

ΣxY exist. Then α̂
P→ α and
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β̂
P→ β as n → ∞

where α and β are given by Definition 3.1.
Proof. Note that

Y T X1 = (Y1 · · ·Yn)




xT

1
...

xT
n



 =

n∑

i=1

Yix
T
i

and

XT
1 Y = [x1 · · ·xn]




Y1

...
Yn



 =

n∑

i=1

xiYi.

So [
α̂

β̂

]
=

[
1
n + xT D−1x −xT D−1

−D−1x D−1

] [
1T

XT
1

]
Y =

[
1
n

+ xT D−1x −xT D−1

−D−1x D−1

] [
nY

XT
1 Y

]
.

Thus β̂ = −nD−1x Y + D−1XT
1 Y = D−1(XT

1 Y − nx Y ) =

D−1

[
n∑

i=1

uiYi − nx Y

]
=

Σ̂
−1

x
n − 1

nΣ̂xY =
n

n− 1
Σ̂

−1

x Σ̂xY . Then

α̂ = Y + nxT D−1x Y − xT D−1XT
1 Y = Y + [nY xT D−1 − Y T X1D

−1]x

= Y − β̂
T
x. The convergence in probability results hold since sample means

and sample covariance matrices are consistent estimators of the population
means and population covariance matrices. �

It is important to note that the convergence in probability results are
for iid (Yi,x

T
i )T with second moments and nonsingular Σx: a linear model

Y = Xβ + e does not need to hold. When the linear model does hold, the
second method for computing β̂ is still valid even if X is a constant matrix,

and β̂
P→ β by Theorem 3.3 b). Note that for Theorem 3.3 b) with iid cases

and µx = E(x),

n(XT X)−1 P→ V =

[
1 + µT

xΣ−1
x µx −µT

xΣ−1
x

−Σ−1
x µx Σ−1

x

]

There are many large sample theory results for ordinary least squares. The
following theorem is important. See, for example, Sen and Singer (1993, p.
280).
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Theorem 3.3, OLS CLTs. Consider the MLR model and assume that
the zero mean errors are iid with E(ei) = 0 and VAR(ei) = σ2. If the xi are
random vectors, assume that the cases (xi, Yi) are independent, and that the
ei and xi are independent. Also assume that maxi(h1, ..., hn) → 0 and

XT X

n
→ V −1

as n→ ∞ where the convergence is in probability if the xi are random vectors
(instead of nonstochastic constant vectors).

a) For equation (3.1), the OLS estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 V ). (3.3)

b) For equation (3.2), the OLS estimator φ̂ satisfies

√
n(φ̂ − φ)

D→ Np+1(0, σ
2 V ). (3.4)

c) Suppose the cases (xi, Yi) are iid from some population and the equation
(3.2) MLR model Yi = α+xT

i β+ei holds. Assume that Σ−1
x and Σx,Y exist.

Then equation (3.4) holds and

√
n(β̂ − β)

D→ Np(0, σ
2 Σ−1

x ) (3.5)

where β = βOLS = Σ−1
x Σx,Y .

Remark 3.1. Consider Theorem 3.3. For a) and b), the theory acts as if
the xi are constant even if the xi are random vectors. The literature says
the xi can be constants, or condition on xi if the xi are random vectors.
The main assumptions for a) and b) are that the errors are iid with second
moments and the n(XT X)−1 is well behaved. The strong assumptions for c)
are much stronger than those for a) and b), but the assumption of iid cases
is often reasonable if the cases come from some population.

Remark 3.2. Consider MLR model (3.2). Let wi = Anxi for i = 1, ..., n
where An is a full rank k × p matrix with 1 ≤ k ≤ p.

a) Let Σ∗ be Σ̂ or Σ̃. Then Σ∗

w = AnΣ∗

xAT
n and Σ∗

wY = AnΣ∗

xY .
b) If An is a constant matrix, then Σw = AnΣxAT

n and
ΣwY = AnΣxY .

c) Let β̂(u, Y ) and β(u, Y ) be the estimator and parameter from the OLS
regression of Y on u. The constant parameter vector should not depend on
n. Suppose the cases are iid and A is a constant matrix that does not depend

on n. By Theorem 3.2, β̂(w, Y ) = Σ̂
−1

w Σ̂wY = [AnΣ̂xAn]−1AnΣ̂xY =

[AnΣ̂xAn]−1AnΣ̂xβ̂(x, Y ). If An
P→ A, Σ̂x

P→ Σx, and β̂(x, Y )
P→

β(x, Y ), then β̂(w, Y )
P→ β(w, Y ) = [AΣxA]−1AΣxβ(x, Y ).
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A problem with OLS, is that V generally can’t be estimated if p > n since
typically (XT X)−1 does not exist. If p > n, using φ̂ = (XT X)−XT Y is a
poor estimator that interpolates the data, where A− is a generalized inverse
of A. Often the software will not compute φ̂ if p > n.

There are many MLR methods, including OLS for the full model, forward
selection with OLS, the marginal maximum likelihood estimator (MMLE),
elastic net, principal components regression (PCR), partial least squares
(PLS), lasso, lasso variable selection, and ridge regression (RR). For the last
six methods, it is convenient to use centered or scaled data. Suppose U has
observed values U1, ..., Un. For example, if Ui = Yi then U corresponds to
the response variable Y . The observed values of a random variable V are
centered if their sample mean is 0. The centered values of U are Vi = Ui − U
for i = 1, ..., n. Let g be an integer near 0. If the sample variance of the Ui is

σ̂2
g =

1

n− g

n∑

i=1

(Ui − U)2,

then the sample standard deviation of Ui is σ̂g. If the values of Ui are not all
the same, then σ̂g > 0, and the standardized values of the Ui are

Wi =
Ui − U

σ̂g
.

Typically g = 1 or g = 0 are used: g = 1 gives an unbiased estimator
of σ2 while g = 0 gives the method of moments estimator. Note that the
standardized values are centered, W = 0, and the sample variance of the
standardized values

1

n − g

n∑

i=1

W 2
i = 1. (3.6)

Remark 3.3. Let Y = α+xT β +e. Let wT
i = (wi,1, ..., wi,p) be the stan-

dardized vector of nontrivial predictors for the ith case. Since the standard-
ized predictors are also centered, w = 0. Let the n×p matrix of standardized
nontrivial predictors W g = (Wij) when the predictors are standardized using
σ̂g. Then the ith row of W g is wT

i . Thus,
∑n

i=1Wij = 0 and
∑n

i=1W
2
ij = n−g

for j = 1, ..., p. Hence

Wij =
xi,j − xj

σ̂j
where σ̂2

j =
1

n − g

n∑

i=1

(xi,j − xj)
2

is σ̂g for the jth variable xj. Then the sample covariance matrix of the wi is
the sample correlation matrix of the xi:

ρ̂x = Rx = (rij) =
W T

g W g

n− g
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where rij is the sample correlation of xi and xj. Thus the sample correlation
matrix Rx does not depend on g. Let Z = Y −Y where Y = Y 1. Since the
R software tends to use g = 0, let W = W 0. Note that n×p matrix W does
not include a vector 1 of ones. Then regression through the origin is used for
the model

Z = Wη + ε (3.7)

where Z = (Z1, ..., Zn)T and η = (η1, ..., ηp)
T . The vector of fitted values

Ŷ = Y + Ẑ.

Remark 3.4. i) Interest is in model (3.2): estimate Ŷf and β̂. For many
regression estimators, a method is needed so that everyone who uses the
same units of measurements for the predictors and Y gets the same (Ŷ , β̂).
Equation (3.7) is a commonly used method for achieving this goal. Suppose
g = 0. The method of moments estimator of the variance σ2

w is

σ̂2
g=0 = S2

M =
1

n

n∑

i=1

(wi −w)2.

When data xi are standardized to have w = 0 and S2
M = 1, the standardized

data wi has no units. ii) Hence the estimators Ẑ and η̂ do not depend on
the units of measurement of the xi if standardized data and Equation (3.7)
are used. Linear combinations of the wi are linear combinations of the xi.
Thus the estimators Ŷ and β̂ are obtained using Ẑ, η̂, and Y . The linear
transformation to obtain (Ŷ , β̂) from (Ẑ, η̂) is unique for a given set of units
of measurements for the xi and Y . Hence everyone using the same units of
measurements gets the same (Ŷ , β̂). iii) Also, since W j = 0 and S2

M,j = 1, the
standardized predictor variables have similar spread, and the magnitude of
η̂i is a measure of the importance of the predictor variable Wj for predicting
Y .

Remark 3.5. Let σ̂j be the sample standard deviation of variable xj (often

with g = 0) for j = 1, ...., p. Let Ŷi = α̂+ xi,1β̂1 + · · ·+ xi,pβ̂p = α̂+ xT
i β̂. If

standardized nontrivial predictors are used, then

Ŷi = γ̂ + wi,1η̂1 + · · ·+ wi,pη̂p = γ̂ +
xi,1 − x1

σ̂1
η̂1 + · · ·+ xi,p − xp

σ̂p
η̂p

= γ̂ + wT
i η̂ = γ̂ + Ẑi (3.8)

where
η̂j ≈ σ̂jβ̂j (3.9)

for j = 1, ..., p with equality for OLS. (See Remark 3.6.) Often γ̂ = Y so that

Ŷi = Y if xi,j = xj for j = 1, ..., p. Then Ŷ = Y + Ẑ where Y = Y 1. Note
that
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γ̂ ≈ α̂+
x1

σ̂1
η̂1 + · · ·+ xp

σ̂p
η̂p.

Notation. The symbol A ≡ B = f(c) means that A and B are equivalent
and equal, and that f(c) is the formula used to compute A and B.

Most regression methods attempt to find an estimate β̂ of β which
minimizes some criterion function Q(b) of the residuals. As in Definition
1.38, given an estimate b of β, the corresponding vector of fitted values is
Ŷ ≡ Ŷ (b) = Xb, and the vector of residuals is r ≡ r(b) = Y − Ŷ (b). See
Definition 1.39 for the OLS model for Y = Xβ + e. The following model is
useful for the centered response and standardized nontrivial predictors, or if
Z = Y , W = XI , and η = βI corresponds to a submodel I.

Definition 3.3. Consider model (3.1) Y = xT β + e. If Z = Wη + ε,
where the n× q matrix W has full rank q = p− 1, then the OLS estimator

η̂OLS = (W T W )−1W T Z

minimizes the OLS criterion QOLS(η) = r(η)T r(η) over all vectors η ∈
R

p−1. The vector of predicted or fitted values ẐOLS = Wη̂OLS = HZ where
H = W (W T W )−1W T . The vector of residuals r = r(Z,W ) = Z − Ẑ =
(I − H)Z.

For model (3.1) Y = xT β + e, let x = (1 u)T , and let Z = Wη + ε.
Assume that the sample correlation matrix

Ru =
W T W

n

P→ V −1. (3.10)

Note that V −1 = ρu, the population correlation matrix of the nontrivial
predictors ui, if the ui are a random sample from a population. Let H =

W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as n → ∞.

The following remark examines whether the OLS estimator satisfies

un =
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ). (3.11)

Remark 3.6. a) First consider centered data Yi − Y = β∗

1 + (xi,2 −
x2)β2 + · · · + (xi,p − xp)βp + ei or Zi = β∗

1 + wi,2β2 + · · · + wi,pβp + ei.
Do the OLS regression. Since the sample means of the centered response
and centered predictors are 0, β̂∗

1 = 0. In terms of the original predictors,

Ŷi = β̃1 +xi,2β̃2 + · · ·+xi,pβ̃p where β̃1 = Y − β̃2x2 −· · ·− β̃pxp. Then β̃ = β̂

since OLS estimators minimize the sum of squared residuals (if β̃ 6= β̂, then
one of the estimators has a smaller sum of squared residuals, contradicting the
fact that both estimators are OLS estimators). Hence centering the response
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and predictors gives an equivalent method for computing β̂, and the large
sample theory for the equivalent estimators is unchanged.

b) Next consider scaling the predictors. If Y = Xβ(X ,Y )+e, the model
with scaled predictors is Y = Wβ(W ,Y ) + ε where β(X,Y ) denotes the

population coefficients from the OLS regression of Y on X . Here W = XÂn

where the p × p matrix Ân = diag(1, 1/s2, ..., 1/sp) where sj = σ̂j. Since

OLS is affine equivariant and Ân is nonsingular, β̂(W ,Y ) = β̂(XÂn,Y ) =

Â
−1

n β̂(X ,Y ). Then HW = W (W T W )−1W T = X(XT X)−1XT = HX ,
and the residuals and fitted values are the same for both models. If X is a
constant matrix, then W is a constant matrix, but we will show that (3.11)
often does not hold.

Assume Ân
P→ A = diag(1, 1/σ2, ..., 1/σp) where each σi > 0. Let β =

β(X ,Y ). Then

√
n(β̂(W ,Y ) − A−1β) =

√
n(Â

−1

n β̂ − Â
−1

n β + Â
−1

n β − A−1β)

=
√
nÂ

−1

n (β̂ − β) +
√
n(Â

−1

n − A−1)β = zn + bn

where zn =
√
nÂ

−1

n (β̂ − β)
D→ Np(0, σ2A−1V xA−1) if

√
n(β̂ − β)

D→
Np(0, σ

2V x). Note that Â
−1

n β̂
P→ A−1β = β(W ,Y ). Now

bn =





0√
n(σ̂2 − σ2)β2

...√
n(σ̂p − σp)βp




=





0
b2,n

...
bp,n




= Op(1)

if
√
n(σ̂i − σi)

D→ N(0, τ2
i ). Then bi,n

D→ N(0, β2
i τ

2
i ) for i = 2, ..., p.

Thus
√
n(β̂(W ,Y ) − A−1β) does not converge in distribution to z ∼

Np(0, σ
2A−1V xA−1) unless bn

P→ 0. Note that tests of the form H0 : βI = 0
can still be performed, but confidence intervals for ηi 6= 0 will not have the
desired coverage if z is used as the asymptotic distribution. The convergence
fails since Y = XAA−1β + e = XÂnA−1β + ε which means

ε = XAA−1β − XÂnA−1β + e = X(A − Ân)β(W ,Y ) + e

is no longer a vector of iid random variables.
c) If W = (1 W 1), then the W in (3.11) is equal to W 1 in b) above.

Since centering does not affect the large sample theory of the OLS estimator
by a), often (3.11) does not hold.

d) From the above results, un = zn + bn where zn
D→ z ∼ Np−1(0, σ

2V ).
Suppose H0 : ηI = 0 is true where ηI = (ηi1, ..., ηik

)T = Cη where the jth
row of C has a 1 in the ij position, and zeroes elsewhere. Then Cbn = 0, and
√
nC(η̂ − η)

D→ Nk(0, σ2CV CT ). Hence if the (Z,W ) is used as the data,
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then the OLS output gives correct standard errors for testing H0 : ηj = 0,
but the standard errors are incorrect for obtaining a large sample confidence
interval for ηj 6= 0.

Remark 3.7: Variable selection is the search for a subset of predictor
variables that can be deleted without important loss of information if n/p is
large (and the search for a useful subset of predictors if n/p is not large). Refer
to Chapter 2 for variable selection and Equation (2.1) where xT β = xT

SβS +
xT

EβE = xT
S βS . Let p be the number of predictors in the full model, including

a constant. Let q = p − 1 be the number of nontrivial predictors in the full
model. Let a = aI be the number of predictors in the submodel I, including
a constant. Let k = kI = aI − 1 be the number of nontrivial predictors
in the submodel. For submodel I, think of I as indexing the predictors in
the model, including the constant. Let A index the nontrivial predictors in
the model. Hence I adds the constant (trivial predictor) to the collection
of nontrivial predictors in A. In Equation (2.1), there is a “true submodel”
Y = XSβS + e where all of the elements of βS are nonzero but all of the
elements of β that are not elements of βS are zero. Then a = aS is the
number of predictors in that submodel, including a constant, and k = kS is
the number of active predictors = number of nonnoise variables = number
of nontrivial predictors in the true model S = IS . Then there are p− a noise
variables (xi that have coefficient βi = 0) in the full model. The true model
is generally only known in simulations. For Equation (2.1), we also assume
that if xT β = xT

I βI , then S ⊆ I. Hence S is the unique smallest subset of
predictors such that xT β = xT

SβS . Two alternative variable selection models
were given by Remark 2.24.

Model selection generates M models. Then a hopefully good model is
selected from these M models. Variable selection is a special case of model
selection. Many methods for variable and model selection have been suggested
for the MLR model. We will consider several R functions including i) forward
selection computed with the regsubsets function from the leaps library,
ii) principal components regression (PCR) with the pcr function from the
pls library, iii) partial least squares (PLS) with the plsr function from the
pls library, iv) ridge regression with the cv.glmnet or glmnet function
from the glmnet library, v) lasso with the cv.glmnet or glmnet function
from the glmnet library, and vi) lasso variable selection which is OLS applied
to the lasso active set (nontrivial predictors with nonzero coefficients) and a
constant. See Sections 3.2–3.7 and James et al. (2013, ch. 6).

These six methods produce M models and use a criterion to select the
final model (e.g. Cp or 10-fold cross validation (CV)). See Section 3.13. The
number of models M depends on the method. Often one of the models is the
full model (3.1) that uses all p − 1 nontrivial predictors. The full model is
(approximately) fit with (ordinary) least squares. For one of the M models,
some of the methods use η̂ = 0 and fit the model Yi = β1 + ei with Ŷi ≡ Y
that uses none of the nontrivial predictors. Forward selection, PCR, and PLS
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use variables v1 = 1 (the constant or trivial predictor) and vj = γT
j x that are

linear combinations of the predictors for j = 2, ..., p. Model Ii uses variables
v1, v2, ..., vi for i = 1, ...,M where M ≤ p and often M ≤ min(p, n/10). Then
M models Ii are used. (For forward selection and PCR, OLS is used to regress
Y (or Z) on v1, ..., vi.) Then a criterion chooses the final submodel Id from
candidates I1, ..., IM.

Remark 3.8. Prediction interval (2.14) used a number d that was often
the number of predictors in the selected model. For forward selection, PCR,
PLS, lasso, and lasso variable selection, let d be the number of predictors
vj = γT

j x in the final model (with nonzero coefficients), including a constant
v1. For forward selection, lasso, and lasso variable selection, vj corresponds
to a single nontrivial predictor, say vj = x∗j = xkj

. Another method for
obtaining d is to let d = j if j is the degrees of freedom of the selected model
if that model was chosen in advance without model or variable selection.
Hence d = j is not the model degrees of freedom if model selection was used.

Overfitting or “fitting noise” occurs when there is not enough data to
estimate the p × 1 vector β well with the estimation method, such as OLS.
The OLS model is overfitting if n < 5p. When n > p, X is not invertible,
but if n = p, then Ŷ = HY = X(XT X)−1XT Y = InY = Y regardless of

how bad the predictors are. If n < p, then the OLS program fails or Ŷ = Y :
the fitted regression plane interpolates the training data response variables
Y1, ..., Yn. The following rule of thumb is useful for many regression methods.
Note that d = p for the full OLS model.

Rule of thumb 3.1. We want n ≥ 10d to avoid overfitting. Occasionally
n as low as 5d is used, but models with n < 5d are overfitting.

Remark 3.9. Use Zn ∼ ANr (µn,Σn) to indicate that a normal approx-
imation is used: Zn ≈ Nr(µn,Σn). Let a be a constant, let A be a k × r
constant matrix (often with full rank k ≤ r), and let c be a k × 1 constant

vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

Theorem 3.3 gives the large sample theory for the OLS full model. Then
β̂ ≈ Np(β, σ

2(XT X)−1)) or β̂ ∼ ANp(β,MSE(XT X)−1)).

When minimizing or maximizing a real valued function Q(η) of the k × 1
vector η, the solution η̂ is found by setting the gradient of Q(η) equal to
0. The following definition and lemma follow Graybill (1983, pp. 351-352)
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closely. Maximum likelihood estimators are examples of estimating equations.
There is a vector of parameters η, and the gradient of the log likelihood
function logL(η) is set to zero. The solution η̂ is the MLE, an estimator
of the parameter vector η, but in the log likelihood, η is a dummy variable
vector, not the fixed unknown parameter vector.

Definition 3.4. Let Q(η) be a real valued function of the k× 1 vector η.
The gradient of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=





∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)




.

Suppose there is a model with unknown parameter vector η. A set of esti-
mating equations f(η) is used to maximize or minimize Q(η) where η is a
dummy variable vector.

Often f(η) = 5Q, and we solve f(η) = 5Q set
= 0 for the solution η̂, and

f : R
k → R

k. Note that η̂ is an estimator of the unknown parameter vector
η in the model, but η is a dummy variable in Q(η). Hence we could use Q(b)
instead of Q(η), but the solution of the estimating equations would still be

b̂ = η̂.

As a mnemonic (memory aid) for the following lemma, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

Theorem 3.4. a) If Q(η) = aT η = ηT a for some k × 1 constant vector
a, then 5Q = a.

b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

Example 3.1. If Z = Wη+e, then the OLS estimator minimizesQ(η) =
‖Z − Wη‖2

2 = (Z − Wη)T (Z − Wη) = ZT Z − 2ZT Wη + ηT (W T W )η.
Using Theorem 3.4 with aT = ZT W and A = W T W shows that 5Q =
−2W T Z+2(W T W )η. Let 5Q(η̂) denote the gradient evaluated at η̂. Then
the OLS estimator satisfies the normal equations (W T W )η̂ = W T Z.

