Chapter 2

Prediction and Variable Selection When n >> p

This chapter considers variable selection when n >> p and prediction intervals that can work if n > p or p > n. Prediction regions and prediction intervals applied to a bootstrap sample can result in confidence regions and confidence intervals. The bootstrap confidence regions will be used for inference after variable selection.

2.1 Variable Selection

Variable selection, also called subset or model selection, is the search for a subset of predictor variables that can be deleted with little loss of information if n/p is large. Consider the 1D regression model where $Y \perp x|SP$ where $SP = x^T \beta$. See Chapters 1 and 4. A model for variable selection can be described by

$$\boldsymbol{x}^{T}\boldsymbol{\beta} = \boldsymbol{x}_{S}^{T}\boldsymbol{\beta}_{S} + \boldsymbol{x}_{E}^{T}\boldsymbol{\beta}_{E} = \boldsymbol{x}_{S}^{T}\boldsymbol{\beta}_{S}$$
 (2.1)

where $\boldsymbol{x} = (\boldsymbol{x}_S^T, \boldsymbol{x}_E^T)^T$ is a $p \times 1$ vector of predictors, \boldsymbol{x}_S is an $a_S \times 1$ vector, and \boldsymbol{x}_E is a $(p - a_S) \times 1$ vector. Given that \boldsymbol{x}_S is in the model, $\boldsymbol{\beta}_E = \boldsymbol{0}$ and E denotes the subset of terms that can be eliminated given that the subset S is in the model.

Since S is unknown, candidate subsets will be examined. Let x_I be the vector of a terms from a candidate subset indexed by I, and let x_O be the vector of the remaining predictors (out of the candidate submodel). Then

$$\boldsymbol{x}^T \boldsymbol{\beta} = \boldsymbol{x}_I^T \boldsymbol{\beta}_I + \boldsymbol{x}_O^T \boldsymbol{\beta}_O.$$

Suppose that S is a subset of I and that model (2.1) holds. Then

$$oldsymbol{x}^Toldsymbol{eta} = oldsymbol{x}_S^Toldsymbol{eta}_S = oldsymbol{x}_S^Toldsymbol{eta}_S + oldsymbol{x}_{I/S}^Toldsymbol{eta}_{(I/S)} + oldsymbol{x}_O^Toldsymbol{0} = oldsymbol{x}_I^Toldsymbol{eta}_I$$

where $\mathbf{x}_{I/S}$ denotes the predictors in I that are not in S. Since this is true regardless of the values of the predictors, $\boldsymbol{\beta}_O = \mathbf{0}$ and the sample correlation $\operatorname{corr}(\mathbf{x}_i^T\boldsymbol{\beta}, \mathbf{x}_{I,i}^T\boldsymbol{\beta}_I) = 1.0$ for the population model if $S \subseteq I$. The estimated sufficient predictor (ESP) is $\mathbf{x}^T\hat{\boldsymbol{\beta}}$, and a submodel I is worth considering if the correlation $\operatorname{corr}(ESP, ESP(I)) \geq 0.95$.

To clarify notation, suppose p=4, a constant $x_1=1$ corresponding to β_1 is always in the model, and $\boldsymbol{\beta}=(\beta_1,\beta_2,0,0)^T$. Then there are $J=2^{p-1}=8$ possible subsets of $\{1,2,...,p\}$ that contain 1, including $I_1=\{1\}$ and $S=I_2=\{1,2\}$. There are $2^{p-a_S}=4$ subsets such that $S\subseteq I_j$. Let $\hat{\boldsymbol{\beta}}_{I_2}=(\hat{\beta}_1,\hat{\beta}_2)^T$ and $\boldsymbol{x}_{I_2}=(x_1,x_2)^T$.

Definition 2.1. The model $Y \perp x_I | x^T \beta$ that uses all of the predictors is called the *full model*. A model $Y \perp x_I | x_I^T \beta_I$ that uses a subset x_I of the predictors is called a *submodel*. The **full model is always a submodel**. The full model has *sufficient predictor* $SP = x^T \beta$ and the submodel has $SP = x_I^T \beta_I$.

Forward selection or backward elimination with the Akaike (1973) AIC criterion or Schwarz (1978) BIC criterion are often used for variable selection. The relaxed lasso or relaxed elastic net estimator fits the regression method, such as a GLM or Cox (1972) proportional hazards regression, to the predictors than had nonzero lasso or elastic net coefficients. See Chapters 3 and 4.

Underfitting occurs if submodel I does not contain S. Following, for example, Pelawa Watagoda (2019), let $\mathbf{X} = [\mathbf{X}_I \ \mathbf{X}_O]$ and $\boldsymbol{\beta} = (\boldsymbol{\beta}_I^T, \boldsymbol{\beta}_O^T)^T$. Then $\mathbf{X}\boldsymbol{\beta} = \mathbf{X}_I\boldsymbol{\beta}_I + \mathbf{X}_O\boldsymbol{\beta}_O$, and $\hat{\boldsymbol{\beta}}_I = (\mathbf{X}_I\mathbf{X}_I)^{-1}\mathbf{X}_I^T\mathbf{Y} = \mathbf{A}\mathbf{Y}$. Assuming the usual MLR model, $\operatorname{Cov}(\hat{\boldsymbol{\beta}}_I) = \operatorname{Cov}(\mathbf{A}\mathbf{Y}) = \mathbf{A}\sigma^2\mathbf{I}\mathbf{A}^T = \sigma^2(\mathbf{X}_I^T\mathbf{X}_I)^{-1}$. Now $E(\hat{\boldsymbol{\beta}}_I) = E(\mathbf{A}\mathbf{Y}) = \mathbf{A}\mathbf{X}\boldsymbol{\beta} = (\mathbf{X}_I\mathbf{X}_I)^{-1}\mathbf{X}_I^T(\mathbf{X}_I\boldsymbol{\beta}_I + \mathbf{X}_O\boldsymbol{\beta}_O) =$

$$\boldsymbol{\beta}_I + (\boldsymbol{X}_I \boldsymbol{X}_I)^{-1} \boldsymbol{X}_I^T \boldsymbol{X}_O \boldsymbol{\beta}_O = \boldsymbol{\beta}_I + \boldsymbol{A} \boldsymbol{X}_O \boldsymbol{\beta}_O.$$

If $S \subseteq I$, then $\beta_O = \mathbf{0}$, but if underfitting occurs then the bias vector $AX_O\beta_O$ can be large.

2.1.1 OLS Variable Selection

Simpler models are easier to explain and use than more complicated models, and there are several other important reasons to perform variable selection. For example, an OLS MLR model with unnecessary predictors has $\sum_{i=1}^{n} V(\hat{Y}_i)$ that is too large. If (2.1) holds, $S \subseteq I$, β_S is an $a_S \times 1$ vector, and β_I is a $j \times 1$ vector with $j > a_S$, then

$$\frac{1}{n}\sum_{i=1}^{n}V(\hat{Y}_{Ii}) = \frac{\sigma^{2}j}{n} > \frac{\sigma^{2}a_{S}}{n} = \frac{1}{n}\sum_{i=1}^{n}V(\hat{Y}_{Si}).$$
 (2.2)

In particular, the full model has j=p. Hence having unnecessary predictors decreases the precision for prediction. Fitting unnecessary predictors is sometimes called *fitting noise* or *overfitting*. As an extreme case, suppose that the full model contains p=n predictors, including a constant, so that the hat matrix $\mathbf{H} = \mathbf{I}_n$, the $n \times n$ identity matrix. Then $\hat{Y} = Y$ so that $VAR(\hat{Y}|\mathbf{x}) = VAR(Y)$. A model I underfits if it does not include all of the predictors in S. A model I does not underfit if $S \subseteq I$.

To see that (2.2) holds, assume that the full model includes all p possible terms so the full model may overfit but does not underfit. Then $\hat{Y} = HY$ and $Cov(\hat{Y}) = \sigma^2 H I H^T = \sigma^2 H$. Thus

$$\frac{1}{n}\sum_{i=1}^{n}V(\hat{Y}_{i}) = \frac{1}{n}tr(\sigma^{2}\boldsymbol{H}) = \frac{\sigma^{2}}{n}tr((\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{X}) = \frac{\sigma^{2}p}{n}$$

where $tr(\mathbf{A})$ is the trace operation. Replacing p by j and a_S and replacing \mathbf{H} by \mathbf{H}_I and \mathbf{H}_S implies Equation (2.2). Hence if only a_S parameters are needed and $p >> a_S$, then serious overfitting occurs and increases $\frac{1}{n} \sum_{i=1}^{n} V(\hat{Y}_i).$

Two important summaries for submodel I are $R^2(I)$, the proportion of the variability of Y explained by the nontrivial predictors in the model, and $MSE(I) = \hat{\sigma}_I^2$, the estimated error variance. See Definitions 1.42 and 1.43. Suppose that model I contains k predictors, including a constant. Since adding predictors does not decrease R^2 , the adjusted $R_A^2(I)$ is often used, where

$$R_A^2(I) = 1 - (1 - R^2(I)) \frac{n}{n - k} = 1 - MSE(I) \frac{n}{SST}.$$

See Seber and Lee (2003, pp. 400-401). Hence the model with the maximum $R_A^2(I)$ is also the model with the minimum MSE(I).

For multiple linear regression, recall that if the candidate model of x_I has k terms (including the constant), then the partial F statistic for testing whether the p-k predictor variables in x_O can be deleted is

$$F_I = \frac{SSE(I) - SSE}{(n-k) - (n-p)} / \frac{SSE}{n-p} = \frac{n-p}{p-k} \left[\frac{SSE(I)}{SSE} - 1 \right]$$

where SSE is the error sum of squares from the full model, and SSE(I) is the error sum of squares from the candidate submodel. An important criterion for variable selection is the C_p criterion.

Definition 2.2.

$$C_p(I) = \frac{SSE(I)}{MSE} + 2k - n = (p - k)(F_I - 1) + k$$

where MSE is the error mean square for the full model.

Note that when H_0 is true, $(p-k)(F_I-1)+k \xrightarrow{D} \chi_{p-k}^2 + 2k-p$ for a large class of iid error distributions. Minimizing $C_p(I)$ is equivalent to minimizing MSE $[C_p(I)] = SSE(I) + (2k-n)MSE = \mathbf{r}^T(I)\mathbf{r}(I) + (2k-n)MSE$. The following theorem helps explain why C_p is a useful criterion and suggests that for subsets I with k terms, submodels with $C_p(I) \leq \min(2k,p)$ are especially interesting. Olive and Hawkins (2005) show that this interpretation of C_p can be generalized to 1D regression models with a linear predictor $\boldsymbol{\beta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\beta}$, such as generalized linear models. Denote the residuals and fitted values from the full model by $r_i = Y_i - \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}} = Y_i - \hat{Y}_i$ and $\hat{Y}_i = \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}$ respectively. Similarly, let $\hat{\boldsymbol{\beta}}_I$ be the estimate of $\boldsymbol{\beta}_I$ obtained from the regression of Y on \boldsymbol{x}_I and denote the corresponding residuals and fitted values by $r_{I,i} = Y_i - \boldsymbol{x}_{I,i}^T \hat{\boldsymbol{\beta}}_I$ and $\hat{Y}_{I,i} = \boldsymbol{x}_{I,i}^T \hat{\boldsymbol{\beta}}_I$ where i = 1, ..., n.

Theorem 2.1. Suppose that a numerical variable selection method suggests several submodels with k predictors, including a constant, where $2 \le k \le p$.

- a) The model I that minimizes $C_p(I)$ maximizes $\operatorname{corr}(r, r_I)$.
- b) $C_p(I) \le 2k$ implies that $\operatorname{corr}(\mathbf{r}, \mathbf{r}_I) \ge \sqrt{1 \frac{\mathbf{p}}{\mathbf{n}}}$.
- c) As $corr(r, r_I) \rightarrow 1$,

$$\operatorname{corr}(\boldsymbol{x}^{\mathrm{T}}\hat{\boldsymbol{\beta}},\boldsymbol{x}_{\mathrm{I}}^{\mathrm{T}}\hat{\boldsymbol{\beta}}_{\mathrm{I}}) = \operatorname{corr}(\operatorname{ESP},\operatorname{ESP}(\mathrm{I})) = \operatorname{corr}(\hat{\mathrm{Y}},\hat{\mathrm{Y}}_{\mathrm{I}}) \to 1.$$

Proof. These results are a corollary of Theorem 2.2 below. \Box

Remark 2.1. Consider the model I_i that deletes the predictor x_i . Then the model has k = p - 1 predictors including the constant, and the test statistic is t_i where

$$t_i^2 = F_{I_i}.$$

Using Definition 2.2 and $C_p(I_{full}) = p$, it can be shown that

$$C_p(I_i) = C_p(I_{full}) + (t_i^2 - 2).$$

Using the screen $C_p(I) \leq \min(2k, p)$ suggests that the predictor x_i should not be deleted if

$$|t_i| > \sqrt{2} \approx 1.414.$$

If $|t_i| < \sqrt{2}$ then the predictor can probably be deleted since C_p decreases. The literature suggests using the $C_p(I) \le k$ screen, but this screen eliminates too many potentially useful submodels.

More generally, it can be shown that $C_p(I) \leq 2k$ iff

$$F_I \leq \frac{p}{p-k}$$
.

Now k is the number of terms in the model I including a constant while p-k is the number of terms set to 0. As $k \to 0$, the partial F test will reject Ho: $\beta_O = \mathbf{0}$ (i.e. say that the full model should be used instead of the submodel I) unless F_I is not much larger than 1. If p is very large and p-k is very small, then the partial F test will tend to suggest that there is a model I that is about as good as the full model even though model I deletes p-k predictors.

Definition 2.3. The "fit-fit" or FF plot is a plot of $\hat{Y}_{I,i}$ versus \hat{Y}_i while a "residual–residual" or RR plot is a plot $r_{I,i}$ versus r_i . A response plot is a plot of $\hat{Y}_{I,i}$ versus Y_i . An EE plot is a plot of ESP(I) versus ESP. For MLR, the EE and FF plots are equivalent.

Six graphs will be used to compare the full model and the candidate submodel: the FF plot, RR plot, the response plots from the full and submodel, and the residual plots from the full and submodel. These six plots will contain a great deal of information about the candidate subset provided that Equation (2.1) holds and that a good estimator (such as OLS) for $\hat{\beta}$ and $\hat{\beta}_I$ is used.

Application 2.1. To visualize whether a candidate submodel using predictors x_I is good, use the fitted values and residuals from the submodel and full model to make an RR plot of the $r_{I,i}$ versus the r_i and an FF plot of $\hat{Y}_{I,i}$ versus \hat{Y}_i . Add the OLS line to the RR plot and identity line to both plots as visual aids. The subset I is good if the plotted points cluster tightly about the identity line in *both plots*. In particular, the OLS line and the identity line should "nearly coincide" so that it is difficult to tell that the two lines intersect at the origin in the RR plot.

To verify that the six plots are useful for assessing variable selection, the following notation will be useful. Suppose that all submodels include a constant and that X is the full rank $n \times p$ design matrix for the full model. Let the corresponding vectors of OLS fitted values and residuals be $\hat{Y} = X(X^TX)^{-1}X^TY = HY$ and r = (I - H)Y, respectively. Suppose that X_I is the $n \times k$ design matrix for the candidate submodel and that the corresponding vectors of OLS fitted values and residuals are $\hat{Y}_I = X_I(X_I^TX_I)^{-1}X_I^TY = H_IY$ and $r_I = (I - H_I)Y$, respectively.

A plot can be very useful if the OLS line can be compared to a reference line and if the OLS slope is related to some quantity of interest. Suppose that a plot of w versus z places w on the horizontal axis and z on the vertical axis. Then denote the OLS line by $\hat{z} = a + bw$. The following theorem shows that

the plotted points in the FF, RR, and response plots will cluster about the identity line. Notice that the theorem is a property of OLS and holds even if the data does not follow an MLR model. Let corr(x, y) denote the correlation between x and y.

Theorem 2.2. Suppose that every submodel contains a constant and that X is a full rank matrix.

Response Plot: i) If $w = \hat{Y}_I$ and z = Y then the OLS line is the identity line.

ii) If w = Y and $z = \hat{Y}_I$ then the OLS line has slope $b = [\operatorname{corr}(Y, \hat{Y}_I)]^2 = R^2(I)$ and intercept $a = \overline{Y}(1 - R^2(I))$ where $\overline{Y} = \sum_{i=1}^n Y_i/n$ and $R^2(I)$ is the coefficient of multiple determination from the candidate model.

FF or EE Plot: iii) If $w = \hat{Y}_I$ and $z = \hat{Y}$ then the OLS line is the identity line. Note that $ESP(I) = \hat{Y}_I$ and $ESP = \hat{Y}$.

iv) If $w = \hat{Y}$ and $z = \hat{Y}_I$ then the OLS line has slope $b = [\operatorname{corr}(\hat{Y}, \hat{Y}_I)]^2 = SSR(I)/SSR$ and intercept $a = \overline{Y}[1 - (SSR(I)/SSR)]$ where SSR is the regression sum of squares.

RR Plot: v) If w = r and $z = r_I$ then the OLS line is the identity line. vi) If $w = r_I$ and z = r then a = 0 and the OLS slope $b = [\operatorname{corr}(r, r_I)]^2$ and

$$\operatorname{corr}(r, r_I) = \sqrt{\frac{SSE}{SSE(I)}} = \sqrt{\frac{n-p}{C_p(I) + n - 2k}} = \sqrt{\frac{n-p}{(p-k)F_I + n - p}}.$$

Proof: Recall that \boldsymbol{H} and \boldsymbol{H}_I are symmetric idempotent matrices and that $\boldsymbol{H}\boldsymbol{H}_I = \boldsymbol{H}_I$. The mean of OLS fitted values is equal to \overline{Y} and the mean of OLS residuals is equal to 0. If the OLS line from regressing z on w is $\hat{z} = a + bw$, then $a = \overline{z} - b\overline{w}$ and

$$b = \frac{\sum (w_i - \overline{w})(z_i - \overline{z})}{\sum (w_i - \overline{w})^2} = \frac{SD(z)}{SD(w)} \operatorname{corr}(z, w).$$

Also recall that the OLS line passes through the means of the two variables $(\overline{w}, \overline{z})$.

- (*) Notice that the OLS slope from regressing z on w is equal to one if and only if the OLS slope from regressing w on z is equal to $[\operatorname{corr}(z,w)]^2$.
- i) The slope b=1 if $\sum \hat{Y}_{I,i}Y_i = \sum \hat{Y}_{I,i}^2$. This equality holds since $\hat{\boldsymbol{Y}}_I^T\boldsymbol{Y} = \boldsymbol{Y}^T\boldsymbol{H}_I\boldsymbol{Y} = \boldsymbol{Y}^T\boldsymbol{H}_I\boldsymbol{H}_I\boldsymbol{Y} = \hat{\boldsymbol{Y}}_I^T\hat{\boldsymbol{Y}}_I$. Since $b=1, a=\overline{Y}-\overline{Y}=0$.
 - ii) By (*), the slope

$$b = [\text{corr}(Y, \hat{Y}_I)]^2 = R^2(I) = \frac{\sum (\hat{Y}_{I,i} - \overline{Y})^2}{\sum (Y_i - \overline{Y})^2} = SSR(I)/SSTO.$$

The result follows since $a = \overline{Y} - b\overline{Y}$.

iii) The slope b=1 if $\sum \hat{Y}_{I,i}\hat{Y}_i = \sum \hat{Y}_{I,i}^2$. This equality holds since $\hat{\boldsymbol{Y}}^T\hat{\boldsymbol{Y}}_I = \boldsymbol{Y}^T\boldsymbol{H}\boldsymbol{H}_I\boldsymbol{Y} = \boldsymbol{Y}^T\boldsymbol{H}\boldsymbol{H}_I\boldsymbol{Y} = \hat{\boldsymbol{Y}}_I^T\hat{\boldsymbol{Y}}_I$. Since $b=1, a=\overline{Y}-\overline{Y}=0$.

iv) From iii),

$$1 = \frac{SD(\hat{Y})}{SD(\hat{Y}_I)} [corr(\hat{Y}, \hat{Y}_I)].$$

Hence

$$\operatorname{corr}(\hat{Y}, \hat{Y}_I) = \frac{SD(\hat{Y}_I)}{SD(\hat{Y})}$$

and the slope

$$b = \frac{SD(\hat{Y}_I)}{SD(\hat{Y})} \operatorname{corr}(\hat{Y}, \hat{Y}_I) = [\operatorname{corr}(\hat{Y}, \hat{Y}_I)]^2.$$

Also the slope

$$b = \frac{\sum (\hat{Y}_{I,i} - \overline{Y})^2}{\sum (\hat{Y}_i - \overline{Y})^2} = SSR(I)/SSR.$$

The result follows since $a = \overline{Y} - b\overline{Y}$.

v) The OLS line passes through the origin. Hence a=0. The slope $b=r^Tr_I/r^Tr$. Since $r^Tr_I=Y^T(I-H)(I-H_I)Y$ and $(I-H)(I-H_I)=I-H$, the numerator $r^Tr_I=r^Tr$ and b=1.

vi) Again a = 0 since the OLS line passes through the origin. From v),

$$1 = \sqrt{\frac{SSE(I)}{SSE}}[corr(r, r_I)].$$

Hence

$$corr(r, r_I) = \sqrt{\frac{SSE}{SSE(I)}}$$

and the slope

$$b = \sqrt{\frac{SSE}{SSE(I)}}[\text{corr}(r, r_I)] = [\text{corr}(r, r_I)]^2.$$

Algebra shows that

$$\operatorname{corr}(r, r_I) = \sqrt{\frac{n-p}{C_p(I) + n - 2k}} = \sqrt{\frac{n-p}{(p-k)F_I + n - p}}. \quad \Box$$

Remark 2.2. Let I_{min} be the model than minimizes $C_p(I)$ among the models I generated from the variable selection method such as forward se-

lection. Assuming the full model I_p is one of the models generated, then $C_p(I_{min}) \leq C_p(I_p) = p$, and $\operatorname{corr}(r, r_{I_{min}}) \to 1$ as $n \to \infty$ by Theorem 2.2 vi). Referring to Equation (2.1), if $P(S \subseteq I_{min})$ does not go to 1 as $n \to \infty$, then the above correlation would not go to one. Hence $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$. This result is due to Rathnayake and Olive (2023).

A standard model selection procedure will often be needed to suggest models. For example, forward selection or backward elimination could be used. If p < 30, Furnival and Wilson (1974) provide a technique for selecting a few candidate subsets after examining all possible subsets.

Remark 2.3. Daniel and Wood (1980, p. 85) suggest using Mallows' graphical method for screening subsets by plotting k versus $C_p(I)$ for models close to or under the $C_p = k$ line. Theorem 2.2 vi) implies that if $C_p(I) \le k$ or $F_I < 1$, then $\operatorname{corr}(r, r_I)$ and $\operatorname{corr}(ESP, ESP(I))$ both go to 1.0 as $n \to \infty$. Hence models I that satisfy the $C_p(I) \le k$ screen will contain the true model S with high probability when n is large. This result does not guarantee that the true model S will satisfy the screen, but overfit is likely. Let S be a lower bound on $\operatorname{corr}(r, r_I)$. Theorem 2.2 vi) implies that if

$$C_p(I) \le 2k + n \left[\frac{1}{d^2} - 1 \right] - \frac{p}{d^2},$$

then $\operatorname{corr}(r, r_I) \geq d$. The simple screen $C_p(I) \leq 2k$ corresponds to

$$d \equiv d_n = \sqrt{1 - \frac{p}{n}}.$$

To avoid excluding too many good submodels, consider models I with $C_p(I) \leq \min(2k, p)$. Models under both the $C_p = k$ line and the $C_p = 2k$ line are of interest.

Rule of thumb 2.1. a) After using a numerical method such as forward selection or backward elimination, let I_{min} correspond to the submodel with the smallest C_p . Find the submodel I_I with the fewest number of predictors such that $C_p(I_I) \leq C_p(I_{min}) + 1$. Then I_I is the initial submodel that should be examined. It is possible that $I_I = I_{min}$ or that I_I is the full model. Do not use more predictors than model I_I to avoid overfitting.

- b) Models I with fewer predictors than I_I such that $C_p(I) \leq C_p(I_{min}) + 4$ are interesting and should also be examined.
- c) Models I with k predictors, including a constant and with fewer predictors than I_I such that $C_p(I_{min}) + 4 < C_p(I) \le \min(2k, p)$ should be checked but often underfit: important predictors are deleted from the model. Underfit is especially likely to occur if a predictor with one degree of freedom is deleted (if the c-1 indicator variables corresponding to a factor are deleted, then

the factor has c-1 degrees of freedom) and the jump in C_p is large, greater than 4, say.

d) If there are no models I with fewer predictors than I_I such that $C_p(I) \le \min(2k, p)$, then model I_I is a good candidate for the best subset found by the numerical procedure.