Example 3.2. The Hebbler (1847) data was collected from n = 26 dis-
tricts in Prussia in 1843. We will study the relationship between Y = the
number of women married to civilians in the district with the predictors x1

= constant, x2 = pop = the population of the district in 1843, x3 = mmen
= the number of married civilian men in the district, x4 = mmilmen = the
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number of married men in the military in the district, and x5 = milwmn =
the number of women married to husbands in the military in the district.
Sometimes the person conducting the survey would not count a spouse if
the spouse was not at home. Hence Y is highly correlated but not equal to
x3. Similarly, x4 and x5 are highly correlated but not equal. We expect that
Y = x3 +e is a good model, but n/p = 5.2 is small. See the following output.

ls.print(out)

Residual Standard Error=392.8709

R-Square=0.9999, p-value=0

F-statistic (df=4, 21)=67863.03

Estimate Std.Err t-value Pr(>|t|)

Intercept 242.3910 263.7263 0.9191 0.3685

pop 0.0004 0.0031 0.1130 0.9111

mmen 0.9995 0.0173 57.6490 0.0000

mmilmen -0.2328 2.6928 -0.0864 0.9319

milwmn 0.1531 2.8231 0.0542 0.9572

res<-out$res

yhat<-Y-res #d = 5 predictors used including x_1

AERplot2(yhat,Y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -950.4811 1445.2584 #90% PI length = 2395.74

3.2 Forward Selection

Variable selection methods such as forward selection were covered in Chapter
2 where model Ij uses j predictors x∗1, ..., x

∗

j including the constant x∗1 ≡ 1. If
n/p is not large, forward selection can be done as in Chapter 2 except instead
of forming p submodels I1, ..., Ip, form the sequence ofM submodels I1, ..., IM
where M = min(dn/Je, p) for some positive integer J such as J = 5, 10, or 20.
Here dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Then for each submodel
Ij, OLS is used to regress Y on 1, x∗2, ..., x

∗

j. Then a criterion chooses which
model Id from candidates I1, ..., IM is to be used as the final submodel.

Remark 3.10. Suppose n/J is an integer. If p ≤ n/J , then forward
selection fits (p−1)+(p−2)+ · · ·+2+1 = p(p−1)/2 ≈ p2/2 models, where
p − i models are fit at step i for i = 1, ..., (p− 1). If n/J < p, then forward
selection uses (n/J)−1 steps and fits ≈ (p−1)+(p−2)+· · ·+(p−(n/J)+1) =
p((n/J) − 1) − (1 + 2 + · · ·+ ((n/J) − 1)) =

p(
n

J
− 1) −

n
J (n

J − 1)

2
≈ n

J

(2p− n
J )

2
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models. Thus forward selection can be slow if n and p are both large, al-
though the R package leaps uses a branch and bound algorithm that likely
eliminates many of the possible fits. Note that after step i, the model has
i+ 1 predictors, including the constant.

The R function regsubsets can be used for forward selection if p < n,
and if p ≥ n if the maximum number of variables is less than n. Then warning
messages are common. Some R code is shown below.

#regsubsets works if p < n, e.g. p = n-1, and works

#if p > n with warnings if nvmax is small enough

set.seed(13)

n<-100

p<-200

k<-19 #the first 19 nontrivial predictors are active

J<-5

q <- p-1

b <- 0 * 1:q

b[1:k] <- 1 #beta = (1, 1, ..., 1, 0, 0, ..., 0)ˆT

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + x %*% b + rnorm(n)

nc <- ceiling(n/J)-1 #the constant will also be used

nc <- min(nc,q)

nc <- max(nc,1) #nc is the maximum number of

#nontrivial predictors used by forward selection

pp <- nc+1 #d = pp is used for PI (2.14)

vars <- as.vector(1:(p-1))

temp<-regsubsets(x,y,nvmax=nc,method="forward")

out<-summary(temp)

num <- length(out$cp)

mod <- out$which[num,] #use the last model

#do not need the constant in vin

vin <- vars[mod[-1]]

out$rss

[1] 1496.49625 1342.95915 1214.93174 1068.56668

973.36395 855.15436 745.35007 690.03901

638.40677 590.97644 542.89273 503.68666

467.69423 420.94132 391.41961 328.62016

242.66311 178.77573 79.91771

out$bic

[1] -9.4032 -15.6232 -21.0367 -29.2685

-33.9949 -42.3374 -51.4750 -54.5804

-57.7525 -60.8673 -64.7485 -67.6391

-70.4479 -76.3748 -79.0410 -91.9236

-117.6413 -143.5903 -219.498595
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tem <- lsfit(x[,1:19],y) #last model used the

sum(tem$residˆ2) #first 19 predictors

[1] 79.91771 #SSE(I) = RSS(I)

n*log(out$rss[19]/n) + 20*log(n)

[1] 69.68613 #BIC(I)

for(i in 1:19) #a formula for BIC(I)

print( n*log(out$rss[i]/n) + (i+1)*log(n) )

bic <- c(279.7815, 273.5616, 268.1480, 259.9162,

255.1898, 246.8474, 237.7097, 234.6043, 231.4322,

228.3175, 224.4362, 221.5456, 218.7368, 212.8099,

210.1437, 197.2611, 171.5435, 145.5944, 69.6861)

tem<-lsfit(bic,out$bic)

tem$coef

Intercept X

-289.1846831 0.9999998 #bic - 289.1847 = out$bic

xx <- 1:min(length(out$bic),p-1)+1

ebic <- out$bic+2*log(dbinom(x=xx,size=p,prob=0.5))

#actually EBIC(I) - 2 p log(2).

Example 3.2, continued. The output below shows results from forward
selection for the marry data. The minimum Cp model Imin uses a constant
and mmem. The forward selection PIs are shorter than the OLS full model
PIs.

library(leaps);Y <- marry[,3]; X <- marry[,-3]

temp<-regsubsets(X,Y,method="forward")

out<-summary(temp)

Selection Algorithm: forward

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

#mmen and a constant = Imin

mincp <- out$which[out$cp==min(out$cp),]

#do not need the constant in vin

vin <- vars[mincp[-1]]

sub <- lsfit(X[,vin],Y)

ls.print(sub)

Residual Standard Error=369.0087

R-Square=0.9999

F-statistic (df=1, 24)=307694.4

Estimate Std.Err t-value Pr(>|t|)

Intercept 241.5445 190.7426 1.2663 0.2175
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X 1.0010 0.0018 554.7021 0.0000

res<-sub$res

yhat<-Y-res #d = 2 predictors used including x_1

AERplot2(yhat,Y,res=res,d=2)

#response plot with 90% pointwise PIs

$respi #90% PI for a future residual

[1] -778.2763 1336.4416 #length 2114.72

Consider forward selection where xI is a × 1. Underfitting occurs if S
is not a subset of I so xI is missing important predictors. A special case
of underfitting is d = a < aS . Overfitting for forward selection occurs if i)
n < 5a so there is not enough data to estimate the a parameters in βI well,
or ii) S ⊆ I but S 6= I. Overfitting is serious if n < 5a, but “not much of a
problem” if n > Jp where J = 10 or 20 for many data sets. Underfitting is a
serious problem for estimating the full model β. Let Yi = xT

I,iβI + eI,i. Then

V (eI,i) may not be a constant σ2: V (eI,i) could depend on case i, and the
model may no longer be linear. Check model I with response and residual
plots.

Forward selection is a shrinkage method: pmodels are produced and except
for the full model, some |β̂i| are shrunk to 0. Lasso and ridge regression are

also shrinkage methods. Ridge regression is a shrinkage method, but |β̂i| is

not shrunk to 0. Shrinkage methods that shrink β̂i to 0 are also variable
selection methods. See Sections 3.5, 3.6, and 3.8.

Definition 3.5. A fitted or population regression model is sparse if a of
the predictors are active (have nonzero β̂i or βi) where n ≥ Ja with J ≥ 10.
Otherwise the model is nonsparse. A high dimensional population regression
model is abundant or dense if the regression information is spread out among
the p predictors (nearly all of the predictors are active). Hence an abundant
model is a nonsparse model.

Suppose the population model has βS an aS × 1 vector, including a con-
stant. Then a = aS − 1 for the population model. Note that a = aS if the
model does not include a constant. See equation (2.1).

3.3 Principal Components Regression

Some notation for eigenvalues, eigenvectors, orthonormal eigenvectors, posi-
tive definite matrices, and positive semidefinite matrices will be useful before
defining principal components regression, which is also called principal com-
ponent regression.

Notation: Recall that a square symmetric p × p matrix A has an eigen-
value λ with corresponding eigenvector x 6= 0 if
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Ax = λx. (3.12)

The eigenvalues of A are real since A is symmetric. Note that if constant
c 6= 0 and x is an eigenvector of A, then c x is an eigenvector of A. Let
e be an eigenvector of A with unit length ‖e‖2 =

√
eT e = 1. Then e and

−e are eigenvectors with unit length, and A has p eigenvalue eigenvector
pairs (λ1, e1), (λ2, e2), ..., (λp, ep). Since A is symmetric, the eigenvectors are
chosen such that the ei are orthonormal: eT

i ei = 1 and eT
i ej = 0 for i 6=

j. The symmetric matrix A is positive definite iff all of its eigenvalues are
positive, and positive semidefinite iff all of its eigenvalues are nonnegative.
If A is positive semidefinite, let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. If A is positive
definite, then λp > 0.

Theorem 3.5. Let A be a p×p symmetric matrix with eigenvector eigen-
value pairs (λ1, e1), (λ2, e2), ..., (λp, ep) where eT

i ei = 1 and eT
i ej = 0 if i 6= j

for i = 1, ..., p. Then the spectral decomposition of A is

A =

p∑

i=1

λieie
T
i = λ1e1e

T
1 + · · ·+ λpepe

T
p .

Using the same notation as Johnson and Wichern (1988, pp. 50-51),
let P = [e1 e2 · · · ep] be the p × p orthogonal matrix with ith column

ei. Then P P T = P T P = I . Let Λ = diag(λ1, ..., λp) and let Λ1/2 =

diag(
√
λ1, ...,

√
λp). If A is a positive definite p × p symmetric matrix with

spectral decomposition A =
∑p

i=1 λieie
T
i , then A = P ΛP T and

A−1 = P Λ−1P T =

p∑

i=1

1

λi
eie

T
i .

Theorem 3.6. Let A be a positive definite p× p symmetric matrix with
spectral decomposition A =

∑p
i=1 λieie

T
i . The square root matrix A1/2 =

PΛ1/2P T is a positive definite symmetric matrix such that A1/2A1/2 = A.

Let Y = α + xT β + e. Consider the correlation matrix Rx of the p
nontrivial predictors x1, ..., xp. Suppose Rx has eigenvalue eigenvector pairs

(λ̂1, ê1), ..., (λ̂K, êK) where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂K ≥ 0 where K = min(n, p).

Then Rxêi = λ̂iêi for i = 1, ..., K. Since Rx is a symmetric positive semidef-
inite matrix, the λ̂i are real and nonnegative.

The eigenvectors êi are orthonormal: êT
i êi = 1 and êT

i êj = 0 for i 6= j.
If the eigenvalues are unique, then êi and −êi are the only orthonormal
eigenvectors corresponding to λ̂i. For example, the eigenvalue eigenvector
pairs can be found using the singular value decomposition of the matrix
W g/

√
n− g where W g is the data matrix of standardized cases: the ith row

of W g is wT
i , the sample covariance matrix
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Σ̂w =
W T

g W g

n− g
=

1

n− g

n∑

i=1

(wi − w)(wi − w)T =
1

n− g

n∑

i=1

wiw
T
i = Rx,

and usually g = 0 or g = 1. If n > K = p, then the spectral decomposition of
Rx is

Rx =

p∑

i=1

λ̂iêiê
T
i = λ̂1ê1ê

T
1 + · · ·+ λ̂pêpê

T
p ,

and
∑p

i=1 λ̂i = p.
Let w1, ...,wn denote the n standardized cases of nontrivial predictors.

See Remark 3.3. Then the K principal components corresponding to the jth
case wj are Pj1 = êT

1 wj, ..., PjK = êT
Kwj. Let the transformed case, that

uses K principal components, corresponding to wj be vj = (Pj1, ..., PjK)T .
Following Hastie et al. (2009, p. 66), the ith eigenvector êi is known as the
ith principal component direction or Karhunen Loeve direction of W g.

Principal components have a nice geometric interpretation if n > K = p.
If n > K and Rx is nonsingular, then the hyperellipsoid

{w|D2
w(0,Rx) ≤ h2} = {w : wT R−1

x w ≤ h2}

is centered at 0. The volume of the hyperellipsoid is

2πK/2

KΓ (K/2)
|Rx|1/2hK .

Then points at squared distance wT R−1
x w = h2 from the origin lie on the

hyperellipsoid centered at the origin whose axes are given by the eigenvectors

êi where the half length in the direction of êi is h
√
λ̂i. Let j = 1, ..., n. Then

the first principal component Pj1 is obtained by projecting the wj on the
(longest) major axis of the hyperellipsoid, the second principal component Pj2

is obtained by projecting the wj on the next longest axis of the hyperellipsoid,
..., and the (p)th principal component Pj,p is obtained by projecting the wj

on the (shortest) minor axis of the hyperellipsoid. Examine Figure 2.3 for
two ellipsoids with 2 nontrivial predictors. The axes of the hyperellipsoid are
a rotation of the usual axes about the origin.

Let the random variable Vi correspond to the ith principal component, and
let the ith principal component vector ci = (P1i, ..., Pni)

T = (V1i, ..., Vni)
T

be the observed data for Vi. Let g = 1. Then the sample mean

V i =
1

n

n∑

k=1

Vki =
1

n

n∑

k=1

êT
i wk = êT

i w = êT
i 0 = 0,

and the sample covariance of Vi and Vj is Cov(Vi, Vj) =
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1

n

n∑

k=1

(Vki − V i)(Vkj − V j) =
1

n

n∑

k=1

êT
i wkwT

k êj = êT
i Rxêj

= λ̂j ê
T
i êj = 0 for i 6= j since the sample covariance matrix of the standard-

ized data is
1

n

n∑

k=1

wkwT
k = Rx

and Rxêj = λ̂j êj. Hence Vi and Vj are uncorrelated.

In the following definition, note that cT
i cj = êT

i W T Wêj = nêiRxêj =

nλjê
T
i êj = 0 for i 6= j. Thus ci and cj are orthogonal: ci⊥cj for i 6= j. Also,

cT
i 1 = (

∑n
k=1 wk)êi = 0T êi = 0 since the standardized predictor variables

sum to 0. The ith principle component vector ci corresponds to the derived
predictor Vi, for i = 1, ..., p− 1.

Definition 3.6. Consider the standardized model Z = WβOLS +ε where
Y = α+ xT β + e. Let

vi = Âk,nwi =




wT

i ê1

...
wT

i êk



 =




êT

1 wi

...

êT
k wT

i



 where Âk,n =




êT

1
...

êT
k



 .

Let

ci = Wêi =




wT

1 êi

...
wT

n êi





be the ith principle component vector for i = 1, ..., p. Principal components
regression (PCR) uses OLS regression on the principal component vectors
of the correlation matrix Rx. Hence PCR uses linear combinations of the
standardized data as predictors. Let

V k = (c1, ..., ck) =




vT

1
...

vT
n



 = W Â
T

k,n

for k = 1, ..., p. Let the working OLS model

Z = V kγk + ε = WβkPCR + ε

where ε depends on the model. Then β̂kPCR is the k-component PCR es-
timator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MSPCR.
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Remark 3.11. a) The set of p× 1 vectors {(1, 0, ..., 0)T , (0, 1, 0, ..., 0)T,
(0, ...0, 1)T} is the standard basis for R

p. The set of vectors {ê1, ..., êp} is also
a basis for R

p.
b) Let γ̂k = (γ̂1, ..., γ̂k)

T . Since the columns of V k are orthogonal, ci⊥cj

for i 6= j,

γ̂i =
cT

i Z

cT
i ci

=
cT

i Y

cT
i ci

.

c) Since Ẑ = V kγ̂k +r = WÂ
T

k,nγ̂k +r = Wβ̂kPCR +r, where β̂kPCR =

Â
T

k,nγ̂k. By Remark 3.2,

γ̂k = Σ̂
−1

v Σ̂vZ = [Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wZ =

[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Thus

β̂kPCR = Â
T

k,nγ̂k = Â
T

k,n[Âk,nΣ̂wÂ
T

k,n]−1Âk,nΣ̂wβ̂OLS(w, Z).

Note that β̂pPCR = β̂OLS(w, Z).

d) Let ei = ei(ρ̂x) be the ith eigenvector of the population correlation

matrix ρ̂x of the x, and let

Ak =




eT

1
...

eT
i



 .

It is possible that êi,n is arbitrarily close to ei for some values of n and
arbitrarily close to −ei for other values of n so that êi ≡ êi,n oscillates and
does not converge in probability to either ei or −ei. Hence we can not say

that the ith eigenvector êi = êi,n
P→ ei or that Ak,n

P→ Ak. If Σ̂
P→ cΣ

for some constant c > 0, and if the eigenvalues λ1 > · · · > λp > 0 of Σ are
unique, then the absolute value of the correlation of êj with ej converges to

1 in probability: |corr(êj, ej)| P→ 1. See Olive (2017b, p. 190). Let γk be
the population vector from the OLS regression on the principal component
vectors of the population correlation matrix ρx. Then γk and Ak are not
unique since columns of Ak and elements of γk can be multiplied by −1
(an orthonormal eigenvector can be ei or −ei), but if a column ej of Ak is

multiplied by −1 then the jth element of γk,j is multiplied by −1 so AT
k γk

is unique. Thus Â
T

k,nγ̂k
P→ AT

k γk. Let Σ̂w
P→ ρu. Then

βkPCR = AT
k φk = AT

k [AkρxAT
k ]−1AkρxβOLS(w, Z).

See Helland and Almøy (1994).
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e) In general, β̂kPCR estimates βkPCR 6= βOLS(w, Z) unless k = p. Using
standardized predictors and estimated eigenvectors likely causes problems for
finding a CLT, as in Remark 3.6.

f) Generally there is no reason why the “predictors” should be ranked from
best to worst by V1, V2, ..., Vk. For example, the last few principal component
vectors (and a constant) could be much better for prediction than the other
principal component vectors. See Jolliffe (1983) and Cook and Forzani (2008).

g) Suppose
∑J

i=1 λ̂i ≥ q(p) where 0.5 ≤ q ≤ 1, e.g. q = 0.8 where J is a lot
smaller than p. Then the J predictors V1, ..., VJ capture much of the infor-
mation of the standardized nontrivial predictors w1, ..., wp. Then regressing
Y on 1, V1, ..., VJ may be competitive with regressing Y on w1, ..., wp. PCR
is equivalent to OLS on the full model when Y is regressed on a constant
and all K = p of the principal components. PCR can also be useful if X is
singular or nearly singular (ill conditioned).

h) See section 9.1 for computing a classical principal component analysis
on the standardized data when n < p.

Example 3.2, continued. The PCR output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-pcr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 449479706 8181251 371775 197132

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

#response plot with 90% pointwise PIs

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

3.4 Partial Least Squares

Consider the MLR model Yi = α+ xT
i β + ei = α+ xi,1β1 + · · ·+ xi,pβp + ei

for i = 1, ..., n. Principal components regression (PCR) and partial least
squares (PLS) models use p linear combinations ηT

1 x, ...,ηT
p x. Then there

are p conditional distributions
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Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) and a constant gives the k-component estima-

tor, e.g. the k-component PLS estimator β̂kPLS or the k-component PCR
estimator, for k = 1, ..., J where J ≤ p and the p-component estimator is
the OLS estimator β̂OLS . Denote the one component PLS (OPLS) estimator

by β̂OPLS . The model selection estimator chooses one of the k-component
estimators, e.g. using a holdout sample or cross validation, and will be de-
noted by β̂MSPLS . For the OPLS estimator, η1 = ΣxY and η̂1 = Σ̂xY . See
Sections 3.9 and 3.10 for more on the OPLS estimator.

Remark 3.12. Olive and Zhang (2023) showed that β̂kPLS estimates
βkPLS , and in general, βkPLS 6= βOLS for k < p. In particular, βOPLS 6=
βOLS except under very strong regularity conditions. The PLS literature
incorrectly suggests that βkPLS = βOLS , under mild regularity conditions,
for 1 ≤ k < p if p is fixed. Also see Chun and Keleş (2010), Cook (2018),
Cook et al. (2013), and Cook and Forzani (2018, 2019).

Now consider the MLR model Y = xT β+e = β1 +x2β2 + · · ·+xpβ−p+e.
Then PLS uses variables v1 = 1 (the constant or trivial predictor) and “PLS
components” vj = γT

j x for j = 2, ..., p. Next let the response Y be used

with the standardized predictors Wj. Let the “PLS components” Vj = ĝT
j w.

Let model Ji contain V1, ..., Vi. Often k–fold cross validation is used to pick
the PLS model from J1, ..., JM. PLS seeks directions ĝj such that the PLS
components Vj are highly correlated with Y , subject to being uncorrelated
with other PLS components Vi for i 6= j. Note that PCR components are
formed without using Y .

Following Hastie et al. (2009, pp. 80-81), let W = [s1, ..., sp−1] so sj is
the vector corresponding to the standardized jth nontrivial predictor. Let
b̂1i = sT

i Y be n times the least squares coefficient from regressing Y on

si. Then the first PLS direction b̂1 = (b̂11, ..., b̂1,p−1)
T . Note that Wb̂1 =

(V11, ..., V1n)T = p1 is the 1st PLS component. This process is repeated using
matrices W k = [sk

1 , ..., s
k
p−1] where W 0 = W and W k is orthogonalized with

respect to pk for k = 1, ..., p− 2. So sk
j = sk−1

j − [pT
k sk−1

j /(pT
k pk)]pk for j =

1, ..., p−1. Note that Wb̂i = (Vi1, ..., Vin)T = pi is the ith PLS component. If

the PLS model Ii uses a constant and PLS components V1, ..., Vi−1, let Ŷ Ii
be

the predicted values from the PLS model using Ii. Then Ŷ Ii
= Ŷ Ii−1

+ θ̂ipi

where Ŷ I0
= Y 1 and θ̂i = pT

i Y /(pT
i pi). Since linear combinations of w are

linear combinations of x, Ŷ = Xβ̂PLS,Ij
where Ij uses a constant and the
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first j − 1 PLS components. If j = p − 1, then the PLS model Ip is the OLS
full model.

Example 3.2, continued. The PLS output below shows results for the
marry data where 10-fold CV was used. The OLS full model was selected.

library(pls); y <- marry[,3]; x <- marry[,-3]

z <- as.data.frame(cbind(y,x))

out<-plsr(y˜.,data=z,scale=T,validation="CV")

tem<-MSEP(out)

tem

(Int) 1 comps 2 comps 3 comps 4 comps

CV 1.743e+09 256433719 6301482 249366 206508

cvmse<-tem$val[,,1:(out$ncomp+1)][1,]

nc <-max(which.min(cvmse)-1,1)

res <- out$residuals[,,nc]

yhat<-y-res #d = 5 predictors used including constant

AERplot2(yhat,y,res=res,d=5)

$respi #90% PI same as OLS full model

-950.4811 1445.2584 #PI length = 2395.74

Let Y = α + xT βkPLS + ε be a working model. Let X = (1 X1).
An equivalent way to formulate PLS is to form bj iteratively where bk =

arg maxb{[corr(Y ,X1b)]2V (X1b)} subject to bT b = 1 and bT Σxbj = 0

for j = 1, ..., k− 1. Let the b̂j be the estimates of bj, and perform the OLS

regression of Y on X1Ĉk,n and a constant where Ĉk,n = [b̂1, ..., b̂k] to find

γ̂k. Then β̂kPLS = Ĉk,nγ̂k.
Again let Y = α + xT βkPLS + ε be a working model. From Naik and

Tsai (2000), Helland and Almøy (1994), and Helland (1990), let Â
T

k,n =

[Σ̂xY , Σ̂xΣ̂xY , Σ̂
2

xΣ̂xY , ..., Σ̂
k−1

x Σ̂xY ]. Let w = Âk,nx with

Y = α+ wT γk + ε the working model so β̂kPLS = Â
T

k,nγ̂k. Then β̂kPLS =

Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xY = Â
T

k,n[Âk,nΣ̂xÂ
T

k,n]−1Âk,nΣ̂xβ̂OLS(x, Y ).

The Mevik et al. (2015) pls library is useful for computing PLS and PCR.

3.5 Ridge Regression

Consider the MLR model Y = Xβ + e. Ridge regression uses the centered
response Zi = Yi − Y and standardized nontrivial predictors in the model
Z = Wη +ε. Then Ŷi = Ẑi +Y . Note that in Definition 3.7, λ1,n is a tuning
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parameter, not an eigenvalue. The residuals r = r(β̂R) = Y − Ŷ . Refer to
Definition 3.3 for the OLS estimator η̂OLS = (W T W )−1W T Z.

Definition 3.6. Consider the MLR model Z = Wη + ε. Let b be a
(p − 1) × 1 vector. Then the fitted value Ẑi(b) = wT

i b and the residual

ri(b) = Zi − Ẑi(b). The vector of fitted values Ẑ(b) = Wb and the vector of

residuals r(b) = Z − Ẑ(b).

Definition 3.7. a) Consider fitting the MLR model Y = Xβ + e using
Z = Wη + ε. Let λ ≥ 0 be a constant. The ridge regression estimator η̂R

minimizes the ridge regression criterion

QR(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

η2
i (3.13)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n common. Then

η̂R = (W T W + λ1,nIp−1)
−1W T Z. (3.14)

The residual sum of squares RSS(η) = (Z −Wη)T (Z −Wη), and λ1,n = 0
corresponds to the OLS estimator η̂OLS. The ridge regression vector of fitted
values is Ẑ = ẐR = Wη̂R, and the ridge regression vector of residuals
rR = r(η̂R) = Z − ẐR. The estimator is said to be regularized if λ1,n > 0.

Obtain Ŷ and β̂R using η̂R, Ẑ, and Y .
b) Consider fitting the MLR model Y = Xβ+e. Let λ ≥ 0 be a constant.

The ridge regression estimator β̂R minimizes the ridge regression criterion

QR(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

β2
i (3.15)

over all vectors β ∈ R
p Then

β̂R = (XT X + λ1,nIp)
−1XT Y . (3.16)

The residual sum of squares RSS(β) = (Y −Xβ)T (Y −Xβ), and λ1,n = 0

corresponds to the OLS estimator β̂OLS . The ridge regression vector of fitted

values is Ŷ = Ŷ R = Xβ̂R, and the ridge regression vector of residuals

rR = r(β̂R) = Y − Ŷ R.

Using a vector of parameters η and a dummy vector η in QR is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 3.4. We could also write

QR(b) =
1

a
r(b)T r(b) +

λ1,n

a
bT b
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where the minimization is over all vectors b ∈ R
p−1. Note that

∑p−1
i=1 η

2
i =

ηT η = ‖η‖2
2. The literature often uses λa = λ = λ1,n/a.

Note that λ1,nbT b = λ1,n

∑p−1
i=1 b

2
i . Each coefficient bi is penalized equally

by λ1,n. Hence using standardized nontrivial predictors makes sense so that
if ηi is large in magnitude, then the standardized variable wi is important.

Remark 3.13. i) If λ1,n = 0, the ridge regression estimator becomes the
OLS full model estimator: η̂R = η̂OLS.

ii) If λ1,n > 0, then W T W + λ1,nIp−1 is nonsingular. Hence η̂R exists
even if X and W are singular or ill conditioned, or if p > n.

iii) Following Hastie et al. (2009, p. 96), let the augmented matrix W A

and the augmented response vector ZA be defined by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. For λ1,n > 0, the OLS estimator from
regressing ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R

since W T
AZA = W T Z and

W T
AW A =

(
W T

√
λ1,n Ip−1

)( W√
λ1,n Ip−1

)
= W T W + λ1,n Ip−1.

iv) A simple way to regularize a regression estimator, such as the L1 esti-
mator, is to compute that estimator from regressing ZA on W A.

Remark 3.13 iii) is interesting. Note that for λ1,n > 0, the (n+p−1)×(p−1)
matrix W A has full rank p−1. The augmented OLS model consists of adding
p− 1 pseudo-cases (wT

n+1, Zn+1)
T , ..., (wT

n+p−1, Zn+p−1)
T where Zj = 0 and

wj = (0, ...,
√
λ1,n, 0, ..., 0)T for j = n+1, ..., n+p−1 where the nonzero entry

is in the kth position if j = n + k. For centered response and standardized
nontrivial predictors, the population OLS regression fit runs through the
origin (wT , Z)T = (0T , 0)T . Hence for λ1,n = 0, the augmented OLS model
adds p − 1 typical cases at the origin. If λ1,n is not large, then the pseudo-
data can still be regarded as typical cases. If λ1,n is large, the pseudo-data
act as w–outliers (outliers in the standardized predictor variables), and the

OLS slopes go to zero as λ1,n gets large, making Ẑ ≈ 0 so Ŷ ≈ Y .
To prove Remark 3.13 ii), let (ψ, g) be an eigenvalue eigenvector pair of

W T W = nRu. Then [WT W + λ1,nIp−1]g = (ψ+ λ1,n)g, and (ψ+λ1,n, g)

is an eigenvalue eigenvector pair of W T W +λ1,nIp−1 > 0 provided λ1,n > 0.
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The degrees of freedom for a ridge regression with known λ1,n is also
interesting and will be found in the next paragraph. The sample correlation
matrix of the nontrivial predictors

Ru =
1

n− g
W T

g W g

where we will use g = 0 and W = W 0. Then W T W = nRu. By singular
value decomposition (SVD) theory, the SVD of W is W = UΛV T where
the positive singular values σi are square roots of the positive eigenvalues of
both W T W and of WW T . Also V = (ê1 ê2 · · · êp), and W T Wêi = σ2

i êi.

Hence λ̂i = σ2
i where λ̂i = λ̂i(W

T W ) is the ith eigenvalue of W T W , and êi

is the ith orthonormal eigenvector of Ru and of W T W . The SVD of W T is
W T = V ΛT UT , and the Gram matrix

WW T =




wT

1 w1 wT
1 w2 . . . w

T
1 wn

...
...

. . .
...

wT
nw1 wT

n w2 . . . w
T
nwn





which is the matrix of scalar products. Warning: Note that σi is the ith
singular value of W , not the standard deviation of wi.

Following Hastie et al. (2009, p. 68), if λ̂i = λ̂i(W
T W ) is the ith eigenvalue

of W T W where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1, then the (effective) degrees of freedom
for the ridge regression of Z on W with known λ1,n is df(λ1,n) =

tr[W (W T W + λ1,nIp−1)
−1W T ] =

p−1∑

i=1

σ2
i

σ2
i + λ1,n

=

p−1∑

i=1

λ̂i

λ̂i + λ1,n

(3.17)

where the trace of a square (p − 1) × (p − 1) matrix A = (aij) is tr(A) =∑p−1
i=1 aii =

∑p−1
i=1 λ̂i(A). Note that the trace of A is the sum of the diagonal

elements of A = the sum of the eigenvalues of A.
Note that 0 ≤ df(λ1,n) ≤ p − 1 where df(λ1,n) = p − 1 if λ1,n = 0 and

df(λ1,n) → 0 as λ1,n → ∞. The R code below illustrates how to compute
ridge regression degrees of freedom.

set.seed(13)

n<-100; q<-3 #q = p-1

b <- 0 * 1:q + 1

u <- matrix(rnorm(n * q), nrow = n, ncol = q)

y <- 1 + u %*% b + rnorm(n) #make MLR model

w1 <- scale(u) #t(w1) %*% w1 = (n-1) R = (n-1)*cor(u)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R = n cor(u)

t(w) %*% w/n

[,1] [,2] [,3]

[1,] 1.00000000 -0.04826094 -0.06726636
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[2,] -0.04826094 1.00000000 -0.12426268

[3,] -0.06726636 -0.12426268 1.00000000

cor(u) #same as above

rs <- t(w)%*%w #scaled correlation matrix n R

svs <-svd(w)$d #singular values of w

lambda <- 0

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using w

d

[1] 3 #= q = p-1

112.60792 103.88089 83.51119

svsˆ2 #as above

uu<-scale(u,scale=F) #centered but not scaled

svs <-svd(uu)$d #singular values of uu

svsˆ2

[1] 135.78205 108.85903 85.83395

d <- sum(svsˆ2/(svsˆ2+lambda))

#effective df for ridge regression using uu

#d is again 3 if lambda = 0

In general, if Ẑ = HλZ, then df(Ẑ) = tr(Hλ) where Hλ is a (p − 1) ×
(p− 1) “hat matrix.” For computing Ŷ , df(Ŷ ) = df(Ẑ) + 1 since a constant

β̂1 also needs to be estimated. These formulas for degrees of freedom assume
that λ is known before fitting the model. The formulas do not give the model
degrees of freedom if λ̂ is selected from M values λ1, ..., λM using a criterion
such as k-fold cross validation.

Suppose the ridge regression criterion is written, using a = 2n, as

QR,n(b) =
1

2n
r(b)T r(b) + λ2nbT b, (3.18)

as in Hastie et al. (2015, p. 10). Then λ2n = λ1,n/(2n) using the λ1,n from
(3.9).

The following remark is interesting if λ1,n and p are fixed. However, λ̂1,n is

usually used, for example, after 10-fold cross validation. The fact that β̂R =

An,λβ̂OLS appears in Efron and Hastie (2016, p. 98), and Marquardt and
Snee (1975). See Theorem 3.7 for the ridge regression central limit theorem.

Remark 3.13. Ridge regression has a simple relationship with OLS if
n > p and (XT X)−1 exists. Then β̂R = (XT X + λ1,nIp)

−1XT Y =

(XT X + λ1,nIp)−1(XT X)(XT X)−1XT Y = An,λβ̂OLS where An,λ ≡
An = (XT X + λ1,nIp)

−1XT X . By the OLS CLT Equation (3.3) with

V̂ /n = (XT X)−1, a normal approximation for OLS is

β̂OLS ∼ ANp(β,MSE (XT X)−1).
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Hence a normal approximation for ridge regression is

β̂R ∼ ANp(Anβ,MSE An(XT X)−1AT
n ) ∼

ANp[Anβ,MSE (XT X + λ1,nIp)
−1(XT X)(XT X + λ1,nIp)

−1].

If Equation (3.3) holds and λ1,n/n→ 0 as n→ ∞, then An
P→ Ip.

Remark 3.14. The ridge regression criterion from Definition 3.7 can also
be defined by

QR(η) = ‖Z − Wη‖2
2 + λ1,nηT η. (3.19)

Then by Theorem 3.4, the gradient 5QR = −2W T Z +2(W T W )η+2λ1,nη.
Cancelling constants and evaluating the gradient at η̂R gives the score equa-
tions

−W T (Z − Wη̂R) + λ1,nη̂R = 0. (3.20)

Following Hastie and Efron (2016, pp. 381-382, 392), this means η̂R = W T a
for some n× 1 vector a. Hence −W T (Z − WW T a) + λ1,nW T a = 0, or

W T (WW T + λ1,nIn)]a = W T Z

which has solution a = (WW T + λ1,nIn)−1Z. Hence

η̂R = W T a = W T (WW T + λ1,nIn)−1Z = (W T W + λ1,nIp−1)
−1W T Z.

Using the n × n matrix WW T is computationally efficient if p > n while
using the p × p matrix W T W is computationally efficient if n > p. If A is
k × k, then computing A−1 has O(k3) complexity.

The following identity from Gunst and Mason (1980, p. 342) is useful for
ridge regression inference: η̂R =(XT X + λ1,nIp)

−1XT Y

= (XT X + λ1,nIp)
−1XT X(XT X)−1XT Y

= (XT X + λ1,nIp)
−1XT Xβ̂OLS = Anβ̂OLS =

[Ip − λ1,n(XT X + λ1,nIp)
−1]β̂OLS = Bnβ̂OLS =

β̂OLS − λ1n

n
n(XT X + λ1,nIp)

−1β̂OLS

since An − Bn = 0, where An = (XT X + λ1,nIp)
−1(XT X) = Bn

= Ip − λ1,n(XT X + λ1,nIp)
−1. See Problem 3.3. Assume

XT X

n
→ V −1

as n → ∞. If λ1,n/n→ 0 then
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XT X + λ1,nIp

n

P→ V −1, and n(XTX + λ1,nIp)−1 P→ V .

Note that

An = An,λ =

(
XT X + λ1,nIp

n

)−1
XT X

n

P→ V V −1 = Ip

if λ1,n/n → 0 since matrix inversion is a continuous function of a positive
definite matrix. See, for example, Bhatia et al. (1990), Stewart (1969), and
Severini (2005, pp. 348-349).

For model selection, the M values of λ = λ1,n are denoted by λ1, λ2, ..., λM

where λi = λ1,n,i depends on n for i = 1, ...,M . If λs corresponds to the model

selected, then λ̂1,n = λs. The following theorem shows that ridge regression

and the OLS full model are asymptotically equivalent if λ̂1,n = oP (n1/2) so

λ̂1,n/
√
n

P→ 0.

Theorem 3.7, RR CLT (Ridge Regression Central Limit Theo-
rem. Assume p is fixed and that the conditions of the OLS CLT Theorem
Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂R − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then

√
n(β̂R − β)

D→ Np(−τV η, σ2V ).

Proof: If λ̂1,n/
√
n

P→ τ ≥ 0, then by the above Gunst and Mason (1980)
identity,

β̂R = [Ip − λ̂1,n(XT X + λ̂1,nIp)
−1]β̂OLS .

Hence √
n(β̂R − β) =

√
n(β̂R − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −

√
n
λ̂1,n

n
n(XT X + λ̂1,nIp)

−1β̂OLS

D→ Np(0, σ
2V ) − τV β ∼ Np(−τV β, σ2V ). �

For p fixed, Knight and Fu (2000) note i) that β̂R is a consistent estimator
of β if λ1,n = o(n) so λ1,n/n → 0 as n → ∞, ii) OLS and ridge regression
are asymptotically equivalent if λ1,n/

√
n → 0 as n → ∞, iii) ridge regression

is a
√
n consistent estimator of β if λ1,n = O(

√
n) (so λ1,n/

√
n is bounded),

and iv) if λ1,n/
√
n → τ ≥ 0, then
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√
n(β̂R − β)

D→ Np(−τV β, σ2V ).

Hence the bias can be considerable if τ 6= 0. If τ = 0, then OLS and ridge
regression have the same limiting distribution.

Even if p is fixed, there are several problems with ridge regression infer-
ence if λ̂1,n is selected, e.g. after 10-fold cross validation. For OLS forward
selection, the probability that the model Imin underfits goes to zero, and
each model with S ⊆ I produced a

√
n consistent estimator β̂I,0 of β. Ridge

regression with 10-fold CV often shrinks β̂R too much if both i) the number
of population active predictors kS = aS − 1 in Equation (2.1) and Remark
3.5 is greater than about 20, and ii) the predictors are highly correlated. If
p is fixed and λ1,n = oP (

√
n), then the OLS full model and ridge regression

are asymptotically equivalent, but much larger sample sizes may be needed
for the normal approximation to be good for ridge regression since the ridge
regression estimator can have large bias for moderate n. Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0.

Ridge regression can be a lot better than the OLS full model if i) XT X is
singular or ill conditioned or ii) n/p is small. Ridge regression can be much
faster than forward selection if M = 100 and n and p are large.

Roughly speaking, the biased estimation of the ridge regression estimator
can make the MSE of β̂R or η̂R less than that of β̂OLS or η̂OLS , but the
large sample inference may need larger n for ridge regression than for OLS.
However, the large sample theory has n >> p. We will try to use prediction
intervals to compare OLS, forward selection, ridge regression, and lasso for
data sets where p > n. See Sections 3.9, 3.10, 3.11, and 3.13.

Warning. Although the R functions glmnet and cv.glmnet appear to
do ridge regression, getting the fitted values, λ̂1,n, and degrees of freedom to
match up with the formulas of this section can be difficult.

Example 3.2, continued. The ridge regression output below shows results
for the marry data where 10-fold CV was used. A grid of 100 λ values was
used, and λ0 > 0 was selected. A problem with getting the false degrees of
freedom d for ridge regression is that it is not clear that λ = λ1,n/(2n). We
need to know the relationship between λ and λ1,n in order to compute d. It
seems unlikely that d ≈ 1 if λ0 is selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y,alpha=0)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

n <- length(y)

w1 <- scale(x)

w <- sqrt(n/(n-1))*w1 #t(w) %*% w = n R_u, u = x
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diag(t(w)%*%w)

pop mmen mmilmen milwmn

26 26 26 26

#sum w_iˆ2 = n = 26 for i = 1, 2, 3, and 4

svs <- svd(w)$d #singular values of w,

pp <- 1 + sum(svsˆ2/(svsˆ2+2*n*lam)) #approx 1

# d for ridge regression if lam = lam_{1,n}/(2n)

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

[1] -5482.316 14854.268 #length = 20336.584

#try to reproduce the fitted values

z <- y - mean(y)

q<-dim(w)[2]

I <- diag(q)

M<- w%*%solve(t(w)%*%w + lam*I/(2*n))%*%t(w)

fit <- M%*%z + mean(y)

plot(fit,yhat) #they are not the same

max(abs(fit-yhat))

[1] 46789.11

M<- w%*%solve(t(w)%*%w + lam*I/(1547.1741))%*%t(w)

fit <- M%*%z + mean(y)

max(abs(fit-yhat)) #close

[1] 8.484979

3.6 Lasso

Consider the MLR model Y = Xβ + e. Lasso uses the centered response
Zi = Yi−Y and standardized nontrivial predictors in the model Z = Wη+ε
as described in Remark 3.3. Then Ŷi = Ẑi + Y . The residuals r = r(β̂L) =

Y − Ŷ . Recall that Y = Y 1.

Definition 3.8. a) Consider fitting the MLR model Y = Xβ + e using
Z = Wη + ε. The lasso estimator η̂L minimizes the lasso criterion

QL(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi| (3.21)

over all vectors η ∈ R
p−1 where λ1,n ≥ 0 and a > 0 are known constants

with a = 1, 2, n, and 2n are common. The residual sum of squares RSS(η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z if W has full rank p−1. The lasso vector of fitted

values is Ẑ = ẐL = Wη̂L, and the lasso vector of residuals r(η̂L) = Z−ẐL.
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The estimator is said to be regularized if λ1,n > 0. Obtain Ŷ and β̂L using

η̂L, Ẑ, and Y .

b) The lasso estimator β̂L minimizes the lasso criterion

QL(β) =
1

a
(Y − Xβ)T (Y − Xβ) +

λ1,n

a

p∑

i=2

|βi| (3.22)

over all vectors β ∈ R
p. The residual sum of squares RSS(β) = (Y −

Xβ)T (Y − Xβ), and λ1,n = 0 corresponds to the OLS estimator β̂OLS =

(XT X)−1XT Y if X has full rank p. The lasso vector of fitted values is

Ŷ = Ŷ L = Xβ̂L, and the lasso vector of residuals r(β̂L) = Y − Ŷ L.

Using a vector of parameters η and a dummy vector η in QL is common
for minimizing a criterion Q(η), often with estimating equations. See the
paragraphs above and below Definition 3.4. We could also write

QL(b) =
1

a
r(b)T r(b) +

λ1,n

a

p−1∑

j=1

|bj|, (3.23)

where the minimization is over all vectors b ∈ R
p−1. The literature often uses

λa = λ = λ1,n/a.

For fixed λ1,n, the lasso optimization problem is convex. Hence fast algo-
rithms exist. As λ1,n increases, some of the η̂i = 0. If λ1,n is large enough,

then η̂L = 0 and Ŷi = Y for i = 1, ..., n. If none of the elements η̂i of η̂L are
zero, then η̂L can be found, in principle, by setting the partial derivatives of
QL(η) to 0. Potential minimizers also occur at values of η where not all of the
partial derivatives exist. An analogy is finding the minimizer of a real valued
function of one variable h(x). Possible values for the minimizer include values
of xc satisfying h′(xc) = 0, and values xc where the derivative does not exist.
Typically some of the elements η̂i of η̂L that minimizes QL(η) are zero, and
differentiating does not work.

The following identity from Efron and Hastie (2016, p. 308), for example,
is useful for inference for the lasso estimator η̂L:

−1

n
XT (Y − Xβ̂L) +

λ1,n

2n
sn = 0 or − XT(Y − Xβ̂L) +

λ1,n

2
sn = 0

where sin ∈ [−1, 1] and sin = sign(β̂i,L) if β̂i,L 6= 0. Here sign(βi) = 1 if

βi > 0 and sign(βi) = −1 if βi < 0. Note that sn = s
n,

ˆβ
L

depends on β̂L.