Forward selection forms a sequence of submodels $I_1, ..., I_p$ where I_j uses j predictors including the constant. Let I_1 use $x_1^* = x_1 \equiv 1$: the model has a constant but no nontrivial predictors. To form I_2 , consider all models I with two predictors including x_1^* . Compute $Q_2(I) = SSE(I) = RSS(I) = \mathbf{r}^T(I)\mathbf{r}(I) = \sum_{i=1}^n r_i^2(I) = \sum_{i=1}^n (Y_i - \hat{Y}_i(I))^2$. Let I_2 minimize $Q_2(I)$ for the p-1 models I that contain x_1^* and one other predictor. Denote the predictors in I_2 by x_1^*, x_2^* . In general, to form I_j consider all models I with j predictors including variables $x_1^*, ..., x_{j-1}^*$. Compute $Q_j(I) = \mathbf{r}^T(I)\mathbf{r}(I) = \sum_{i=1}^n r_i^2(I) = \sum_{i=1}^n (Y_i - \hat{Y}_i(I))^2$. Let I_j minimize $Q_j(I)$ for the p-j+1 models I that contain $x_1^*, ..., x_{j-1}^*$ and one other predictor not already selected. Denote the predictors in I_j by $x_1^*, ..., x_j^*$. Continue in this manner for j=2, ..., M=p.

Backward elimination also forms a sequence of submodels $I_1,...,I_p$ where I_j uses j predictors including the constant. Let I_p be the full model. To form I_{p-1} consider all models I with p-1 predictors including the constant. Compute $Q_{p-1}(I) = SSE(I) = RSS(I) = \mathbf{r}^T(I)\mathbf{r}(I) = \sum_{i=1}^n r_i^2(I) = \sum_{i=1}^n (Y_i - \hat{Y}_i(I))^2$. Let I_{p-1} minimize $Q_{p-1}(I)$ for the p-1 models I that exclude one of the predictors $x_2,...,x_p$. Denote the predictors in I_{p-1} by $x_1^*,x_2^*,...,x_{p-1}^*$. In general, to form I_j consider all models I with j predictors including variables $x_1^*,...,x_{j+1}^*$. Compute $Q_j(I) = \mathbf{r}^T(I)\mathbf{r}(I) = \sum_{i=1}^n r_i^2(I) = \sum_{i=1}^n (Y_i - \hat{Y}_i(I))^2$. Let I_j minimize $Q_j(I)$ for the p-j+1 models I that exclude one of the predictors $x_2^*,...,x_{j+1}^*$. Denote the predictors in I_j by $x_1^*,...,x_j^*$. Continue in this manner for j=p=M,p-1,...,2,1 where I_1 uses $x_1^*=x_1\equiv 1$.

Several criterion produce the same sequence of models if forward selection or backward elimination are used, including MSE(I), $C_p(I)$, $R_A^2(I)$, AIC(I), BIC(I), and EBIC(I). This result holds since if the number of predictors k in the model I is fixed, the criterion is equivalent to minimizing SSE(I) plus a constant. The constants differ so the model I_{min} that minimizes the criterion often differ. Heuristically, backward elimination tries to delete the variable that will increase C_p the least while forward selection tries to add the variable that will decrease C_p the most.

When there is a sequence of M submodels, the final submodel I_d needs to be selected with a_d terms, including a constant. Let the candidate model I contain a terms, including a constant, and let x_I and $\hat{\beta}_I$ be $a \times 1$ vectors. Then there are many criteria used to select the final submodel I_d . For a given data set, the quantities p, n, and $\hat{\sigma}^2$ act as constants, and a criterion below may add a constant or be divided by a positive constant without changing the subset I_{min} that minimizes the criterion.

Let criteria $C_S(I)$ have the form

$$C_S(I) = SSE(I) + aK_n\hat{\sigma}^2.$$

These criteria need a good estimator of σ^2 and n/p large. See Shibata (1984). The criterion $C_p(I) = AIC_S(I)$ uses $K_n = 2$ while the $BIC_S(I)$ criterion uses $K_n = \log(n)$. See Jones (1946) and Mallows (1973) for C_p . It can be shown that $C_p(I) = AIC_S(I)$ is equivalent to the $C_P(I)$ criterion of Definition 2.2. Typically $\hat{\sigma}^2$ is the OLS full model MSE when n/p is large.

The following criteria also need n/p large. AIC is due to Akaike (1973), AIC_C is due to Hurvich and Tsai (1989), and BIC to Schwarz (1978) and Akaike (1977, 1978). Also see Burnham and Anderson (2004).

$$AIC(I) = n \log \left(\frac{SSE(I)}{n}\right) + 2a,$$

$$AIC_C(I) = n \log \left(\frac{SSE(I)}{n}\right) + \frac{2a(a+1)}{n-a-1},$$
 and
$$BIC(I) = n \log \left(\frac{SSE(I)}{n}\right) + a \log(n).$$

Forward selection with C_p and AIC often gives useful results if $n \geq 5p$ and if the final model has $n \geq 10a_d$. For p < n < 5p, forward selection with C_p and AIC tends to pick the full model (which overfits since n < 5p) too often, especially if $\hat{\sigma}^2 = MSE$. The Hurvich and Tsai (1989, 1991) AIC_C criterion can be useful if $n \geq \max(2p, 10a_d)$.

The EBIC criterion given in Luo and Chen (2013) may be useful when n/p is not large. Let $0 \le \gamma \le 1$ and $|I| = a \le \min(n, p)$ if $\hat{\beta}_I$ is $a \times 1$. We may use $a \le \min(n/5, p)$. Then EBIC(I) =

$$n\log\left(\frac{SSE(I)}{n}\right) + a\log(n) + 2\gamma\log\left[\binom{p}{a}\right] = BIC(I) + 2\gamma\log\left[\binom{p}{a}\right].$$

This criterion can give good results if $p = p_n = O(n^k)$ and $\gamma > 1 - 1/(2k)$. Hence we will use $\gamma = 1$. Then minimizing EBIC(I) is equivalent to minimizing $BIC(I) - 2\log[(p-a)!] - 2\log(a!)$ since $\log(p!)$ is a constant.

The above criteria can be applied to forward selection and relaxed lasso. The C_p criterion can also be applied to lasso. See Efron and Hastie (2016, pp. 221, 231).

Now suppose p=6 and S in Equation (2.1) corresponds to $x_1\equiv 1,x_2,$ and x_3 . Suppose the data set is such that underfitting (omitting a predictor in S) does not occur. Then there are eight possible submodels that contain S: i) x_1, x_2, x_3 ; ii) x_1, x_2, x_3, x_4 ; iii) x_1, x_2, x_3, x_5 ; iv) x_1, x_2, x_3, x_6 ; v) x_1, x_2, x_3, x_4, x_5 ; vi) x_1, x_2, x_3, x_4, x_6 ; vii) x_1, x_2, x_3, x_5, x_6 ; and the full model viii) $x_1, x_2, x_3, x_4, x_5, x_6$. The possible submodel sizes are k=3,4,5, or 6. Since the variable selection criteria for forward selection described above minimize the MSE given that $x_1^*, ..., x_{k-1}^*$ are in the model, the $MSE(I_k)$ are

too small and underestimate σ^2 . Also the model I_{min} fits the data a bit too well. Suppose $I_{min} = I_d$. Compared to selecting a model I_k before examining the data, the residuals $r_i(I_{min})$ are too small in magnitude, the $|\hat{Y}_{I_{min},i} - Y_i|$ are too small, and $MSE(I_{min})$ is too small. Hence using $I_{min} = I_d$ as the full model for inference does not work. In particular, the partial F test statistic F_R , using I_d as the full model, is too large since the MSE is too small. Thus the partial F test rejects H_0 too often. Similarly, the confidence intervals for β_i are too short, and hypothesis tests reject $H_0: \beta_i = 0$ too often when H_0 is true. The fact that the selected model I_{min} from variable selection cannot be used as the full model for classical inference is known as **selection bias**. Also see Hurvich and Tsai (1990).

This chapter offers two remedies: i) use the large sample theory of $\hat{\boldsymbol{\beta}}_{I_{min},0}$ (defined in the following section) and the bootstrap for inference after variable selection, and ii) use data splitting for inference after variable selection.

2.2 Large Sample Theory for Some Variable Selection Estimators

Large sample theory is often tractable if the optimization problem is convex. The optimization problem for variable selection is not convex, so new tools are needed. Tibshirani et al. (2018) and Leeb and Pötscher (2006, 2008) note that we can not find the limiting distribution of $\mathbf{Z}_n = \sqrt{n}\mathbf{A}(\hat{\boldsymbol{\beta}}_{I_{min}} - \boldsymbol{\beta}_I)$ after variable selection. One reason is that with positive probability, $\hat{\boldsymbol{\beta}}_{I_{min}}$ does not have the same dimension as $\boldsymbol{\beta}_I$ if AIC or C_p is used. Hence \mathbf{Z}_n is not defined with positive probability.

2.2.1 Some Variable Selection Estimators

Consider 1D regression models where the response variable Y is independent of the $p \times 1$ vector of predictors \boldsymbol{x} given $\boldsymbol{x}^T\boldsymbol{\beta}$, written $Y \perp \!\!\! \perp \boldsymbol{x}|\boldsymbol{x}^T\boldsymbol{\beta}$. Many important regression models satisfy this condition, including multiple linear regression, the Nelder and Wedderburn (1972) generalized linear models (GLMs), and the Cox (1972) proportional hazards regression model. Forward selection or backward elimination with the Akaike (1973) AIC criterion or Schwarz (1978) BIC criterion are often used for variable selection.

Sparse regression methods can also be used for variable selection even if n/p is not large: the regression submodel, such as a Nelder and Wedderburn (1972) generalized linear model (GLM), uses the predictors that had nonzero sparse regression estimated coefficients. These methods include least angle regression, lasso, relaxed lasso, elastic net, and sparse regression by projection.

Least angle regression variable selection is the LARS-OLS hybrid estimator of Efron et al. (2004, p. 421). Lasso variable selection is called relaxed lasso by Hastie, Tibshirani, and Wainwright (2015, p. 12), and the relaxed lasso estimator with $\phi=0$ by Meinshausen (2007, p. 376). Also see Fan and Li (2001), Friedman et al. (2007), Friedman, Hastie, and Tibshirani (2010), Qi et al. (2015), Simon et al. (2011), Tibshirani (1996), and Zou and Hastie (2005). The Meinshausen (2007) relaxed lasso estimator fits lasso with penalty λ_n to get a subset of variables with nonzero coefficients, and then fits lasso with a smaller penalty ϕ_n to this subset of variables where n is the sample size.

Let I_{min} correspond to the set of predictors selected by a variable selection method such as forward selection or lasso variable selection. If $\hat{\boldsymbol{\beta}}_I$ is $a \times 1$, use zero padding to form the $p \times 1$ vector $\hat{\boldsymbol{\beta}}_{I,0}$ from $\hat{\boldsymbol{\beta}}_I$ by adding 0s corresponding to the omitted variables. For example, if p=4 and $\hat{\boldsymbol{\beta}}_{I_{min}}=(\hat{\beta}_1,\hat{\beta}_3)^T$, then the observed variable selection estimator $\hat{\boldsymbol{\beta}}_{VS}=\hat{\boldsymbol{\beta}}_{I_{min},0}=(\hat{\beta}_1,0,\hat{\beta}_3,0)^T$. As a statistic, $\hat{\boldsymbol{\beta}}_{VS}=\hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities $\pi_{kn}=P(I_{min}=I_k)$ for k=1,...,J where there are J subsets, e.g. $J=2^p-1$.

The large sample theory for $\hat{\beta}_{MIX}$, defined below, is useful for explaining the large sample theory of $\hat{\beta}_{VS}$. Review Section 1.6 for mixture distributions.

Definition 2.4. The variable selection estimator $\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_{min},0}$, and $\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities $\pi_{kn} = P(I_{min} = I_k)$ for k = 1, ..., J where there are J subsets.

Definition 2.5. Let $\hat{\boldsymbol{\beta}}_{MIX}$ be a random vector with a mixture distribution of the $\hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities equal to π_{kn} . Hence $\hat{\boldsymbol{\beta}}_{MIX} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with same probabilities π_{kn} of the variable selection estimator $\hat{\boldsymbol{\beta}}_{VS}$, but the I_k are randomly selected.

Inference will consider bootstrap hypothesis testing with confidence intervals (CIs) and regions. Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ where θ_0 is a known $g \times 1$ vector. A large sample $100(1 - \delta)\%$ confidence region for θ is a set \mathcal{A}_n such that $P(\theta \in \mathcal{A}_n)$ is eventually bounded below by $1 - \delta$ as the sample size $n \to \infty$. Then reject H_0 if θ_0 is not in the confidence region. Let the $g \times 1$ vector T_n be an estimator of θ . Let $T_1^*, ..., T_B^*$ be the bootstrap sample for T_n . Let A be a full rank $g \times p$ constant matrix. For variable selection, test $H_0: A\beta = \theta_0$ versus $H_1: A\beta \neq \theta_0$ with $\theta = A\beta$. Then let $T_n = A\hat{\beta}_{SEL}$ and let $T_i^* = A\hat{\beta}_{SEL}^*$ for i = 1, ..., B and SEL is VS or MIX. See Section 2.6 for the bootstrap confidence regions that will be used for variable selection inference.

2.2.2 Large Sample Theory for Variable Selection Estimators

The Theorems 2.3 and 2.4 in this subsection are due to Rathnayake and Olive (2023), and generalize the Pelawa Watagoda and Olive (2021b) theory for multiple linear regression to many other models. The theory assumes that there is a "true model" S and that at least one subset I is considered such that $S \subseteq I$. For example, with forward selection and backward elimination, the theory assumes that the full model contains S. The theory does not hold if the true model S is not a subset of any of the considered models. For example, S could contain some interactions that were not included in the "full" model. Checking that the full model is good is important.

Assume p is fixed. Suppose model (2.1) holds, and that if $S \subseteq I_j$ where the dimension of I_j is a_j , then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j} - \boldsymbol{\beta}_{I_j}) \stackrel{D}{\rightarrow} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ where \boldsymbol{V}_j is the covariance matrix of the asymptotic multivariate normal distribution. Then

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_{j},0} - \boldsymbol{\beta}) \stackrel{D}{\to} N_{p}(\boldsymbol{0}, \boldsymbol{V}_{j,0})$$
 (2.3)

where $V_{j,0}$ adds columns and rows of zeros corresponding to the x_i not in I_j , and $V_{j,0}$ is singular unless I_j corresponds to the full model. This large sample theory holds for many models, including multiple linear regression fit by least squares (OLS), GLMs fit by maximum likelihood, and Cox regression fit by maximum partial likelihood. See, for example, Sen and Singer (1993, pp. 280, 309).

The first assumption in Theorem 2.3 is $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$. Then the variable selection estimator corresponding to I_{min} underfits with probability going to zero, and the assumption holds under regularity conditions if BIC or AIC is used for many parametric regression models such as GLMs. See Charkhi and Claeskens (2018) and Claeskens and Hjort (2008, pp. 70, 101, 102, 114, 232). This assumption is a necessary condition for a variable selection estimator to be a consistent estimator. See Zhao and Yu (2006). Thus if a sparse estimator that does variable selection is a consistent estimator of β , then $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$. Hence Theorem 2.3c) proves that the lasso variable selection and elastic net variable selection estimators are \sqrt{n} consistent estimators of β if lasso and elastic net are consistent. Also see Theorem 2.4. The assumption on u_{jn} in Theorem 2.3 is reasonable by (2.3) since $S \subseteq I_j$ for each π_j , and since $\hat{\beta}_{MIX}$ uses random selection.

Consider the assumption $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$ for multiple linear regression. Charkhi and Claeskens (2018) proved the assumption holds for AIC for a wide variety of error distributions. Shao (1993) gave similar results for AIC, BIC, and C_p . Also see Remark 2.2. The assumption holds for lasso variable selection and elastic net variable selection provided that $\hat{\lambda}_n/n \to 0$ as $n \to \infty$ so lasso and elastic net are consistent estimators. Here $\hat{\lambda}_n$ is the shrinkage penalty parameter selected after k-fold cross validation. See

Theorems 3.5, 3.6, Pelawa Watogoda and Olive (2021b) and Knight and Fu (2000).

Theorem 2.3 a) proves that \boldsymbol{u} is a mixture distribution of the \boldsymbol{u}_j with probabilities π_j , $E(\boldsymbol{u}) = \boldsymbol{0}$, and $\operatorname{Cov}(\boldsymbol{u}) = \boldsymbol{\Sigma}_{\boldsymbol{u}} = \sum_j \pi_j \boldsymbol{V}_{j,0}$. Some of the submodels I_k will have $\pi_k = 0$. For example, since the probability of underfitting goes to zero, every submodel I_k that underfits has $\pi_k = 0$. Hence $S \subseteq I_j$ corresponding to the $\pi_j > 0$. If $\pi_d = 1$, then submodel I_d is picked with probability going to 1 as $n \to \infty$, and I_d is the only submodel with a positive π_k . Often $\pi_d = \pi_S$ in the literature. For $T_n = \boldsymbol{A}\hat{\boldsymbol{\beta}}_{MIX}$ with $\boldsymbol{\theta} = \boldsymbol{A}\boldsymbol{\beta}$, we have $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{v}$ by (2.5) where $E(\boldsymbol{v}) = \boldsymbol{0}$, and $\boldsymbol{\Sigma}_{\boldsymbol{v}} = \sum_j \pi_j \boldsymbol{A} \boldsymbol{V}_{j,0} \boldsymbol{A}^T$.

Theorem 2.3. Assume $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$, and let $\hat{\boldsymbol{\beta}}_{MIX} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities π_{kn} where $\pi_{kn} \to \pi_k$ as $n \to \infty$. Denote the positive π_k by π_j . Assume $\boldsymbol{u}_{jn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0} - \boldsymbol{\beta}) \stackrel{D}{\to} \boldsymbol{u}_j \sim N_p(\mathbf{0}, \boldsymbol{V}_{j,0})$. a) Then

$$\mathbf{u}_n = \sqrt{n}(\hat{\boldsymbol{\beta}}_{MIX} - \boldsymbol{\beta}) \stackrel{D}{\to} \mathbf{u}$$
 (2.4)

where the cdf of \boldsymbol{u} is $F_{\boldsymbol{u}}(\boldsymbol{t}) = \sum_{j} \pi_{j} F_{\boldsymbol{u}_{j}}(\boldsymbol{t})$. Thus \boldsymbol{u} has a mixture distribution of the \boldsymbol{u}_{j} with probabilities π_{j} , $E(\boldsymbol{u}) = \boldsymbol{0}$, and $Cov(\boldsymbol{u}) = \boldsymbol{\Sigma}_{\boldsymbol{u}} = \sum_{j} \pi_{j} \boldsymbol{V}_{j,0}$.

b) Let **A** be a $g \times p$ full rank matrix with $1 \leq g \leq p$. Then

$$\mathbf{v}_n = \mathbf{A}\mathbf{u}_n = \sqrt{n}(\mathbf{A}\hat{\boldsymbol{\beta}}_{MIX} - \mathbf{A}\boldsymbol{\beta}) \stackrel{D}{\to} \mathbf{A}\mathbf{u} = \mathbf{v}$$
 (2.5)

where v has a mixture distribution of the $v_j = Au_j \sim N_g(\mathbf{0}, AV_{j,0}A^T)$ with probabilities π_j .

- c) The estimator $\hat{\boldsymbol{\beta}}_{VS}$ is a \sqrt{n} consistent estimator of $\boldsymbol{\beta}$: $\sqrt{n}(\hat{\boldsymbol{\beta}}_{VS} \boldsymbol{\beta}) = O_P(1)$.
- d) If $\pi_d = 1$, then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{SEL} \boldsymbol{\beta}) \stackrel{D}{\to} \boldsymbol{u} \sim N_p(\boldsymbol{0}, \boldsymbol{V}_{d,0})$ where SEL is VS or MIX.

Proof. a) Since u_n has a mixture distribution of the u_{kn} with probabilities π_{kn} , the cdf of u_n is $F_{u_n}(t) = \sum_k \pi_{kn} F_{u_{kn}}(t) \to F_{u}(t) = \sum_j \pi_j F_{u_j}(t)$ at continuity points of the $F_{u_j}(t)$ as $n \to \infty$.

- b) Since $u_n \stackrel{D}{\rightarrow} u$, then $Au_n \stackrel{D}{\rightarrow} Au$.
- c) The result follows since selecting from a finite number J of \sqrt{n} consistent estimators (even on a set that goes to one in probability) results in a \sqrt{n} consistent estimator by Pratt (1959).
- d) If $\pi_d = 1$, there is no selection bias, asymptotically. The result also follows by Pötscher (1991, Lemma 1). \square

The following subscript notation is useful. Subscripts before the MIX are used for subsets of $\hat{\boldsymbol{\beta}}_{MIX} = (\hat{\beta}_1, ..., \hat{\beta}_p)^T$. Let $\hat{\boldsymbol{\beta}}_{i,MIX} = \hat{\beta}_i$. Similarly, if $I = \{i_1, ..., i_a\}$, then $\hat{\boldsymbol{\beta}}_{I,MIX} = (\hat{\beta}_{i_1}, ..., \hat{\beta}_{i_a})^T$. Subscripts after MIX denote the *i*th vector from a sample $\hat{\boldsymbol{\beta}}_{MIX,1}, ..., \hat{\boldsymbol{\beta}}_{MIX,B}$. Similar notation is used for

other estimators such as $\hat{\beta}_{VS}$. The subscript 0 is still used for zero padding. We may use $\hat{\beta} = \hat{\beta}_{FULL}$ to denote the full model.

Typically the mixture distribution is not asymptotically normal unless a $\pi_d = 1$ (e.g. if S is the full model), or if for each π_j , $\mathbf{A}\mathbf{u}_j \sim N_g(\mathbf{0}, \mathbf{A}\mathbf{V}_{j,0}\mathbf{A}^T) = N_g(\mathbf{0}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$. Then $\sqrt{n}(\mathbf{A}\hat{\boldsymbol{\beta}}_{MIX} - \mathbf{A}\boldsymbol{\beta}) \stackrel{D}{\to} \mathbf{A}\mathbf{u} \sim N_g(\mathbf{0}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$. This special case occurs for $\hat{\boldsymbol{\beta}}_{S,MIX}$ if $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0}, \mathbf{V})$ where the asymptotic covariance matrix \mathbf{V} is diagonal and nonsingular. Then $\hat{\boldsymbol{\beta}}_{S,MIX}$ and $\hat{\boldsymbol{\beta}}_{S,FULL}$ have the same multivariate normal limiting distribution. For several criteria, this result should hold for $\hat{\boldsymbol{\beta}}_{VS}$ since asymptotically, $\sqrt{n}(\mathbf{A}\hat{\boldsymbol{\beta}}_{VS} - \mathbf{A}\boldsymbol{\beta})$ is selecting from the $\mathbf{A}\mathbf{u}_j$ which have the same distribution. In the simulations when \mathbf{V} is diagonal, the confidence regions applied to $\mathbf{A}\hat{\boldsymbol{\beta}}_{SEL}^* = \mathbf{B}\hat{\boldsymbol{\beta}}_{S,SEL}^*$ had similar volume and cutoffs where SEL is MIX, VS, or FULL.

Theorem 2.3 can be used to justify prediction intervals after variable selection. See Pelawa Watagoda and Olive (2021b) and Olive, Rathnayake, and Haile (2022). Theorem 2.3d) is useful for variable selection consistency and the oracle property where $\pi_d = \pi_S = 1$ if $P(I_{min} = S) \to 1$ as $n \to \infty$. See Claeskens and Hjort (2008, pp. 101-114) and Fan and Li (2001) for references. A necessary condition for $P(I_{min} = S) \to 1$ is that S is one of the models considered with probability going to one. This condition holds under very strong regularity conditions for fast methods. See Wieczorek and Lei (2022) for forward selection and Hastie, Tibshirani, and Wainwright (2015, pp. 295-302) for lasso, where the predictors need a "near orthogonality" condition.

Remark 2.4. If $A_1, A_2, ..., A_k$ are pairwise disjoint and if $\bigcup_{i=1}^k A_i = S$, then the collection of sets $A_1, A_2, ..., A_k$ is a partition of S. Then the Law of Total Probability states that if $A_1, A_2, ..., A_k$ form a partition of S such that $P(A_i) > 0$ for i = 1, ..., k, then

$$P(B) = \sum_{j=1}^{k} P(B \cap A_j) = \sum_{j=1}^{k} P(B|A_j)P(A_j).$$

Let sets $A_{k+1}, ..., A_m$ satisfy $P(A_i) = 0$ for i = k+1, ..., m. Define $P(B|A_j) = 0$ if $P(A_i) = 0$. Then a Generalized Law of Total Probability is

$$P(B) = \sum_{j=1}^{m} P(B \cap A_j) = \sum_{j=1}^{m} P(B|A_j)P(A_j),$$

and will be used in the proof of the result in the following paragraph.

Pötscher (1991) used the conditional distribution of $\hat{\boldsymbol{\beta}}_{VS}|(\hat{\boldsymbol{\beta}}_{VS}=\hat{\boldsymbol{\beta}}_{I_k,0})$ to find the distribution of $\boldsymbol{w}_n=\sqrt{n}(\hat{\boldsymbol{\beta}}_{VS}-\boldsymbol{\beta})$. Let $\hat{\boldsymbol{\beta}}_{I_k,0}^C$ be a random vector from the conditional distribution $\hat{\boldsymbol{\beta}}_{I_k,0}|(\hat{\boldsymbol{\beta}}_{VS}=\hat{\boldsymbol{\beta}}_{I_k,0})$. Let $\boldsymbol{w}_{kn}=\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_k,0}-\boldsymbol{\beta})|(\hat{\boldsymbol{\beta}}_{VS}=\hat{\boldsymbol{\beta}}_{I_k,0})\sim\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_k,0}^C-\boldsymbol{\beta})$. Denote $F_{\boldsymbol{z}}(\boldsymbol{t})=P(z_1\leq t_1,...,z_p\leq t_p)$ by $P(\boldsymbol{z}\leq \boldsymbol{t})$. Then Pötscher (1991) and Pelawa Watagoda and Olive (2021b)

show

$$F_{\mathbf{w}_n}(\mathbf{t}) = P[n^{1/2}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta}) \le \mathbf{t}] = \sum_{k=1}^J F_{\mathbf{w}_{kn}}(\mathbf{t}) \pi_{kn}.$$

Hence $\hat{\boldsymbol{\beta}}_{VS}$ has a mixture distribution of the $\hat{\boldsymbol{\beta}}_{I_k,0}^C$ with probabilities π_{kn} , and \boldsymbol{w}_n has a mixture distribution of the $\hat{\boldsymbol{w}}_{kn}$ with probabilities π_{kn} .

Proof: Let $W = W_{VS} = k$ if $\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0}$ where $P(W_{VS} = k) = \pi_{kn}$ for k = 1, ..., J. Then $(\hat{\boldsymbol{\beta}}_{VS:n}, W_{VS:n}) = (\hat{\boldsymbol{\beta}}_{VS}, W_{VS})$ has a joint distribution where the sample size n is usually suppressed. Note that $\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_W,0}$. Then by Remark 2.4,

$$\begin{split} F_{\boldsymbol{w}_n}(\boldsymbol{t}) &= P[n^{1/2}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta}) \leq \boldsymbol{t}] = \\ \sum_{k=1}^J P[n^{1/2}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta}) \leq \boldsymbol{t} | (\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0})] P(\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0}) = \\ \sum_{k=1}^J P[n^{1/2}(\hat{\boldsymbol{\beta}}_{I_k,0} - \boldsymbol{\beta}) \leq \boldsymbol{t} | (\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0})] \pi_{kn} \\ &= \sum_{k=1}^J P[n^{1/2}(\hat{\boldsymbol{\beta}}_{I_k,0}^C - \boldsymbol{\beta}) \leq \boldsymbol{t}] \pi_{kn} = \sum_{k=1}^J F_{\boldsymbol{w}_{kn}}(\boldsymbol{t}) \pi_{kn}. \quad \Box \end{split}$$

Charkhi and Claeskens (2018) showed that $\mathbf{w}_{jn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0}^C - \boldsymbol{\beta}) \stackrel{D}{\to} \mathbf{w}_j$ if $S \subseteq I_j$ for the maximum likelihood estimator (MLE) with AIC, and gave a forward selection example. They claim that \mathbf{w}_j is a multivariate truncated normal distribution (where no truncation is possible) that is symmetric about $\mathbf{0}$. Hence $E(\mathbf{w}_j) = 0$, and $\operatorname{Cov}(\mathbf{w}_j) = \boldsymbol{\Sigma}_j$ exits. Note that both $\sqrt{n}(\hat{\boldsymbol{\beta}}_{MIX} - \boldsymbol{\beta})$ and $\sqrt{n}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta})$ are selecting from the $\mathbf{u}_{kn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_k,0} - \boldsymbol{\beta})$ and asymptotically from the \mathbf{u}_j . The random selection for $\hat{\boldsymbol{\beta}}_{MIX}$ does not change the distribution of \mathbf{u}_{jn} , but selection bias does change the distribution of the selected \mathbf{u}_{jn} and \mathbf{u}_j to that of \mathbf{w}_{jn} and \mathbf{w}_j . The assumption that $\mathbf{w}_{jn} \stackrel{D}{\to} \mathbf{w}_j$ may not be mild. The proof for Equation (2.6) is the same as that for (2.4). Theorem 2.4 proves that \mathbf{w} is a mixture distribution of the \mathbf{w}_j with probabilities π_j .

Theorem 2.4. Assume $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$, and let $\hat{\boldsymbol{\beta}}_{VS} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities π_{kn} where $\pi_{kn} \to \pi_k$ as $n \to \infty$. Denote the positive π_k by π_j . Assume $\boldsymbol{w}_{jn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0}^C - \boldsymbol{\beta}) \xrightarrow{D} \boldsymbol{w}_j$. Then

$$\boldsymbol{w}_n = \sqrt{n}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta}) \stackrel{D}{\to} \boldsymbol{w} \tag{2.6}$$

where the cdf of \boldsymbol{w} is $F_{\boldsymbol{w}}(\boldsymbol{t}) = \sum_{j} \pi_{j} F_{\boldsymbol{w}_{j}}(\boldsymbol{t})$.

Proof. Since \boldsymbol{w}_n has a mixture distribution of the \boldsymbol{w}_{kn} with probabilities π_{kn} , the cdf of \boldsymbol{w}_n is $F_{\boldsymbol{w}_n}(\boldsymbol{t}) = \sum_k \pi_{kn} F_{\boldsymbol{w}_{kn}}(\boldsymbol{t}) \to F_{\boldsymbol{w}}(\boldsymbol{t}) = \sum_j \pi_j F_{\boldsymbol{w}_j}(\boldsymbol{t})$ at continuity points of the $F_{\boldsymbol{w}_j}(\boldsymbol{t})$ as $n \to \infty$. \square

Remark 2.5. If $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$, then $\hat{\beta}_{VS}$ is a \sqrt{n} consistent estimator of β since selecting from a finite number J of \sqrt{n} consistent estimators (even on a set that goes to one in probability) results in a \sqrt{n} consistent estimator by Pratt (1959). By both this result and Theorems 2.3 and 2.4, the lasso variable selection and elastic net variable selection estimators are \sqrt{n} consistent if lasso and elastic net are consistent.

Remark 2.6. Another variable selection model is $\mathbf{x}^T \boldsymbol{\beta} = \mathbf{x}_{S_i}^T \boldsymbol{\beta}_{S_i}$ for i = 1, ..., K. Then submodel I underfits if no $S_i \subseteq I$. A necessary condition for an estimator to be consistent is $P(\text{no } S_i \subseteq I_{min}) \to 0$ as $n \to \infty$. By Remark 2.2, the above probability holds if C_p is used. Then in Theorem 2.4, we can replace $P(S \subseteq I_{min}) \to 1$ by $P(\text{no } S_i \subseteq I_{min}) \to 0$ as $n \to \infty$.

Example 2.1. This is an example where the $\pi_{kn} \to \pi_k$ as $n \to \infty$. Assume $S \subseteq I$ where I has a predictors, including a constant. Then for a wide variety of iid error distributions, $F_I \xrightarrow{D} X/(p-a)$ where $X \sim \chi_{p-a}^2$. Let F denote the full model, and let $S = I = I_i$ be the model that deletes predictor x_i with a = p-1. Then from Definition 2.2, $C_p(I) \xrightarrow{D} X + p - 2$ where $X \sim \chi_1^2$. Let F denote the full model and consider all subsets variable selection with C_p . Since only S and F do not underfit, only π_S and π_F are positive. Since $C_p(F) = p$, I = S is selected if $C_p(I) < p$. Hence $\pi_S = P(\chi_1^2 + p - 2 < p) = P(\chi_1^2 < 2)$, and $\pi_F = 1 - \pi_S$. This result also holds for backward elimination since the probability that x_i will be the first predictor deleted goes to 1 as $n \to \infty$ because $C_p(I_i) = C_p(S)$ is bounded in probability while $C_p(I_j)$ diverges as $n \to \infty$ for $j \neq i$. For forward selection with correlated predictors, expect that $\pi_S < P(\chi_1^2 < 2)$, and hence $\pi_F > 1 - P(\chi_1^2 < 2)$.

2.3 Prediction Intervals

Prediction intervals for regression and prediction regions for multivariate regression are important topics. Inference after variable selection will consider bootstrap hypothesis testing. Applying certain prediction intervals or prediction regions to the bootstrap sample will result in confidence intervals or confidence regions. The prediction intervals and regions are based on samples of size n, while the bootstrap sample size is $B = B_n$. Hence this section and the following section are important.

Notation: $P(A_n)$ is "eventually bounded below" by $1 - \delta$ if $P(A_n)$ gets arbitrarily close to or higher than $1 - \delta$ as $n \to \infty$. Hence $P(A_n) > 1 - \delta - \epsilon$ for any $\epsilon > 0$ if n is large enough. If $P(A_n) \to 1 - \delta$ as $n \to \infty$, then $P(A_n)$ is

eventually bounded below by $1 - \delta$. The actual coverage is $1 - \gamma_n = P(Y_f \in [L_n, U_n])$, the nominal coverage is $1 - \delta$ where $0 < \delta < 1$. The 90% and 95% large sample prediction intervals and prediction regions are common.

Definition 2.6. Consider predicting a future test value Y_f given a $p \times 1$ vector of predictors \boldsymbol{x}_f and training data $(Y_1, \boldsymbol{x}_1), ..., (Y_n, \boldsymbol{x}_n)$. A large sample $100(1-\delta)\%$ prediction interval (PI) for Y_f has the form $[\hat{L}_n, \hat{U}_n]$ where $P(\hat{L}_n \leq Y_f \leq \hat{U}_n)$ is eventually bounded below by $1-\delta$ as the sample size $n \to \infty$. A large sample $100(1-\delta)\%$ PI is asymptotically optimal if it has the shortest asymptotic length: the length of $[\hat{L}_n, \hat{U}_n]$ converges to $U_s - L_s$ as $n \to \infty$ where $[L_s, U_s]$ is the population shorth: the shortest interval covering at least $100(1-\delta)\%$ of the mass.

If $Y_f|x_f$ has a pdf, we often want $P(\hat{L}_n \leq Y_f \leq \hat{U}_n) \to 1-\delta$ as $n \to \infty$. The interpretation of a 100 $(1-\delta)\%$ PI for a random variable Y_f is similar to that of a confidence interval (CI). Collect data, then form the PI, and repeat for a total of k times where the k trials are independent from the same population. If Y_{fi} is the ith random variable and PI_i is the ith PI, then the probability that $Y_{fi} \in PI_i$ for j of the PIs approximately follows a binomial $(k, \rho = 1 - \delta)$ distribution. Hence if 100 95% PIs are made, $\rho = 0.95$ and $Y_{fi} \in PI_i$ happens about 95 times.

There are two big differences between CIs and PIs. First, the length of the CI goes to 0 as the sample size n goes to ∞ while the length of the PI converges to some nonzero number J, say. Secondly, many confidence intervals work well for large classes of distributions while many prediction intervals assume that the distribution of the data is known up to some unknown parameters. Usually the $N(\mu, \sigma^2)$ distribution is assumed, and the parametric PI may not perform well if the normality assumption is violated. This section will describe three nonparametric PIs for the additive error regression model, Y = m(x) + e, that work well for a large class of unknown zero mean error distributions.

Consider the location model, $Y_i = \mu + e_i$, where $Y_1, ..., Y_n, Y_f$ are iid, and there are no vectors of predictors x_i and x_f . Let $Y_{(1)} \leq Y_{(2)} \leq \cdots \leq Y_{(n)}$ be the order statistics of the iid training data $Y_1, ..., Y_n$. Then the unknown future value Y_f is the test data.

Remark 2.7. Confidence intervals, prediction intervals, confidence regions, and prediction regions should used closed sets not open sets. The closed sets have the same volume as the open sets, but have coverage at least as high as the open sets with weaker regularity conditions. In particular, confidence and prediction intervals should be closed intervals, not open intervals.

In the following theorem, if the open interval $(Y_{(k_1)}, Y_{(k_2)})$ was used, we would need to add the regularity condition that $Y_{\delta/2}$ and $Y_{1-\delta/2}$ are continuity points of $F_Y(y)$.

Theorem 2.5. Let $Y_1, ..., Y_n, Y_f$ be iid. Let $Y_{(1)} \leq Y_{(2)} \leq \cdots \leq Y_{(n)}$ be the order statistics of the training data. Let $k_1 = \lceil n\delta/2 \rceil$ and $k_2 = \lceil n(1 - \delta/2) \rceil$ where $0 < \delta < 1$. The large sample $100(1 - \delta)\%$ percentile prediction interval for Y_f is

$$[Y_{(k_1)}, Y_{(k_2)}]. (2.7)$$

The shorth(c) estimator of the population shorth is useful for making asymptotically optimal prediction intervals. For the uniform distribution, the population shorth is not unique. Of course the length of the population shorth is unique.

Definition 2.7. Let the shortest closed interval containing at least c of the $Y_1, ..., Y_n$ be

$$shorth(c) = [Y_{(s)}, Y_{(s+c-1)}].$$
 (2.8)

Theorem 2.6, Frey (2013). Let $Y_1, ..., Y_n$ be iid. Let

$$k_n = \lceil n(1-\delta) \rceil. \tag{2.9}$$

For large $n\delta$ and iid data, the large sample $100(1-\delta)\%$ shorth (k_n) prediction interval has maximum undercoverage $\approx 1.12\sqrt{\delta/n}$. The maximum undercoverage occurs for the family of uniform $U(\theta_1, \theta_2)$ distributions.

Theorem 2.7, Frey (2013). Let $Y_1, ..., Y_n, Y_f$ be iid. Let $Y_{(1)} \leq Y_{(2)} \leq ... \leq Y_{(n)}$ be the order statistics of the training data. The large sample $100(1-\delta)\%$ shorth(c) prediction interval for Y_f is

$$[Y_{(s)}, Y_{(s+c-1)}]$$
 where $c = \min(n, \lceil n[1 - \delta + 1.12\sqrt{\delta/n} \rceil \rceil).$ (2.10)

A problem with the prediction intervals that cover $\approx 100(1 - \delta)\%$ of the training data cases Y_i (such as (2.8) using $c = k_n$ given by (2.9)), is that they have coverage lower than the nominal coverage of $1 - \delta$ for moderate n. This result is not surprising since empirically statistical methods perform worse on test data. For iid data, Frey (2013) used (2.10) to correct for undercoverage.

Remark 2.8. a) The shorth PI (2.10) often has good coverage for $n \geq 50$ and $0.05 \leq \delta \leq 0.1$, but the convergence of $U_n - L_n$ to the population shorth length $U_s - L_s$ can be quite slow. Under regularity conditions, Grübel (1982) showed that for iid data, the length and center the shorth(k_n) interval are \sqrt{n} consistent and $n^{1/3}$ consistent estimators of the length and center of the population shorth interval, respectively. The correction factor also increases the length. For a unimodal and symmetric error distribution, the nonparametric PI (2.7) and the shorth PI (2.10) are asymptotically equivalent, but PI (2.7) can be the shorter. b) The nonparametric PI (2.7) can be much longer than the shorth PI (2.10) if the data distribution is skewed.

Example 2.2. Given below were votes for preseason 1A basketball poll from Nov. 22, 2011 WSIL News where the 778 was a typo: the actual value

was 78. As shown below, finding shorth(3) from the ordered data is simple. If the outlier was corrected, shorth(3) = [76,78].

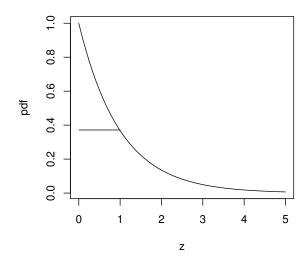


Fig. 2.1 The 36.8% Highest Density Region is [0,1]

Remark 2.9. The large sample $100(1-\delta)\%$ shorth PI (2.10) may or may not be asymptotically optimal if the $100(1-\delta)\%$ population shorth is $[L_s, U_s]$ and F(x) is not strictly increasing in intervals $(L_s - \epsilon, L_s + \epsilon)$ and $(U_s - \epsilon, U_s + \epsilon)$ for some $\epsilon > 0$. To see the issue, suppose Y has probability mass function (pmf) p(0) = 0.4, p(1) = 0.3, p(2) = 0.2, p(3) = 0.06, and p(4) = 0.04. Then the 90% population shorth is [0,2] and the $100(1-\delta)\%$ population shorth is [0,3] for $(1-\delta) \in (0.9,0.96]$. Let $W_i = I(Y_i \le x) = 1$ if $Y_i \le x$ and 0, otherwise. The empirical cdf

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(Y_i \le x) = \frac{1}{n} \sum_{i=1}^n I(Y_{(i)} \le x)$$

is the sample proportion of $Y_i \leq x$. If $Y_1, ..., Y_n$ are iid, then for fixed x, $n\hat{F}_n(x) \sim binomial(n, F(x))$. Thus $\hat{F}_n(x) \sim AN(F(x), F(x)(1 - F(x))/n)$. For the Y with the above pmf, $\hat{F}_n(2) \stackrel{P}{\to} 0.9$ as $n \to \infty$ with $P(\hat{F}_n(2) < 0.9) \to 0.5$ and $P(\hat{F}_n(2) \geq 0.9) \to 0.5$ as $n \to \infty$. Hence the large sample 90% PI (2.10) will be [0,2] or [0,3] with probabilities $\to 0.5$ as $n \to \infty$ with expected asymptotic length of 2.5 and expected asymptotic coverage converging to 0.93. However, the large sample $100(1-\delta)\%$ PI (2.10) converges to [0,3] and is asymptotically optimal with asymptotic coverage 0.96 for $(1-\delta) \in (0.9, 0.96)$.

For a random variable Y, the $100(1-\delta)\%$ highest density region is a union of $k \geq 1$ disjoint intervals such that the mass within the intervals $\geq 1 - \delta$ and the sum of the k interval lengths is as small as possible. Suppose that f(z) is a unimodal pdf that has interval support, and that the pdf f(z) of Y decreases rapidly as z moves away from the mode. Let [a, b] be the shortest interval such that $F_Y(b) - F_Y(a) = 1 - \delta$ where the cdf $F_Y(z) = P(Y \le z)$. Then the interval [a, b] is the $100(1 - \delta)$ highest density region. To find the $100(1-\delta)\%$ highest density region of a pdf, move a horizontal line down from the top of the pdf. The line will intersect the pdf or the boundaries of the support of the pdf at $[a_1, b_1], ..., [a_k, b_k]$ for some $k \geq 1$. Stop moving the line when the areas under the pdf corresponding to the intervals is equal to $1-\delta$. As an example, let $f(z)=e^{-z}$ for z>0. See Figure 2.1 where the area under the pdf from 0 to 1 is 0.368. Hence [0,1] is the 36.8% highest density region. The shorth PI estimates the highest density interval which is the highest density region for a distribution with a unimodal pdf. Often the highest density region is an interval [a, b] where f(a) = f(b), especially if the support where f(z) > 0 is $(-\infty, \infty)$.

The additive error regression model is $Y = m(\boldsymbol{x}) + e$ where $m(\boldsymbol{x})$ is a real valued function and the e_i are iid, often with zero mean and constant variance $V(e) = \sigma^2$. The large sample theory for prediction intervals is simple for this model, and variable selection models for the multiple linear regression model have this form with $m(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{\beta} = \boldsymbol{x}_I^T \boldsymbol{\beta}_I$ if $S \subseteq I$. Let the residuals $r_i = Y_i - \hat{m}(\boldsymbol{x}_i) = Y_i - \hat{Y}_i$ for i = 1, ..., n. Assume $\hat{m}(\boldsymbol{x})$ is a consistent estimator of $m(\boldsymbol{x})$ such that the sample percentiles $[\hat{L}_n(r), \hat{U}_n(r)]$ of the residuals are consistent estimators of the population percentiles [L, U] of the error distribution where $P(e \in [L, U]) = 1 - \delta$. Let $\hat{Y}_f = \hat{m}(\boldsymbol{x}_f)$. Then $P(Y_f \in [\hat{Y}_f + \hat{L}_n(r), \hat{Y}_f + \hat{U}_n(r)] \to P(Y_f \in [m(\boldsymbol{x}_f) + L, m(\boldsymbol{x}_f) + U]) = P(e \in [L, U]) = 1 - \delta$ as $n \to \infty$. Three common choices are a) $P(e \le U) = 1 - \delta/2$ and $P(e \le L) = \delta/2$, b) $P(e^2 \le U^2) = P(|e| \le U) = P(-U \le e \le U) = 1 - \delta$ with L = -U, and c) the population shorth is the shortest interval (with length U - L) such that $P[e \in [L, U]) = 1 - \delta$. The PI c) is asymptotically optimal while a) and b)

are asymptotically optimal on the class of symmetric zero mean unimodal error distributions. The split conformal PI (2.16), described below, estimates [-U, U] in b).

Prediction intervals based on the shorth of the residuals need a correction factor for good coverage since the residuals tend to underestimate the errors in magnitude. With the exception of ridge regression, let d be the number of "variables" used by the method. For MLR, forward selection, lasso, and relaxed lasso use variables $x_1^*, ..., x_d^*$ while PCR and PLS use variables that are linear combinations of the predictors $V_j = \gamma_j^T x$ for j = 1, ..., d. (We could let d = j if j is the degrees of freedom of the selected model if that model was chosen in advance without model or variable selection. Hence d = j is not the model degrees of freedom if model selection was used.) See Chapter 3 for more about these estimators. See Hong et al. (2018) for why classical prediction intervals after variable selection fail to work.

For n/p large and d=p, Olive (2013a) developed prediction intervals for models of the form $Y_i=m(\boldsymbol{x}_i)+e_i$, and variable selection models for MLR have this form, as noted by Olive (2018). Pelawa Watagoda and Olive (2021b) gave two prediction intervals that can be useful even if n/p is not large. These PIs will be defined below. The first PI modifies the Olive (2013a) PI that can only be computed if n>p. Olive (2007, 2017a, 2017b, 2018) used similar correction factors for several prediction intervals and prediction regions with d=p. We want $n\geq 10d$ so that the model does not overfit.

If the OLS model I has d predictors, and $S \subseteq I$, then

$$E(MSE(I)) = E\left(\sum_{i=1}^{n} \frac{r_i^2}{n-d}\right) = \sigma^2 = E\left(\sum_{i=1}^{n} \frac{e_i^2}{n}\right)$$

and MSE(I) is a \sqrt{n} consistent estimator of σ^2 for many error distributions by Su and Cook (2012). Also see Freedman (1981). For a wide range of regression models, extrapolation occurs if the leverage $h_f = \boldsymbol{x}_{I,f}^T (\boldsymbol{X}_I^T \boldsymbol{X}_I)^{-1} \boldsymbol{x}_{I,f} > 2d/n$: if $\boldsymbol{x}_{I,f}$ is too far from the data $\boldsymbol{x}_{I,1},...,\boldsymbol{x}_{I,n}$, then the model may not hold and prediction can be arbitrarily bad. These results suggests that

$$\sqrt{\frac{n}{n-d}}\sqrt{(1+h_f)}$$
 $r_i \approx \sqrt{\frac{n+2d}{n-d}}$ $r_i \approx e_i$.

In simulations for prediction intervals and prediction regions with n = 20d, the maximum simulated undercoverage was near 5% if q_n in (2.11) is changed to $q_n = 1 - \delta$.

Next we give the correction factor and the first prediction interval. Let $q_n = \min(1 - \delta + 0.05, 1 - \delta + d/n)$ for $\delta > 0.1$ and

$$q_n = \min(1 - \delta/2, 1 - \delta + 10\delta d/n), \text{ otherwise.}$$
 (2.11)

If $1 - \delta < 0.999$ and $q_n < 1 - \delta + 0.001$, set $q_n = 1 - \delta$. Let

$$c = \lceil nq_n \rceil, \tag{2.12}$$

and let

$$b_n = \left(1 + \frac{15}{n}\right)\sqrt{\frac{n+2d}{n-d}}\tag{2.13}$$

if $d \leq 8n/9$, and

$$b_n = 5\left(1 + \frac{15}{n}\right),\,$$

otherwise. As d gets close to n, the model overfits and the coverage will be less than the nominal. The piecewise formula for b_n allows the prediction interval to be computed even if $d \geq n$. Compute the shorth(c) of the residuals $= [r_{(s)}, r_{(s+c-1)}] = [\tilde{\xi}_{\delta_1}, \tilde{\xi}_{1-\delta_2}]$. Then the first 100 $(1 - \delta)\%$ large sample PI for Y_f is

$$[\hat{m}(\boldsymbol{x}_f) + b_n \tilde{\xi}_{\delta_1}, \hat{m}(\boldsymbol{x}_f) + b_n \tilde{\xi}_{1-\delta_2}]. \tag{2.14}$$

The second PI randomly divides the data into two half sets H and V where H has $n_H = \lceil n/2 \rceil$ of the cases and V has the remaining $n_V = n - n_H$ cases $i_1, ..., i_{n_V}$. The estimator $\hat{m}_H(\boldsymbol{x})$ is computed using the training data set H. Then the validation residuals $v_j = Y_{i_j} - \hat{m}_H(\boldsymbol{x}_{i_j})$ are computed for the $j = 1, ..., n_V$ cases in the validation set V. Find the Frey PI $[v_{(s)}, v_{(s+c-1)}]$ of the validation residuals (replacing n in (2.10) by $n_V = n - n_H$). Then the second new $100(1 - \delta)\%$ large sample PI for Y_f is

$$[\hat{m}_H(\boldsymbol{x}_f) + v_{(s)}, \hat{m}_H(\boldsymbol{x}_f) + v_{(s+c-1)}].$$
 (2.15)

Remark 2.10. Note that correction factors $b_n \to 1$ are used in large sample confidence intervals and tests if the limiting distribution is N(0,1) or χ_p^2 , but a t_{d_n} or pF_{p,d_n} cutoff is used: $t_{d_n,1-\delta}/z_{1-\delta} \to 1$ and $pF_{p,d_n,1-\delta}/\chi_{p,1-\delta}^2 \to 1$ if $d_n \to \infty$ as $n \to \infty$. Using correction factors for large sample confidence intervals, tests, prediction intervals, prediction regions, and bootstrap confidence regions improves the performance for moderate sample size n.