Thus β̂L

= (XT X)−1XT Y − λ1,n

2n
n(XT X)−1 sn = β̂OLS − λ1,n

2n
n(XT X)−1 sn.
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If none of the elements of β are zero, and if β̂L is a consistent estimator of β,

then sn
P→ s = sβ. If λ1,n/

√
n → 0, then OLS and lasso are asymptotically

equivalent even if sn does not converge to a vector s as n → ∞ since sn is
bounded. For model selection, the M values of λ are denoted by 0 ≤ λ1 <
λ2 < · · · < λM where λi = λ1,n,i depends on n for i = 1, ...,M . Also, λM

is the smallest value of λ such that β̂λM
= 0. Hence β̂λi

6= 0 for i < M . If

λs corresponds to the model selected, then λ̂1,n = λs. The following theorem
shows that lasso and the OLS full model are asymptotically equivalent if

λ̂1,n = oP (n1/2) so λ̂1,n/
√
n

P→ 0: thus
√
n(β̂L − β̂OLS) = op(1).

Theorem 3.8, Lasso CLT. Assume p is fixed and that the conditions of
the OLS CLT Theorem Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂L − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(β̂L − β)

D→ Np

(−τ
2

V s, σ2V

)
.

Proof. If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(β̂L − β) =

√
n(β̂L − β̂OLS + β̂OLS − β) =

√
n(β̂OLS − β) −

√
n
λ1,n

2n
n(XT X)−1sn

D→ Np(0, σ
2V ) − τ

2
V s

∼ Np

(−τ
2

V s, σ2V

)

since under the OLS CLT, n(XT X)−1 P→ V .

Part a) does not need sn
P→ s as n→ ∞, since sn is bounded. �

Suppose p is fixed. Knight and Fu (2000) note i) that β̂L is a consistent
estimator of η if λ1,n = o(n) so λ1,n/n→ 0 as n → ∞, ii) OLS and lasso are
asymptotically equivalent if λ1,n → ∞ too slowly as n → ∞ (e.g. if λ1,n = λ
is fixed), iii) lasso is a

√
n consistent estimator of β if λ1,n = O(

√
n) (so

λ1,n/
√
n is bounded). Note that Theorem 3.8 shows that OLS and lasso are

asymptotically equivalent if λ1,n/
√
n→ 0 as n→ 0.

In the literature, the criterion often uses λa = λ1,n/a:
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QL,a(b) =
1

a
r(b)T r(b) + λa

p−1∑

j=1

|bj|.

The values a = 1, 2, and 2n are common. Following Hastie et al. (2015, pp.
9, 17, 19) for the next two paragraphs, it is convenient to use a = 2n:

QL,2n(b) =
1

2n
r(b)T r(b) + λ2n

p−1∑

j=1

|bj|, (3.24)

where the Zi are centered and the wj are standardized using g = 0 so wj = 0
and nσ̂2

j =
∑n

i=1 w
2
i,j = n. Then λ = λ2n = λ1,n/(2n) in Equation (3.21).

For model selection, the M values of λ are denoted by 0 ≤ λ2n,1 < λ2n,2 <
· · ·< λ2n,M where η̂λ = 0 iff λ ≥ λ2n,M and

λ2n,max = λ2n,M = max
j

∣∣∣∣
1

n
sT

j Z

∣∣∣∣

and sj is the jth column of W corresponding to the jth standardized non-
trivial predictor Wj . In terms of the 0 ≤ λ1 < λ2 < · · · < λM , used above
Theorem 3.8, we have λi = λ1,n,i = 2nλ2n,i and

λM = 2nλ2n,M = 2 max
j

∣∣sT
j Z
∣∣ .

For model selection we let I denote the index set of the predictors in the
fitted model including the constant. The set A defined below is the index set
without the constant.

Definition 3.9. The active set A is the index set of the nontrivial predic-
tors in the fitted model: the predictors with nonzero η̂i.

Suppose that there are k active nontrivial predictors. Then for lasso, k ≤ n.
Let the n × k matrix W A correspond to the standardized active predictors.
If the columns of W A are in general position, then the lasso vector of fitted
values

ẐL = W A(W T
AW A)−1W T

AZ − nλ2nW A(W T
AW A)−1sA

where sA is the vector of signs of the active lasso coefficients. Here we are
using the λ2n of (3.24), and nλ2n = λ1,n/2. We could replace n λ2n by λ2 if
we used a = 2 in the criterion

QL,2(b) =
1

2
r(b)T r(b) + λ2

p−1∑

j=1

|bj|. (3.25)
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See, for example, Tibshirani (2015). Note that W A(W T
AW A)−1W T

AZ is the
vector of OLS fitted values from regressing Z on W A without an intercept.

Example 3.2, continued. The lasso output below shows results for the
marry data where 10-fold CV was used. A grid of 38 λ values was used, and
λ0 > 0 was selected.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

yhat <- predict(out,s=lam,newx=x)

res <- y - yhat

pp <- out$nzero[out$lambda==lam] + 1 #d for lasso

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-4102.672 4379.951 #length = 8482.62

There are some problems with lasso. i) Lasso large sample theory is worse
or as good as that of the OLS full model if n/p is large. ii) Ten fold CV does

not appear to guarantee that λ̂1,n/
√
n

P→ 0 or λ̂1,n/n
P→ 0. iii) Lasso often

shrinks β̂ too much if aS ≥ 20 and the predictors are highly correlated. iv)
Ridge regression can be better than lasso if aS > n.

Lasso can be a lot better than the OLS full model if i) XT X is singular
or ill conditioned or ii) n/p is small. iii) For lasso, M = M(lasso) is often
near 100. Let J ≥ 5. If n/J and p are both a lot larger than M(lasso), then
lasso can be considerably faster than forward selection, PLS, and PCR if
M = M(lasso) = 100 and M = M(F ) = min(dn/Je, p) where F stands for
forward selection, PLS, or PCR. iv) The number of nonzero coefficients in
η̂L ≤ n even if p > n. This property of lasso can be useful if p >> n and the
population model is sparse.

3.7 Lasso Variable Selection

Lasso variable selection applies OLS on a constant and the active predictors
that have nonzero lasso η̂i (model I = Imin). Lasso variable selection is called
relaxed lasso by Hastie et al. (2015, p. 12), and the relaxed lasso estimator
with φ = 0 by Meinshausen (2007). The method is also called OLS-post lasso
and post model selection OLS.

Theory for lasso variable selection was given in Chapter 2. Also see Pelawa
Watagoda and Olive (2021b) and Rathnayake and Olive (2023). Lasso vari-
able selection will often be better than lasso when the model is sparse or if
n ≥ 10(k+1). Lasso can be better than lasso variable selection if (XT

I XI) is
ill conditioned or if n/(k+ 1) < 10. Lasso variable selection used a grid of K
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λi values for i = 1, ..., K where λ1 < λ2 < · · · < λK . If K = 100, then lasso
variable selection can be much faster than forward selection if p is large. If
n/p is not large, using K > 100 is likely a good idea due to the multitude

of MLR models result. See Section 3.17. When p is fixed, λ̂1,n/
√
n

P→ τ does

not do variable selection well. For variable selection, want λ̂1,n/
√
n → ∞,

but λ̂1,n/n→ 0. See Fan and Li (2001). Let λ1 = 2nλ. Guan and Tibshirani
(2020) (and likely glmnet) use λ < Cn−1/4 for some large constant C. Hence
λ1,n = λ1 ∝ n3/4, and the consistency rate of the lasso algorithm is as best
n1/4, but variable selection lasso has the

√
n rate (if λk is selected by lasso,

make λ̂ = min(λk, n/log(n) so that λ̂/n → 0 as n → ∞.)
Suppose the n × q matrix x has the q = p − 1 nontrivial predictors. The

following R code gives some output for a lasso estimator and then the corre-
sponding lasso variable selection estimator.

library(glmnet)

y <- marry[,3]

x <- marry[,-3]

out<-glmnet(x,y,dfmax=2) #Use 2 for illustration:

#often dfmax approx min(n/J,p) for some J >= 5.

lam<-out$lambda[length(out$lambda)]

yhat <- predict(out,s=lam,newx=x)

#lasso with smallest lambda in grid such that df = 2

lcoef <- predict(out,type="coefficients",s=lam)

as.vector(lcoef) #first term is the intercept

#3.000397e+03 1.800342e-03 9.618035e-01 0.0 0.0

res <- y - yhat

AERplot(yhat,y,res,d=3,alph=1) #lasso response plot

##lasso variable selection =

#OLS on lasso active predictors and a constant

vars <- 1:dim(x)[2]

lcoef<-as.vector(lcoef)[-1] #don’t need an intercept

vin <- vars[lcoef>0] #the lasso active set

vin

#1 2 since predictors 1 and 2 are active

sub <- lsfit(x[,vin],y) #lasso variable selection

sub$coef

# Intercept pop mmen

#2.380912e+02 6.556895e-05 1.000603e+00

# 238.091 6.556895e-05 1.0006

res <- sub$resid

yhat <- y - res

AERplot(yhat,y,res,d=3,alph=1) #response plot

Example 3.2, continued. The lasso variable selection output below shows
results for the marry data where 10-fold CV was used to choose the lasso
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estimator. Then lasso variable selection is OLS applied to the active variables
with nonzero lasso coefficients and a constant. A grid of 38 λ values was used,
and λ1 > 0 was selected. The OLS SE, t statistic and pvalue are generally
not valid for lasso variable selection by Remark 2.5 and Theorem 2.4.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

out<-cv.glmnet(x,y)

lam <- out$lambda.min #value of lambda that minimizes

#the 10-fold CV criterion

pp <- out$nzero[out$lambda==lam] + 1

#d for lasso variable selection

#get lasso variable selection

lcoef <- predict(out,type="coefficients",s=lam)

lcoef<-as.vector(lcoef)[-1]

vin <- vars[lcoef!=0]

sub <- lsfit(x[,vin],y)

ls.print(sub)

Residual Standard Error=376.9412

R-Square=0.9999

F-statistic (df=2, 23)=147440.1

Estimate Std.Err t-value Pr(>|t|)58

Intercept 238.0912 248.8616 0.9567 0.3487

pop 0.0001 0.0029 0.0223 0.9824

mmen 1.0006 0.0164 60.9878 0.0000

res <- sub$resid

yhat <- y - res

AERplot2(yhat,y,res=res,d=pp)

$respi #90% PI for a future residual

-822.759 1403.771 #length = 2226.53

To summarize Example 3.2, forward selection selected the model with the
minimum Cp while the other methods used 10-fold CV. PLS and PCR used
the OLS full model with PI length 2395.74, forward selection used a constant
and mmen with PI length 2114.72, ridge regression had PI length 20336.58,
lasso and lasso variable selection used a constant, mmen, and pop with lasso
PI length 8482.62 and lasso variable selection PI length 2226.53. PI (2.14)
was used. Figure 3.1 shows the response plots for forward selection, ridge
regression, lasso, and lasso variable selection (labeled relaxed lasso). The plots
for PLS=PCR=OLS full model were similar to those of forward selection and
lasso variable selection. The plots suggest that the MLR model is appropriate
since the plotted points scatter about the identity line. The 90% pointwise
prediction bands are also shown, and consist of two lines parallel to the
identity line. These bands are very narrow in Figure 3.1 a) and d).
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d) Relaxed Lasso

Fig. 3.1 Marry Data Response Plots

3.8 The Elastic Net

Following Hastie et al. (2015, p. 57), let β = (β1 ,β
T
S )T , let λ1,n ≥ 0, and let

α ∈ [0, 1]. Let

RSS(β) = (Y − Xβ)T (Y − Xβ) = ‖Y − Xβ‖2
2.

For a k×1 vector η, the squared (Euclidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i

and the L1 norm ‖η‖1 =
∑k

i=1 |ηi|.

Definition 3.10. The elastic net estimator β̂EN minimizes the criterion



186 3 Statistical Learning Alternatives to OLS

QEN(β) =
1

2
RSS(β) + λ1,n

[
1

2
(1 − α)‖βS‖2

2 + α‖βS‖1

]
, or (3.26)

Q2(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1 (3.27)

where 0 ≤ α ≤ 1, λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n.

Note that α = 1 corresponds to lasso (using λa=0.5), and α = 0 corresponds
to ridge regression. For α < 1 and λ1,n > 0, the optimization problem is
strictly convex with a unique solution. The elastic net is due to Zou and
Hastie (2005). It has been observed that the elastic net can have much better
prediction accuracy than lasso when the predictors are highly correlated.

As with lasso, it is often convenient to use the centered response Z = Y −Y
where Y = Y 1, and the n×(p−1) matrix of standardized nontrivial predictors
W . Then regression through the origin is used for the model

Z = Wη + e (3.28)

where the vector of fitted values Ŷ = Y + Ẑ.
Ridge regression can be computed using OLS on augmented matrices.

Similarly, the elastic net can be computed using lasso on augmented matrices.
Let the elastic net estimator η̂EN minimize

QEN (η) = RSSW (η) + λ1‖η‖2
2 + λ2‖η‖1 (3.29)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n. Let the (n + p − 1) × (p − 1)
augmented matrix W A and the (n + p − 1) × 1 augmented response vector
ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p− 1)× 1 zero vector. Let RSSA(η) = ‖ZA −W Aη‖2
2. Then

η̂EN can be obtained from the lasso of ZA on W A: that is, η̂EN minimizes

QL(η) = RSSA(η) + λ2‖η‖1 = QEN (η). (3.30)

Proof: We need to show that QL(η) = QEN (η). Note that ZT
AZA = ZT Z,

W A η =

(
Wη√
λ1 η

)
,

and ZT
AW A η = ZT Wη. Then

RSSA(η) = ‖ZA − W Aη‖2
2 = (ZA − W Aη)T (ZA − W Aη) =

ZT
AZA − ZT

AW Aη − ηT W T
AZA + ηT W T

AW Aη =
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ZT Z − ZT Wη − ηT W T Z +
(
ηT W T

√
λ1 ηT

)( Wη√
λ1 η

)
.

Thus

QL(η) = ZT Z − ZT Wη − ηT W T Z + ηT W T Wη + λ1η
T η + λ2‖η‖1 =

RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 = QEN(η). �

Remark 3.15. i) You could compute the elastic net estimator using a
grid of 100 λ1,n values and a grid of J ≥ 10 α values, which would take
about J ≥ 10 times as long to compute as lasso. The above equivalent lasso
problem (3.30) still needs a grid of λ1 = (1−α)λ1,n and λ2 = 2αλ1,n values.
Often J = 11, 21, 51, or 101. The elastic net estimator tends to be com-
puted with fast methods for optimizing convex problems, such as coordinate
descent. ii) Like lasso and ridge regression, the elastic net estimator is asymp-

totically equivalent to the OLS full model if p is fixed and λ̂1,n = oP (
√
n),

but behaves worse than the OLS full model otherwise. See Theorem 3.9. iii)
For prediction intervals, let d be the number of nonzero coefficients from
the equivalent augmented lasso problem (3.30). Alternatively, use d2 with
d ≈ d2 = tr[WAS(W T

ASW AS + λ2,nIp−1)
−1W T

AS ] where W AS corresponds
to the active set (not the augmented matrix). See Tibshirani and Taylor
(2012, p. 1214). Again λ2,n may not be the λ2 given by the software. iv)
The number of nonzero lasso components (not including the constant) is at
most min(n, p−1). Elastic net tends to do variable selection, but the number
of nonzero components can equal p − 1 (make the elastic net equal to ridge
regression). Note that the number of nonzero components in the augmented
lasso problem (3.30) is at most min(n+ p− 1, p− 1) = p− 1. vi) The elastic
net can be computed with glmnet, and there is an R package elasticnet.
vii) For fixed α > 0, we could get λM for elastic net from the equivalent lasso
problem. For ridge regression, we could use the λM for an α near 0.

Since lasso uses at most min(n, p−1) nontrivial predictors, elastic net and
ridge regression can perform better than lasso if the true number of active
nontrivial predictors aS > min(n, p − 1). For example, suppose n = 1000,
p = 5000, and aS = 1500.

Following Jia and Yu (2010), by standard Karush-Kuhn-Tucker (KKT)

conditions for convex optimality for Equation (3.27), β̂EN is optimal if

2XT Xβ̂EN − 2XT Y + 2λ1β̂EN + λ2sn = 0, or

(XT X + λ1Ip)β̂EN = XT Y − λ2

2
sn, or

β̂EN = β̂R − n(XT X + λ1Ip)
−1 λ2

2n
sn. (3.31)

Hence
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β̂EN = β̂OLS − λ1

n
n(XT X + λ1Ip)

−1 β̂OLS − λ2

2n
n(XT X + λ1Ip)

−1 sn

= β̂OLS − n(XT X + λ1Ip)
−1 [

λ1

n
β̂OLS +

λ2

2n
sn].

Note that if λ̂1,n/
√
n

P→ τ and α̂
P→ ψ, then λ̂1/

√
n

P→ (1−ψ)τ and λ̂2/
√
n

P→
2ψτ. The following theorem shows elastic net is asymptotically equivalent to

the OLS full model if λ̂1,n/
√
n

P→ 0. Note that we get the RR CLT if ψ = 0

and the lasso CLT (using 2λ̂1,n/
√
n

P→ 2τ ) if ψ = 1. Under these conditions,

√
n(β̂EN −β) =

√
n(β̂OLS − β) − n(XT X + λ̂1Ip)

−1 [
λ̂1√
n

β̂OLS +
λ̂2

2
√
n

sn].

The following theorem is due to Slawski et al. (2010), and summarized in
Pelawa Watagoda and Olive (2021b).

Theorem 3.9, Elastic Net CLT. Assume p is fixed and that the condi-
tions of the OLS CLT Equation (3.3) hold for the model Y = Xβ + e.

a) If λ̂1,n/
√
n

P→ 0, then

√
n(β̂EN − β)

D→ Np(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sβ, then

√
n(β̂EN − β)

D→ Np

(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

Proof. By the above remarks and the RR CLT Theorem 3.7,

√
n(β̂EN −β) =

√
n(β̂EN − β̂R + β̂R −β) =

√
n(β̂R −β)+

√
n(β̂EN − β̂R)

D→ Np

(
−(1 − ψ)τV β, σ2V

)
− 2ψτ

2
V s

∼ Np

(
−V [(1 − ψ)τβ + ψτs], σ2V

)
.

The mean of the normal distribution is 0 under a) since α̂ and sn are bounded.
�

Example 3.2, continued. The slpack function enet does elastic net
using 10-fold CV and a grid of α values {0, 1/am, 2/am, ..., am/am= 1}. The
default uses am = 10. The default chose lasso with alph = 1. The function
also makes a response plot, but does not add the lines for the pointwise
prediction intervals since the false degrees of freedom d is not computed.

library(glmnet); y <- marry[,3]; x <- marry[,-3]

tem <- enet(x,y)

tem$alph
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[1] 1 #elastic net was lasso

tem<-enet(x,y,am=100)

tem$alph

[1] 0.97 #elastic net was not lasso with a finer grid

The elastic net variable selection estimator applies OLS to a constant and
the active predictors that have nonzero elastic net η̂i. Hence elastic net is used
as a variable selection method. Let XA denote the matrix with a column of
ones and the unstandardized active nontrivial predictors. Hence the elastic
net variable selection estimator is β̂ENV = (XT

AXA)−1XT
AY , and elastic net

variable selection is an alternative to forward selection. Let k be the number
of active (nontrivial) predictors so β̂ENV is (k+ 1)× 1. Let Imin correspond

to the elastic net variable selection estimator and β̂ENV,0 = β̂Imin,0 to the
zero padded elastic net variable selection estimator. Then by Remark 2.5
where p is fixed, β̂ENV,0 is

√
n consistent when elastic net is consistent, with

the limiting distribution for β̂ENV,0 given by Theorem 2.4. Hence, elastic
net variable selection can be bootstrapped with the same methods used for
forward selection in Chapter 2. Elastic net variable selection will often be
better than elastic net when the model is sparse or if n ≥ 10(k + 1). The
elastic net can be better than elastic net variable selection if (XT

AXA) is ill
conditioned or if n/(k + 1) < 10. Also see Rathnayake and Olive (2023).

3.9 OPLS

Definition 3.11. Denote the one component PLS (OPLS) estimator by

β̂OPLS .

For estimation with OLS, let the covariance matrix of x be Cov(x) =
Σx = E[(x−E(x))(x−E(x))T = E(xxT )−E(x)E(xT ) and η = Cov(x, Y )
= ΣxY = E[(x− E(X)(Y − E(Y ))] = E(xY ) −E(x)E(Y ) =
E[(x−E(x))Y ] = E[x(Y −E(Y ))]. Let

η̂ = η̂n = Σ̂xY = SxY =
1

n − 1

n∑

i=1

(xi − x)(Yi − Y )

and

η̃ = η̃n = Σ̃xY =
1

n

n∑

i=1

(xi − x)(Yi − Y ).

Then the OLS estimators are α̂OLS = Y − β̂
T

OLSx and

β̂OLS = Σ̃
−1

x Σ̃xY = Σ̂
−1

x Σ̂xY = Σ̂
−1

x η̂.
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For a multiple linear regression model with independent, identically dis-
tributed (iid) cases, β̂OLS is a consistent estimator of βOLS = Σ−1

x ΣxY

under mild regularity conditions, while α̂OLS is a consistent estimator of
E(Y ) − βT

OLSE(x).

Cook, Helland, and Su (2013) showed that β̂OPLS = λ̂Σ̂xY estimates
λΣxY = βOPLS where

λ =
ΣT

xY ΣxY

ΣT
xY ΣxΣxY

and λ̂ =
Σ̂

T

xYΣ̂xY

Σ̂
T

xYΣ̂xΣ̂xY

(3.32)

for ΣxY 6= 0. If ΣxY = 0, then βOPLS = 0. Let η̂OPLS = Σ̂xY . Large
sample theory for OPLS is given by Olive and Zhang (2023).