Remark 2.11. For a good fitting model, residuals r_i tend to be smaller in magnitude than the errors e_i , while validation residuals v_i tend to be larger in magnitude than the e_i . Thus the Frey correction factor can be used for PI (2.15) while PI (2.14) needs a stronger correction factor.

We can also motivate PI (2.15) by modifying the justification for the Lei et al. (2018) split conformal prediction interval

$$\left[\hat{m}_H(\boldsymbol{x}_f) - a_q, \hat{m}_H(\boldsymbol{x}_f) + a_q\right] \tag{2.16}$$

where a_q is the $100(1-\alpha)$ th quantile of the absolute validation residuals. PI (2.15) is a modification of the split conformal PI that is asymptotically optimal. Suppose (Y_i, \mathbf{x}_i) are iid for i = 1, ..., n, n + 1 where $(Y_f, \mathbf{x}_f) = (Y_{n+1}, \mathbf{x}_{n+1})$. Compute $\hat{m}_H(\mathbf{x})$ from the cases in H. For example, get $\hat{\beta}_H$

from the cases in H. Consider the validation residuals v_i for $i=1,...,n_V$ and the validation residual v_{n_V+1} for case (Y_f, \boldsymbol{x}_f) . Since these n_V+1 cases are iid, the probability that v_t has rank j for $j=1,...,n_V+1$ is $1/(n_V+1)$ for each t, i.e., the ranks follow the discrete uniform distribution. Let $t=n_V+1$ and let the $v_{(j)}$ be the ordered residuals using $j=1,...,n_V$. That is, get the order statistics without using the unknown validation residual v_{n_V+1} . Then $v_{(i)}$ has rank i if $v_{(i)} < v_{n_V+1}$ but rank i+1 if $v_{(i)} > v_{n_V+1}$. Thus

$$P(Y_f \in [\hat{m}_H(\boldsymbol{x}_f) + v_{(k)}, \hat{m}_H(\boldsymbol{x}_f) + v_{(k+b-1)}]) = P(v_{(k)} \le v_{n_V+1} \le v_{(k+b-1)}) \ge v_{n_V+1} \le v_{(k+b-1)}$$

 $P(v_{n_V+1} \text{ has rank between } k+1 \text{ and } k+b-1 \text{ and there are no tied ranks}) \ge (b-1)/(n_V+1) \approx 1-\delta \text{ if } b = \lceil (n_V+1)(1-\delta) \rceil + 1 \text{ and } k+b-1 \le n_V.$ This probability statement holds for a fixed k such as $k = \lceil n_V \delta/2 \rceil$. The statement is not true when the shorth(b) estimator is used since the shortest interval using k=s can have s change with the data set. That is, s is not fixed. Hence if PI's were made from J independent data sets, the PI's with fixed k would contain Y_f about $J(1-\delta)$ times, but this value would be smaller for the shorth(b) prediction intervals where s can change with the data set. The above argument works if the estimator $\hat{m}(x)$ is "symmetric in the data," which is satisfied for multiple linear regression estimators.

The PIs (2.14) to (2.16) can be used with $\hat{m}(\boldsymbol{x}) = \hat{Y}_f = \boldsymbol{x}_{I_d}^T \hat{\boldsymbol{\beta}}_{I_d}$ where I_d denotes the index of predictors selected from the model or variable selection method. If $\hat{\boldsymbol{\beta}}$ is a consistent estimator of $\boldsymbol{\beta}$, the PIs (2.14) and (2.15) are asymptotically optimal for a large class of error distributions while the split conformal PI (2.16) needs the error distribution to be unimodal and symmetric for asymptotic optimality. Since \hat{m}_H uses n/2 cases, \hat{m}_H has about half the efficiency of \hat{m} . When $p \geq n$, the regularity conditions for consistent estimators are strong. For example, EBIC and lasso can have $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$. Then forward selection with EBIC and relaxed lasso can produce consistent estimators. PLS can be \sqrt{n} consistent. See Chapter 3 for the large sample for many MLR estimators.

None of the three prediction intervals (2.14), (2.15), and (2.16) dominates the other two. Recall that β_S is an $a_S \times 1$ vector in (2.1). If a good fitting method, such as lasso or forward selection with EBIC, is used, and $1.5a_S \leq n \leq 5a_S$, then PI (2.14) can be much shorter than PIs (2.15) and (2.16). For n/d large, PIs (2.14) and (2.15) can be shorter than PI (2.16) if the error distribution is not unimodal and symmetric; however, PI (2.16) is often shorter if n/d is not large since the sample shorth converges to the population shorth rather slowly. Grübel (1982) shows that for iid data, the length and center the shorth(k_n) interval are \sqrt{n} consistent and $n^{1/3}$ consistent estimators of the length and center of the population shorth interval. For a unimodal and symmetric error distribution, the three PIs are asymptotically equivalent, but PI (2.16) can be the shortest PI due to different correction factors.

If the estimator is poor, the split conformal PI (2.16) and PI (2.15) can have coverage closer to the nominal coverage than PI (2.14). For example, if \hat{m} interpolates the data and \hat{m}_H interpolates the training data from H, then the validation residuals will be huge. Hence PI (2.15) will be long compared to PI (2.16).

Asymptotically optimal PIs estimate the population shorth of the zero mean error distribution. Hence PIs that use the shorth of the residuals, such as PIs (2.14) and (2.15), may be the only easily computed asymptotically optimal PIs for a wide range of consistent estimators $\hat{\beta}$ of β for the multiple linear regression model. If the error distribution is $e \sim EXP(1) - 1$, then the asymptotic length of the 95% PI (2.14) or (2.15) is 2.966 while that of the split conformal PI is 2(1.966) = 3.992. For more about these PIs applied to MLR models, see Section 3.9 and Pelawa Watagoda and Olive (2021b).

2.4 Prediction Regions

Consider predicting a $p \times 1$ future test value x_f , given past training data $x_1, ..., x_n$ where $x_1, ..., x_n, x_f$ are iid. Much as confidence regions and intervals give a measure of precision for the point estimator $\hat{\theta}$ of the parameter θ , prediction regions and intervals give a measure of precision of the point estimator $T = \hat{x}_f$ of the future random vector x_f .

Definition 2.8. A large sample $100(1-\delta)\%$ prediction region is a set \mathcal{A}_n such that $P(\boldsymbol{x}_f \in \mathcal{A}_n)$ is eventually bounded below by $1-\delta$ as $n \to \infty$. A prediction region is asymptotically optimal if its volume converges in probability to the volume of the minimum volume covering region or the highest density region of the distribution of \boldsymbol{x}_f .

If x_f has a pdf, we often want $P(x_f \in \mathcal{A}_n) \to 1 - \delta$ as $n \to \infty$. A PI is a prediction region where p = 1. Highest density regions are usually hard to estimate for p much larger than four, but many elliptically contoured distributions with a nonsingular population covariance matrix, including the multivariate normal distribution, have highest density regions that can be estimated by the nonparametric prediction region (2.22). For more about highest density regions, see Olive (2017b, pp. 148-155) and Hyndman (1996). Mahalanobis distances D_x and $D_i = \sqrt{D_i^2}$ are defined in Definition 1.17. The sample mean and covariance matrix (\overline{x}, S) are defined in Definition 1.15.

Consider the hyperellipsoid

$$\mathcal{A}_n = \{ \boldsymbol{x} : D_{\boldsymbol{x}}^2(\overline{\boldsymbol{x}}, \boldsymbol{S}) \le D_{(c)}^2 \} = \{ \boldsymbol{x} : D_{\boldsymbol{x}}(\overline{\boldsymbol{x}}, \boldsymbol{S}) \le D_{(c)} \}.$$
 (2.17)

If n is large, we can use $c = k_n = \lceil n(1 - \delta) \rceil$. If n is not large, using $c = U_n$ where U_n decreases to k_n , can improve small sample performance. U_n will be

defined in the paragraph below Equation (2.21). Olive (2013a) showed that (2.17) is a large sample $100(1-\delta)\%$ prediction region under mild conditions, although regions with smaller volumes may exist. Note that the result follows since if $\Sigma_{\boldsymbol{x}}$ and \boldsymbol{S} are nonsingular, then the Mahalanobis distance is a continuous function of $(\overline{\boldsymbol{x}}, \boldsymbol{S})$. Let $\boldsymbol{\mu} = E(\boldsymbol{x})$ and $D = D(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\boldsymbol{x}})$. Then $D_i \overset{D}{\to} D$ and $D_i^2 \overset{D}{\to} D^2$. Hence the sample percentiles of the D_i are consistent estimators of the population percentiles of D at continuity points of the cumulative distribution function of D.

A problem with the prediction regions that cover $\approx 100(1-\delta)\%$ of the training data cases x_i (such as (2.17) for $c=k_n$), is that they have coverage lower than the nominal coverage of $1-\delta$ for moderate n. This result is not surprising since empirically statistical methods perform worse on test data. Increasing c will improve the coverage for moderate samples. Also see Remark 2.12. Empirically for many distributions, for $n \approx 20p$, the prediction region (2.17) applied to iid data using $c = k_n = \lceil n(1-\delta) \rceil$ tended to have undercoverage as high as 5%. The undercoverage decreases rapidly as n increases. Let $q_n = \min(1-\delta+0.05, 1-\delta+p/n)$ for $\delta > 0.1$ and

$$q_n = \min(1 - \delta/2, 1 - \delta + 10\delta p/n), \text{ otherwise.}$$
 (2.18)

If $1 - \delta < 0.999$ and $q_n < 1 - \delta + 0.001$, set $q_n = 1 - \delta$. Using

$$c = \lceil nq_n \rceil \tag{2.19}$$

in (2.17) decreased the undercoverage. Note that Equations (2.11) and (2.12) are similar to Equations (2.18) and (2.19), but replace p by d.

If (T, \mathbf{C}) is a \sqrt{n} consistent estimator of $(\boldsymbol{\mu}, d \boldsymbol{\Sigma})$ for some constant d > 0 where $\boldsymbol{\Sigma}$ is nonsingular, then $D^2(T, \mathbf{C}) = (\boldsymbol{x} - T)^T \mathbf{C}^{-1} (\boldsymbol{x} - T) =$

$$(x - \mu + \mu - T)^T [C^{-1} - d^{-1}\Sigma^{-1} + d^{-1}\Sigma^{-1}](x - \mu + \mu - T)$$

= $d^{-1}D^2(\mu, \Sigma) + o_p(1)$.

Thus the sample percentiles of $D_i^2(T, \mathbf{C})$ are consistent estimators of the percentiles of $d^{-1}D^2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ (at continuity points $D_{1-\delta}$ of the cdf of $D^2(\boldsymbol{\mu}, \boldsymbol{\Sigma})$). If $\boldsymbol{x} \sim N_m(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $D_{\boldsymbol{x}}^2(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = D^2(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \sim \chi_m^2$.

Suppose $(T, \mathbf{C}) = (\overline{\mathbf{x}}_M, b \ \mathbf{S}_M)$ is the sample mean and scaled sample covariance matrix applied to some subset of the data. The classical estimator satisfies this assumption. For h > 0, the hyperellipsoid

$$\{z: (z-T)^T C^{-1}(z-T) \le h^2\} = \{z: D_z^2 \le h^2\} = \{z: D_z \le h\}$$
 (2.20)

has volume equal to

$$\frac{2\pi^{p/2}}{p\Gamma(p/2)}h^p\sqrt{\det(\boldsymbol{C})} = \frac{2\pi^{p/2}}{p\Gamma(p/2)}h^pb^{p/2}\sqrt{\det(\boldsymbol{S}_M)}.$$
 (2.21)

A future observation (random vector) \boldsymbol{x}_f is in the region (2.20) if $D_{\boldsymbol{x}_f} \leq h$. If (T, \boldsymbol{C}) is a consistent estimator of $(\boldsymbol{\mu}, d\boldsymbol{\Sigma})$ for some constant d > 0 where $\boldsymbol{\Sigma}$ is nonsingular, then (2.20) is a large sample $100(1-\delta)\%$ prediction region if $h = D_{(U_n)}$ where $D_{(U_n)}$ is the $100q_n$ th sample quantile of the D_i where q_n is defined above (2.19). If $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ and \boldsymbol{x}_f are iid, then prediction region (2.22) is asymptotically optimal for a large class of elliptically contoured distributions since the volume of (2.22) converges in probability to the volume of the highest density region. (These distributions have a highest density region which is a hyperellipsoid determined by a population Mahalanobis distance. See Definition 1.19.)

The Olive (2013a) nonparametric prediction region uses $(T, \mathbf{C}) = (\overline{\mathbf{x}}, \mathbf{S})$. For the classical prediction region, see Chew (1966) and Johnson and Wichern (1988, pp. 134, 151). Refer to the above paragraph for $D_{(U_n)}$.

Definition 2.9. The large sample $100(1 - \delta)\%$ nonparametric prediction region for a future value x_f given iid data $x_1, ..., x_n$ is

$$\{z: D_z^2(\overline{x}, S) \le D_{(U_n)}^2\},\tag{2.22}$$

while the large sample $100(1-\delta)\%$ classical prediction region is

$$\{z: D_{z}^{2}(\overline{x}, S) \le \chi_{p, 1-\delta}^{2}\}. \tag{2.23}$$

If p is small, Mahalanobis distances tend to be right skewed with a population shorth that discards the right tail. For p=1 and $n\geq 20$, the finite sample correction factors c/n for c given by (2.10) and (2.19) do not differ by much more than 3% for $0.01 \leq \delta \leq 0.5$. See Figure 2.2 where ol = (Eq. 2.19)/n is plotted versus fr = (Eq. 2.10)/n for n=20,21,...,500. The top plot is for $\delta=0.01$, while the bottom plot is for $\delta=0.3$. The identity line is added to each plot as a visual aid. The value of n increases from 20 to 500 from the right of the plot to the left of the plot. Examining the axes of each plot shows that the correction factors do not differ greatly. R code to create Figure 2.2 is shown below.

```
cmar <- par("mar"); par(mfrow = c(2, 1))
par(mar=c(4.0, 4.0, 2.0, 0.5))
frey(0.01); frey(0.3)
par(mfrow = c(1, 1)); par(mar=cmar)</pre>
```

Remark 2.12. The nonparametric prediction region (2.22) is useful if $x_1, ..., x_n, x_f$ are iid from a distribution with a nonsingular covariance matrix, and the sample size n is large enough. The distribution could be continuous, discrete, or a mixture. The asymptotic coverage is $1 - \delta$ if D has a pdf, although prediction regions with smaller volume may exist. If the $100(1-\delta)$ th percentile $D_{1-\delta}$ of D is not a continuity point of the distribution of D, then the asymptotic coverage tends to be $\geq 1 - \delta$ since a sample percentile with

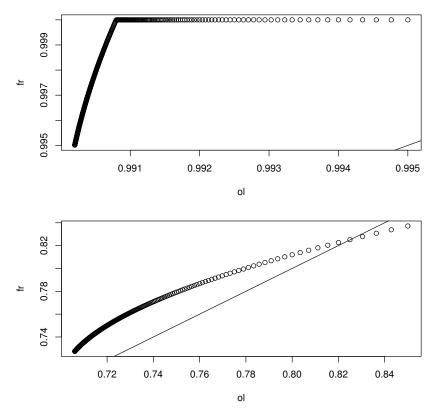


Fig. 2.2 Correction Factor Comparison when $\delta=0.01$ (Top Plot) and $\delta=0.3$ (Bottom Plot)

cutoff q_n that decreases to $1-\delta$ is used and a closed region is used. Often D has a continuous distribution and hence has no discontinuity points for $0 < \delta < 1$. (If there is a jump in the distribution from 0.9 to 0.96 at discontinuity point a, and the nominal coverage is 0.95, we want 0.96 coverage instead of 0.9. So we want the sample percentile to decrease to a.) The nonparametric prediction region (2.22) contains U_n of the training data cases \boldsymbol{x}_i provided that \boldsymbol{S} is nonsingular, even if the model is wrong. For many distributions, the coverage started to be close to $1-\delta$ for $n \geq 10p$ where the coverage is the simulated percentage of times that the prediction region contained \boldsymbol{x}_f .

Remark 2.13. The most used prediction regions assume that the error vectors are iid from a multivariate normal distribution. Using (2.21), the ratio of the volumes of regions (2.23) and (2.22) is

$$\left(\frac{\chi_{p,1-\delta}^2}{D_{(U_n)}^2}\right)^{p/2},$$

which can become close to zero rapidly as p gets large if the x_i are not from the light tailed multivariate normal distribution. For example, suppose $\chi^2_{4,0.5} \approx 3.33$ and $D^2_{(U_n)} \approx D^2_{\boldsymbol{x},0.5} = 6$. Then the ratio is $(3.33/6)^2 \approx 0.308$. Hence if the data is not multivariate normal, severe undercoverage can occur if the classical prediction region is used, and the undercoverage tends to get worse as the dimension p increases. The coverage need not to go to 0, since by the multivariate Chebyshev's inequality, $P(D^2_{\boldsymbol{x}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}_{\boldsymbol{x}}) \leq \gamma) \geq 1 - p/\gamma > 0$ for $\gamma > p$ where the population covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{x}} = \text{Cov}(\boldsymbol{x})$. See Budny (2014), Chen (2011), and Navarro (2014, 2016). Using $\gamma = h^2 = p/\delta$ in (2.20) usually results in prediction regions with volume and coverage that is too large.

Remark 2.14. The nonparametric prediction region (2.22) starts to have good coverage for $n \geq 10p$ for a large class of distributions. Olive (2013a) suggests $n \geq 50p$ may be needed for the prediction region to have a good volume. Of course for any n there are error distributions that will have severe undercoverage.

For the multivariate lognormal distribution with n = 20p, the large sample nonparametric 95% prediction region (2.22) had coverages 0.970, 0.959, and 0.964 for p = 100, 200, and 500. Some R code is below.

```
nruns=1000 #lognormal, p = 100, n = 20p = 2000
count<-0
for(i in 1:nruns) {
x <- exp(matrix(rnorm(200000),ncol=100,nrow=2000))
xff <- exp(as.vector(rnorm(100)))
count <- count + predrgn(x,xf=xff)$inr}
count #970/1000, may take a few minutes</pre>
```

Notice that for the training data $x_1, ..., x_n$, if C^{-1} exists, then $c \approx 100q_n\%$ of the n cases are in the prediction regions for $x_f = x_i$, and $q_n \to 1 - \delta$ even if (T, \mathbf{C}) is not a good estimator. Hence the coverage q_n of the training data is robust to model assumptions. Of course the volume of the prediction region could be large if a poor estimator (T, \mathbf{C}) is used or if the x_i do not come from an elliptically contoured distribution. Also notice that $q_n = 1 - \delta/2$ or $q_n = 1 - \delta + 0.05$ for $n \leq 20p$ and $q_n \to 1 - \delta$ as $n \to \infty$. If $q_n \equiv 1 - \delta$ and (T, \mathbf{C}) is a consistent estimator of $(\mu, d\Sigma)$ where d > 0 and Σ is nonsingular, then (2.20) with $h = D_{(U_n)}$ is a large sample prediction region, but taking q_n given by (2.18) improves the finite sample performance of the prediction region. Taking $q_n \equiv 1 - \delta$ does not take into account variability of (T, \mathbf{C}) , and for n = 20p the resulting prediction region tended to have undercoverage

as high as $\min(0.05, \delta/2)$. Using (2.18) helped reduce undercoverage for small $n \geq 20p$ due to the unknown variability of (T, \mathbf{C}) .

2.4.1 Prediction Regions If n/p Is Small

See Haile, Zhang, and Olive (2023).

2.5 Bootstrapping Hypothesis Tests and Confidence Regions

This section shows that, under regularity conditions, applying the nonparametric prediction region of Section 2.4 to a bootstrap sample results in a confidence region. The volume of a confidence region $\to 0$ as $n \to 0$, while the volume of a prediction region goes to that of a population region that would contain a new x_f with probability $1 - \delta$. The nominal coverage is $100(1 - \delta)$. If the actual coverage $100(1 - \delta_n) > 100(1 - \delta)$, then the region is conservative. If $100(1 - \delta_n) < 100(1 - \delta)$, then the region is liberal. A region that is 5% conservative is considered "much better" than a region that is 5% liberal.

When teaching confidence intervals, it is often noted that by the central limit theorem, the probability that \overline{Y}_n is within two standard deviations $(2SD(\overline{Y}_n) = 2\sigma/\sqrt{n})$ of $\theta = \mu$ is about 95%. Hence the probability that θ is within two standard deviations of \overline{Y}_n is about 95%. Thus the interval $[\theta - 1.96S/\sqrt{n}, \theta + 1.96S/\sqrt{n}]$ is a large sample 95% prediction interval for a future value of the sample mean $\overline{Y}_{n,f}$ if θ is known, while $[\overline{Y}_n - 1.96S/\sqrt{n}, \overline{Y}_n + 1.96S/\sqrt{n}]$ is a large sample 95% confidence interval for the population mean θ . Note that the lengths of the two intervals are the same. Where the interval is centered, at the parameter θ or the statistic \overline{Y}_n , determines whether the interval is a prediction or a confidence interval. See Theorem 2.10 for a similar relationship between confidence regions and prediction regions.

Definition 2.10. A large sample $100(1-\delta)\%$ confidence region for a vector of parameters $\boldsymbol{\theta}$ is a set \mathcal{A}_n such that $P(\boldsymbol{\theta} \in \mathcal{A}_n)$ is eventually bounded below by $1-\delta$ as $n\to\infty$.

If A_n is based on a squared Mahalanobis distance D^2 with a limiting distribution that has a pdf, we often want $P(\theta \in A_n) \to 1 - \delta$ as $n \to \infty$.

There are several methods for obtaining a bootstrap sample $T_1^*,, T_B^*$ where the sample size n is suppressed: $T_i^* = T_{in}^*$. The parametric bootstrap, nonparametric bootstrap, and residual bootstrap will be used. Applying the nonparametric prediction region (2.22) to the bootstrap sample will result in

a confidence region for θ . When g=1, applying the shorth PI (2.10) or the percentile PI (2.7) to the bootstrap sample results in a confidence interval for θ . Section 2.5.2 will help clarify ideas.

When g=1, a confidence interval is a special case of a confidence region. One sided confidence intervals give a lower or upper confidence bound for θ . A large sample $100(1-\delta)\%$ lower confidence interval $(-\infty, U_n]$ uses an upper confidence bound U_n and is in the lower tail of the distribution of $\hat{\theta}$. A large sample $100(1-\delta)\%$ upper confidence interval $[L_n,\infty)$ uses a lower confidence bound L_n and is in the upper tail of the distribution of $\hat{\theta}$. These CIs can be useful if $\theta \in [a,b]$ and $\theta = a$ or $\theta = b$ is of interest for a hypothesis test. For example, [a,b] = [0,1] if $\theta = \rho^2$, the squared population correlation. Then use $[0,U_n]$ and $[L_n,1]$ as CIs, e.g. if we expect $\theta = 0$ we might test $H_0:\theta \leq 0.05$ versus $H_0:\theta > 0.05$, and fail to reject H_0 if $U_n < 0.05$. See Section 2.5.4 for an illustration. Again we often want the probability to converge to $1-\delta$ if the confidence interval is based on a statistic with an asymptotic distribution that has a pdf.

Definition 2.11. The interval $[L_n, U_n]$ is a large sample $100(1 - \delta)\%$ confidence interval for θ if $P(L_n \leq \theta \leq U_n)$ is eventually bounded below by $1 - \delta$ as $n \to \infty$. The interval $(-\infty, U_n]$ is a large sample $100(1 - \delta)\%$ lower confidence interval for θ if $P(\theta \leq U_n)$ is eventually bounded below by $1 - \delta$ as $n \to \infty$. The interval $[L_n, \infty)$ is large sample $100(1 - \delta)\%$ upper confidence interval for θ if $P(\theta \geq L_n)$ is eventually bounded below by $1 - \delta$ as $n \to \infty$.

Next we discuss bootstrap confidence intervals that are obtained by applying prediction intervals (2.7) and (2.10) to the bootstrap sample. Some additional bootstrap CIs are obtained from bootstrap confidence regions from Section 2.5.2 when g=1. See Efron (1982) and Chen (2016) for the percentile CI. Let T_n be an estimator of a parameter θ such as $T_n = \overline{Z} = \sum_{i=1}^n Z_i/n$ with $\theta = E(Z_1)$. Let $T_1^*, ..., T_B^*$ be a bootstrap sample for T_n . Let $T_{(1)}^*, ..., T_{(B)}^*$ be the order statistics of the the bootstrap sample. The percentile CI (2.24) is obtained by applying percentile PI (2.7) to the bootstrap sample with B used instead of n. Hence (2.24) is also a large sample prediction interval for a future value of T_f^* if the T_i^* are iid from the empirical distribution discussed in Section 2.5.1.