Chun and Keleş (2010) suggested that β̂OPLS only estimates βOLS under
very strong regularity conditions. Cook and Forzani (2018, 2019) showed that

the regularity condition is Σ−1
x Σx,Y = λΣx,Y , in which case

√
n(β̂OPLS −

βOLS)
D→ Np(0,C). Cook and Forzani (2018, 2019) also showed that under

very strong regularity conditions for high dimensions, β̂OPLS is a consistent
estimator of βOLS . Also see Basa et al. (2022).

In the literature, there is a tendency (perhaps a common Statistical
paradigm) to assume that if the estimated model fits the data well, then the
model corresponding to the estimator is the model for Y |x. For example, in
much of the OPLS literature, an assumption is Y |x = αOPLS +βT

OPLSx+e.
Then βOPLS = βOLS by the OLS CLT, and the results in Table 3.1 hold.

Table 3.1 OPLS Results

General βOLS = Σ
−1

x Σx,Y = λΣx,Y = βOP LS

βOLS = Σ
−1

x Σx,Y =
1

λ
[Cov(x)]−1βOP LS βOLS is an eigenvector of Σx

βOP LS = λΣx,Y = λCov(x)βOLS βOPLS is an eigenvector of Σx
Σx,Y = Cov(x)βOLS Σx,Y is an eigenvector of Σx

β̂kP LS estimates βkP LS β̂kP LS estimates βOLS

The above tendency leads to problems that have perhaps not yet been
observed in the literature. To see some problems, consider multiple linear
regression with Cov(x) = diag(1, 2, ..., p). First consider OPLS with βOLS =
βOPLS . Then at most one element of Cov(x, Y ) = Σx,Y is nonzero since
Σx,Y is an eigenvector of Cov(x). Hence at most one predictor is correlated
with Y , regardless of the value of p. This restriction is too strong.

If the cases are iid from a multivariate normal distribution, then Y |x =
αOLS + βT

OLSx + e and Y |βT
OPLSx = αOPLS + βT

OPLSx + e are both lin-
ear models by Section 3.17 where e depends on the model. Since βOPLS =
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βOLS forces βOLS to be an eigenvector of Σx, if βOLS is not an eigen-
vector of Σx, then βOPLS 6= βOLS. For a computational example, let
x ∼ Np(0, diag(1, 2, 3, 4)) with Σx = diag(1, 2, 3, 4), and let the popula-
tion generating model be Yi = xi1 + xi2 + ei for i = 1, ..., n where the ei

are iid N(0, 1) and independent of the xi. Then α = 0 and β = (1, 1, 0, 0)T .
Hence βOLS = β = (1, 1, 0, 0)T , Σx,Y = ΣxβOLS = (1, 2, 0, 0)T , and

λ =
ΣT

x,Y Σx,Y

ΣT
x,Y ΣxΣx,Y

= 5/9.

Thus βOPLS = λΣx,Y = λΣxβOLS = (5/9, 10/9, 0, 0)T 6= βOLS .
Thus OLS and OPLS usually give different valid population multiple linear

regression models with βOPLS 6= βOLS . However, model iii) Y |βT
OPLSx =

αOPLS + βT
OPLSx + e is often a useful multiple linear regression model with

large sample theory given in Olive and Zhang (2023). The claims in the
OPLS literature that βOLS = βOPLS = an eigenvector of Σx under mild
regularity conditions are incorrect. See, for example, Basa et al. (2022), Cook
and Forzani (2018, 2019), and Cook, Helland and Su (2013). The regularity
conditions for βOLS = βOPLS are very strong. In the OLS literature βOLS

can be any vector in R
p. If βOLS , Σx,Y , and βOPLS were restricted to be

eigenvectors of Σx, then the OLS and OPLS estimators would often not fit
the data well.

3.10 The MMLE

The marginal maximum likelihood estimator (MMLE or marginal least
squares estimator) is due to Fan and Lv (2008) and Fan and Song (2010).
This estimator computes the marginal regression of Y on xi resulting in the
estimator (α̂i,M , β̂i,M) for i = 1, ..., p. Then β̂MMLE = (β̂1,M , ..., β̂p,M)T .
For multiple linear regression, the marginal estimators are the simple linear
regression (SLR) estimators, and (α̂i,M , β̂i,M) = (α̂i,SLR, β̂i,SLR). Hence

β̂MMLE = [diag(Σ̂x)]−1Σ̂x,Y .

If the wi are the predictors standardized to have unit sample variances, then

β̂MMLE = β̂MMLE(w, Y ) = Σ̂w,Y = I−1Σ̂w,Y = η̂OPLS(w, Y )

where (w, Y ) denotes that Y was regressed on w, and I is the p× p identity
matrix. See, for example, James et al. (2021, p. 260).

The MMLE is also used for variable selection. For example, standardize
the predictors and take the K − 1 variables corresponding to the largest
|β̂i| where β̂MMLE = (β̂1, ..., β̂p)T . Then perform the regression on these
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variables (perhaps not standardized) and a constant. This variable selection
method is useful for very large p since the method is fast, but the selected
predictors are often highly correlated. Hence it may be useful to perform lasso
variable selection or forward selection using the variables selected by MMLE
variable selection. Choosing K near min(n/J, p) for J = 1, 5 or 10 may be
useful.

MMLE variable selection can also be useful when the predictors are or-
thogonal. See Goh and Dey (2019) for references. This result may be useful
for PCR, PLS, and wavelets.

3.11 k-Component Regression Estimators

Consider the MLR model Y = α + xT β + e. The k-component regression
estimators, such as PCR and PLS, use p linear combinations ηT

1 x, ...,ηT
p x.

Then there are p conditional distributions

Y |ηT
1 x

Y |(ηT
1 x,ηT

2 x)
...

Y |(ηT
1 x,ηT

2 x, ...,ηT
p x).

Estimating the ηi and performing the ordinary least squares (OLS) regression
of Y on (η̂T

1 x, η̂T
2 x, ..., η̂T

k x) gives the k-component estimator, e.g. the k-

component PLS estimator β̂kPLS or the k-component PCR estimator, for
k = 1, ..., J where J ≤ p and the p-component estimator is the OLS estimator
β̂OLS .

Definition 3.12. Consider the MLR model Y = α + xT β + e. Let X =
(1 X1). Let

vi = Âk,nxi =




xT

i η̂1
...

xT
i η̂k



 =




η̂T

1 xi

...

η̂T
k xi



 where Âk,n =




η̂T

1
...

η̂T
k



 .

Let

ci = X1η̂i =




xT

1 η̂i
...

xT
n η̂i





be the ith component vector for i = 1, ..., p. Let
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V k = (c1, ..., ck) =




vT

1
...

vT
n



 = X1Â
T

k,n

for k = 1, ..., p. Let the working OLS model

Y = αk1 + V kγk + ε

where ε depends on the model. Then β̂kE = Â
T

k,nγ̂k is the k-component
estimator for k = 1, ..., p. The model selection estimator chooses one of the
k-component estimators, e.g. using a holdout sample or cross validation, and
will be denoted by β̂MSE.

The OLS regression of Y on w = Âk,nx gives

γ̂k = Σ̂
−1

w Σ̂w,Y = (Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y .

Thus
β̂kE = Â

T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂x,Y = Λ̂kΣ̂x,Y

= Â
T

k,n(Âk,nΣ̂xÂ
T

k,n)−1Âk,nΣ̂xβ̂OLS(x, Y ) = Λ̂kΣ̂xβ̂OLS(x, Y ).

If η̂i
P→ ηi, and

Âk,n
P→ Ak =




ηT

1
...

ηT
k



 ,

then

β̂kE
P→ βkE = AT

k (AkΣxAT
k )−1AkΣxβOLS(x, Y ) = ΛkΣxβOLS(x, Y ).

This convergence can also occur if η̂i = êi are orthonormal eigenvectors such

that Â
T

k,nγ̂k
P→ AT

k γk, which happened for PCR.
The regularity conditions for βkE = βOLS(x, Y ) tend to be strong, at

least for k near 1. Note that βpE = βOLS(x, Y ) if the inverse matrices exist
(and if p = 1), and βkE = βOLS(x, Y ) if βOLS(x, Y ) = 0. Suppose βOLS =∑

j=1 cij
ηij

for some m where 1 ≤ m ≤ p and the cij
6= 0. If k is large

enough to include the m ηij
, then βkE = βOLS(x, Y ). Under this regularity

condition, γd = cij
if γd corresponds to ηij

. This regularity condition becomes
weaker as m increases, and βkE can become very highly correlated with
βOLS(x, Y ) as k increases.

In the high dimensional setting, the regularity conditions for η̂i
P→ ηi tend

to be very strong.
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3.12 Prediction Intervals

This section will use the prediction intervals from Section 2.3 applied to the
MLR model with m̂(x) = xT

I β̂I and I corresponds to the predictors used by
the MLR method. We will use the six methods forward selection with OLS,
PCR, PLS, lasso, lasso variable selection, and ridge regression. When p > n,
results from Hastie et al. (2015, pp. 20, 296, ch. 6, ch. 11) and Luo and Chen
(2013) suggest that lasso, lasso variable selection, and forward selection with
EBIC can perform well for sparse models: the subset S in Equation (2.1) and
Remark 3.7 has aS small.

Consider d for the prediction interval (2.14). As in Chapter 2, with the
exception of ridge regression, let d be the number of “variables” used by the
method, including a constant. Hence for lasso, lasso variable selection, and
forward selection, d− 1 is the number of active predictors while d− 1 is the
number of “components” used by PCR and PLS.

Many things can go wrong with prediction. It is assumed that the test
data follows the same MLR model as the training data. Population drift is a
common reason why the above assumption, which assumes that the various
distributions involved do not change over time, is violated. Population drift
occurs when the population distribution does change over time.

A second thing that can go wrong is that the training or test data set is
distorted away from the population distribution. This could occur if outliers
are present or if the training data set and test data set are drawn from
different populations. For example, the training data set could be drawn
from three hospitals, and the test data set could be drawn from two more
hospitals. These two populations of three and two hospitals may differ.

A third thing that can go wrong is extrapolation: if xf is added to
x1, ...,xn, then there is extrapolation if xf is not like the xi, e.g. xf is an
outlier. Predictions based on extrapolation are not reliable. Check whether
the Euclidean distance of xf from the coordinatewise median MED(X) of
the x1, ...,xn satisfies Dxf

(MED(X), Ip) ≤ maxi=1,...,nDi(MED(X), Ip).
Alternatively, use the ddplot5 function, described in Chapter 1, applied to
x1, ...,xn,xf to check whether xf is an outlier.

When n ≥ 10p, let the hat matrix H = X(XT X)−1XT . Let hi = hii

be the ith diagonal element of H for i = 1, ..., n. Then hi is called the
ith leverage and hi = xT

i (XT X)−1xi. Then the leverage of xf is hf =

xT
f (XT X)−1xf . Then a rule of thumb is that extrapolation occurs if hf >

max(h1, ..., hn). This rule works best if the predictors are linearly related in
that a plot of xi versus xj should not have any strong nonlinearities. If there
are strong nonlinearities among the predictors, then xf could be far from the
xi but still have hf < max(h1, ..., hn). If the regression method, such as lasso
or forward selection, uses a set I of a predictors, including a constant, where
n ≥ 10a, the above rule of thumb could be used for extrapolation where xf ,
xi, and X are replaced by xI,f , xI,i, and XI .
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For the simulation from Pelawa Watagoda and Olive (2021b), we used
several R functions including forward selection (FS) as computed with the
regsubsets function from the leaps library, principal components regres-
sion (PCR) with the pcr function and partial least squares (PLS) with the
plsr function from the pls library, and ridge regression (RR) and lasso with
the cv.glmnet function from the glmnet library. Lasso variable selection
(LVS) was applied to the selected lasso model.

Table 3.2 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9644 0.9750 0.9666 0.9560 0.9438 0.9772

len 4.4490 4.8245 4.6873 4.5723 4.4149 5.5647
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
100 200 0 1 cov 0.9648 0.9764 0.9268 0.9584 0.6616 0.9922

len 4.4268 4.9762 4.2748 6.1612 2.7695 12.412
100 50 0 49 cov 0.8996 0.9719 0.9736 0.9820 0.8448 1.0000

len 22.067 6.8345 6.8092 7.7234 4.2141 38.904
200 20 0 19 cov 0.9788 0.9766 0.9788 0.9792 0.9550 0.9786

len 4.9613 4.9636 4.9613 5.0458 4.3211 4.9610
200 40 0 19 cov 0.9742 0.9762 0.9740 0.9738 0.9324 0.9792

len 4.9285 5.2205 5.1146 5.2103 4.2152 5.3616
200 200 0 19 cov 0.9728 0.9778 0.9098 0.9956 0.3500 1.0000

len 4.8835 5.7714 4.5465 22.351 2.1451 51.896
400 20 0.9 19 cov 0.9664 0.9748 0.9604 0.9726 0.9554 0.9536

len 4.5121 10.609 4.5619 10.663 4.0017 3.9771
400 40 0.9 19 cov 0.9674 0.9608 0.9518 0.9578 0.9482 0.9646

len 4.5682 14.670 4.8656 14.481 4.0070 4.3797
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764
400 400 0 399 cov 0.9486 0.8508 0.5704 1.0000 0.0948 1.0000

len 78.411 37.541 20.408 244.28 1.1749 305.93
400 800 0.9 19 cov 0.9268 0.9652 0.9542 0.9672 0.9438 0.9554

len 4.3427 67.294 4.7803 66.577 4.2965 4.6533

Let x = (1 uT )T where u is the (p− 1)× 1 vector of nontrivial predictors.
In the simulations, for i = 1, ..., n, we generated wi ∼ Np−1(0, I) where the
m = p − 1 elements of the vector wi are iid N(0,1). Let the m×m matrix
A = (aij) with aii = 1 and aij = ψ where 0 ≤ ψ < 1 for i 6= j. Then the

vector ui = Awi so that Cov(ui) = Σu = AAT = (σij) where the diagonal
entries σii = [1+(m−1)ψ2 ] and the off diagonal entries σij = [2ψ+(m−2)ψ2 ].
Hence the correlations are cor(xi, xj) = ρ = (2ψ+(m−2)ψ2)/(1+(m−1)ψ2)
for i 6= j where xi and xj are nontrivial predictors. If ψ = 1/

√
cp, then

ρ → 1/(c + 1) as p → ∞ where c > 0. As ψ gets close to 1, the predictor
vectors cluster about the line in the direction of (1, ..., 1)T. Let Yi = 1+1xi,2+
· · ·+ 1xi,k+1 + ei for i = 1, ..., n. Hence β = (1, .., 1, 0, ..., 0)T with k+ 1 ones
and p− k− 1 zeros. The zero mean errors ei were iid from five distributions:
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i) N(0,1), ii) t3, iii) EXP(1) - 1, iv) uniform(−1, 1), and v) 0.9 N(0,1) +
0.1 N(0,100). Normal distributions usually appear in simulations, and the
uniform distribution is the distribution where the shorth undercoverage is
maximized by Frey (2013). Distributions ii) and v) have heavy tails, and
distribution iii) is not symmetric.

The population shorth 95% PI lengths estimated by the asymptotically
optimal 95% PIs are i) 3.92 = 2(1.96), ii) 6.365, iii) 2.996, iv) 1.90 = 2(0.95),
and v) 13.490. The split conformal PI (2.16) is not asymptotically optimal
for iii), and for iii) PI (2.16) has asymptotic length 2(1.966) = 3.992. The
simulation used 5000 runs, so an observed coverage in [0.94, 0.96] gives no
reason to doubt that the PI has the nominal coverage of 0.95. The simulation
used p = 20, 40, 50, n, or 2n; ψ = 0, 1/

√
p, or 0.9; and k = 1, 19, or p−1. The

OLS full model fails when p = n and p = 2n, where regularity conditions
for consistent estimators are strong. The values k = 1 and k = 19 are sparse
models where lasso, lasso variable selection, and forward selection with EBIC
can perform well when n/p is not large. If k = p−1 and p ≥ n, then the model
is dense. When ψ = 0, the predictors are uncorrelated, when ψ = 1/

√
p,

the correlation goes to 0.5 as p increases and the predictors are moderately
correlated. For ψ = 0.9, the predictors are highly correlated with 1 dominant
principal component, a setting favorable for PLS and PCR. The simulated
data sets are rather small since the some of the R estimators are rather slow.

The simulations were done in R. See R Core Team (2016). The results
were similar for all five error distributions, and we show some results for
the normal and shifted exponential distributions. Tables 3.1 and 3.2 show
some simulation results for PI (2.14) where forward selection used Cp for
n ≥ 10p and EBIC for n < 10p. The other methods minimized 10-fold CV. For
forward selection, the maximum number of variables used was approximately
min(dn/5e, p). Ridge regression used the same d that was used for lasso.

For n ≥ 5p, coverages tended to be near or higher than the nominal value
of 0.95. The average PI length was often near 1.3 times the asymptotically
optimal length for n = 10p and close to the optimal length for n = 100p. Cp

and EBIC produced good PIs for forward selection, and 10-fold CV produced
good PIs for PCR and PLS. For lasso and ridge regression, 10-fold CV pro-
duced good PIs if ψ = 0 or if k was small, but if both k ≥ 19 and ψ ≥ 0.5,
then 10-fold CV tended to shrink too much and the PI lengths were often
too long. Lasso did appear to select S ⊆ Imin since lasso variable selection
was good.

For n/p not large, good performance needed stronger regularity condi-
tions, and all six methods can have problems. PLS tended to have severe
undercoverage with small average length, but sometimes performed well for
ψ = 0.9. The PCR length was often too long for ψ = 0. If there was k = 1
active population predictor, then forward selection with EBIC, lasso, and
lasso variable selection often performed well. For k = 19, forward selection
with EBIC often performed well, as did lasso and lasso variable selection for
ψ = 0. For dense models with k = p− 1 and n/p not large, there was often
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undercoverage. Here forward selection would use about n/5 variables. Let
d − 1 be the number of active nontrivial predictors in the selected model.
For N(0, 1) errors, ψ = 0, and d < k, an asymptotic population 95% PI has
length 3.92

√
k − d+ 1. Note that when the (Yi,u

T
i )T follow a multivariate

normal distribution, every subset follows a multiple linear regression model.
EBIC occasionally had undercoverage, especially for k = 19 or p − 1, which
was usually more severe for ψ = 0.9 or 1/

√
p.

Table 3.3 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ EXP (1)−1

n p ψ k FS lasso LVS RR PLS PCR
100 20 0 1 cov 0.9622 0.9728 0.9648 0.9544 0.9460 0.9724

len 3.7909 4.4344 4.3865 4.4375 4.2818 5.5065
2000 20 0 1 cov 0.9506 0.9502 0.9500 0.9488 0.9486 0.9542

len 3.1631 3.1199 3.1444 3.2380 3.1960 3.3220
200 20 0.9 1 cov 0.9588 0.9666 0.9664 0.9666 0.9556 0.9612

len 3.7985 3.6785 3.7002 3.7491 3.5049 3.7844
200 20 0.9 19 cov 0.9704 0.9760 0.9706 0.9784 0.9578 0.9592

len 4.6128 12.1188 4.8732 12.0363 3.3929 3.7374
200 200 0.9 19 cov 0.9338 0.9750 0.9564 0.9740 0.9440 0.9596

len 4.6271 37.3888 5.1167 56.2609 4.0550 4.6994
400 40 0.9 19 cov 0.9678 0.9654 0.9492 0.9624 0.9426 0.9574

len 4.3433 14.7390 4.7625 14.6602 3.6229 4.1045

Table 3.4 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ N(0,1)

n,p,ψ,k FS CFS LVS CRL Lasso CL RR CRR
200,20, 0,19 cov 0.9574 0.9446 0.9522 0.9420 0.9538 0.9382 0.9542 0.9430

len 4.6519 4.3003 4.6375 4.2888 4.6547 4.2964 4.7215 4.3569
200,40,0,19 cov 0.9564 0.9412 0.9524 0.9440 0.9550 0.9406 0.9548 0.9404

len 4.9188 4.5426 5.2665 4.8637 5.1073 4.7193 5.3481 4.9348
200,200, 0,19 cov 0.9488 0.9320 0.9548 0.9392 0.9480 0.9380 0.9536 0.9394

len 7.0096 6.4739 5.1671 4.7698 31.1417 28.7921 47.9315 44.3321
400,20,0.9,19 cov 0.9498 0.9406 0.9488 0.9438 0.9524 0.9426 0.9550 0.9426

len 4.4153 4.1981 4.5849 4.3591 9.4405 8.9728 9.2546 8.8054
400,40,0.9,19 cov 0.9504 0.9404 0.9476 0.9388 0.9496 0.9400 0.9470 0.9410

len 4.7796 4.5423 4.9704 4.7292 13.3756 12.7209 12.9560 12.3118
400,400,0.9,19 cov 0.9480 0.9398 0.9554 0.9444 0.9506 0.9422 0.9506 0.9408

len 5.2736 5.0131 4.9764 4.7296 43.5032 41.3620 42.6686 40.5578
400,800,0.9,19 cov 0.9550 0.9474 0.9522 0.9412 0.9550 0.9450 0.9550 0.9446

len 5.3626 5.0943 4.9382 4.6904 60.9247 57.8783 60.3589 57.3323
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Tables 3.3 and 3.4 show some results for PIs (2.15) and (2.16). Here forward
selection using the minimum Cp model if nH > 10p and EBIC otherwise. The
coverage was very good. Labels such as CFS and CRL used PI (2.16). For
lasso variable selection, the program sometimes failed to run for 5000 runs,
e.g., if the number of variables selected d = nH . In Table 3.3, PIs (2.15) and
(2.16) are asymptotically equivalent, but PI (2.16) had shorter lengths for
moderate n. In Table 3.4, PI (2.15) is shorter than PI (2.16) asymptotically,
but for moderate n, PI (2.16) was often shorter.

Table 3.5 Validation Residuals: Simulated Large Sample 95% PI Coverages and
Lengths, ei ∼ EXP (1)− 1

n,p,ψ,k FS CFS LVS CRL Lasso CL RR CRR
200,20,0,1 cov 0.9596 0.9504 0.9588 0.9374 0.9604 0.9432 0.9574 0.9438

len 4.6055 4.2617 4.5984 4.2302 4.5899 4.2301 4.6807 4.2863
2000,20,0,1 cov 0.9560 0.9508 0.9530 0.9464 0.9544 0.9462 0.9530 0.9462

len 3.3469 3.9899 3.3240 3.9849 3.2709 3.9786 3.4307 3.9943
200,20,0.9,1 cov 0.9564 0.9402 0.9584 0.9362 0.9634 0.9412 0.9638 0.9418

len 3.9184 3.8957 3.8765 3.8660 3.8406 3.8483 3.8467 3.8509
200,20,0.9,19 cov 0.9630 0.9448 0.9510 0.9368 0.9554 0.9430 0.9572 0.9420

len 5.0543 4.6022 4.8139 4.3841 9.8640 9.0748 9.5218 8.7366
200,200,0.9,19 cov 0.9570 0.9434 0.9588 0.9418 0.9552 0.9392 0.9544 0.9394

len 5.8095 5.2561 5.2366 4.7292 31.1920 28.8602 47.9229 44.3251
400,40,0.9,19 cov 0.9476 0.9402 0.9494 0.9416 0.9584 0.9496 0.9562 0.9466

len 4.6992 4.4750 4.9314 4.6703 13.4070 12.7442 13.0579 12.4015

Table 3.5 shows some results for PIs (2.14) and (2.15) for lasso and ridge
regression. The header lasso indicates PI (2.14) was used while vlasso indi-
cates that PI (2.15) was used. PI (2.15) tended to work better when the fit
was poor while PI (2.14) was better for n = 2p and k = p − 1. The PIs are
asymptotically equivalent for consistent estimators.

3.13 Cross Validation

For MLR variable selection there are many methods for choosing the final
submodel, including AIC, BIC, Cp, and EBIC. See Section 2.1. Variable se-
lection is a special case of model selection where there are M models a a final
model needs to be chosen. Cross validation is a common criterion for model
selection.

Definition 3.12. For k-fold cross validation (k-fold CV), randomly divide
the training data into k groups or folds of approximately equal size nj ≈ n/k
for j = 1, ..., k. Leave out the first fold, fit the statistical method to the k− 1
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Table 3.6 PIs (2.14) and (2.15): Simulated Large Sample 95% PI Coverages and
Lengths

n p ψ k dist lasso vlasso RR vRR
100 20 0 1 cov N(0,1) 0.9750 0.9632 0.9564 0.9606

len 4.8245 4.7831 4.5741 5.3277
100 20 0 1 cov EXP(1)−1 0.9728 0.9582 0.9546 0.9612

len 4.4345 5.0089 4.4384 5.6692
100 50 0 49 cov N(0,1) 0.9714 0.9606 0.9822 0.9618

len 6.8345 22.3265 7.7229 27.7275
100 50 0 49 cov EXP(1)−1 0.9716 0.9618 0.9814 0.9608

len 6.9460 22.4097 7.8316 27.8306
400 400 0 399 cov N(0,1) 0.8508 0.9518 1.0000 0.9548

len 37.5418 78.0652 244.1004 69.5812
400 400 0 399 cov EXP(1)−1 0.8446 0.9586 1.0000 0.9558

len 37.5185 78.0564 243.7929 69.5474

remaining folds, and then compute some criterion for the first fold. Repeat
for folds 2, ..., k.

Following James et al. (2013, p. 181), if the statistical method is an MLR
method, we often compute Ŷi(j) for each Yi in the fold j left out. Then

MSEj =
1

nj

nj∑

i=1

(Yi − Ŷi(j))
2 ,

and the overall criterion is

CV(k) =
1

k

k∑

j=1

MSEj .

Note that if each nj = n/k, then

CV(k) =
1

n

n∑

i=1

(Yi − Ŷi(j))
2.

Then CV(k) ≡ CV(k)(Ii) is computed for i = 1, ...,M , and the model Ic with
the smallest CV(k)(Ii) is selected.

Assume that model (2.1) holds: Y = xT β +e = xT
SβS +e where βS is an

aS × 1 vector. Suppose p is fixed and n → ∞. If β̂I is a × 1, form the p × 1

vector β̂I,0 from β̂I by adding 0s corresponding to the omitted variables. If
P (S ⊆ Imin) → 1 as n→ ∞, then Theorem 2.4 and Remark 2.5 showed that

β̂Imin,0 is a
√
n consistent estimator of β under mild regularity conditions.
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Note that if aS = p, then β̂Imin,0 is asymptotically equivalent to the OLS full

model β̂ (since S is equal to the full model).

Choosing folds for k-fold cross validation is similar to randomly allocating
cases to treatment groups. The following code is useful for a simulation. It
makes copies of 1 to k in a vector of length n called tfolds. The sample
command makes a permutation of tfolds to get the folds. The lengths of the
k folds differ by at most 1.

n<-26

k<-5

J<-as.integer(n/k)+1

tfolds<-rep(1:k,J)

tfolds<-tfolds[1:n] #can pass tfolds to a loop

folds<-sample(tfolds)

folds

4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3

Example 3.2, continued. The slpack function pifold uses k-fold CV to
get the coverage and average PI lengths. We used 5-fold CV with coverage
and average 95% PI length to compare the forward selection models. All
4 models had coverage 1, but the average 95% PI lengths were 2591.243,
2741.154, 2902.628, and 2972.963 for the models with 2 to 5 predictors. See
the following R code.

y <- marry[,3]; x <- marry[,-3]

x1 <- x[,2]

x2 <- x[,c(2,3)]

x3 <- x[,c(1,2,3)]

pifold(x1,y) #nominal 95% PI

$cov

[1] 1

$alen

[1] 2591.243

pifold(x2,y)

$cov

[1] 1

$alen

[1] 2741.154

pifold(x3,y)

$cov

[1] 1

$alen

[1] 2902.628

pifold(x,y)

$cov



3.13 Cross Validation 201

[1] 1

$alen

[1] 2972.963

#Validation PIs for submodels: the sample size is

#likely too small and the validation PI is formed

#from the validation set.

n<-dim(x)[1]

nH <- ceiling(n/2)

indx<-1:n

perm <- sample(indx,n)

H <- perm[1:nH]

vpilen(x1,y,H) #13/13 were in the validation PI

$cov

[1] 1.0

$len

[1] 116675.4

vpilen(x2,y,H)

$cov

[1] 1.0

$len

[1] 116679.8

vpilen(x3,y,H)

$cov

[1] 1.0

$len

[1] 116312.5

vpilen(x,y,H)

$cov

[1] 1.0

$len #shortest length

[1] 116270.7

Some more code is below.

n <- 100

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)
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$cov

[1] 0.96

$alen

[1] 4.2884

pifold(x2,y)

$cov

[1] 0.98

$alen

[1] 4.625284

pifold(x3,y)

$cov

[1] 0.98

$alen

[1] 4.783187

pifold(x,y)

$cov

[1] 0.98

$alen

[1] 4.713151

n <- 10000

p <- 4

k <- 1

q <- p-1

x <- matrix(rnorm(n * q), nrow = n, ncol = q)

b <- 0 * 1:q

b[1:k] <- 1

y <- 1 + x %*% b + rnorm(n)

x1 <- x[,1]

x2 <- x[,c(1,2)]

x3 <- x[,c(1,2,3)]

pifold(x1,y)

$cov

[1] 0.9491

$alen

[1] 3.96021

pifold(x2,y)

$cov

[1] 0.9501

$alen

[1] 3.962338

pifold(x3,y)

$cov

[1] 0.9492

$alen
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[1] 3.963305

pifold(x,y)

$cov

[1] 0.9498

$alen

[1] 3.96203

3.14 Hypothesis Testing after Model Selection, n/p
Large

Section 2.6 showed how to use the bootstrap for hypothesis test H0 : θ =
Aβ = θ0 versus H1 : θ = Aβ 6= θ0 with the statistic Tn = Aβ̂Imin,0

where β̂Imin,0 is the zero padded OLS estimator computed from the variables
corresponding to Imin. The theory needs P (S ⊆ Imin) → 1 as n → ∞, and
hence applies to OLS variable selection with AIC, BIC, and Cp, and to lasso
variable selection and elastic net variable selection if lasso and elastic net are
consistent.

Assume n ≥ 20p and that the error distribution is unimodal and not highly
skewed. The response plot and residual plot are plots with Ŷ = xT β̂ on the
horizontal axis and Y or r on the vertical axis, respectively. Then the plotted
points in these plots should scatter in roughly even bands about the identity
line (with unit slope and zero intercept) and the r = 0 line, respectively.
See Figure 1.1. If the plots for the OLS full model suggest that the error
distribution is skewed or multimodal, then much larger sample sizes may be
needed.

Let p be fixed. Then lasso is asymptotically equivalent to OLS if λ̂1n/
√
n →

0, and hence should not have any β̂i = 0, asymptotically. If aS < p, then
lasso tends not be

√
n consistent if lasso selects S with high probability by

Ewald and Schneider (2018), but then lasso variable selection tends to be√
n consistent. If λ̂1n/n → 0, then lasso is consistent so P (S ⊆ I) → 1 as

n→ ∞. Hence often if lasso has more than one β̂i = 0, then lasso is not
√
n

consistent.
Suppose we use the residual bootstrap where Y ∗ = Xβ̂OLS +rW follows a

standard linear model where the elements rW
i of rW are iid from the empirical

distribution of the OLS full model residuals ri. In Section 2.6 we used forward
selection when regressing Y ∗ on X , but we could use lasso or ridge regression
instead. Since these estimators are consistent if λ̂1n/n → 0 as n → ∞, we

expect β̂
∗

L and β̂
∗

R to be centered at β̂OLS . If the variabliity of the β̂
∗

is similar

to or greater than that of β̂OLS , then by the geometric argument Theorem
2.5, we might get simulated coverage close to or higher than the nominal.

If lasso or ridge regression shrink β̂
∗

too much, then the coverage could be
bad. In limited simulations, the prediction region method only simulated well
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for ridge regression with ψ = 0. Results from Ewald and Schneider (2018, p.
1365) suggest that the lasso confidence region volume is greater than OLS
confidence region volume when lasso uses λ1n =

√
n/2.

A small simulation was done for confidence intervals and confidence re-
gions, using the same type of data as for the variable selection simula-
tion in Section 2.6 and the prediction interval simulation in Section 3.9,
with B = max(1000, n, 20p) and 5000 runs. The regression model used
β = (1, 1, 0, 0)T with n = 100 and p = 4. When ψ = 0, the design matrix
X consisted of iid N(0,1) random variables. See Table 3.6 which was taken
from Pelawa Watagoda (2017). The residual bootstrap was used. Types 1)–
5) correspond to types i)–v), and the ε value only applies to the type 5)
error distribution. The function lassobootsim3 uses the prediction region
method for lasso and ridge regression. The function lassobootsim4 can
be used to simulate confidence intervals for the βi is S∗

T is singular for lasso.
The test was for H0 : (β3, β4)

T = (0, 0)T .

Table 3.7 Bootstrapping Lasso, ψ = 0

n ε type β1 β2 β3 β4 test
100 1 cov 0.9440 0.9376 0.9910 0.9946 0.9790

len 0.4143 0.4470 0.3759 0.3763 2.6444
2 cov 0.9468 0.9428 0.9946 0.9944 0.9816

len 0.6870 0.7565 0.6238 0.6226 2.6832
3 cov 0.9418 0.9408 0.9930 0.9948 0.9840

len 0.4110 0.4506 0.3743 0.3746 2.6684
4 cov 0.9468 0.9370 0.9938 0.9948 0.9838

len 0.2392 0.2578 0.2151 0.2153 2.6454
0.5 5 cov 0.9438 0.9344 0.9988 0.9970 0.9924

len 2.9380 2.5042 2.4912 2.4715 2.8536
0.9 5 cov 0.9506 0.9290 0.9974 0.9976 0.9956

len 3.9180 3.2760 3.7356 3.2739 2.8836

3.15 What if n is not >> p?

When p > n, the fitted model should do better than i) interpolating the
data or ii) discarding all of the predictors and using the location model of
Section 1.4.1 for inference. If p > n, forward selection, lasso, lasso variable
selection, elastic net, and elastic net variable selection can be useful for sev-
eral regression models. Ridge regression, partial least squares, and principal
components regression can also be computed for multiple linear regression.
Sections 2.3, 3.9, and 4.7 give prediction intervals.

One of the biggest errors in regression is to use the response variable
to build the regression model using all n cases, and then do inference as if
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the built model was selected without using the response, e.g., selected before
gathering data. Using the response variable to build the model is called data
snooping, then inference is generally no longer valid, and the model built from
data snooping tends to fit the data too well. In particular, do not use data
snooping and then use variable selection or cross validation. See Hastie et al
(2009, p. 245) and Olive (2017a, pp. 85-89).

Building a regression model from data is one of the most challenging regres-
sion problems. The “final full model” will have response variable Y = t(Z), a
constant x1, and predictor variables x2 = t2(w2, ..., wr), ..., xp = tp(w2, ..., wr)
where the initial data consists of Z, w2, ..., wr. Choosing t, t2, ..., tp so that
the final full model is a useful regression approximation to the data can be
difficult.

As a rule of thumb, if strong nonlinearities are apparent in the predictors
w2, ..., wp, it is often useful to remove the nonlinearities by transforming the
predictors using power transformations. When p is large, a scatterplot matrix
of w2, ..., wp can not be made, but the log rule of Section 1.2 can be useful.
Plots from Chapter 1, such as the DD plot, can also be useful. A scatterplot
matrix of the wi is an array of scatterplots of wi versus wj . A scatterplot is
a plot of wi versus wj.

In the literature, it is sometimes stated that predictor transformations
that are made without looking at the response are “free.” The reasoning
is that the conditional distribution of Y |(x2 = a2, ..., xp = ap) is the same
as the conditional distribution of Y |[t2(x2) = t2(a2), ..., tp(xp) = tp(ap)]:
there is simply a change of labelling. Certainly if Y |x = 9 ∼ N(0, 1), then
Y |√x = 3 ∼ N(0, 1). To see that the above rule of thumb does not always
work, suppose that Y = β1 + β2x2 + · · · + βpxp + e where the xi are iid
lognormal(0,1) random variables. Then wi = log(xi) ∼ N(0, 1) for i = 2, ..., p
and the scatterplot matrix of the wi will be linear while the scatterplot matrix
of the xi will show strong nonlinearities if the sample size is large. However,
there is an MLR relationship between Y and the xi while the relationship
between Y and the wi is nonlinear: Y = β1+β2e

w2+· · ·+βpe
wp +e 6= βT w+e.

Given Y and the wi with no information of the relationship, it would be
difficult to find the exponential transformation and to estimate the βi. The
moral is that predictor transformations, especially the log transformation, can
and often do greatly simplify the MLR analysis, but predictor transformations
can turn a simple MLR analysis into a very complex nonlinear analysis.

3.15.1 Sparse Models

When n/p → 0 as n → ∞, consistent estimators generally cannot be found
unless the model has a simplifying structure. A sparse model is one such
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structure. For Equation (4.1), a population regression model is sparse if aS

is small. We want n ≥ 10aS.
For multiple linear regression with p > n, results from Hastie et al. (2015,

pp. 20, 296, ch. 6, ch. 11) and Luo and Chen (2013) suggest that lasso,
lasso variable selection, and forward selection with EBIC can perform well
for sparse models. Least angle regression, elastic net, and elastic net variable
selection can also be useful.

Suppose the selected model is Id, and βId
is ad × 1. For multiple linear

regression, forward selection with Cp and AIC often gives useful results if
n ≥ 5p and if the final model I has n ≥ 10ad. For p < n < 5p, forward
selection with Cp and AIC tends to pick the full model (which overfits since
n < 5p) too often, especially if σ̂2 = MSE. The Hurvich and Tsai (1989)
AICC criterion can be useful for MLR and time series if n ≥ max(2p, 10ad).
If n ≥ 5p, AIC and BIC are useful for many regression models, and forward
selection with EBIC can be used for some models if n/p is small. See Section
2.1 and Chen and Chen (2008).

3.16 Data Splitting

A common method for data splitting randomly divides the data set into two
half sets. On the first half set, fit the model selection method, e.g. forward
selection or lasso, to get the a predictors. Use this model as the full model
for the second half set: use the standard OLS inference from regressing the
response on the predictors found from the first half set. This method can
be inefficient if n ≥ 10p, but is useful for a sparse model if n ≤ 5p, if the
probability that the model underfits goes to zero, and if n ≥ 20a. A model is
sparse if the number of predictors with nonzero coefficients is small.

For lasso, the active set I from the first half set (training data) is found,

and data splitting estimator is the OLS estimator β̂I,D computed from the
second half set (test data). This estimator is not the lasso variable selection

estimator. The estimator β̂I,D has the same large sample theory as if I was
chosen before obtaining the data.

If n/p is not large, data splitting is useful for many regression models when
the n cases are independent, including multiple linear regression, multivariate
linear regression where there are m ≥ 2 response variables, generalized linear
models (GLMs), the Cox (1972) proportional hazards regression model, and
parametric survival regression models.

Consider a regression model with response variable Y and a p × 1 vector
of predictors x. This model is the full model. Suppose the n cases are inde-
pendent. To perform data splitting, randomly divide the data into two sets
H and V where H has nH of the cases and V has the remaining nV = n−nH

cases i1, ..., inV
. Find a model I, possibly with data snooping or model se-

lection, using the data in the training set H . Use the model I as the full
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model to perform inference using the data in the validation set V . That is,
regress YV on XV,I and perform the usual inference for the model using the
j = 1, ..., nV cases in the validation set V . If βI uses a predictors, we want
nV ≥ 10a and we want P (S ⊆ I) → 1 as n → ∞ or for (YV ,XV,I) to follow
the regression model.

In the literature, often nH ≈ dn/2e. For model selection, use the training
data set to fit the model selection method, e.g. forward selection or lasso, to
get the a predictors. On the test set, use the standard regression inference
from regressing the response on the predictors found from the training set.
This method can be inefficient if n ≥ 10p, but is useful for a sparse model
if n ≤ 5p, if the probability that the model underfits goes to zero, and if
n ≥ 20a.

The method is simple, use one half set to get the predictors, then fit
the regression model, such as a GLM or OLS, to the validation half set
(Y V ,XV,I). The regression model needs to hold for (Y V ,XV,I) and we want
nV ≥ 10a if I uses a predictors. The regression model can hold if S ⊆ I
and the model is sparse. Let x = (x1, ...,xp)

T where x1 is a constant. If
(Y,x2, ...,xp)T follows a multivariate normal distribution, then (Y,xI ) follows
a multiple linear regression model for every I. Hence the full model need not
be sparse, although the selected model may be suboptimal.

Of course other sample sizes than half sets could be used. For example if
n = 1000p, use n = 10p for the training set and n = 990p for the validation
set.

Remark 3.16. i) One use of data splitting is to try to transform the
p ≥ n problem into an n ≥ 10k problem. This method can work if the
model is sparse. For multiple linear regression, this method can work if Y ∼
Nn(Xβ, σ2I), since then all subsets I satisfy the MLR model: Yi = xT

I,iβI +

eI,i. See Remark 1.3. If βI is k × 1, we want n ≥ 10k and V (eI,i) = σ2
I to

be small. For binary logistic regression, the discriminant function model of
Definition 4.8 can be useful if xI |Y = j ∼ Nk(µj ,Σ) for j = 0, 1. Of course,
the models may not be sparse, and the multivariate normal assumptions for
MLR and binary logistic regression rarely hold.

ii) Data splitting can be tricky for lasso, ridge regression, and elastic net
if the sample sizes of the training and validation sets differ. Roughly set
λ1,n1

/(2n1) = λ2,n2
/(2n2). Data splitting is much easier for variable selection

methods such as forward selection, lasso variable selection, and elastic net
variable selection. Find the variables x∗1, ..., x

∗

k indexed by I from the training
set, and use model I as the full model for the validation set.

iii) Another use of data splitting is that data snooping can be used on the
training set: use the model as the full model for the validation set.
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3.17 The Multitude of MLR Models

This chapter showed that the OPLS model and OLS typically estimate dif-
ferent quantities. There are often a multitude of valid MLR models. For ex-
ample, if the cases (Yi xT

i )T are iid from a nonsingular multivariate normal
distribution, then Y |ηT x satisfies a MLR model for any linear combination
ηT x. See Olive and Zhang (2023).

3.18 Summary

1) The MLR model is Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei for

i = 1, ..., n. This model is also called the full model. In matrix notation,
these n equations become Y = Xβ + e. Note that xi,1 ≡ 1.

2) The ordinary least squares OLS full model estimator β̂OLS minimizes
QOLS(β) =

∑n
i=1 r

2
i (β) = RSS(β) = (Y −Xβ)T (Y −Xβ). In the estimat-

ing equations QOLS(β), the vector β is a dummy variable. The minimizer

β̂OLS estimates the parameter vector β for the MLR model Y = Xβ + e.

Note that β̂OLS ∼ ANp(β,MSE(XT X)−1).
3) Given an estimate b of β, the corresponding vector of predicted values

or fitted values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · ·+ xi,pbp.

The vector of residuals is r ≡ r(b) = Y − Ŷ (b). Thus ith residual ri ≡
ri(b) = Yi − Ŷi(b) = Yi − xi,1b1 − · · · − xi,pbp. A response plot for MLR is a

plot of Ŷi versus Yi. A residual plot is a plot of Ŷi versus ri. If the ei are iid
from a unimodal distribution that is not highly skewed, the plotted points
should scatter about the identity line and the r = 0 line.

4)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i ±1.96SE(β̂i). Consider
testing H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0,
and conclude xi is not needed in the MLR model given the other predictors
are in the model. If 0 6∈ CI for βi, then reject H0, and conclude xi is needed
in the MLR model.
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5) Let xT
i = (1 uT

i ). It is often convenient to use the centered response
Z = Y − Y where Y = Y 1, and the n × (p − 1) matrix of standardized
nontrivial predictors W = (Wij). For j = 1, ..., p− 1, let Wij denote the
(j + 1)th variable standardized so that

∑n
i=1Wij = 0 and

∑n
i=1W

2
ij = n.

Then the sample correlation matrix of the nontrivial predictors ui is

Ru =
W T W

n
.