Definition 2.12. The bootstrap large sample $100(1-\delta)\%$ percentile confidence interval for θ is an interval $[T^*_{(k_L)}, T^*_{(K_U)}]$ containing $\approx \lceil B(1-\delta) \rceil$ of the T^*_i . Let $k_1 = \lceil B\delta/2 \rceil$ and $k_2 = \lceil B(1-\delta/2) \rceil$. A common choice is

$$[T_{(k_1)}^*, T_{(k_2)}^*]. (2.24)$$

The large sample $100(1-\delta)\%$ lower percentile CI for θ is $(-\infty, T^*_{(\lceil B(1-\delta)\rceil)}]$. The large sample $100(1-\delta)\%$ upper percentile CI for θ is $[T^*_{(\lceil B\delta\rceil)}, \infty)$.

In the next definition, the large sample $100(1-\delta)\%$ shorth(c) CI uses the interval $[T_{(1)}^*, T_{(c)}^*], [T_{(2)}^*, T_{(c+1)}^*], ..., [T_{(B-c+1)}^*, T_{(B)}^*]$ of shortest length, denoted by $[T_{(s)}^*, T_{(s+c-1)}^*]$. The shorth CI (2.25) is obtained by applying shorth PI (2.10) to the bootstrap sample.

Definition 2.13. The large sample $100(1-\delta)\%$ lower shorth CI for θ is $(-\infty, T^*_{(c)}]$, while the large sample $100(1-\delta)\%$ upper shorth CI for θ is $[T^*_{(B-c+1)}, \infty)$. The large sample $100(1-\delta)\%$ shorth(c) CI

$$[T_{(s)}^*, T_{(s+c-1)}^*]$$
 where $c = \min(B, \lceil B[1 - \delta + 1.12\sqrt{\delta/B} \rceil \rceil).$ (2.25)

Applied to a bootstrap sample, the shorth CI can be regarded as the shortest percentile confidence interval, asymptotically. Hence the shorth confidence interval is a practical implementation of the Hall (1988) shortest bootstrap interval based on all possible bootstrap samples. See Remark 2.19 for some theory for bootstrap CIs such as (2.24) and (2.25).

2.5.1 The Bootstrap

This subsection illustrates the nonparametric bootstrap with some examples. Suppose a statistic T_n is computed from a data set of n cases. The nonparametric bootstrap draws n cases with replacement from that data set. Then T_1^* is the statistic T_n computed from the sample. This process is repeated B times to produce the bootstrap sample $T_1^*, ..., T_B^*$. Sampling cases with replacement uses the empirical distribution.

Definition 2.14. Suppose that data $x_1, ..., x_n$ has been collected and observed. Often the data is a random sample (iid) from a distribution with cdf F. The *empirical distribution* is a discrete distribution where the x_i are the possible values, and each value is equally likely. If w is a random variable having the empirical distribution, then $p_i = P(w = x_i) = 1/n$ for i = 1, ..., n. The *cdf of the empirical distribution* is denoted by F_n .

Example 2.3. Let \boldsymbol{w} be a random variable having the empirical distribution given by Definition 2.14. Show that $E(\boldsymbol{w}) = \overline{\boldsymbol{x}} \equiv \overline{\boldsymbol{x}}_n$ and $Cov(\boldsymbol{w}) = \frac{n-1}{n} \boldsymbol{S} \equiv \frac{n-1}{n} \boldsymbol{S}_n$.

Solution: Recall that for a discrete random vector, the population expected value $E(\boldsymbol{w}) = \sum \boldsymbol{x}_i p_i$ where \boldsymbol{x}_i are the values that \boldsymbol{w} takes with positive probability p_i . Similarly, the population covariance matrix

$$Cov(\boldsymbol{w}) = E[(\boldsymbol{w} - E(\boldsymbol{w}))(\boldsymbol{w} - E(\boldsymbol{w}))^T] = \sum_{i} (\boldsymbol{x}_i - E(\boldsymbol{w}))(\boldsymbol{x}_i - E(\boldsymbol{w}))^T p_i.$$

Hence

$$E(\boldsymbol{w}) = \sum_{i=1}^{n} \boldsymbol{x}_i \frac{1}{n} = \overline{\boldsymbol{x}},$$

and

$$\operatorname{Cov}(\boldsymbol{w}) = \sum_{i=1}^{n} (\boldsymbol{x}_i - \overline{\boldsymbol{x}})(\boldsymbol{x}_i - \overline{\boldsymbol{x}})^T \frac{1}{n} = \frac{n-1}{n} \boldsymbol{S}. \quad \Box$$

Example 2.4. If $W_1, ..., W_n$ are iid from a distribution with cdf F_W , then the empirical cdf F_n corresponding to F_W is given by

$$F_n(y) = \frac{1}{n} \sum_{i=1}^n I(W_i \le y)$$

where the indicator $I(W_i \leq y) = 1$ if $W_i \leq y$ and $I(W_i \leq y) = 0$ if $W_i > y$. Fix n and y. Then $nF_n(y) \sim \text{binomial } (n, F_W(y))$. Thus $E[F_n(y)] = F_W(y)$ and $V[F_n(y)] = F_W(y)[1 - F_W(y)]/n$. By the central limit theorem,

$$\sqrt{n}(F_n(y) - F_W(y)) \xrightarrow{D} N(0, F_W(y)[1 - F_W(y)]).$$

Thus $F_n(y) - F_W(y) = O_P(n^{-1/2})$, and F_n is a reasonable estimator of F_W if the sample size n is large.

Suppose there is data $\mathbf{w}_1, ..., \mathbf{w}_n$ collected into an $n \times p$ matrix \mathbf{W} with ith row \mathbf{w}_i^T . Let the statistic $T_n = t(\mathbf{W}) = T(F_n)$ be computed from the data. Suppose the statistic estimates $\boldsymbol{\mu} = T(F)$, and let $t(\mathbf{W}^*) = t(F_n^*) = T_n^*$ indicate that t was computed from an iid sample from the empirical distribution F_n : a sample $\mathbf{w}_1^*, ..., \mathbf{w}_n^*$ of size n was drawn with replacement from the observed sample $\mathbf{w}_1, ..., \mathbf{w}_n$. This notation is used for von Mises differentiable statistical functions in large sample theory. See Serfling (1980, ch. 6). The empirical distribution is also important for the influence function (widely used in robust statistics). The nonparametric bootstrap draws B samples of size n from the rows of \mathbf{W} , e.g. from the empirical distribution of $\mathbf{w}_1, ..., \mathbf{w}_n$. Then T_{in}^* is computed from the jth bootstrap sample for j = 1, ..., B.

Example 2.5. Suppose the data is 1, 2, 3, 4, 5, 6, 7. Then n = 7 and the sample median T_n is 4. Using R, we drew B = 2 bootstrap samples (samples of size n drawn with replacement from the original data) and computed the sample median $T_{1,n}^* = 3$ and $T_{2,n}^* = 4$.

```
b1 <- sample(1:7,replace=T)
b1
[1] 3 2 3 2 5 2 6
median(b1)
[1] 3
b2 <- sample(1:7,replace=T)
b2
[1] 3 5 3 4 3 5 7</pre>
```

median(b2)
[1] 4

The bootstrap has been widely used to estimate the population covariance matrix of the statistic $\operatorname{Cov}(T_n)$, for testing hypotheses, and for obtaining confidence regions (often confidence intervals). An iid sample $T_{1n},...,T_{Bn}$ of size B of the statistic would be very useful for inference, but typically we only have one sample of data and one value $T_n = T_{1n}$ of the statistic. Often $T_n = t(\boldsymbol{w}_1,...,\boldsymbol{w}_n)$, and the bootstrap sample $T_{1n}^*,...,T_{Bn}^*$ is formed where $T_{jn}^* = t(\boldsymbol{w}_{j1}^*,...,\boldsymbol{w}_{jn}^*)$. Section 2.5.3 will show that $\sqrt{n}(T_{1n}^*-T_n),...,\sqrt{n}(T_{Bn}^*-T_n)$ is pseudodata for $\sqrt{n}(T_{1n}-\boldsymbol{\theta}),...,\sqrt{n}(T_{Bn}-\boldsymbol{\theta})$ when n and B are large in that $\sqrt{n}(T_n-\boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$ and $\sqrt{n}(T^*-T_n) \stackrel{D}{\to} \boldsymbol{u}$.

Example 2.6. Suppose there is training data $(\boldsymbol{y}_i, \boldsymbol{x}_i)$ for the model $\boldsymbol{y}_i = m(\boldsymbol{x}_i) + \boldsymbol{\epsilon}_i$ for i = 1, ..., n, and it is desired to predict a future test value \boldsymbol{y}_f given \boldsymbol{x}_f and the training data. The model can be fit and the residual vectors formed. One method for obtaining a prediction region for \boldsymbol{y}_f is to form the pseudodata $\hat{\boldsymbol{y}}_f + \hat{\boldsymbol{\epsilon}}_i$ for i = 1, ..., n, and apply the nonparametric prediction region (2.22) to the pseudodata. See Olive (2017b, 2018). The residual bootstrap could also be used to make a bootstrap sample $\hat{\boldsymbol{y}}_f + \hat{\boldsymbol{\epsilon}}_1^*, ..., \hat{\boldsymbol{y}}_f + \hat{\boldsymbol{\epsilon}}_B^*$ where the $\hat{\boldsymbol{\epsilon}}_j^*$ are selected with replacement from the residual vectors for j = 1, ..., B. As $B \to \infty$, the bootstrap sample will take on the n values $\hat{\boldsymbol{y}}_f + \hat{\boldsymbol{\epsilon}}_i$ (the pseudodata) with probabilities converging to 1/n for i = 1, ..., n.

Suppose there is a statistic T_n that is a $g \times 1$ vector. Let

$$\overline{T}^* = \frac{1}{B} \sum_{i=1}^{B} T_i^* \text{ and } S_T^* = \frac{1}{B-1} \sum_{i=1}^{B} (T_i^* - \overline{T}^*) (T_i^* - \overline{T}^*)^T$$
 (2.26)

be the sample mean and sample covariance matrix of the bootstrap sample $T_1^*, ..., T_B^*$ where $T_i^* = T_{i,n}^*$. Fix n, and let $E(T_{i,n}^*) = \boldsymbol{\theta}_n$ and $Cov(T_{i,n}^*) = \boldsymbol{\Sigma}_n$.

We will often assume that $\operatorname{Cov}(T_n) = \Sigma_T$, and $\sqrt{n}(T_n - \theta) \stackrel{D}{\to} N_g(\mathbf{0}, \Sigma_A)$ where $\Sigma_A > 0$ is positive definite and nonsingular. Often $n\hat{\Sigma}_T \stackrel{P}{\to} \Sigma_A$. For example, using least squares and the residual bootstrap for the multiple linear regression model, $\Sigma_n = \frac{n-p}{n} MSE(\mathbf{X}^T\mathbf{X})^{-1}$, $T_n = \theta_n = \hat{\boldsymbol{\beta}}$, $\theta = \boldsymbol{\beta}$, $\hat{\Sigma}_T = MSE(\mathbf{X}^T\mathbf{X})^{-1}$ and $\Sigma_A = \sigma^2 \lim_{n \to \infty} (\mathbf{X}^T\mathbf{X}/n)^{-1}$. See Example 2.8 in Section 2.6.

Suppose the $T_i^* = T_{i,n}^*$ are iid from some distribution with cdf \tilde{F}_n . For example, if $T_{i,n}^* = t(F_n^*)$ where iid samples from F_n are used, then \tilde{F}_n is the cdf of $t(F_n^*)$. With respect to \tilde{F}_n , both θ_n and Σ_n are parameters, but with respect to F, θ_n is a random vector and Σ_n is a random matrix. For fixed n, by the multivariate central limit theorem,

$$\sqrt{B}(\overline{T}^* - \boldsymbol{\theta}_n) \stackrel{D}{\to} N_g(\mathbf{0}, \boldsymbol{\Sigma}_n) \text{ and } B(\overline{T}^* - \boldsymbol{\theta}_n)^T [\boldsymbol{S}_T^*]^{-1} (\overline{T}^* - \boldsymbol{\theta}_n) \stackrel{D}{\to} \chi_r^2$$
 as $B \to \infty$.

Remark 2.15. For Examples 2.3, 2.6, and 2.8, the bootstrap works but is expensive compared to alternative methods. For Example 2.3, fix n, then $\overline{T}^* \stackrel{P}{\to} \boldsymbol{\theta}_n = \overline{\boldsymbol{x}}$ and $\boldsymbol{S}_T^* \stackrel{P}{\to} (n-1)\boldsymbol{S}/n$ as $B \to \infty$, but using $(\overline{\boldsymbol{x}}, \boldsymbol{S})$ makes more sense. For Example 2.6, use the pseudodata instead of the residual bootstrap. For Example 2.8, using $\hat{\boldsymbol{\beta}}$ and the classical estimated covariance matrix $\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}) = MSE(\boldsymbol{X}^T\boldsymbol{X})^{-1}$ makes more sense than using the bootstrap. For these three examples, it is known how the bootstrap sample behaves as $B \to \infty$. The bootstrap can be very useful when $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} N_g(\boldsymbol{0}, \boldsymbol{\Sigma}_A)$, but it not known how to estimate $\boldsymbol{\Sigma}_A$ without using a resampling method like the bootstrap. The bootstrap may be useful when $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$, but the limiting distribution (the distribution of \boldsymbol{u}) is unknown.

The following theorem shows that $\sqrt{m}(T_{1,n}^* - T_n), ..., \sqrt{m}(T_{B,n}^* - T_n)$ are pseudodata for $\sqrt{n}(T_{1,n} - \boldsymbol{\theta}), ..., \sqrt{n}(T_{B,n} - \boldsymbol{\theta})$. Here $T_i^* = T_{i,m}^*$ with n suppressed or $T_{i,n}^* = T_{i,n,m}^*$ where m is the sample size of the bootstrap data set used to compute T_i^* , and often m = n. (For example, for the nonparametric bootstrap, take a sample of size m = n with replacement from the n cases to get the ith bootstrap data set. Then compute T_i^* from that bootstrap data set.) The first two convergence assumptions are with respect to the data distribution, while the third convergence assumption is with respect to the bootstrap distribution. The technique is similar to using a triangular array, except both $n \to \infty$ and $m \to \infty$. Note that for large n, $N_g(\mathbf{0}, \boldsymbol{\Sigma}_n) \approx N_g(\mathbf{0}, \boldsymbol{\Sigma})$, and often the $N_g(\mathbf{0}, \boldsymbol{\Sigma}_n)$ approximation is used to produce output since $\boldsymbol{\Sigma}$ is unknown. Typically large sample theory is used to prove the three assumptions of the following theorem.

Theorem 2.8, Bootstrap Proof Technique: Suppose $\sqrt{n}(T_n - \boldsymbol{\theta}) \xrightarrow{D} N_g(\mathbf{0}, \boldsymbol{\Sigma})$ and $\boldsymbol{\Sigma}_n \xrightarrow{P} \boldsymbol{\Sigma}$ as $n \to \infty$, and for fixed n, $\sqrt{m}(T_{n,m}^* - T_n) \xrightarrow{D} N_g(\mathbf{0}, \boldsymbol{\Sigma}_n)$ as $m \to \infty$. Then a) $\sqrt{m}(T_{n,m}^* - T_n) \xrightarrow{D} N_g(\mathbf{0}, \boldsymbol{\Sigma})$ as $m, n \to \infty$. Also b) $\sqrt{n}(T_n^* - T_n) \xrightarrow{D} N_g(\mathbf{0}, \boldsymbol{\Sigma})$ as $n \to \infty$ where $T_n^* = T_{n,n}^*$ has m = n.

Proof: By the three assumptions, $\mathbf{u}_n = \sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \mathbf{u} \sim N_g(\mathbf{0}, \boldsymbol{\Sigma})$ as $n \to \infty$, $\mathbf{w}_{n,m}^* = \sqrt{m}(T_{n,m}^* - T_n) \stackrel{D}{\to} \mathbf{w}_n \sim N_g(\mathbf{0}, \boldsymbol{\Sigma}_n)$ as $m \to \infty$ for fixed n, and $\mathbf{w}_n \stackrel{D}{\to} \mathbf{u}$ as $n \to \infty$. Hence $\mathbf{w}_{n,m}^* = \sqrt{m}(T_{n,m}^* - T_n) \stackrel{D}{\to} \mathbf{u} \sim N_g(\mathbf{0}, \boldsymbol{\Sigma})$ as $m, n \to \infty$. Since this result does not depend on m as long as $m \to \infty$, b) follows. \square

Example 2.7. Suppose $x_1, ..., x_n$ are iid $p \times 1$ random vectors with $E(x_i) = \mu$ and $Cov(x_i) = \Sigma$. a) For the parametric bootstrap, let $x_1^*, ..., x_m^*$ be iid $N_p(\overline{x}_n, S_n)$ where $S_n \stackrel{P}{\to} \Sigma$ as $n \to \infty$. By the multivariate central

limit theorem $\sqrt{n}(\overline{\boldsymbol{x}}_n - \boldsymbol{\mu}) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{\Sigma})$ and for fixed $n, \sqrt{m}(\overline{\boldsymbol{x}}_{n,m}^* - \overline{\boldsymbol{x}}_n) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{S}_n)$ where $\overline{\boldsymbol{x}}_{n,m}^* = \frac{1}{m} \sum_{i=1}^m \boldsymbol{x}_i^*$ is the sample mean of the bootstrap data set $\boldsymbol{x}_1^*, ..., \boldsymbol{x}_m^*$. Hence $\sqrt{m}(\overline{\boldsymbol{x}}_{n,m}^* - \overline{\boldsymbol{x}}_n) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{\Sigma})$ as $n, m \to \infty$ by Theorem 2.8. Note that m = n can be used by Theorem 2.8 b).

b) For the nonparametric bootstrap, $E(\overline{\boldsymbol{x}}_n^*) = E(\boldsymbol{w}_n) = \overline{\boldsymbol{x}}_n$, and $\operatorname{Cov}(\overline{\boldsymbol{x}}_n^*) = \operatorname{Cov}(\boldsymbol{w}_n)/n = (n-1)\boldsymbol{S}_n/n^2$ by Example 2.3 where $\boldsymbol{w} = \boldsymbol{w}_n$. The \boldsymbol{x}_i^* are iid with respect to the bootstrap distribution. If the sample mean $\overline{\boldsymbol{x}}_{n,m}^*$ is computed from m \boldsymbol{x}_i^* selected with replacement from the \boldsymbol{x}_i , then $\sqrt{m}(\overline{\boldsymbol{x}}_{n,m}^* - \overline{\boldsymbol{x}}_n) \overset{D}{\to} N_p(\boldsymbol{0}, \frac{n-1}{n}\boldsymbol{S}_n)$ for fixed n by the multivariate CLT. Then by Theorem 2.8 b) with m = n, $\sqrt{n}(\overline{\boldsymbol{x}}_n^* - \overline{\boldsymbol{x}}_n) \overset{D}{\to} N_p(\boldsymbol{0}, \boldsymbol{\Sigma})$ as $n \to \infty$.

2.5.2 Bootstrap Confidence Regions for Hypothesis Testing

When the bootstrap is used, a large sample $100(1-\delta)\%$ confidence region for a $g \times 1$ parameter vector $\boldsymbol{\theta}$ is a set $\mathcal{A}_n = \mathcal{A}_{n,B}$ such that $P(\boldsymbol{\theta} \in \mathcal{A}_{n,B})$ is eventually bounded below by $1-\delta$ as $n, B \to \infty$. The B is often suppressed. Consider testing $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ versus $H_1: \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$ where $\boldsymbol{\theta}_0$ is a known $g \times 1$ vector. Then reject H_0 if $\boldsymbol{\theta}_0$ is not in the confidence region \mathcal{A}_n . Let the $g \times 1$ vector T_n be an estimator of $\boldsymbol{\theta}$. Let $T_1^*, ..., T_B^*$ be the bootstrap sample for T_n . Let \boldsymbol{A} be a full rank $g \times p$ constant matrix. For variable selection, consider testing $H_0: \boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{\theta}_0$ versus $H_1: \boldsymbol{A}\boldsymbol{\beta} \neq \boldsymbol{\theta}_0$ with $\boldsymbol{\theta} = \boldsymbol{A}\boldsymbol{\beta}$ where often $\boldsymbol{\theta}_0 = \boldsymbol{0}$. Then let $T_n = \hat{\boldsymbol{A}}\hat{\boldsymbol{\beta}}_{I_{min},0}$ and let $T_i^* = \hat{\boldsymbol{A}}\hat{\boldsymbol{\beta}}_{I_{min},0,i}^*$ for i = 1, ..., B. The statistic $\hat{\boldsymbol{\beta}}_{I_{min},0}$ is the variable selection estimator padded with zeroes. See Section 2.2.

Let \overline{T}^* and S_T^* be the sample mean and sample covariance matrix of the bootstrap sample $T_1^*,...,T_B^*$. See Equation (2.26). Here $P(X \leq \chi_{g,1-\delta}^2) = 1-\delta$ if $X \sim \chi_g^2$, and $P(X \leq F_{g,d_n,1-\delta}) = 1-\delta$ if $X \sim F_{g,d_n}$. See Remark 2.10. Let $k_B = \lceil B(1-\delta) \rceil$.

Definition 2.15. a) The large sample $100(1 - \delta)\%$ standard bootstrap confidence region for $\boldsymbol{\theta}$ is $\{\boldsymbol{w}: (\boldsymbol{w} - T_n)^T [\boldsymbol{S}_T^*]^{-1} (\boldsymbol{w} - T_n) \leq D_{1-\delta}^2 \} =$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T^*) \le D_{1-\delta}^2 \}$$
 (2.27)

where $D_{1-\delta}^2 = \chi_{g,1-\delta}^2$ or $D_{1-\delta}^2 = d_n F_{g,d_n,1-\delta}$ where $d_n \to \infty$ as $n \to \infty$. b) The large sample $100(1-\delta)\%$ Bickel and Ren confidence region for $\boldsymbol{\theta}$ is $\{\boldsymbol{w}: (\boldsymbol{w}-T_n)^T [\hat{\boldsymbol{\Sigma}}_A/n]^{-1} (\boldsymbol{w}-T_n) \leq D_{(k_{BT})}^2 \} =$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2(T_n, \hat{\boldsymbol{\Sigma}}_A/n) \le D_{(k_{BT})}^2 \}$$
 (2.28)

where the cutoff $D^2_{(k_BT)}$ is the $100k_B$ th sample quantile of the $D^2_i = (T^*_i - T_n)^T [\hat{\Sigma}_A/n]^{-1} (T^*_i - T_n) = n(T^*_i - T_n)^T [\hat{\Sigma}_A]^{-1} (T^*_i - T_n).$

Confidence region (2.27) needs $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} N_g(\mathbf{0}, \boldsymbol{\Sigma}_A)$ and $n\boldsymbol{S}_T^* \stackrel{P}{\to} \boldsymbol{\Sigma}_A > 0$ as $n, B \to \infty$. See Machado and Parente (2005) for regularity conditions for this assumption. Bickel and Ren (2001) have interesting sufficient conditions for (2.28) to be a confidence region when $\hat{\boldsymbol{\Sigma}}_A$ is a consistent estimator of positive definite $\boldsymbol{\Sigma}_A$. Let the vector of parameters $\boldsymbol{\theta} = T(F)$, the statistic $T_n = T(F_n)$, and the bootstrapped statistic $T^* = T(F_n^*)$ where F is the cdf of iid $\boldsymbol{x}_1, ..., \boldsymbol{x}_n, F_n$ is the empirical cdf, and F_n^* is the empirical cdf of $\boldsymbol{x}_1^*, ..., \boldsymbol{x}_n^*$, a sample from F_n using the nonparametric bootstrap. If $\sqrt{n}(F_n - F) \stackrel{D}{\to} \boldsymbol{z}_F$, a Gaussian random process, and if T is sufficiently smooth (has a Hadamard derivative $\dot{T}(F)$), then $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$ and $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} \boldsymbol{u}$ with $\boldsymbol{u} = \dot{T}(F)\boldsymbol{z}_F$. Note that F_n is a perfectly good cdf "F" and F_n^* is a perfectly good empirical cdf from $F_n = F$." Thus if n is fixed, and a sample of size m is drawn with replacement from the empirical distribution, then $\sqrt{m}(T(F_m^*) - T_n) \stackrel{D}{\to} \dot{T}(F_n) \boldsymbol{z}_F$. Now let $n \to \infty$ with m = n. Then bootstrap theory gives $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} \lim_{n \to \infty} \dot{T}(F_n) \boldsymbol{z}_{F_n} = \dot{T}(F) \boldsymbol{z}_F \sim \boldsymbol{u}$.

The following three confidence regions will be used for inference after variable selection. The Olive (2017ab, 2018) prediction region method confidence region applies the nonparametric prediction region (2.22) to the bootstrap sample. Olive (2017ab, 2018) also gave the modified Bickel and Ren confidence region that uses $\hat{\Sigma}_A = nS_T^*$. The hybrid confidence region is due to Pelawa Watagoda and Olive (2021a). Let $q_B = \min(1 - \delta + 0.05, 1 - \delta + g/B)$ for $\delta > 0.1$ and

$$q_B = \min(1 - \delta/2, 1 - \delta + 10\delta g/B), \text{ otherwise.}$$
 (2.29)

If $1 - \delta < 0.999$ and $q_B < 1 - \delta + 0.001$, set $q_B = 1 - \delta$. Let $D_{(U_B)}$ be the $100q_B$ th sample quantile of the D_i . Use (2.29) as a correction factor for finite $B \ge 50p$.

Definition 2.16. The large sample $100(1-\delta)\%$ prediction region method confidence region for $\boldsymbol{\theta}$ is $\{\boldsymbol{w}: (\boldsymbol{w}-\overline{T}^*)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-\overline{T}^*) \leq D_{(U_R)}^2\} =$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2(\overline{T}^*, \boldsymbol{S}_T^*) \le D_{(U_B)}^2 \}$$
 (2.30)

where $D_{(U_B)}^2$ is computed from $D_i^2 = (T_i^* - \overline{T}^*)^T [\boldsymbol{S}_T^*]^{-1} (T_i^* - \overline{T}^*)$ for i = 1, ..., B. Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $(\overline{T}^* - \boldsymbol{\theta}_0)^T [\boldsymbol{S}_T^*]^{-1} (\overline{T}^* - \boldsymbol{\theta}_0) > D_{(U_B)}^2$. (This procedure is basically the one sample Hotelling's T^2 test applied to the T_i^* using \boldsymbol{S}_T^* as the estimated covariance matrix and replacing the $\chi_{g,1-\delta}^2$ cutoff by $D_{(U_B)}^2$.)

Definition 2.17. The large sample $100(1-\delta)\%$ (modified) Bickel and Ren confidence region is $\{\boldsymbol{w}: (\boldsymbol{w}-T_n)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-T_n) \leq D_{(U_{PT})}^2\} =$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T^*) \le D_{(U_{BT})}^2 \}$$
 (2.31)

where the cutoff $D^2_{(U_{BT})}$ is the $100q_B$ th sample quantile of the $D^2_i = (T_i^* - T_n)^T [\mathbf{S}_T^*]^{-1} (T_i^* - T_n)$. Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $(T_n - \boldsymbol{\theta}_0)^T [\mathbf{S}_T^*]^{-1} (T_n - \boldsymbol{\theta}_0) > D^2_{(U_{BT})}$.

Definition 2.18. Shift region (2.30) to have center T_n , or equivalently, change the cutoff of region (2.31) to $D_{(U_B)}^2$ to get the large sample $100(1-\delta)\%$ hybrid confidence region: $\{\boldsymbol{w}: (\boldsymbol{w}-T_n)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-T_n) \leq D_{(U_B)}^2\} =$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T^*) \le D_{(U_B)}^2 \}.$$
 (2.32)

Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $(T_n - \boldsymbol{\theta}_0)^T [\boldsymbol{S}_T^*]^{-1} (T_n - \boldsymbol{\theta}_0) > D_{(U_B)}^2$.

Rajapaksha and Olive (2022) gave the following two confidence regions. The names of these confidence regions were chosen since they are similar to the Bickel and Ren and prediction region method confidence regions.

Definition 2.19. The large sample $100(1 - \delta)\%$ BR confidence region is

$$\{ \boldsymbol{w} : n(\boldsymbol{w} - T_n)^T \boldsymbol{C}_n^{-1} (\boldsymbol{w} - T_n) \le D_{(U_{BT})}^2 \} =$$

$$\{ \boldsymbol{w} : D_{\boldsymbol{w}}^2 (T_n, \boldsymbol{C}_n / n) \le D_{(U_{BT})}^2 \}$$
(2.33)

where the cutoff $D_{(U_{BT})}^2$ is the $100q_B$ th sample quantile of the $D_i^2 = n(T_i^* - T_n)^T C_n^{-1}(T_i^* - T_n)$. Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $n(T_n - \boldsymbol{\theta}_0)^T C_n^{-1}(T_n - \boldsymbol{\theta}_0) > D_{(U_{BT})}^2$.

Definition 2.20. The large sample $100(1-\delta)\%$ *PR confidence region* for $\boldsymbol{\theta}$ is

$$\{\boldsymbol{w}: n(\boldsymbol{w} - \overline{T}^*)^T \boldsymbol{C}_n^{-1} (\boldsymbol{w} - \overline{T}^*) \le D_{(U_B)}^2\} = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2 (\overline{T}^*, \boldsymbol{C}_n/n) \le D_{(U_B)}^2\}$$

$$(2.34)$$

where $D^2_{(U_B)}$ is computed from $D^2_i = n(T^*_i - \overline{T}^*)^T \boldsymbol{C}_n^{-1}(T^*_i - \overline{T}^*)$ for i = 1, ..., B. Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $n(\overline{T}^* - \boldsymbol{\theta}_0)^T \boldsymbol{C}_n^{-1}(\overline{T}^* - \boldsymbol{\theta}_0) > D^2_{(U_B)}$.

Hyperellipsoids (2.31) and (2.32) have the same volume since they are the same region shifted to have a different center. The ratio of the volumes of regions (2.30) and (2.31) is

$$\frac{|S_T^*|^{1/2}}{|S_T^*|^{1/2}} \left(\frac{D_{(U_B)}}{D_{(U_{BT})}}\right)^g = \left(\frac{D_{(U_B)}}{D_{(U_{BT})}}\right)^g. \tag{2.35}$$

The volume of confidence region (2.31) tends to be greater than that of (2.30) since the T_i^* are closer to \overline{T}^* than T_n on average.

If g = 1, then a hyperellipsoid is an interval, and confidence intervals are special cases of confidence regions. Suppose the parameter of interest is θ , and there is a bootstrap sample $T_1^*, ..., T_B^*$ where the statistic T_n is an estimator of θ based on a sample of size n. The percentile method uses an interval that contains $U_B \approx k_B = [B(1-\delta)]$ of the T_i^* . Let $a_i = |T_i^* - \overline{T}^*|$. Let \overline{T}^* and S_T^{2*} be the sample mean and variance of the T_i^* . Then the squared Mahalanobis distance $D_{\theta}^2 = (\theta - \overline{T}^*)^2 / S_T^{*2} \leq D_{(U_B)}^2$ is equivalent to $\theta \in [\overline{T}^* - S_T^* D_{(U_B)}, \overline{T}^* + \overline{T}^*]$ $S_T^*D_{(U_B)}] = [\overline{T}^* - a_{(U_B)}, \overline{T}^* + a_{(U_B)}],$ which is an interval centered at \overline{T}^* just long enough to cover U_B of the T_i^* . Hence the prediction region method CI is a special case of the percentile method CI if g = 1. See Definition 2.12. Efron (2014) used a similar large sample $100(1-\delta)\%$ confidence interval assuming that \overline{T}^* is asymptotically normal. The CI $[T_n - a_{(U_{BT})}, T_n + a_{(U_{BT})}]$ corresponding to (2.31) is defined similarly, and $[T_n - a_{(U_B)}, T_n + a_{(U_B)}]$ is the CI for (2.32). Note that the three CIs corresponding to (2.30)–(2.32) can be computed without finding S_T^* or $D_{(U_B)}$ even if $S_T^* = 0$. The shorth(c) CI (2.25) computed from the T_i^* can be much shorter than the Efron (2014) or prediction region method confidence intervals. See Remark 2.18 for some theory for bootstrap CIs.

In the following definition, let U_B and U_{BT} be as in Definitions 2.15 to 2.20. Let a_i be as in the above paragraph. In Definition 2.21, the PI given by a) corresponds to both the prediction region method and PR confidence regions, while the PI given by b) corresponds to both the (modified) Bickel and Ren and BR confidence regions.

Definition 2.21. a) The large sample $100(1-\delta)\%$ PR CI is $[\overline{T}^* - a_{(U_B)}, \overline{T}^* + a_{(U_B)}]$. b) The large sample $100(1-\delta)\%$ BR CI is $[T_n - a_{(U_{BT})}, T_n + a_{(U_{BT})}]$. c) The large sample $100(1-\delta)\%$ hybrid CI is $[T_n - a_{(U_B)}, T_n + a_{(U_B)}]$.

Remark 2.16. From Example 2.8, $\operatorname{Cov}(\hat{\boldsymbol{\beta}}^*) = \frac{n-p}{n} M SE(\boldsymbol{X}^T \boldsymbol{X})^{-1} = \frac{n-p}{n} \widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}})$ where $\widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}}) = M SE(\boldsymbol{X}^T \boldsymbol{X})^{-1}$ starts to give good estimates of $\operatorname{Cov}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\Sigma}_T$ for many error distributions if $n \geq 10p$ and $T = \hat{\boldsymbol{\beta}}$. For the residual bootstrap with large B, note that $\boldsymbol{S}_T^* \approx 0.95 \widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}})$ for n = 20p and $\boldsymbol{S}_T^* \approx 0.99 \widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}})$ for n = 100p. Hence we may need n >> p before the \boldsymbol{S}_T^* is a good estimator of $\operatorname{Cov}(T) = \boldsymbol{\Sigma}_T$. The distribution of $\sqrt{n}(T_n - \boldsymbol{\theta})$ is

approximated by the distribution of $\sqrt{n}(T^*-T_n)$ or by the distribution of $\sqrt{n}(T^*-\overline{T}^*)$, but n may need to be large before the approximation is good. Suppose the bootstrap sample mean \overline{T}^* estimates $\boldsymbol{\theta}$, and the bootstrap sample covariance matrix \boldsymbol{S}_T^* estimates $c_n\widehat{\mathrm{Cov}}(T_n)\approx c_n\boldsymbol{\Sigma}_T$ where c_n increases to 1 as $n\to\infty$. Then \boldsymbol{S}_T^* is not a good estimator of $\widehat{\mathrm{Cov}}(T_n)$ until $c_n\approx 1$ $(n\geq 100p$ for OLS $\hat{\boldsymbol{\beta}})$, but the squared Mahalanobis distance $D_{\boldsymbol{w}}^{2*}(\overline{T}^*,\mathbf{S}_T^*)\approx D_{\boldsymbol{w}}^2(\boldsymbol{\theta},\boldsymbol{\Sigma}_T)/c_n$ and $D_{(U_B)}^{2*}\approx D_{1-\delta}^2/c_n$. Hence the prediction region method has a cutoff $D_{(U_B)}^{2*}$ that estimates the cutoff $D_{1-\delta}^2/c_n$. Thus the prediction region method may give good results for much smaller n than a bootstrap method that uses a $\chi_{g,1-\delta}^2$ cutoff when a cutoff $\chi_{g,1-\delta}^2/c_n$ should be used for moderate n.

Remark 2.17. For bootstrapping the $p \times 1$ vector $\hat{\boldsymbol{\beta}}_{I_{min},0}$, we will often want $n \geq 20p$ and $B \geq \max(100, n, 50p)$. If T_n is $g \times 1$, we might replace p by g or replace p by d if d is the model degrees of freedom. Sometimes much larger n is needed to avoid undercoverage. We want $B \geq 50g$ so that \boldsymbol{S}_T^* is a good estimator of $Cov(T_n^*)$. Prediction region theory uses correction factors like (2.19) and (2.10) to compensate for finite n. The bootstrap confidence regions (2.30)–(2.34) and the shorth CI use the correction factors (2.29) and (2.25) to compensate for finite $B \geq 50g$. Note that the correction factors make the volume of the confidence region larger as B decreases. Hence a test with larger B will have more power.

2.5.3 Theory for Bootstrap Confidence Regions

Consider testing $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ versus $H_1: \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$ where $\boldsymbol{\theta}$ is $g \times 1$. This section gives some theory for bootstrap confidence regions and for the bagging estimator \overline{T}^* , also called the smoothed bootstrap estimator. Empirically, bootstrapping with the bagging estimator often outperforms bootstrapping with T_n . See Breiman (1996), Yang (2003), and Efron (2014). See Büchlmann and Yu (2002) and Friedman and Hall (2007) for theory and references for the bagging estimator.

Remark 2.18. Some regularity conditions used for bootstrap confidence regions are i) $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$, ii) $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} \boldsymbol{u}$, iii) $\sqrt{n}(\overline{T}^* - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$, iv) $\sqrt{n}(T_i^* - \overline{T}^*) \stackrel{D}{\to} \boldsymbol{u}$, and v) $n\boldsymbol{S}_T^* \stackrel{P}{\to} \operatorname{Cov}(\boldsymbol{u})$. Regularity condition v) is rather strong by Machado and Parente (2005). Regularity conditions i) and ii) are often shown using large sample theory. Since (2.31) is a large sample confidence region by Bickel and Ren (2001), (2.30) and (2.32) are too, provided $vi)\sqrt{n}(\overline{T}^* - T_n) \stackrel{P}{\to} \mathbf{0}$. Also note that (2.31) is a large sample confidence region if the standard confidence region (2.27) is a large sample confidence region.

Olive (2017b: \oint 5.3.3, 2018) proved that the prediction region method gives a large sample confidence region under v) from Remark 2.18 and $\boldsymbol{u} \sim N_g(\boldsymbol{0}, \boldsymbol{\Sigma}_{\boldsymbol{u}})$, but the following Pelawa Watagoda and Olive (2021a) theorem and proof is simpler. Since iii) and iv) hold by Theorem 2.9, the sample percentile will be consistent under much weaker conditions than v) if $\boldsymbol{\Sigma}_{\boldsymbol{u}}$ is nonsingular.

Theorem 2.9. a) Suppose i) $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$, and ii) $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} \boldsymbol{u}$ with $E(\boldsymbol{u}) = \boldsymbol{0}$ and $Cov(\boldsymbol{u}) = \boldsymbol{\Sigma}_{\boldsymbol{u}}$. Then iii) $\sqrt{n}(\overline{T}^* - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$, iv) $\sqrt{n}(T_i^* - \overline{T}^*) \stackrel{D}{\to} \boldsymbol{u}$, and vi) $\sqrt{n}(\overline{T}^* - T_n) \stackrel{P}{\to} \boldsymbol{0}$.

b) Then the prediction region method gives a large sample confidence region for $\boldsymbol{\theta}$ provided that the sample percentile $\hat{D}_{1-\delta}^2$ of the $D_{T_i^*}^2(\overline{T}^*, \boldsymbol{S}_T^*) = \sqrt{n}(T_i^* - \overline{T}^*)^T(n\boldsymbol{S}_T^*)^{-1}\sqrt{n}(T_i^* - \overline{T}^*)$ is a consistent estimator of the percentile $D_{n,1-\delta}^2$ of the random variable $D_{\boldsymbol{\theta}}^2(\overline{T}^*, \boldsymbol{S}_T^*) = \sqrt{n}(\boldsymbol{\theta} - \overline{T}^*)^T(n\boldsymbol{S}_T^*)^{-1}\sqrt{n}(\boldsymbol{\theta} - \overline{T}^*)$ in that $\hat{D}_{1-\delta}^2 - D_{n,1-\delta}^2 \overset{P}{\to} 0$.

Proof. With respect to the bootstrap sample, T_n is a constant and the $\sqrt{n}(T_i^* - T_n)$ are iid for i = 1, ..., B. Fix B. Then

$$egin{bmatrix} \sqrt{n}(T_1^*-T_n) \ dots \ \sqrt{n}(T_B^*-T_n) \end{bmatrix} \overset{D}{
ightarrow} egin{bmatrix} oldsymbol{v}_1 \ dots \ oldsymbol{v}_B \end{bmatrix}$$

where the v_i are iid with the same distribution as u. (Use Theorems 1.22 and 1.23, and see Example 1.20.) For fixed B, the average of the $\sqrt{n}(T_i^* - T_n)$ is

$$\sqrt{n}(\overline{T}^* - T_n) \stackrel{D}{\to} \frac{1}{B} \sum_{i=1}^{B} \boldsymbol{v}_i \sim AN_g\left(\boldsymbol{0}, \frac{\boldsymbol{\Sigma}_{\boldsymbol{u}}}{B}\right)$$

by Theorem 1.25 where $\boldsymbol{z} \sim AN_g(\boldsymbol{0}, \boldsymbol{\Sigma})$ is an asymptotic multivariate normal approximation. Hence as $B \to \infty$, $\sqrt{n}(\overline{T}^* - T_n) \stackrel{P}{\to} \boldsymbol{0}$, and iii), iv), and vi) hold. Hence b) follows. \square

Remark 2.19. Note that if $\sqrt{n}(T_n - \theta) \stackrel{D}{\to} U$ and $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} U$ where U has a unimodal probability density function symmetric about zero, then the confidence intervals from the three confidence regions (2.30)–(2.32), the shorth confidence interval (2.25), and the "usual" percentile method confidence interval (2.24) are asymptotically equivalent (use the central proportion of the bootstrap sample, asymptotically). This result is due to Pelawa Watagoda and Olive (2021a).

Assume $nS_T^* \xrightarrow{P} \Sigma_A$ as $n, B \to \infty$ where Σ_A and S_T^* are nonsingular $g \times g$ matrices, and T_n is an estimator of θ such that

$$\sqrt{n} (T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$$
 (2.36)

as $n \to \infty$. Then

$$\sqrt{n} \ \boldsymbol{\varSigma}_A^{-1/2} \ (T_n - \boldsymbol{\theta}) \overset{D}{\to} \boldsymbol{\varSigma}_A^{-1/2} \boldsymbol{u} = \boldsymbol{z},$$

$$n \ (T_n - \boldsymbol{\theta})^T \ \hat{\boldsymbol{\varSigma}}_A^{-1} \ (T_n - \boldsymbol{\theta}) \overset{D}{\to} \boldsymbol{z}^T \boldsymbol{z} = D^2$$

as $n \to \infty$ where $\hat{\Sigma}_A$ is a consistent estimator of Σ_A , and

$$(T_n - \boldsymbol{\theta})^T [\boldsymbol{S}_T^*]^{-1} (T_n - \boldsymbol{\theta}) \stackrel{D}{\to} D^2$$
 (2.37)

as $n, B \to \infty$. Assume the cumulative distribution function of D^2 is continuous and increasing in a neighborhood of $D^2_{1-\delta}$ where $P(D^2 \le D^2_{1-\delta}) = 1-\delta$. If the distribution of D^2 is known, then we could use the large sample confidence region (2.27) $\{ \boldsymbol{w} : (\boldsymbol{w} - T_n)^T [\boldsymbol{S}_T^*]^{-1} (\boldsymbol{w} - T_n) \le D^2_{1-\delta} \}$. Often by a central limit theorem or the multivariate delta method, $\sqrt{n}(T_n - \boldsymbol{\theta}) \overset{D}{\to} N_g(\boldsymbol{0}, \boldsymbol{\Sigma}_A)$, and $D^2 \sim \chi_g^2$. Note that $[\boldsymbol{S}_T^*]^{-1}$ could be replaced by $n\hat{\boldsymbol{\Sigma}}_A^{-1}$. The following remark gives a simple technical explanation for why bootstrap confidence regions and tests work.

Remark 2.20. a) Assume $u_n \stackrel{D}{\to} u$ where $u_n = i$) $\sqrt{n}(T_n - \theta)$, ii) $\sqrt{n}(T_i^* - T_n)$, iii) $\sqrt{n}(T_i^* - \overline{T}^*)$, or iv) $\sqrt{n}(\overline{T}^* - \theta)$, and $nS_T^* \stackrel{P}{\to} C$ where C is nonsingular. Let

$$\begin{split} D_1^2 &= D_{T_i^*}^2(\overline{T}^*, \boldsymbol{S}_T^*) = \sqrt{n}(T_i^* - \overline{T}^*)^T (n\boldsymbol{S}_T^*)^{-1} \sqrt{n}(T_i^* - \overline{T}^*), \\ D_2^2 &= D_{\boldsymbol{\theta}}^2(T_n, \boldsymbol{S}_T^*) = \sqrt{n}(T_n - \boldsymbol{\theta})^T (n\boldsymbol{S}_T^*)^{-1} \sqrt{n}(T_n - \boldsymbol{\theta}), \\ D_3^2 &= D_{\boldsymbol{\theta}}^2(\overline{T}^*, \boldsymbol{S}_T^*) = \sqrt{n}(\overline{T}^* - \boldsymbol{\theta})^T (n\boldsymbol{S}_T^*)^{-1} \sqrt{n}(\overline{T}^* - \boldsymbol{\theta}), \quad \text{and} \\ D_4^2 &= D_{T_i^*}^2(T_n, \boldsymbol{S}_T^*) = \sqrt{n}(T_i^* - T_n)^T (n\boldsymbol{S}_T^*)^{-1} \sqrt{n}(T_i^* - T_n). \end{split}$$

Then $D_j^2 \approx \boldsymbol{u}^T (n\boldsymbol{S}_T^*)^{-1} \boldsymbol{u} \approx \boldsymbol{u}^T \boldsymbol{C}^{-1} \boldsymbol{u}$, and the percentiles of D_1^2 and D_4^2 can be used as cutoffs. If $(n\boldsymbol{S}_T^*)^{-1}$ is "not too ill conditioned" then $D_j^2 \approx \boldsymbol{u}^T (n\boldsymbol{S}_T^*)^{-1} \boldsymbol{u}$ for large n, and the confidence regions (2.30), (2.31), and (2.32) will have coverage near $1 - \delta$. For confidence regions (2.33) and (2.34), want $\boldsymbol{C}_n^{-1} \stackrel{P}{\to} \boldsymbol{C}^{-1}$ or \boldsymbol{C}_n^{-1} to be "not too ill conditioned." The regularity conditions for (2.30)–(2.34) are weaker when g = 1, since \boldsymbol{S}_T^* and \boldsymbol{C}_n do not need to be computed.

b) Both I) $\sqrt{n}(T_{1n}^*-T_n),...,\sqrt{n}(T_{Bn}^*-T_n)$ and II) $\sqrt{n}(T_{1n}^*-\overline{T}^*),...,\sqrt{n}(T_{Bn}^*-\overline{T}^*)$ can be used as pseudodata for III) $\sqrt{n}(T_{1n}-\theta),...,\sqrt{n}(T_{Bn}-\theta)$ when n is large since i), ii) and iii) hold. We can't get the random quantities in III) since θ is unknown, and we only have B=1 value of the statistic T_n . Note that i) would give an asymptotic pivot if the distribution of \boldsymbol{u} was known.

The following Pelawa Watagoda and Olive (2021a) theorem is very useful. The improved proof, due to Rathnayake and Olive (2023), is used. Let (\overline{T}, S_T) be the sample mean and sample covariance matrix computed from $T_1, ..., T_B$ which have the same distribution as T_n where $T_i = T_{in}$. Let $D^2_{(U_B)}$ be the cutoff computed from the $D^2_i(\overline{T}, S_T)$ for i = 1, ..., B. The hyperellipsoids corresponding to $D^2(T_n, \mathbb{C})$ and $D^2(\overline{T}, \mathbb{C})$ are centered at T_n and \overline{T} , respectively. Note that $D^2_T(T_n, \mathbb{C}) = D^2_{T_n}(\overline{T}, \mathbb{C})$. Thus $D^2_T(T_n, \mathbb{C}) \leq D^2_{(U_B)}$ iff $D^2_{T_n}(\overline{T}, \mathbb{C}) \leq D^2_{(U_B)}$. In Theorem 2.10, since R_p contains T_f with probability $1 - \delta_B$, the region R_c contains \overline{T} with probability $1 - \delta_B$. Since T_n depends on the sample size n, we need $(nS_T)^{-1}$ to be fairly well behaved, e.g. $(nS_T)^{-1} \xrightarrow{P} \Sigma_A^{-1}$. Note that $T_i = T_{in}$.

Theorem 2.10: Geometric Argument. Suppose $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{u}$ with $E(\boldsymbol{u}) = \boldsymbol{0}$ and $Cov(\boldsymbol{u}) = \boldsymbol{\Sigma}_{\boldsymbol{u}} \neq \boldsymbol{0}$. Assume $T_1, ..., T_B$ are iid with nonsingular covariance matrix $\boldsymbol{\Sigma}_{T_n}$ where $(n\boldsymbol{S}_T)^{-1} \stackrel{P}{\to} \boldsymbol{\Sigma}_A^{-1}$. Then the large sample $100(1-\delta)\%$ prediction region $R_p = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2(\overline{T}, \boldsymbol{S}_T) \leq D_{(U_B)}^2\}$ centered at \overline{T} contains a future value of the statistic T_f with probability $1-\delta_B$ which is eventually bounded below by $1-\delta$ as $B\to\infty$. Hence the region $R_c = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T) \leq D_{(U_B)}^2\}$ is a large sample $100(1-\delta)\%$ confidence region for $\boldsymbol{\theta}$ where T_n is a randomly selected T_i .