Then regression through the origin is used for the model Z = Wη + e
where the vector of fitted values Ŷ = Y + Ẑ. Thus the centered response
Zi = Yi − Y and Ŷi = Ẑi + Y . Then η̂ does not depend on the units of
measurement of the predictors. Linear combinations of the ui can be written
as linear combinations of the xi, hence β̂ can be found from η̂.

6) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where

x = (xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let

xI be the vector of a terms from a candidate subset indexed by I, and let xO

be the vector of the remaining predictors (out of the candidate submodel). If
S ⊆ I, then xT β = xT

SβS = xT
SβS + xT

I/Sβ(I/S) + xT
O0 = xT

I βI where xI/S

denotes the predictors in I that are not in S. Since this is true regardless
of the values of the predictors, βO = 0 if S ⊆ I. Note that βE = 0. Let
kS = aS − 1 = the number of population active nontrivial predictors. Then
k = a− 1 is the number of active predictors in the candidate submodel I.

7) Let Q(η) be a real valued function of the k × 1 vector η. The gradient
of Q(η) is the k × 1 vector

5Q = 5Q(η) =
∂Q

∂η
=
∂Q(η)

∂η
=





∂
∂η1

Q(η)
∂

∂η2
Q(η)
...

∂
∂ηk

Q(η)




.

Suppose there is a model with unknown parameter vector η. A set of estimat-
ing equations f(η) is minimized or maximized where η is a dummy variable
vector in the function f : R

k → R
k.

8) As a mnemonic (memory aid) for the following results, note that the

derivative
d

dx
ax =

d

dx
xa = a and

d

dx
ax2 =

d

dx
xax = 2ax.

a) If Q(η) = aT η = ηT a for some k× 1 constant vector a, then 5Q = a.
b) If Q(η) = ηT Aη for some k × k constant matrix A, then 5Q = 2Aη.

c) If Q(η) =
∑k

i=1 |ηi| = ‖η‖1, then 5Q = s = sη where si = sign(ηi)
where sign(ηi) = 1 if ηi > 0 and sign(ηi) = −1 if ηi < 0. This gradient is only
defined for η where none of the k values of ηi are equal to 0.

9) Forward selection with OLS generates a sequence of M models I1, ..., IM
where Ij uses j predictors x∗1 ≡ 1, x∗2, ..., x

∗

M. Often M = min(dn/Je, p) where
J is a positive integer such as J = 5.
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10) For the model Y = Xβ +e, methods such as forward selection, PCR,
PLS, ridge regression, lasso variable selection, and lasso each generate M
fitted models I1, ..., IM, where M depends on the method. For forward selec-
tion the simulation used Cp for n ≥ 10p and EBIC for n < 10p. The other
methods minimized 10-fold CV. For forward selection, the maximum number
of variables used was approximately min(dn/5e, p).

11) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j (3.33)

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2
corresponds to ridge regression η̂R, j = 1 corresponds to lasso η̂L, and
a = 1, 2, n, and 2n are common. The residual sum of squares RSSW (η) =
(Z − Wη)T (Z − Wη), and λ1,n = 0 corresponds to the OLS estimator

η̂OLS = (W T W )−1W T Z. Note that for a k × 1 vector η, the squared (Eu-

clidean) L2 norm ‖η‖2
2 = ηT η =

∑k
i=1 η

2
i and the L1 norm ‖η‖1 =

∑k
i=1 |ηi|.

Lasso and ridge regression have a parameter λ. When λ = 0, the OLS
full model is used. Otherwise, the centered response and scaled nontrivial
predictors are used with Z = Wη + e. See 5). These methods also use a
maximum value λM of λ and a grid of M λ values 0 ≤ λ1 < λ2 < · · · <
λM−1 < λM where often λ1 = 0. For lasso, λM is the smallest value of λ such
that η̂λM

= 0. Hence η̂λi
6= 0 for i < M .

12) The elastic net estimator η̂EN minimizes

QEN(η) = RSS(η) + λ1‖η‖2
2 + λ2‖η‖1 (3.34)

where λ1 = (1 − α)λ1,n and λ2 = 2αλ1,n with 0 ≤ α ≤ 1.
13) Use Zn ∼ ANg (µn,Σn) to indicate that a normal approximation is

used: Zn ≈ Ng(µn,Σn). Let a be a constant, let A be a k × g constant

matrix, and let c be a k×1 constant vector. If
√
n(θ̂n−θ)

D→ Ng(0,V ), then
aZn = aIgZn with A = aIg,

aZn ∼ ANg

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnAT

)
,

θ̂n ∼ ANg

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

14) Assume η̂OLS = (W T W )−1W T Z. Let sn = (s1n, ..., sp−1,n)T where
sin ∈ [−1, 1] and sin = sign(η̂i) if η̂i 6= 0. Here sign(ηi) = 1 if ηi > 1 and
sign(ηi) = −1 if ηi < 1. Then

i) η̂R = η̂OLS − λ1n

n
n(W T W + λ1,nIp−1)

−1η̂OLS .
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ii) η̂L = η̂OLS − λ1,n

2n
n(W T W )−1 sn.

iii) η̂EN = η̂OLS − n(W T W + λ1Ip−1)
−1

[
λ1

n
η̂OLS +

λ2

2n
sn

]
.

15) Assume that the sample correlation matrix Ru =
W T W

n

P→ V −1.

Let H = W (W T W )−1W T = (hij), and assume that maxi=1,...,n hii
P→ 0 as

n→ ∞. Let η̂A be η̂EN , η̂L, or η̂R. Let p be fixed.

i) LS CLT:
√
n(η̂OLS − η)

D→ Np−1(0, σ
2V ).

ii) If λ̂1,n/
√
n

P→ 0, then

√
n(η̂A − η)

D→ Np−1(0, σ
2V ).

iii) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then

√
n(η̂EN − η)

D→ Np−1

(
−V [(1− ψ)τη + ψτs], σ2V

)
.

iv) If λ̂1,n/
√
n

P→ τ ≥ 0, then

√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).

v) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη, then

√
n(η̂L − η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

ii) and v) are the Lasso CLT, ii) and iv) are the RR CLT, and ii) and iii)
are the EN CLT.

16) Under the conditions of 15), lasso variable selection and elastic net
variable selection are

√
n consistent under much milder conditions than lasso

and elastic net, since the variable selection estimators are
√
n consistent when

lasso and elastic net are consistent. Let Imin correspond to the predictors
chosen by lasso, elastic net, or forward selection, including a constant. Let
β̂Imin

be the OLS estimator applied to these predictors, let β̂Imin,0 be the

zero padded estimator. The large sample theory for β̂Imin,0 (from forward
selection, lasso variable selection, and elastic net variable selection) is given

by Theorem 2.4. Note that the large sample theory for the estimators β̂ is
given for p × 1 vectors. The theory for η̂ is given for (p − 1) × 1 vectors In
particular, the theory for lasso and elastic net does not cast away the η̂i = 0.

17) Under Equation (2.1) with p fixed, if lasso or elastic net are consistent,
then P (S ⊆ Imin) → 1 as n → ∞. Hence when lasso and elastic net do
variable selection, they are often not

√
n consistent.

18) Refer to 6). a) The OLS full model tends to be useful if n ≥ 10p with
large sample theory better than that of lasso, ridge regression, and elastic
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net. Testing is easier and the Olive (2007) PI tailored to the OLS full model
will work better for smaller sample sizes than PI (2.14) if n ≥ 10p. If n ≥ 10p
but XT X is singular or ill conditioned, other methods can perform better.

Forward selection, lasso variable selection, and elastic net variable selection
are competitive with the OLS full model even when n ≥ 10p and XT X is
well conditioned. If n ≤ p then OLS interpolates the data and is a poor
method. If n = Jp, then as J decreases from 10 to 1, other methods become
competitive.

b) If n ≥ 10p and kS < p − 1, then forward selection can give more pre-
cise inference than the OLS full model. When n/p is small, the PI (2.14) for
forward selection can perform well if n/kS is large. Forward selection can be
worse than ridge regression or elastic net if kS > min(n/J, p). Forward selec-
tion can be too slow if both n and p are large. Forward selection, lasso variable
selection, and elastic net variable selection tend to be bad if (XT

AXA)−1 is
ill conditioned where A = Imin.

c) If n ≥ 10p, lasso can be better than the OLS full model if XT X is ill
conditioned. Lasso seems to perform best if kS is not much larger than 10
or if the nontrivial predictors are orthogonal or uncorrelated. Lasso can be
outperformed by ridge regression or elastic net if kS > min(n, p− 1).

d) If n ≥ 10p ridge regression and elastic net can be better than the OLS
full model if XT X is ill conditioned. Ridge regression (and likely elastic net)
seems to perform best if kS is not much larger than 10 or if the nontrivial
predictors are orthogonal or uncorrelated. Ridge regression and elastic net
can outperform lasso if kS > min(n, p− 1).

e) The PLS PI (2.14) can perform well if n ≥ 10p if some of the other five
methods used in the simulations start to perform well when n ≥ 5p. PLS may
or may not be inconsistent if n/p is not large. Ridge regression tends to be
inconsistent unless P (d → p) → 1 so that ridge regression is asymptotically
equivalent to the OLS full model.

19) Under strong regularity conditions, lasso and lasso variable selection
with k–fold CV, and forward selection with EBIC can perform well even if
n/p is small. So PI (2.14) can be useful when n/p is small.

20) Using the response variable to build a model is known as data snooping,
and invalidates inference if data snooping is used on the entire data set of n
cases.

21) Suppose xT β = xT
SβS +xT

EβE = xT
SβS where βS is an aS ×1 vector.

A regression model is sparse if aS is small. We want n ≥ 10aS.
22) Assume the cases are independent. To perform data splitting, randomly

divide the data into two half sets H and V where H has nH of the cases and
V has the remaining nV = n−nH cases i1, ..., inV

. Build the model, possibly
with data snooping, or perform variable selection to Find a model I, possibly
with data snooping or model selection, using the data in the training set H .
Use the model I as the full model to perform inference using the data in the
validation set V .
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3.19 Complements

Good references for forward selection, PCR, PLS, ridge regression, and lasso
are Hastie et al. (2009, 2015), James et al. (2013), and Pelawa Watagoda
and Olive (2021b). Also see Efron and Hastie (2016). An early reference for
forward selection is Efroymson (1960). Under strong regularity conditions,
Gunst and Mason (1980, ch. 10) covers inference for ridge regression (and a
modified version of PCR) when the iid errors ei ∼ N(0, σ2).

Xu et al. (2011) notes that sparse algorithms are not stable. Belsley (1984)
shows that centering can mask ill conditioning of X .

Classical principal component analysis based on the correlation matrix can
be done using the singular value decomposition (SVD) of the scaled matrix

W S = W g/
√
n− 1 using êi and λ̂i = σ2

i where λ̂i = λ̂i(W
T
SW S) is the ith

eigenvalue of W T
SW S . Here the scaling is using g = 1. For more information

about the SVD, see Datta (1995, pp. 552-556) and Fogel et al. (2013).
There is massive literature on variable selection and a fairly large literature

for inference after variable selection. See, for example, Bertsimas et al. (2016),
Fan and Lv (2010), Ferrari and Yang (2015), Fithian et al. (2014), Hjort and
Claeskins (2003), Knight and Fu (2000), Lee et al. (2016), Leeb and Pötscher
(2005, 2006), Lockhart et al. (2014), Qi et al. (2015), and Tibshirani et al.
(2016).

For post-selection inference, the methods in the literature are often for mul-
tiple linear regression assuming normality, or are asymptotically equivalent
to using the full model, or find a quantity to test that is not Aβ. Typically
the methods have not been shown to perform better than data splitting. See
Ewald and Schneider (2018). When n/p is not large, inference is currently
much more difficult. Under strong regularity conditions, lasso and forward
selection with EBIC can work well. Leeb et al. (2015) suggests that the Berk
et al. (2013) method does not really work. Also see Dezeure et al. (2015),
Javanmard and Montanari (2014), Lu et al. (2017), Tibshirani et al. (2016),
van de Geer et al. (2014), and Zhang and Cheng (2017). Fan and Lv (2010)
gave large sample theory for some methods if p = o(n1/5). See Tibshirani et
al. (2016) for an R package.

Warning: For n < 5p, every estimator is unreliable, to my knowledge.
Regularity conditions for consistency are strong if they exist. For example,
PLS is sometimes inconsistent and sometimes

√
n consistent. Validating the

MLR estimator with PIs can help. Also make response and residual plots.
Full OLS Model: A sufficient condition for β̂OLS to be a consistent

estimator of β is Cov(β̂OLS) = σ2(XT X)−1 → 0 as n → ∞. See Lai et
al. (1979). For more OLS large sample theory, see Eicker (1963) and White
(1984).

Forward Selection: See Olive and Hawkins (2005), Pelawa Watagoda
and Olive (2021ab), and Rathnayake and Olive (2023).
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Principal Components Regression: Principal components are Karhunen
Loeve directions of centered X. See Hastie et al. (2009, p. 66). A useful PCR
paper is Cook and Forzani (2008).

Partial Least Squares: An important PLS paper is Wold (1975). Also see

Wold (1985, 2006). Olive and Zhang (2023) showed β̂OPLS is a
√
n consistent

estimator of βOPLS if the cases (xi, Yi) are iid with a few moments, p is fixed,
and n→ ∞. Olive and Zhang (2023) also suggested that much of the theory
for OPLS and PLS appears to be incorrect, except under regularity conditions
that are much too strong. See, for example, Basa, et al. (2022), Cook et al.
(2013), Cook (2018), Cook and Forzani (2018, 2019), Cook and Su (2016),
and Chun and Keleş (2010). Denham (1997) suggested a PI for PLS that
assumes the number of components is selected in advance.

Ridge Regression: An important ridge regression paper is Hoerl and
Kennard (1970). Also see Gruber (1998). Ridge regression is known as
Tikhonov regularization in the numerical analysis literature.

Lasso: Lasso was introduced by Tibshirani (1996). Efron et al. (2004)
and Tibshirani et al. (2012) are important papers. Su et al. (2017) note some
problems with lasso. If n/p is large, see Knight and Fu (2000) for the residual
bootstrap with OLS full model residuals. Camponovo (2015) suggested that
the nonparametric bootstrap does not work for lasso. Chatterjee and Lahiri
(2011) stated that the residual bootstrap with lasso does not work. Hall et
al. (2009) stated that the residual bootstrap with OLS full model residuals
does not work, but the m out of n residual bootstrap with OLS full model
residuals does work. Rejchel (2016) gave a good review of lasso theory. Fan
and Lv (2010) reviewed large sample theory for some alternative methods.
See Lockhart et al. (2014) for a partial remedy for hypothesis testing with
lasso. The Ning and Liu (2017) method needs a log likelihood. Knight and
Fu (2000) gave theory for fixed p.

Regularity conditions for testing are strong. Often lasso tests assume that
Y and the nontrivial predictors follow a multivariate normal (MVN) distri-
bution. For the MVN distribution, the MLR model tends to be dense not
sparse if n/p is small.

lasso variable selection:
Applying OLS on a constant and the k nontrivial predictors that have

nonzero lasso η̂i is called lasso variable selection. We want n ≥ 10(k + 1).
If λ1 = 0, a variant of lasso variable selection computes the OLS submodel
for the subset corresponding to λi for i = 1, ...,M . If Cp is used, then this
variant has large sample theory given by Theorem 2.4.

Lasso can also be used for other estimators, such as generalized linear
models (GLMs). Then lasso variable selection is the “classical estimator,”
such as a GLM, applied to the lasso active set. For prediction, lasso variable
selection is often better than lasso, but sometimes lasso is better.

See Meinshausen (2007) for the relaxed lasso method with R package
relaxo for MLR: apply lasso with penalty λ to get a subset of variables
with nonzero coefficients. Then reduce the shrinkage of the nonzero elements
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by applying lasso again to the nonzero coefficients but with a smaller penalty
φ. This two stage estimator could be used for other estimators. Lasso variable
selection corresponds to the limit as φ → 0.

Dense Regression or Abundant Regression: occurs when most of the
predictors contribute to the regression. Hence the regression is not sparse. See
Cook et al. (2013).

Other Methods: Consider the MLR model Z = Wη + e. Let λ ≥ 0 be
a constant and let q ≥ 0. The estimator η̂q minimizes the criterion

Qq(b) = r(b)T r(b) + λ

p−1∑

j=1

|bi|q, (3.35)

over all vectors b ∈ R
p−1 where we take 00 = 0. Then q = 1 corresponds

to lasso and q = 2 corresponds to ridge regression. If q = 0, the penalty
λ
∑p−1

j=1 |bi|0 = λk where k is the number of nonzero components of b. Hence
the q = 0 estimator is often called the “best subset” estimator. See Frank
and Friedman (1993). For fixed p, large sample theory is given by Knight and
Fu (2000). Following Hastie et al. (2009, p. 72), the optimization problem is
convex if q ≥ 1 and λ is fixed.

Suppose model Ik contains k predictors including a constant. For multiple
linear regression, the forward selection algorithm in Chapter 4 adds a pre-
dictor x∗k+1 that minimizes the residual sum of squares, while the Pati et al.
(1993) “orthogonal matching pursuit algorithm” uses predictors (scaled to
have unit norm: xT

i xi = 1 for the nontrivial predictors), and adds the scaled
predictor x∗k+1 that maximizes |x∗T

k+1rk| where the maximization is over vari-
ables not yet selected and the rk are the OLS residuals from regressing Y
on X∗

Ik
. Fan and Li (2001) and Candes and Tao (2007) gave competitors to

lasso. Some fast methods seem similar to the first PLS component.
If n ≤ 400 and p ≤ 3000, Bertsimas et al. (2016) give a fast “all subsets”

variable selection method. Lin et al. (2012) claim to have a very fast method
for variable selection. Lee and Taylor (2014) suggest the marginal screening
algorithm: let W be the matrix of standardized nontrivial predictors. Com-
pute W T Y = (c1, ..., cp−1)

T and select the J variables corresponding to the
J largest |ci|. These are the J standardized variables with the largest absolute
correlations with Y . Then do an OLS regression of Y on these J variables
and a constant. A slower algorithm somewhat similar but much slower than
the Lin et al. (2012) algorithm follows. Let a constant x1 be in the model, and
let W = [a1, ...,ap−1] and r = Y −Y . Compute W T r and let x∗2 correspond
to the variable with the largest absolute entry. Remove the corresponding
aj from W to get W 1. Let r1 be the OLS residuals from regressing Y on

x1 and x∗2. Compute W T r1 and let x∗3 correspond to the variable with the
largest absolute entry. Continue in this manner to get x1, x

∗

2, ..., x
∗

J where
J = min(p, dn/5e). Like forward selection, evaluate the J − 1 models Ij con-
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taining the first j predictors x1, x
∗

2, ..., x
∗

J for j = 2, ..., J with a criterion such
as Cp.

Following Sun and Zhang (2012), let (3.6) hold and let

Q(η) =
1

2n
(Z − Wη)T (Z − Wη) + λ2

p−1∑

i=1

ρ

( |ηi|
λ

)
where ρ is scaled such

that the derivative ρ′(0+) = 1. As for lasso and elastic net, let sj = sgn(η̂j)
where sj ∈ [−1, 1] if η̂j = 0. Let ρ′j = ρ′(|η̂j|/λ) if η̂j 6= 0, and ρ′j = 1 if

η̂j = 0. Then η̂ is a critical point of Q(η) iff wT
j (Z − Wη̂) = nλsjρ

′

j for
j = 1, ..., n. If ρ is convex, then these conditions are the KKT conditions. Let
dj = sjρ

′

j . Then W T Z − W T Wη̂ = nλd, and η̂ = η̂OLS − nλ(W T W )−1d.
If the dj are bounded, then η̂ is consistent if λ → 0 as n → ∞, and η̂ is
asymptotically equivalent to η̂OLS if n1/2λ→ 0. Note that ρ(t) = t for t > 0
gives lasso with λ = λ1,n/(2n).

Gao and Huang (2010) give theory for a LAD–lasso estimator, and Qi et
al. (2015) is an interesting lasso competitor.

Multivariate linear regression has m ≥ 2 response variables. See Olive
(2017ab: ch. 12). PLS also works if m ≥ 1, and methods like ridge regression
and lasso can also be extended to multivariate linear regression. See, for ex-
ample, Haitovsky (1987) and Obozinski et al. (2011). Sparse envelope models
are given in Su et al. (2016).

Model Building:
When the entire data set is used to build a model with the response vari-

able, the inference tends to be invalid, and cross validation should not be used
to check the model. See Hastie et al. (2009, p. 245). In order for the inference
and cross validation to be useful, the response variable and the predictors
for the regression should be chosen before looking at the response variable.
Predictor transformations can be done as long as the response variable is not
used to choose the transformation. You can do model building on the test
set, and then inference for the chosen (built) model as the full model with
the validation set, provided this model follows the regression model used for
inference (e.g. multiple linear regression or a GLM). This process is difficult
to simulate.

AIC and BIC Type Criterion:
Olive and Hawkins (2005) and Burnham and Anderson (2004) are useful

reference when p is fixed. Some interesting theory for AIC appears in Zhang
(1992). Zheng and Loh (1995) show that BICS can work if p = pn = o(log(n))
and there is a consistent estimator of σ2. For the Cp criterion, see Jones (1946)
and Mallows (1973).

AIC and BIC type criterion and variable selection for high dimensional re-
gression are discussed in Chen and Chen (2008), Fan and Lv (2010), Fujikoshi
et al. (2014), and Luo and Chen (2013). Wang (2009) suggests using

WBIC(I) = log[SSE(I)/n] + n−1|I|[log(n) + 2 log(p)].
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See Bogdan et al. (2004), Cho and Fryzlewicz (2012), and Kim et al. (2012).
Luo and Chen (2013) state that WBIC(I) needs p/na < 1 for some 0 < a <
1.

If n/p is large and one of the models being considered is the true model
S (shown to occur with probability going to one only under very strong
assumptions by Wieczorek and Lei (2021)), then BIC tends to outperform
AIC. If none of the models being considered is the true model, then AIC
tends to outperform BIC. See Yang (2003).

Robust Versions: Hastie et al. (2015, pp. 26-27) discuss some modifica-
tions of lasso that are robust to certain types of outliers. Robust methods
for forward selection and LARS are given by Uraibi et al. (2017, 2019) that
need n >> p. If n is not much larger than p, then Hoffman et al. (2015)
have a robust Partial Least Squares–Lasso type estimator that uses a clever
weighting scheme.

A simple method to make an MLR method robust to certain types of
outliers is to find the covmb2 set B of Chapter 1 applied to the quantitative
predictors. Then use the MLR method (such as elastic net, lasso, PLS, PCR,
ridge regression, or forward selection) applied to the cases corresponding to
the xj in B. Make a response and residual plot, based on the robust estimator

β̂B , using all n cases.
Prediction Intervals:
Lei et al. (2018) and Wasserman (2014) suggested prediction intervals for

estimators such as lasso. The method has interesting theory if the (xi, Yi) are
iid from some population. Also see Butler and Rothman (1980). Steinberger
and Leeb (2016) used leave-one-out residuals, but delete the upper and lower
2.5% of the residuals to make a 95% PI. Hence the PI will have undercoverage
and the shorth PI will tend to be shorter when the error distribution is not
symmetric.

Let p be fixed, d be for PI (2.14), and n → ∞. For elastic net, forward
selection, PCR, PLS, ridge regression, lasso variable selection, and lasso, if
P (d→ p) → 1 as n → ∞ then the seven methods are asymptotically equiv-
alent to the OLS full model, and the PI (2.14) is asymptotically optimal on
a large class of iid unimodal zero mean error distributions. The asymptotic
optimality holds since the sample quantile of the OLS full model residuals are
consistent estimators of the population quantiles of the unimodal error distri-

bution for a large class of distributions. Note that d
P→ p if P (λ̂1n → 0) → 1

for elastic net, lasso, and ridge regression, and d
P→ p if the number d− 1 of

components (γT
j x or γT

j w) used by the method satisfies P (d−1 → p−1) → 1.

Consistent estimators β̂ of β also produce residuals such that the sample
quantiles of the residuals are consistent estimators of quantiles of the error
distribution. See Remark 2.21, Olive and Hawkins (2003), and Rousseeuw
and Leroy (1987, p. 128).

Degrees of Freedom:
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A formula for the model degrees of freedom df tend to be given for a model
when there is no model selection or variable selection. For many estimators,
the degrees of freedom is not known if model selection is used. A d for PI
(2.14) is often obtained by plugging in the degrees of freedom formula as if
model selection did not occur. Then the resulting d is rarely an actual degrees
of freedom. As an example, if Ŷ = HλY , then often df = trace(Hλ) if λ is

selected before examining the data. If model selection is used to pick λ̂, then
d = trace(H λ̂) is not the model degrees of freedom.

3.20 Problems

3.1. For ridge regression, suppose V = ρ−1
u . Show that if p/n and λ/n =

λ1,n/n are both small, then

η̂R ≈ η̂OLS − λ

n
V η̂OLS .

3.2. Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z − Wη)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Consider the regression
methods OLS, forward selection, lasso, PLS, PCR, ridge regression, and lasso
variable selection.
a) Which method corresponds to j = 1?
b) Which method corresponds to j = 2?
c) Which method corresponds to λ1,n = 0?

3.3. a) For ridge regression, let An = (XT X +λ1,nIp)
−1XT X and Bn =

[Ip − λ1,n(XT X + λ1,nIp)−1]. Show An − Bn = 0.

b) For ridge regression, let An = (W T W +λ1,nIp−1)
−1W T W and Bn =

[Ip−1 − λ1,n(W T W + λ1,nIp−1)
−1]. Show An − Bn = 0.

3.4. Suppose Ŷ = HY where H is an n × n hat matrix. Then the de-
grees of freedom df(Ŷ ) = tr(H) = sum of the diagonal elements of H. An
estimator with low degrees of freedom is inflexible while an estimator with
high degrees of freedom is flexible. If the degrees of freedom is too low, the
estimator tends to underfit while if the degrees of freedom is to high, the
estimator tends to overfit.
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a) Find df(Ŷ ) if Ŷ = Y 1 which uses H = (hij) where hij ≡ 1/n for all
i and j. This inflexible estimator uses the sample mean Y of the response
variable as Ŷi for i = 1, ..., n.

b) Find df(Ŷ ) if Ŷ = Y = InY which uses H = In where hii = 1. This
bad flexible estimator interpolates the response variable.

3.5. Suppose Y = Xβ + e, Z = Wη + e, Ẑ = Wη̂, Z = Y − Y , and
Ŷ = Ẑ + Y . Let the n × p matrix W 1 = [1 W ] and the p × 1 vector
η̂1 = (Y η̂T )T where the scalar Y is the sample mean of the response

variable. Show Ŷ = W 1η̂1.

3.6. Let Z = Y − Y where Y = Y 1, and the n× (p− 1) matrix of stan-
dardized nontrivial predictors G = (Gij). For j = 1, ..., p− 1, let Gij denote
the (j + 1)th variable standardized so that

∑n
i=1Gij = 0 and

∑n
i=1G

2
ij = 1.

Note that the sample correlation matrix of the nontrivial predictors ui is
Ru = GT G. Then regression through the origin is used for the model

Z = Gη + e (3.36)

where the vector of fitted values Ŷ = Y +Ẑ . The standardization differs from
that used for earlier regression models (see Remark 3.3), since

∑n
i=1G

2
ij =

1 6= n =
∑n

i=1W
2
ij . Note that

G =
1√
n

W .

Following Zou and Hastie (2005), the naive elastic net η̂N estimator is the
minimizer of

QN(η) = RSS(η) + λ∗2‖η‖2
2 + λ∗1‖η‖1 (3.37)

where λ∗i ≥ 0. The term “naive” is used because the elastic net estimator

is better. Let τ =
λ∗2

λ∗1 + λ∗2
, γ =

λ∗1√
1 + λ∗2

, and ηA =
√

1 + λ∗2 η. Let the

(n+p−1)×(p−1) augmented matrix GA and the (n+p−1)×1 augmented
response vector ZA be defined by

GA =

(
G√

λ∗2 Ip−1

)
, and ZA =

(
Z
0

)
,

where 0 is the (p−1)×1 zero vector. Let η̂A =
√

1 + λ∗2 η̂ be obtained from
the lasso of ZA on GA: that is η̂A minimizes

QN(ηA) = ‖ZA − GAηA‖2
2 + γ‖ηA‖1 = QN(η).

Prove QN (ηA) = QN(η).
(Then



220 3 Statistical Learning Alternatives to OLS

η̂N =
1√

1 + λ∗2
η̂A and η̂EN =

√
1 + λ∗2 η̂A = (1 + λ∗2)η̂N .

The above elastic net estimator minimizes the criterion

QG(η) =
ηT GT Gη

1 + λ∗2
− 2ZT Gη +

λ∗2
1 + λ∗2

‖η‖2
2 + λ∗1‖η‖1,

and hence is not the elastic net estimator corresponding to Equation (3.22).)

3.7. Let β = (β1,β
T
S )T . Consider choosing β̂ to minimize the criterion

Q(β) = RSS(β) + λ1‖βS‖2
2 + λ2‖βS‖1

where λi ≥ 0 for i = 1, 2.
a) Which values of λ1 and λ2 correspond to ridge regression?
b) Which values of λ1 and λ2 correspond to lasso?
c) Which values of λ1 and λ2 correspond to elastic net?
d) Which values of λ1 and λ2 correspond to the OLS full model?

3.8. For the output below, an asterisk means the variable is in the model.
All models have a constant, so model 1 contains a constant and mmen.

a) List the variables, including a constant, that models 2, 3, and 4 contain.
b) The term out$cp lists the Cp criterion. Which model (1, 2, 3, or 4) is

the minimum Cp model Imin?

c) Suppose β̂Imin
= (241.5445, 1.001)T . What is β̂Imin,0?

Selection Algorithm: forward #output for Problem 3.8

pop mmen mmilmen milwmn

1 ( 1 ) " " "*" " " " "

2 ( 1 ) " " "*" "*" " "

3 ( 1 ) "*" "*" "*" " "

4 ( 1 ) "*" "*" "*" "*"

out$cp

[1] -0.8268967 1.0151462 3.0029429 5.0000000

3.9. Consider the output for Example 2.7 for the OLS full model. The
column resboot gives the large sample 95% CI for βi using the shorth applied
to the β̂∗

ij for j = 1, ..., B using the residual bootstrap. The standard large

sample 95% CI for βi is β̂i±1.96SE(β̂i). Hence for β2 corresponding to L, the
standard large sample 95% CI is −0.001± 1.96(0.002) = −0.001± 0.00392 =
[−0.00492, 0.00292] while the shorth 95% CI is [−0.005, 0.004].

a) Compute the standard 95% CIs for βi corresponding to log(W), H, and
log(S). Also write down the shorth 95% CI. Are the standard and shorth 95%
CIs fairly close?
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b) Consider testing H0 : βi = 0 versus HA : βi 6= 0. If the corresponding
95% CI for βi does not contain 0, then reject H0 and conclude that the
predictor variable Xi is needed in the MLR model. If 0 is in the CI then fail
to reject H0 and conclude that the predictor variable Xi is not needed in the
MLR model given that the other predictors are in the MLR model.

Which variables, if any, are needed in the MLR model? Use the standard
CI if the shorth CI gives a different result. The nontrivial predictor variables
are L, log(W), H, and log(S).

3.10. Tremearne (1911) presents a data set of about 17 measurements on
112 people of Hausa nationality. We used Y = height. Along with a constant
xi,1 ≡ 1, the five additional predictor variables used were xi,2 = height when
sitting, xi,3 = height when kneeling, xi,4 = head length, xi,5 = nasal breadth,
and xi,6 = span (perhaps from left hand to right hand). The output below is
for the OLS full model.

Estimate Std.Err 95% shorth CI

Intercept -77.0042 65.2956 [-208.864,55.051]

X2 0.0156 0.0992 [-0.177, 0.217]

X3 1.1553 0.0832 [ 0.983, 1.312]

X4 0.2186 0.3180 [-0.378, 0.805]

X5 0.2660 0.6615 [-1.038, 1.637]

X6 0.1396 0.0385 [0.0575, 0.217]

a) Give the shorth 95% CI for β2 .
b) Compute the standard 95% CI for β2.
c) Which variables, if any, are needed in the MLR model given that the

other variables are in the model?

Now we use forward selection and Imin is the minimum Cp model.

Estimate Std.Err 95% shorth CI

Intercept -42.4846 51.2863 [-192.281, 52.492]

X2 0 [ 0.000, 0.268]

X3 1.1707 0.0598 [ 0.992, 1.289]

X4 0 [ 0.000, 0.840]

X5 0 [ 0.000, 1.916]

X6 0.1467 0.0368 [ 0.0747, 0.215]

(Intercept) a b c d e

1 TRUE FALSE TRUE FALSE FALSE FALSE

2 TRUE FALSE TRUE FALSE FALSE TRUE

3 TRUE FALSE TRUE TRUE FALSE TRUE

4 TRUE FALSE TRUE TRUE TRUE TRUE

5 TRUE TRUE TRUE TRUE TRUE TRUE

> tem2$cp

[1] 14.389492 0.792566 2.189839 4.024738 6.000000

d) What is the value of Cp(Imin) and what is β̂Imin,0?
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e) Which variables, if any, are needed in the MLR model given that the
other variables are in the model?

f) List the variables, including a constant, that model 3 contains.

3.11. Table 3.7 below shows simulation results for bootstrapping OLS (reg)
and forward selection (vs) with Cp when β = (1, 1, 0, 0, 0)T . The βi columns
give coverage = the proportion of CIs that contained βi and the average
length of the CI. The test is for H0 : (β3, β4, β5)

T = 0 and H0 is true. The
“coverage” is the proportion of times the prediction region method bootstrap
test failed to reject H0. Since 1000 runs were used, a cov in [0.93,0.97] is
reasonable for a nominal value of 0.95. Output is given for three different
error distributions. If the coverage for both methods ≥ 0.93, the method
with the shorter average CI length was more precise. (If one method had
coverage ≥ 0.93 and the other had coverage < 0.93, we will say the method
with coverage ≥ 0.93 was more precise.)

a) For β3 , β4 , and β5, which method, forward selection or the OLS full
model, was more precise?

Table 3.8 Bootstrapping Forward Selection, n = 100, p = 5, ψ = 0, B = 1000

β1 β2 β3 β4 β5 test
reg cov 0.95 0.93 0.93 0.93 0.94 0.93

len 0.658 0.672 0.673 0.674 0.674 2.861
vs cov 0.95 0.94 0.998 0.998 0.999 0.993

len 0.661 0.679 0.546 0.548 0.544 3.11
reg cov 0.96 0.93 0.94 0.96 0.93 0.94

len 0.229 0.230 0.229 0.231 0.230 2.787
vs cov 0.95 0.94 0.999 0.997 0.999 0.995

len 0.228 0.229 0.185 0.187 0.186 3.056
reg cov 0.94 0.94 0.95 0.94 0.94 0.93

len 0.393 0.398 0.399 0.399 0.398 2.839
vs cov 0.94 0.95 0.997 0.997 0.996 0.990

len 0.392 0.400 0.320 0.322 0.321 3.077

b) The test “length” is the average length of the interval [0, D(UB)] = D(UB)

where the test fails to reject H0 if D0 ≤ D(UB). The OLS full model is
asymptotically normal, and hence for large enough n and B the reg len row

for the test column should be near
√
χ2

3,0.95 = 2.795.

Were the three values in the test column for reg within 0.1 of 2.795?

3.12. Suppose the MLR model Y = Xβ + e, and the regression method
fits Z = Wη + e. Suppose Ẑ = 245.63 and Y = 105.37. What is Ŷ ?

3.13. To get a large sample 90% PI for a future value Yf of the response

variable, find a large sample 90% PI for a future residual and add Ŷf to the
endpoints of the of that PI. Suppose forward selection is used and the large
sample 90% PI for a future residual is [−778.28, 1336.44]. What is the large
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sample 90% PI for Yf if β̂Imin
= (241.545, 1.001)T used a constant and the

predictor mmen with corresponding xImin,f = (1, 75000)T?

3.14. Table 3.8 below shows simulation results for bootstrapping OLS
(reg), lasso, and ridge regression (RR) with 10-fold CV when β = (1, 1, 0, 0)T .
The βi columns give coverage = the proportion of CIs that contained βi and
the average length of the CI. The test is for H0 : (β3 , β4)

T = 0 and H0 is
true. The “coverage” is the proportion of times the prediction region method
bootstrap test failed to reject H0. OLS used 1000 runs while 100 runs were
used for lasso and ridge regression. Since 100 runs were used, a cov in [0.89,
1] is reasonable for a nominal value of 0.95. If the coverage for both methods
≥ 0.89, the method with the shorter average CI length was more precise.
(If one method had coverage ≥ 0.89 and the other had coverage < 0.89, we
will say the method with coverage ≥ 0.89 was more precise.) The results
for the lasso test were omitted since sometimes S∗

T was singular. (Lengths
for the test column are not comparable unless the statistics have the same
asymptotic distribution.)

Table 3.9 Bootstrapping lasso and RR, n = 100, ψ = 0.9, p = 4, B = 250

β1 β2 β3 β4 test
reg cov 0.942 0.951 0.949 0.943 0.943

len 0.658 5.447 5.444 5.438 2.490
RR cov 0.97 0.02 0.11 0.10 0.05

len 0.681 0.329 0.334 0.334 2.546
reg cov 0.947 0.955 0.950 0.951 0.952

len 0.658 5.511 5.497 5.500 2.491
lasso cov 0.93 0.91 0.92 0.99

len 0.698 3.765 3.922 3.803

a) For β3 and β4 which method, ridge regression or the OLS full model,
was better?

b) For β3 and β4 which method, lasso or the OLS full model, was more
precise?

3.15. Suppose n = 15 and 5-fold CV is used. Suppose observations are
measured for the following people. Use the output below to determine which
people are in the first fold.

folds: 4 3 4 2 1 4 3 5 2 2 3 1 5 5 1

1) Athapattu, 2) Azizi, 3) Cralley 4) Gallage, 5) Godbold, 6) Gunawar-
dana, 7) Houmadi, 8) Mahappu, 9) Pathiravasan, 10) Rajapaksha, 11)
Ranaweera, 12) Safari, 13) Senarathna, 14) Thakur, 15) Ziedzor

3.16. Table 3.9 below shows simulation results for a large sample 95% pre-
diction interval. Since 5000 runs were used, a cov in [0.94, 0.96] is reasonable
for a nominal value of 0.95. If the coverage for a method ≥ 0.94, the method
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with the shorter average PI length was more precise. Ignore methods with
cov < 0.94. The MLR model had β = (1, 1, ..., 1, 0, ..., 0)T where the first
k+1 coefficients were equal to 1. If ψ = 0 then the nontrivial predictors were
uncorrelated, but highly correlated if ψ = 0.9.

Table 3.10 Simulated Large Sample 95% PI Coverages and Lengths, ei ∼ N(0,1)

n p ψ k FS lasso RL RR PLS PCR
100 40 0 1 cov 0.9654 0.9774 0.9588 0.9274 0.8810 0.9882

len 4.4294 4.8889 4.6226 4.4291 4.0202 7.3393
400 400 0.9 19 cov 0.9348 0.9636 0.9556 0.9632 0.9462 0.9478

len 4.3687 47.361 4.8530 48.021 4.2914 4.4764

a) Which method was most precise, given cov ≥ 0.94, when n = 100?
b) Which method was most precise, given cov ≥ 0.94, when n = 400?

3.17. When doing a PI or CI simulation for a nominal 100(1− δ)% = 95%
interval, there are m runs. For each run, a data set and interval are generated,
and for the ith run Yi = 1 if µ or Yf is in the interval, and Yi = 0, otherwise.
Hence the Yi are iid Bernoulli(1 − δn) random variables where 1 − δn is
the true probability (true coverage) that the interval will contain µ or Yf .
The observed coverage (= coverage) in the simulation is Y =

∑
i Yi/m. The

variance V (Y ) = σ2/m where σ2 = (1 − δn)δn ≈ (1 − δ)δ ≈ (0.95)0.05 if
δn ≈ δ = 0.05. Hence

SD(Y ) ≈
√

0.95(0.05)

m
.

If the (observed) coverage is within 0.95 ± kSD(Y ) the integer k is near 3,
then there is no reason to doubt that the actual coverage 1− δn differs from
the nominal coverage 1−δ = 0.95 if m ≥ 1000 (and as a crude benchmark, for
m ≥ 100). In the simulation, the length of each interval is computed, and the
average length is computed. For intervals with coverage ≥ 0.95 − kSD(Y ),
intervals with shorter average length are better (have more precision).

a) If m = 5000 what is 3 SD(Y ), using the above approximation? Your
answer should be close to 0.01.

b) If m = 1000 what is 3 SD(Y ), using the above approximation?

R Problem

Use the command source(“G:/slpack.txt”) to download the func-
tions and the command source(“G:/sldata.txt”) to download the data.
See Preface or Section 8.1. Typing the name of the slpack function,
e.g. vsbootsim3, will display the code for the function. Use the args com-
mand, e.g. args(vsbootsim3), to display the needed arguments for the function.
For the following problem, the R command can be copied and pasted from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R.



3.20 Problems 225

3.18. The R program generates data satisfying the MLR model

Y = β1 + β2x2 + β3x3 + β4x4 + e

where β = (β1, β2, β3, β4)
T = (1, 1, 0, 0).

a) Copy and paste the commands for this part into R. The output gives

β̂OLS for the OLS full model. Give β̂OLS . Is β̂OLS close to β = 1, 1, 0, 0)T?
b) The commands for this part bootstrap the OLS full model using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗

j = β̂
∗

j for j = 1, ..., 5.
c) B = 1000 T ∗

j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗

j . Copy and paste the output into Word. Is T
∗

close

to β̂OLS found in a)?
d) The commands for this part bootstrap the forward selection using the

residual bootstrap. Copy and paste the output into Word. The output shows

T ∗

j = β̂
∗

Imin,0,j for j = 1, ..., 5. The last two variables may have a few 0s.
e) B = 1000 T ∗

j were generated. The commands for this part compute the

sample mean T
∗

of the T ∗

j where T ∗

j is as in d). Copy and paste the output

into Word. Is T
∗

close to β = (1, 1, 0, 0)?

3.19. This simulation is similar to that used to form Table 2.2, but 1000
runs are used so coverage in [0.93,0.97] suggests that the actual coverage is
close to the nominal coverage of 0.95.

The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for vs (forward selection with Imin).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.93, then the shorter CI length is more precise. Were the CIs
for forward selection more precise than the CIs for the OLS full model for β3

and β4?
To get the output, copy and paste the source commands from

(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

3.20. This problem is like Problem 3.19, but ridge regression is used in-
stead of forward selection. This simulation is similar to that used to form
Table 2.2, but 100 runs are used so coverage in [0.89,1.0] suggests that the
actual coverage is close to the nominal coverage of 0.95.
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The model is Y = xT β + e = xT
SβS + e where βS = (β1, β2, ..., βk+1)

T =
(β1, β2)

T and k = 1 is the number of active nontrivial predictors in the popu-
lation model. The output for test tests H0 : (βk+2, ..., βp)

T = (β3 , ..., βp)
T = 0

andH0 is true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95.

After getting your output, make a table similar to Table 2.2 with 4 lines.
If your p = 5 then you need to add a column for β5 . Two lines are for reg
(the OLS full model) and two lines are for ridge regression (with 10 fold CV).
The βi columns give the coverage and lengths of the 95% CIs for βi. If the
coverage ≥ 0.89, then the shorter CI length is more precise. Were the CIs for
ridge regression more precise than the CIs for the OLS full model for β3 and
β4?

To get the output, copy and paste the source commands from
(http://parker.ad.siu.edu/Olive/slrhw.txt) into R. Copy and past the library
command for this problem into R.

If you are person j then copy and paste the R code for person j for this
problem into R.

3.21. This is like Problem 3.20, except lasso is used. If you are person j in
Problem 3.20, then copy and paste the R code for person j for this problem
into R. Make a table with 4 lines: two for OLS and 2 for lasso. Were the CIs
for lasso more precise than the CIs for the OLS full model for β3 and β4?