Proof. The region R_c centered at a randomly selected T_n contains \overline{T} with probability $1 - \delta_B$ which is eventually bounded below by $1 - \delta$ as $B \to \infty$. Since the $\sqrt{n}(T_i - \theta)$ are iid,

$$egin{bmatrix} \sqrt{n}(T_1-oldsymbol{ heta}) \ dots \ \sqrt{n}(T_B-oldsymbol{ heta}) \end{bmatrix} \stackrel{D}{
ightarrow} egin{bmatrix} oldsymbol{v}_1 \ dots \ oldsymbol{v}_B \end{bmatrix}$$

where the v_i are iid with the same distribution as u. (Use Theorems 1.22 and 1.23, and see Example 1.20.) For fixed B, the average of these random vectors is

$$\sqrt{n}(\overline{T} - \boldsymbol{\theta}) \overset{D}{\to} \frac{1}{B} \sum_{i=1}^{B} \boldsymbol{v}_{i} \sim AN_{g}\left(\boldsymbol{0}, \frac{\boldsymbol{\Sigma}\boldsymbol{u}}{B}\right)$$

by Theorem 1.25, where AN_g denotes an approximate multivariate normal distribution. Hence $(\overline{T} - \boldsymbol{\theta}) = O_P((nB)^{-1/2})$, and \overline{T} gets arbitrarily close to $\boldsymbol{\theta}$ compared to T_n as $B \to \infty$. Thus R_c is a large sample $100(1 - \delta)\%$ confidence region for $\boldsymbol{\theta}$ as $n, B \to \infty$. \square

Examining the iid data cloud $T_1,...,T_B$ and the bootstrap sample data cloud $T_1^*,...,T_B^*$ is often useful for understanding the bootstrap. If $\sqrt{n}(T_n-\theta)$ and $\sqrt{n}(T_i^*-T_n)$ both converge in distribution to $\boldsymbol{u}\sim N_g(\boldsymbol{0},\boldsymbol{\Sigma})$, say, then the bootstrap sample data cloud of $T_1^*,...,T_B^*$ is like the data cloud of iid $T_1,...,T_B$ shifted to be centered at T_n . The nonparametric confidence region

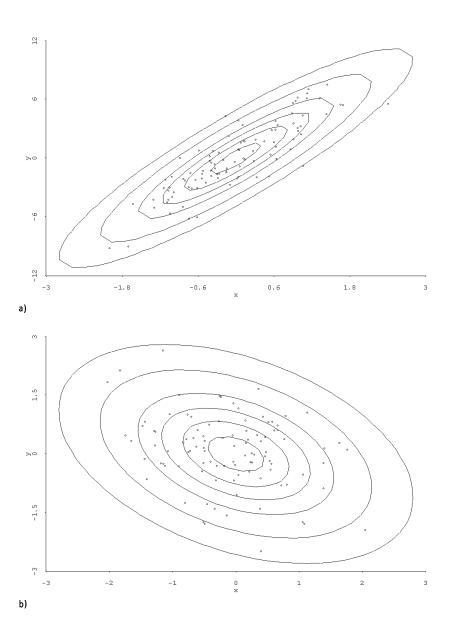


Fig. 2.3 Confidence Regions for 2 Statistics with MVN Distributions

(2.30) applies the prediction region to the bootstrap. Then the hybrid region (2.32) centers that region at T_n . Hence (2.32) is a confidence region by the geometric argument, and (2.30) is a confidence region if $\sqrt{n}(\overline{T}^* - T_n) \stackrel{P}{\to} \mathbf{0}$. Since the T_i^* are closer to \overline{T}^* than T_n on average, $D_{(U_{BT})}^2$ tends to be greater than $D_{(U_B)}^2$. Hence the coverage and volume of (2.31) tend to be at least as large as the coverage and volume of (2.32).

The hyperellipsoid corresponding to the squared Mahalanobis distance $D^2(T_n, \mathbf{C})$ is centered at T_n , while the hyperellipsoid corresponding to the squared Mahalanobis distance $D^2(\overline{T}, \mathbf{C})$ is centered at \overline{T} . Note that $D^2_{\overline{T}}(T_n, \mathbf{C}) = (\overline{T} - T_n)^T \mathbf{C}^{-1}(\overline{T} - T_n) = (T_n - \overline{T})^T \mathbf{C}^{-1}(T_n - \overline{T}) = D^2_{T_n}(\overline{T}, \mathbf{C})$. Thus $D^2_{\overline{T}}(T_n, \mathbf{C}) < D^2_{(U_n)}$ iff $D^2_{T}(\overline{T}, \mathbf{C}) < D^2_{(U_n)}$.

Thus $D_{\overline{T}}^2(T_n, \mathbf{C}) \leq D_{(U_B)}^2$ iff $D_{T_n}^2(\overline{T}, \mathbf{C}) \leq D_{(U_B)}^2$. The prediction region method will often simulate well even if B is rather small. If the ellipses are centered at T_n or \overline{T}^* , Figure 2.3 shows confidence regions if the plotted points are $T_1^*, ..., T_B^*$ where the T_i^* are approximately multivariate normal. If the ellipses are centered at \overline{T} , Figure 2.3 shows 10%, 30%, 50%, 70%, 90%, and 98% prediction regions for a future value of T_f for two multivariate normal statistics. Then the plotted points are iid $T_1, ..., T_B$. If $nCov(T) \xrightarrow{P} \Sigma_A$, and the T_i^* are iid from the bootstrap distribution, then $Cov(\overline{T}^*) \approx Cov(T)/B \approx \Sigma_A/(nB)$. By Theorem 2.10, if \overline{T}^* is in the 90% prediction region with probability near 90%, then the confidence region should give simulated coverage near 90% and the volume of the confidence region should be near that of the 90% prediction region. If B = 100, then \overline{T}^* falls in a covering region of the same shape as the prediction region, but centered near T_n and the lengths of the axes are divided by \sqrt{B} . Hence if B=100, then the axes lengths of this covering region are about one tenth of those in Figure 2.3. Hence when T_n falls within the 70% prediction region, the probability that \overline{T}^* falls in the 90% prediction region is near one. If T_n is just within or just without the boundary of the 90% prediction region, \overline{T}^* tends to be just within or just without of the 90% prediction region. Hence the coverage and volume of prediction region confidence region is near that of the nominal coverage 90% and near the volume of the 90% prediction region.

Hence B does not need to be large provided that n and B are large enough so that $S_T^* \approx \text{Cov}(T^*) \approx \Sigma_A/n$. If n is large, the sample covariance matrix starts to be a good estimator of the population covariance matrix when $B \geq Jg$ where J=20 or 50. For small g, using B=1000 often led to good simulations, but $B=\max(50g,100)$ may work well.

Remark 2.21. Remark 2.16 suggests that even if the statistic T_n is asymptotically normal so the Mahalanobis distances are asymptotically χ_g^2 , the prediction region method can give better results for moderate n by using the cutoff $D_{(U_B)}^2$ instead of the cutoff $\chi_{g,1-\delta}^2$. Theorem 2.10 says that the hyperellipsoidal prediction and confidence regions have exactly the same volume. We compensate for the prediction region undercoverage when n is moderate

by using $D_{(U_n)}^2$. If n is large, by using $D_{(U_B)}^2$, the prediction region method confidence region compensates for undercoverage when B is moderate, say $B \geq Jg$ where J = 20 or 50. See Remark 2.17. This result can be useful if a simulation with B = 1000 or B = 10000 is much slower than a simulation with B = Jg. The price to pay is that the prediction region method confidence region is inflated to have better coverage, so the power of the hypothesis test is decreased if moderate B is used instead of larger B.

2.5.4 Bootstrapping the Population Coefficient of Multiple Determination

This subsection illustrates a case where the shorth(c) bootstrap CI fails, but the lower shorth CI can be useful. See Definition 2.13.

The multiple linear regression (MLR) model is

$$Y_i = \beta_1 + x_{i,2}\beta_2 + \dots + x_{i,p}\beta_p + e_i = \boldsymbol{x}_i^T\boldsymbol{\beta} + e_i$$

for i = 1, ..., n. See Definition 1.42 for the coefficient of multiple determination

$$R^2 = [corr(Y_i, \hat{Y}_i)]^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$$

where $\operatorname{corr}(Y_i, \hat{Y}_i)$ is the sample correlation of Y_i and \hat{Y}_i .

Assume that the variance of the errors is σ_e^2 and that the variance of Y is σ_Y^2 . Let the linear combination $L = \sum_{i=2}^p x_i \beta_i$ where $Y = \beta_1 + \sum_{i=2}^p x_i \beta_i + e = \beta_1 + L + e$. Let the variance of L be σ_L^2 . Then

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} r_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} \xrightarrow{P} \tau^{2} = 1 - \frac{\sigma_{e}^{2}}{\sigma_{Y}^{2}} = 1 - \frac{\sigma_{e}^{2}}{\sigma_{e}^{2} + \sigma_{L}^{2}}.$$

Here we assume that e is independent of the predictors $x_2, ..., x_p$. Hence e is independent of L and the variance $\sigma_Y^2 = V(L+e) = V(L) + V(e) = \sigma_L^2 + \sigma_e^2$.

One of the sufficient conditions for the shorth(c) interval to be a large sample CI for θ is $\sqrt{n}(T-\theta) \stackrel{D}{\to} N(0,\sigma^2)$. If the function $t(\theta)$ has an inverse, and $\sqrt{n}(t(T)-t(\theta)) \stackrel{D}{\to} N(0,v^2)$, then the above condition typically holds by the delta method. See Remark 2.19.

For $T=R^2$ and $\theta=\tau^2$, the test statistic F_0 for testing $H_0:\beta_2=\cdots=\beta_p=0$ in the Anova F test has $(p-1)F_0\stackrel{D}{\to}\chi^2_{p-1}$ for a large class of error distributions when H_0 is true, where

$$F_0 = \frac{R^2}{1 - R^2} \frac{n - p}{p - 1}$$

if the MLR model has a constant. If H_0 is false, then F_0 has an asymptotic scaled noncentral χ^2 distribution. These results suggest that the large sample distribution of $\sqrt{n}(R^2-\tau^2)$ may not be $N(0,\sigma^2)$ if H_0 is false so $\tau^2>0$. If $\tau^2=0$, we may have $\sqrt{n}(R^2-0)\stackrel{D}{\to} N(0,0)$, the point mass at 0. Hence the shorth CI may not be a large sample CI for τ^2 . The lower shorth CI should be useful for testing $H_0:\tau^2=0$ versus $H_A:\tau^2>a$ where $0< a\leq 1$ since the coverage is 1 and the length of the CI converges to 0. So reject H_0 if a is not in the CI.

The simulation simulated iid data \boldsymbol{w} with $\boldsymbol{u} = \boldsymbol{A}\boldsymbol{w}$ and $\boldsymbol{A}_{ij} = \psi$ for $i \neq j$ and $\boldsymbol{A}_{ii} = 1$ where $0 \leq \psi < 1$ and $\boldsymbol{u} = (x_2, ..., x_p)^T$. Hence $\operatorname{Cor}(x_i, x_j) = \rho = [2\psi + (p-3)\psi^2]/[1+(p-2)\psi^2]$ for $i \neq j$. If $\psi = 1/\sqrt{kp}$, then $\rho \to 1/(k+1)$ as $p \to \infty$ where k > 0. We used $\boldsymbol{w} \sim N_{p-1}(\boldsymbol{0}, \boldsymbol{I}_{p-1})$. If ψ is high or if p is large with $\psi \geq 0.5$, then the data are clustered tightly about the line with direction $\boldsymbol{1} = (1, ..., 1)^T$, and there is a dominant principal component with eigenvector $\boldsymbol{1}$ and eigenvalue λ_1 . We used $\psi = 0, 1/\sqrt{p}$, and 0.9. Then $\rho = 0, \rho \to 0.5$, or $\rho \to 1$ as $p \to \infty$.

We also used $V(x_2) = \cdots = V(x_p) = \sigma_x^2$. If p > 2, then $Cov(x_i, x_j) = \rho \sigma_x^2$ for $i \neq j$ and $Cov(x_i, x_j) = V(x_i) = \sigma_x^2$ for i = j. Then $V(Y) = \sigma_Y^2 = \sigma_L^2 + \sigma_e^2$ where

$$\sigma_L^2 = V(L) = V(\sum_{i=2}^p \beta_i x_i) = Cov(\sum_{i=2}^p \beta_i x_i, \sum_{j=2}^p \beta_j x_j) = \sum_{i=2}^p \sum_{j=2}^p \beta_i \beta_j Cov(x_i, x_j)$$

$$= \sum_{i=2}^p \beta_i^2 \sigma_x^2 + 2\rho \sigma_x^2 \sum_{i=2}^p \sum_{j=i+1}^p \beta_i \beta_j.$$

The simulations took $\beta_i \equiv 0$ or $\beta_i \equiv 1$ for i = 2, ..., p. For the latter case,

$$\sigma_L^2 = V(L) = (p-1)\sigma_x^2 + 2\rho\sigma_x^2 p(p-1)/2.$$

The zero mean errors e_i were from 5 distributions: i) N(0,1), ii) t_3 , iii) EXP(1)-1, iv) uniform(-1,1), and v) $(1-\epsilon)N(0,1)+\epsilon N(0,(1+s)^2)$ with $\epsilon=0.1$ and s=9 in the simulation. Then $Y=1+bx_2+bx_3+\cdots+bx_p+e$ with b=0 or b=1.

Remark 2.22. Suppose the simulation uses K runs and $W_i=1$ if μ is in the ith CI, and $W_i=0$ otherwise, for i=1,...,K. Then the W_i are iid binomial $(1,1-\delta_n)$ where $\rho_n=1-\delta_n$ is the true coverage of the CI when the sample size is n. Let $\hat{\rho}_n=\overline{W}$. Since $\sum_{i=1}^K W_i\sim \text{binomial}(K,\rho_n)$, the standard error $SE(\overline{W})=\sqrt{\rho_n(1-\rho_n)/K}$. For K=5000 and ρ_n near 0.9, we have $3SE(\overline{W})\approx 0.01$. Hence an observed coverage of $\hat{\rho}_n$ within 0.01 of the nominal coverage $1-\delta$ suggests that there is no reason to doubt that the nominal CI coverage is different from the observed coverage. So for a large sample 95% CI, we want the observed coverage to be between 0.94 and 0.96. Also a difference of 0.01 is not large. Coverage slightly higher than the nominal coverage is better than coverage slightly lower than the nominal coverage.

Bootstrapping confidence intervals for quantities like ρ^2 and τ^2 is notoriously difficult. If $\beta_2 = \cdots = \beta_p = 0$, then $\sigma_L^2 = 0$ and $\tau^2 = 0$. However, the probability that $R_i^{2*} > 0 = 1$. Hence the usual two sided bootstrap percentile and shorth intervals for τ^2 will never contain 0. The one sided bootstrap CI $[0, T_{(c)}^*]$ always contains 0, and is useful if the length of the CI goes to 0 as $n \to \infty$. In the table below, $\beta_i = b$ for i = 2, ..., p. If b = 0, then $\tau^2 = 0$.

The simulation for the table used 5000 runs with the bootstrap sample size B=1000. When n=400, the shorth(c) CI never contains $\tau^2=0$ and the average length of the CI is 0.035. See ccov and clen. The lower shorth CI always contained $\tau^2=0$ with lcov=1, and the average CI length was llen=0.036. The upper shorth CI never contains $\tau^2=0$, and the average length is near 1.

Table 2.1 Bootstrapping τ^2 with R^2 and B = 1000

etype	n	p	b	ψ	τ^2	ccov	clen	lcov	llen	ucov	ulen
1	100	4	0	0	0	0	0.135	1	0.137	0	0.990
1	200	4	0	0	0	0	0.0693	1	0.0702	0	0.995
1	400	4	0	0	0	0	0.0354	1	0.0358	0	0.988

Three slpack functions were used in the simulation. The function shorthLU gets the shorth(c) CI, the lower shorth CI, and the upper shorth CI. The function Rsqboot bootstraps R^2 , while the function Rsqbootsim does the simulation. Some R code for the first line of Table 2.1 is below where b = cc.

```
Rsqbootsim(n=100,p=4,BB=1000,nruns=5000,type=1,psi=0,
cc=0)
$rho
[1] 0
$sigesq
[1] 1
$sigLsq
[1] 0
$poprsq
[1] 0
$cicov
[1] 0
$avelen
[1] 0.1348881
$1cicov
[1] 1
$lavelen
[1] 0.13688
$ucicov
[1] 0
```

\$uavelen
[1] 0.9896608

2.6 OLS Large Sample Theory

For this section, we will make several assumptions for the multiple linear regression model $Y_i = \beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p}\beta_p + e_i = \boldsymbol{x}_i^T\boldsymbol{\beta} + e_i$ for i = 1, ..., n where the random variables e_i are iid with variance $V(e_i) = \sigma^2$. In matrix notation, these n equations become $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}$. Let $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T$. First, assume Equation (2.1) holds. Second, assume the maximum leverage $\max_{i=1,...,n} \boldsymbol{x}_{iI}^T(\boldsymbol{X}_I^T\boldsymbol{X}_I)^{-1}\boldsymbol{x}_{iI} \to 0$ in probability as $n \to \infty$ for each I with $S \subseteq I$.

The following theorem is analogous to the central limit theorem and the theory for the t-interval for μ based on \overline{Y} and the sample standard deviation (SD) S_Y . If the data $Y_1, ..., Y_n$ are iid with mean 0 and variance σ^2 , then \overline{Y} is asymptotically normal and the t-interval will perform well if the sample size is large enough. The result below suggests that the OLS estimators \hat{Y}_i and $\hat{\beta}$ are good if the sample size is large enough. The condition $\max h_i \to 0$ in probability usually holds if the researcher picked the design matrix X or if the x_i are iid random vectors from a well behaved population. Outliers can cause the condition to fail. Convergence in distribution, $Z_n \stackrel{D}{\to} N_p(\mathbf{0}, \Sigma)$, means the multivariate normal approximation can be used for probability calculations involving Z_n . When p=1, the univariate normal distribution can be used. See Sen and Singer (1993, p. 280) for the theorem, which implies that $\hat{\beta} \approx N_p(\beta, \sigma^2(X^TX)^{-1})$. Let $h_i = H_{ii}$ where $H = P_X$. Note that the following theorem is for the full rank model since X^TX is nonsingular.

Theorem 2.11, OLS CLT (Least Squares Central Limit Theorem): Consider the MLR model $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + e_i$ and assume that the zero mean errors are iid with $E(e_i) = 0$ and $VAR(e_i) = \sigma^2$. Also assume that $\max_i(h_1, ..., h_n) \to 0$ in probability as $n \to \infty$ and

$$\frac{\boldsymbol{X}^T\boldsymbol{X}}{n} \to \boldsymbol{W}^{-1}$$

as $n \to \infty$. Then the least squares (OLS) estimator $\hat{\beta}$ satisfies

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0}, \sigma^2 \boldsymbol{W}).$$
 (2.38)

Equivalently,

$$(\boldsymbol{X}^T \boldsymbol{X})^{1/2} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_p).$$
 (2.39)

Then using the OLS CLT Theorem 2.11 and notation from Section 2.2, for the full OLS model, $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0}, \sigma^2 \boldsymbol{W}) \sim N_p(\mathbf{0}, \boldsymbol{V})$ where $(\boldsymbol{X}^T\boldsymbol{X})/n \stackrel{P}{\to} \boldsymbol{W}^{-1}$. If $S \subseteq I_j$, then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j} - \boldsymbol{\beta}_{I_j}) \stackrel{D}{\to} N_{a_j}(\mathbf{0}, \sigma^2 \boldsymbol{W}_j) \sim N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ where $n(\boldsymbol{X}_{I_j}^T\boldsymbol{X}_{I_j})^{-1} \stackrel{P}{\to} \boldsymbol{W}_j$. Let $\hat{\boldsymbol{\beta}}_{I_j} = (\boldsymbol{X}_{I_j}^T\boldsymbol{X}_{I_j})^{-1}\boldsymbol{X}_{I_j}^T\boldsymbol{Y} = \boldsymbol{D}_j\boldsymbol{Y}$, $T_n = \hat{\boldsymbol{\beta}}_{I_{min},0}$, and $T_{jn} = \hat{\boldsymbol{\beta}}_{I_j,0} = \boldsymbol{D}_{j,0}\boldsymbol{Y}$ where $\boldsymbol{D}_{j,0}$ adds rows of zeroes to \boldsymbol{D}_j corresponding to the x_i not in I_j . Then $\boldsymbol{u}_{jn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0} - \boldsymbol{\beta}) \stackrel{D}{\to} \boldsymbol{u}_j \sim N_p(\mathbf{0}, \sigma^2 \boldsymbol{W}_{j,0}) \sim N_p(\mathbf{0}, \boldsymbol{V}_{j,0})$ where $\boldsymbol{W}_{j,0}$ adds columns and rows of zeroes corresponding to the x_i not in I_j .

For variable selection with $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$, let $T_n = T_{kn} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities π_{kn} where $\pi_{kn} \to \pi_k$ as $n \to \infty$. Denote the π_k with $S \subseteq I_k$ by π_j . The other $\pi_k = 0$. Then Theorem 2.4 holds: $\sqrt{n}(\hat{\boldsymbol{\beta}}_{VS} - \boldsymbol{\beta}) \stackrel{D}{\to} \boldsymbol{u}$. Note that $\boldsymbol{V}_{j,0} = \sigma^2 \boldsymbol{W}_{j,0}$ is singular unless I_j corresponds to the full model. For example, if p = 3 and model I_j uses a constant $x_1 \equiv 1$ and x_3 with

$$\mathbf{V}_{j} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix}, \text{ then } \mathbf{V}_{j,0} = \begin{bmatrix} V_{11} & 0 & V_{12} \\ 0 & 0 & 0 \\ V_{21} & 0 & V_{22} \end{bmatrix}.$$

For variable selection, the next section will show that the bootstrap sample data cloud $T_1^*, ..., T_B^*$ tends to be slightly more variable than the data cloud of iid $T_1, ..., T_B$ for large n. This result will hold for the parametric bootstrap, residual bootstrap, and nonparametric bootstrap, which are discussed in the next three subsections. Hence by the geometric argument, we expect $D^2_{(U_B)}$ or $D^2_{(U_{BT})}$ can be used as $\hat{D}^2_{1-\delta}$.

2.7 Bootstrapping Variable Selection Estimators

Obtaining the bootstrap samples for $\hat{\boldsymbol{\beta}}_{VS}$ and $\hat{\boldsymbol{\beta}}_{MIX}$ is simple. Generate \boldsymbol{Y}^* and \boldsymbol{X}^* that would be used to produce $\hat{\boldsymbol{\beta}}^*$ if the full model estimator $\hat{\boldsymbol{\beta}}$ was being bootstrapped. Instead of computing $\hat{\boldsymbol{\beta}}^*$, compute the variable selection estimator $\hat{\boldsymbol{\beta}}_{VS,1}^* = \hat{\boldsymbol{\beta}}_{I_{k_1},0}^*$. Then generate another \boldsymbol{Y}^* and \boldsymbol{X}^* and compute $\hat{\boldsymbol{\beta}}_{MIX,1}^* = \hat{\boldsymbol{\beta}}_{I_{k_1},0}^*$ (using the same subset I_{k_1}). This process is repeated B times to get the two bootstrap samples for i=1,...,B. Let the selection probabilities for the bootstrap variable selection estimator be ρ_{kn} . Then this bootstrap procedure bootstraps both $\hat{\boldsymbol{\beta}}_{VS}$ and $\hat{\boldsymbol{\beta}}_{MIX}$ with $\pi_{kn} = \rho_{kn}$. Then apply the confidence regions (2.30), (2.31), and (2.32) on the bootstrap sample $T_1^*,...,T_B^*$ where $T_i^* = A\hat{\boldsymbol{\beta}}_{SEL,i}^*$ where SEL is VS or MIX.

For $T_n = \mathbf{A}\hat{\boldsymbol{\beta}}_{MIX}$ with $\boldsymbol{\theta} = \mathbf{A}\boldsymbol{\beta}$, we have $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{v}$ by (10) where $E(\boldsymbol{v}) = \mathbf{0}$, and $\boldsymbol{\Sigma}_{\boldsymbol{v}} = \sum_j \pi_j \mathbf{A} \boldsymbol{V}_{j,0} \mathbf{A}^T$. By Theorem 2.10, if we had iid data $T_1, ..., T_B$, then R_c would be a large sample confidence region for $\boldsymbol{\theta}$. If

 $\sqrt{n}(T_n^* - T_n) \xrightarrow{D} \mathbf{v}$, then we could use the bootstrap sample and confidence regions (2.30) to (2.32). This condition holds only under strong regularity conditions such as $\pi_d = 1$ or $\mathbf{\theta} = \mathbf{A}\mathbf{\beta} = \mathbf{B}\mathbf{\beta}_S$ if \mathbf{V} was diagonal.

Now we will try to explain why the bootstrap confidence regions may still be useful. By Sections 2.2 and 2.5, we expect the confidence regions to simulate well (have coverage close to or higher than the nominal level so that the type I error is close to or less than the nominal level) if $\pi_d = 1$ or if the asymptotic covariance matrix for the full model is nonsingular and diagonal, but these conditions are very strong. In simulations for $\hat{\beta}_{VS}$ with $n \geq 20p$, if the confidence regions (2.30) and (2.31) simulated well for the full model bootstrap, then (2.31) and (2.32) also simulated well for $\hat{\beta}_{VS}$. The hybrid confidence region (2.32) had poorer performance, and confidence regions for $\hat{\beta}_{VS}$ tended to have less undercoverage than confidence regions for $\hat{\beta}_{MIX}^*$.

Undercoverage can occur if the bootstrap data cloud is less variable than the iid data cloud, e.g., if n < 20p. Heuristically, if $n \ge 20p$, then coverage can be higher than the nominal coverage for two reasons: i) the bootstrap data cloud $T_1^*,...,T_B^*$ is more variable than the iid data cloud of $T_1,...,T_B$, and ii) zero padding. In the simulations for $H_0: A\beta = B\beta_S = \theta$, the simulated coverage for confidence intervals and confidence regions (2.30) and (2.31) was roughly 2% less than to 2% higher than the nominal 95% coverage due to i). In the simulations for $H_0: A\beta = B\beta_E = 0$, the simulated coverage for confidence intervals and confidence regions (2.30) and (2.31) tended to be close to 99% when the nominal coverage was 95%, but the nominal 95% confidence intervals tended to be shorter than those for the full model, and the confidence region volumes were often much smaller than those for the full model. See Pelawa Watagoda and Olive (2021a) for more on why zero padding tends to increase the coverage while decreasing the volume of the confidence regions and confidence intervals. The simulations also used $B \geq$ $\max(200, 50p)$ so that S_T^* is a good estimator of $\text{Cov}(T^*)$.

The matrix S_T^* can be singular due to one or more columns of zeros in the bootstrap sample for $\beta_1, ..., \beta_p$. The variables corresponding to these columns are likely not needed in the model given that the other predictors are in the model. A simple remedy is to add d bootstrap samples of the full model estimator $\hat{\boldsymbol{\beta}}^* = \hat{\boldsymbol{\beta}}_{FULL}^*$ to the bootstrap sample. For example, take $d = \lceil cB \rceil$ with c = 0.01. A confidence interval $[L_n, U_n]$ can be computed without S_T^* for (2.30), (2.31), and (2.32). Using the confidence interval $[\max(L_n, T_{(1)}^*), \min(U_n, T_{(B)}^*)]$ can give a shorter covering region.

Next we examine why the bootstrap data cloud tends to be more variable than the iid data cloud. Let B_{jn} count the number of times $T_i^* = T_{ij}^*$ in the bootstrap sample. Then the bootstrap sample $T_1^*, ..., T_B^*$ can be written as

$$T_{1,1}^*,...,T_{B_{1n},1}^*,...,T_{1,J}^*,...,T_{B_{Jn},J}^*.$$

Denote $T_{1j}^*,...,T_{B_{jn},j}^*$ as the jth bootstrap component of the bootstrap sample with sample mean \overline{T}_j^* and sample covariance matrix $S_{T,j}^*$. Similarly, we can

define the jth component of the iid sample $T_1, ..., T_B$ to have sample mean \overline{T}_j and sample covariance matrix $S_{T,j}$.

Let $T_n = \hat{\boldsymbol{\beta}}_{MIX}$. If $S \subseteq I_j$, assume $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j} - \boldsymbol{\beta}_{I_j}) \stackrel{D}{\to} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ and $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j}^* - \hat{\boldsymbol{\beta}}_{I_j}) \stackrel{D}{\to} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$. Then by Equation (2.3),

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_{i},0}-\boldsymbol{\beta}) \stackrel{D}{\to} N_{p}(\boldsymbol{0},\boldsymbol{V}_{j,0}) \text{ and } \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_{i},0}^{*}-\hat{\boldsymbol{\beta}}_{I_{i},0}) \stackrel{D}{\to} N_{p}(\boldsymbol{0},\boldsymbol{V}_{j,0}).$$
 (2.40)

If Equation (2.38) holds, then the component clouds have the same variability asymptotically, and the confidence regions will shrink to a point at β as $n \to \infty$ ∞ , giving good test power, asymptotically. The iid data component clouds are all centered at β . If the bootstrap data component clouds were all centered at the same value $\hat{\beta}$, then the bootstrap cloud would be like an iid data cloud shifted to be centered at β , and (2.31) and (2.32) would be confidence regions for $\theta = \beta$ by Theorem 2.10. Instead, the bootstrap data component clouds are shifted slightly from a common center, and are each centered at a $\hat{\boldsymbol{\beta}}_{I_{i},0}$. Geometrically, the shifting of the bootstrap component data clouds makes the bootstrap data cloud more variable than the iid data cloud, asymptotically (we want $n \geq 20p$). The shifting also makes the T_i^* further from \overline{T}^* than if there is no shifting. A similar argument can be given for $T_n = \hat{A}\hat{\beta}_{MIX}$ and $\theta = A\beta$. Region (2.30) has the same volume as region (2.32), but tends to have higher coverage since empirically, the bagging estimator \overline{T}^* tends to estimate θ at least as well as T_n for a mixture distribution. See Breiman (1996) and Yang (2003).

The above argument is heuristic since we have not been able to prove that the coverage is $\geq 1-\delta$, asymptotically, except under strong regularity conditions. Then the type I error $\leq \delta$, asymptotically. Confidence region (2.31) rejects H_0 if $(T_n - \boldsymbol{\theta}_0)^T [\boldsymbol{S}_T^*]^{-1} (T_n - \boldsymbol{\theta}_0) > D_{(U_B,T)}^2$. If an iid data cloud was available, the cutoff $D_{(U_B)}^2(T_n, \boldsymbol{S}_T^*)$ could be computed from $D_i^2 = (T_i - \boldsymbol{\theta}_0)^T [\boldsymbol{S}_T^*]^{-1} (T_i - \boldsymbol{\theta}_0)$ for i = 1, ..., B. Hence the type I error is controlled if $D_{(U_B,T)}^2$ tends to be larger than $D_{(U_B)}^2(T_n, \boldsymbol{S}_T^*)$.

The bootstrap component clouds for $\hat{\boldsymbol{\beta}}_{VS}^*$ are again separated compared to the iid clouds for $\hat{\boldsymbol{\beta}}_{VS}$, which are centered about $\boldsymbol{\beta}$. Heuristically, most of the selection bias is due to predictors in E, not to the predictors in S. Hence $\hat{\boldsymbol{\beta}}_{S,VS}^*$ is roughly similar to $\hat{\boldsymbol{\beta}}_{S,MIX}^*$. Typically the distributions of $\hat{\boldsymbol{\beta}}_{E,VS}^*$ and $\hat{\boldsymbol{\beta}}_{E,MIX}^*$ are not similar, but use the same zero padding.

Next we will examine when Equation (2.38) holds. If $S \subseteq I_j$, then

Next we will examine when Equation (2.38) holds. If $S \subseteq I_j$, then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j} - \boldsymbol{\beta}_{I_j}) \stackrel{D}{\to} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ by the large sample theory (2.3) for the estimator. Bootstrap theory should show that $\sqrt{n}(\hat{\boldsymbol{\beta}}^* - \hat{\boldsymbol{\beta}}) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{V})$, but showing $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j}^* - \hat{\boldsymbol{\beta}}_{I_j}) \stackrel{D}{\to} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ is often difficult.

2.7.1 The Parametric Bootstrap

For the parametric regression model $Y_i|\boldsymbol{x}_i \sim D(\boldsymbol{x}_i^T\boldsymbol{\beta},\boldsymbol{\gamma})$, assume $\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0},\boldsymbol{V}(\boldsymbol{\beta}))$, and that $\boldsymbol{V}(\hat{\boldsymbol{\beta}}) \stackrel{P}{\to} \boldsymbol{V}(\boldsymbol{\beta})$ as $n \to \infty$. These assumptions tend to be mild for a parametric regression model where the MLE $\hat{\boldsymbol{\beta}}$ is used. Then $\boldsymbol{V}(\boldsymbol{\beta}) = \boldsymbol{I}^{-1}(\boldsymbol{\beta})$, the inverse Fisher information matrix. For GLMs, see, for example, Sen and Singer (1993, p. 309). For the parametric regression model, we regress \boldsymbol{Y} on \boldsymbol{X} to obtain $(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}})$ where the $n \times 1$ vector $\boldsymbol{Y} = (Y_i)$ and the ith row of the $n \times p$ design matrix \boldsymbol{X} is \boldsymbol{x}_i^T .

The parametric bootstrap uses $\mathbf{Y}_{j}^{*} = (Y_{i}^{*})$ where $Y_{i}^{*}|\mathbf{x}_{i} \sim D(\mathbf{x}_{i}^{T}\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}})$ for i = 1, ..., n. Regress \mathbf{Y}_{j}^{*} on \mathbf{X} to get $\hat{\boldsymbol{\beta}}_{j}^{*}$ for j = 1, ..., B. The large sample theory for $\hat{\boldsymbol{\beta}}^{*}$ is simple. Note that if $Y_{i}^{*}|\mathbf{x}_{i} \sim D(\mathbf{x}_{i}^{T}\mathbf{b}, \hat{\boldsymbol{\gamma}})$ where \mathbf{b} does not depend on n, then $(\mathbf{Y}^{*}, \mathbf{X})$ follows the parametric regression model with parameters $(\mathbf{b}, \hat{\boldsymbol{\gamma}})$. Hence $\sqrt{n}(\hat{\boldsymbol{\beta}}^{*} - \mathbf{b}) \stackrel{D}{\rightarrow} N_{p}(\mathbf{0}, \mathbf{V}(\mathbf{b}))$. Now fix large integer n_{0} , and let $\mathbf{b} = \hat{\boldsymbol{\beta}}_{n_{o}}$. Then $\sqrt{n}(\hat{\boldsymbol{\beta}}^{*} - \hat{\boldsymbol{\beta}}_{n_{o}}) \stackrel{D}{\rightarrow} N_{p}(\mathbf{0}, \mathbf{V}(\hat{\boldsymbol{\beta}}_{n_{o}}))$. Since $N_{p}(\mathbf{0}, \mathbf{V}(\hat{\boldsymbol{\beta}})) \stackrel{D}{\rightarrow} N_{p}(\mathbf{0}, \mathbf{V}(\boldsymbol{\beta}))$, we have

$$\sqrt{n}(\hat{\boldsymbol{\beta}}^* - \hat{\boldsymbol{\beta}}) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{V}(\boldsymbol{\beta}))$$
 (2.41)

as $n \to \infty$.

Now suppose $S \subseteq I$. Without loss of generality, let $\boldsymbol{\beta} = (\boldsymbol{\beta}_I^T, \boldsymbol{\beta}_O^T)^T$ and $\hat{\boldsymbol{\beta}} = (\hat{\boldsymbol{\beta}}(I)^T, \hat{\boldsymbol{\beta}}(O)^T)^T$. Then $(\boldsymbol{Y}, \boldsymbol{X}_I)$ follows the parametric regression model with parameters $(\boldsymbol{\beta}_I, \boldsymbol{\gamma})$. Hence $\sqrt{n}(\hat{\boldsymbol{\beta}}_I - \boldsymbol{\beta}_I) \stackrel{D}{\longrightarrow} N_{a_I}(\mathbf{0}, \boldsymbol{V}(\boldsymbol{\beta}_I))$. Now $(\boldsymbol{Y}^*, \boldsymbol{X}_I)$ only follows the parametric regression model asymptotically, since $\hat{\boldsymbol{\beta}}(O) \neq \mathbf{0}$. Then showing $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j}^* - \hat{\boldsymbol{\beta}}_{I_j}) \stackrel{D}{\longrightarrow} N_{a_j}(\mathbf{0}, \boldsymbol{V}_j)$ is often difficult. For the multiple linear regression model, $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}$, assume a constant

For the multiple linear regression model, $Y = X\beta + e$, assume a constant x_1 is in the model, and the zero mean e_i are iid with variance $V(e_i) = \sigma^2$. Let $H = X(X^TX)^{-1}X^T$. For each I with $S \subseteq I$, assume the maximum leverage $\max_{i=1,...,n} x_{iI}^T (X_I^TX_I)^{-1} x_{iI} \to 0$ in probability as $n \to \infty$. For least squares with $S \subseteq I$, $\sqrt{n}(\hat{\boldsymbol{\beta}}_I - \boldsymbol{\beta}_I) \stackrel{D}{\to} N_{a_I}(\mathbf{0}, V_I)$ where $(X_I^TX_I)/(n\sigma^2) \stackrel{P}{\to} V_I^{-1}$. See, for example, Sen and Singer (1993, p. 280).

Consider the parametric bootstrap for the above model with $\mathbf{Y}^* \sim N_n(\mathbf{X}\hat{\boldsymbol{\beta}}, \hat{\sigma}_n^2 \mathbf{I}) \sim N_n(\mathbf{H}\mathbf{Y}, \hat{\sigma}_n^2 \mathbf{I})$ where we are not assuming that the $e_i \sim N(0, \sigma^2)$, and

$$\hat{\sigma}_n^2 = MSE = \frac{1}{n-p} \sum_{i=1}^n r_i^2$$

where the residuals are from the full OLS model. Then MSE is a \sqrt{n} consistent estimator of σ^2 under mild conditions by Su and Cook (2012). Thus $\hat{\boldsymbol{\beta}}_I^* = (\boldsymbol{X}_I^T \boldsymbol{X}_I)^{-1} \boldsymbol{X}_I^T \boldsymbol{Y}^* \sim N_{a_I}(\hat{\boldsymbol{\beta}}_I, \hat{\sigma}_n^2 (\boldsymbol{X}_I^T \boldsymbol{X}_I)^{-1})$ since $E(\hat{\boldsymbol{\beta}}_I^*) = (\boldsymbol{X}_I^T \boldsymbol{X}_I)^{-1} \boldsymbol{X}_I^T \boldsymbol{H} \boldsymbol{Y} = \hat{\boldsymbol{\beta}}_I$ because $\boldsymbol{H} \boldsymbol{X}_I = \boldsymbol{X}_I$, and $\operatorname{Cov}(\hat{\boldsymbol{\beta}}_I^*) = \hat{\sigma}_n^2 (\boldsymbol{X}_I^T \boldsymbol{X}_I)^{-1}$.

Hence

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_I^* - \hat{\boldsymbol{\beta}}_I) \sim N_{a_I}(\mathbf{0}, n\hat{\sigma}_n^2(\boldsymbol{X}_I^T\boldsymbol{X}_I)^{-1}) \stackrel{D}{\to} N_{a_I}(\mathbf{0}, \boldsymbol{V}_I)$$

as $n, B \to \infty$ if $S \subseteq I$. Hence Equation (2.38) holds under mild conditions.

When V is diagonal, $\sqrt{n}(\hat{\boldsymbol{\beta}}_{S,full} - \boldsymbol{\beta}_S) \stackrel{D}{\to} N_{as}(\mathbf{0}, \boldsymbol{V}_S)$ where \boldsymbol{V}_S is a diagonal matrix using the relevant diagonal elements of \boldsymbol{V} . For multiple linear regression with the parametric bootstrap, the full model $\hat{\boldsymbol{\beta}}^* \sim N_p(\hat{\boldsymbol{\beta}}, \hat{\sigma}_n^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}) \approx N_p(\hat{\boldsymbol{\beta}}, \boldsymbol{V}/n)$. If the columns of \boldsymbol{X} are orthogonal and $S \subseteq I$, then $\hat{\boldsymbol{\beta}}_{S,I}^* = \hat{\boldsymbol{\beta}}_{S,full}^*$ and $\hat{\boldsymbol{\beta}}_{S,I} = \hat{\boldsymbol{\beta}}_{S,full}^*$. Hence $\sqrt{n}(\hat{\boldsymbol{\beta}}_{S,MIX}^* - \hat{\boldsymbol{\beta}}_{S,full}) \stackrel{D}{\to} N_{as}(\mathbf{0}, \boldsymbol{V}_S)$. When \boldsymbol{V} is diagonal, the columns of \boldsymbol{X} are asymptotically orthogonal. Hence if $S \subseteq I$, $\hat{\boldsymbol{\beta}}_{S,I} \approx \hat{\boldsymbol{\beta}}_{S,full} \approx \overline{T}^*$, and the bootstrap component clouds have the same asymptotic variability as the iid data clouds. Hence we expect the bootstrap cutoffs for $\boldsymbol{A}\hat{\boldsymbol{\beta}}_{S,MIX}^*$ to be near $\chi_{g,1-\delta}^2$. The weighted least squares formulation of the GLM maximum likelihood

The weighted least squares formulation of the GLM maximum likelihood estimator, given for example by Hillis and Davis (1994) and Sen and Singer (1993, p. 307), suggests that similar results hold for the GLM when V is diagonal.

2.7.2 The Residual Bootstrap

The residual bootstrap is often useful for additive error regression models of the form $Y_i = m(\mathbf{x}_i) + e_i = \hat{m}(\mathbf{x}_i) + r_i = \hat{Y}_i + r_i$ for i = 1, ..., n where the ith residual $r_i = Y_i - \hat{Y}_i$. Let $\mathbf{Y} = (Y_1, ..., Y_n)^T$, $\mathbf{r} = (r_1, ..., r_n)^T$, and let \mathbf{X} be an $n \times p$ matrix with ith row \mathbf{x}_i^T . Then the fitted values $\hat{Y}_i = \hat{m}(\mathbf{x}_i)$, and the residuals are obtained by regressing \mathbf{Y} on \mathbf{X} . Here the errors e_i are iid, and it would be useful to be able to generate B iid samples $e_{1j}, ..., e_{nj}$ from the distribution of e_i where j = 1, ..., B. If the $m(\mathbf{x}_i)$ were known, then we could form a vector \mathbf{Y}_j where the ith element $Y_{ij} = m(\mathbf{x}_i) + e_{ij}$ for i = 1, ..., n. Then regress \mathbf{Y}_j on \mathbf{X} . Instead, draw samples $r_{1j}^*, ..., r_{nj}^*$ with replacement from the residuals, then form a vector \mathbf{Y}_j^* where the ith element $Y_{ij}^* = \hat{m}(\mathbf{x}_i) + r_{ij}^*$ for i = 1, ..., n. Then regress \mathbf{Y}_j^* on \mathbf{X} . If the residuals do not sum to 0, it is often useful to replace r_i by $\epsilon_i = r_i - \overline{r}$, and r_{ij}^* by ϵ_{ij}^* .

Example 2.8. For multiple linear regression, $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + e_i$ is written in matrix form as $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + e$. Regress \boldsymbol{Y} on \boldsymbol{X} to obtain $\hat{\boldsymbol{\beta}}$, \boldsymbol{r} , and $\hat{\boldsymbol{Y}}$ with ith element $\hat{Y}_i = \hat{m}(\boldsymbol{x}_i) = \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}$. For j = 1, ..., B, regress \boldsymbol{Y}_j^* on \boldsymbol{X} to form $\hat{\boldsymbol{\beta}}_{1.n}^*, ..., \hat{\boldsymbol{\beta}}_{B.n}^*$ using the residual bootstrap.

Now examine the OLS model with a constant in the model so the OLS residuals sum to 0. Let $\hat{Y} = \hat{Y}_{OLS} = X\hat{\beta}_{OLS} = HY$ be the fitted values from the OLS full model. Let r^W denote an $n \times 1$ random vector of elements selected with replacement from the OLS full model residuals. Following Freedman (1981) and Efron (1982, p. 36),

$$Y^* = X\hat{\boldsymbol{\beta}}_{OLS} + r^W$$

follows a standard linear model where the elements r_i^W of \mathbf{r}^W are iid from the empirical distribution of the OLS full model residuals r_i . Hence

$$E(r_i^W) = \frac{1}{n} \sum_{i=1}^n r_i = 0, \quad V(r_i^W) = \sigma_n^2 = \frac{1}{n} \sum_{i=1}^n r_i^2 = \frac{n-p}{n} MSE,$$

$$E(\mathbf{r}^W) = \mathbf{0}$$
, and $Cov(\mathbf{Y}^*) = Cov(\mathbf{r}^W) = \sigma_n^2 \mathbf{I}_n$.

Let
$$\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{OLS}$$
. Then $\hat{\boldsymbol{\beta}}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}^*$ with $Cov(\hat{\boldsymbol{\beta}}^*) = \sigma_n^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1} = \frac{n-p}{n} MSE(\boldsymbol{X}^T \boldsymbol{X})^{-1}$, and $E(\hat{\boldsymbol{\beta}}^*) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T E(\boldsymbol{Y}^*) =$

 $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{H} \mathbf{Y} = \hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_n$ since $\mathbf{H} \mathbf{X} = \mathbf{X}$. The expectations are with respect to the bootstrap distribution where $\hat{\mathbf{Y}}$ acts as a constant. One difference from the usual OLS MLR model is that $\sigma_n^2 \stackrel{P}{\to} \sigma^2$ depends on n. The usual model has $V(e_i) = \sigma^2$ which does not depend on n.

For the OLS estimator $\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{OLS}$, the estimated covariance matrix of $\hat{\boldsymbol{\beta}}_{OLS}$ is $\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}_{OLS}) = MSE(\boldsymbol{X}^T\boldsymbol{X})^{-1}$. The sample covariance matrix of the $\hat{\boldsymbol{\beta}}^*$ is estimating $\text{Cov}(\hat{\boldsymbol{\beta}}^*)$ as $B \to \infty$. Hence the residual bootstrap standard error $SE(\hat{\beta}_i^*) \approx \sqrt{\frac{n-p}{n}} SE(\hat{\beta}_i)$ for i=1,...,p where $\hat{\boldsymbol{\beta}}_{OLS} = \hat{\boldsymbol{\beta}} = (\hat{\beta}_1,...,\hat{\beta}_p)^T$. The OLS CLT Theorem 2.11 says

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\rightarrow} N_p(\mathbf{0}, \lim_{n \to \infty} n\widehat{\operatorname{Cov}}(\hat{\boldsymbol{\beta}}_{OLS})) \sim N_p(\mathbf{0}, \sigma^2 \boldsymbol{W})$$

where $n(\mathbf{X}^T\mathbf{X})^{-1} \to \mathbf{W}$. Since $\mathbf{Y}^* = \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS} + \mathbf{r}^W$ follows a standard linear model, it may not be surprising that

$$\sqrt{n}(\hat{\boldsymbol{\beta}}^* - \hat{\boldsymbol{\beta}}_{OLS}) \stackrel{D}{\to} N_p(\mathbf{0}, \lim_{n \to \infty} n\widehat{\text{Cov}}(\hat{\boldsymbol{\beta}}^*)) \sim N_p(\mathbf{0}, \sigma^2 \boldsymbol{W}).$$
(2.42)

Imagine for large fixed n=N we get the OLS residuals. Then we use these residuals for n>N to get $\hat{\boldsymbol{\beta}}_{n,N}^*$. Then by the OLS CLT, $\sqrt{n}(\hat{\boldsymbol{\beta}}_{n,N}^*-\hat{\boldsymbol{\beta}}_{OLS}) \stackrel{D}{\to} N_p(\mathbf{0},\sigma_N^2 \boldsymbol{W})$ as $n\to\infty$, and $N_p(\mathbf{0},\sigma_N^2 \boldsymbol{W}) \stackrel{D}{\to} N_p(\mathbf{0},\sigma^2 \boldsymbol{W})$ as $N\to\infty$. Hence Theorem 2.8 is satisfied, and Equation (2.42) holds. See Freedman (1981) for an alternative proof.

For the above residual bootstrap, $\hat{\boldsymbol{\beta}}_{I_j}^* = (\boldsymbol{X}_{I_j}^T \boldsymbol{X}_{I_j})^{-1} \boldsymbol{X}_{I_j}^T \boldsymbol{Y}^* = \boldsymbol{D}_j \boldsymbol{Y}^*$ with $\text{Cov}(\hat{\boldsymbol{\beta}}_{I_j}^*) = \sigma_n^2 (\boldsymbol{X}_{I_j}^T \boldsymbol{X}_{I_j})^{-1}$ and $E(\hat{\boldsymbol{\beta}}_{I_j}^*) = (\boldsymbol{X}_{I_j}^T \boldsymbol{X}_{I_j})^{-1} \boldsymbol{X}_{I_j}^T E(\boldsymbol{Y}^*) = (\boldsymbol{X}_{I_j}^T \boldsymbol{X}_{I_j})^{-1} \boldsymbol{X}_{I_j}^T \boldsymbol{H} \boldsymbol{Y} = \hat{\boldsymbol{\beta}}_{I_j}$ since $\boldsymbol{H} \boldsymbol{X}_{I_j} = \boldsymbol{X}_{I_j}$. The expectations are with respect to the bootstrap distribution where $\hat{\boldsymbol{Y}}$ acts as a constant.

Thus for $S \subseteq I$ and the residual bootstrap using residuals from the full OLS model, $E(\hat{\boldsymbol{\beta}}_I^*) = \hat{\boldsymbol{\beta}}_I$ and $n\text{Cov}(\hat{\boldsymbol{\beta}}_I^*) = n[(n-p)/n]\hat{\sigma}_n^2(\boldsymbol{X}_I^T\boldsymbol{X}_I)^{-1} \stackrel{P}{\to} \boldsymbol{V}_I$

as $n \to \infty$ with $\hat{\sigma}_n^2 = MSE$. Hence $\hat{\boldsymbol{\beta}}_I^* - \hat{\boldsymbol{\beta}}_I \stackrel{P}{\to} \mathbf{0}$ as $n \to \infty$ by Lai et al. (1979). Note that $\hat{\boldsymbol{\beta}}_I^* = \hat{\boldsymbol{\beta}}_{I,n}^*$ and $\hat{\boldsymbol{\beta}}_I = \hat{\boldsymbol{\beta}}_{I,n}$ depend on n.

Remark 2.23. The Cauchy Schwartz inequality says $|\boldsymbol{a}^T\boldsymbol{b}| \leq \|\boldsymbol{a}\| \|\boldsymbol{b}\|$. Suppose $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) = O_P(1)$ is bounded in probability. This will occur if $\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\longrightarrow} N_p(\mathbf{0}, \boldsymbol{\Sigma})$, e.g. if $\hat{\boldsymbol{\beta}}$ is the OLS estimator. Then

$$|r_i - e_i| = |Y_i - \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}} - (Y_i - \boldsymbol{x}_i^T \boldsymbol{\beta})| = |\boldsymbol{x}_i^T (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})|.$$

Hence

$$\sqrt{n} \max_{i=1,...,n} |r_i - e_i| \le (\max_{i=1,...,n} \|\boldsymbol{x}_i\|) \|\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})\| = O_P(1)$$

since $\max \|x_i\| = O_P(1)$ or there is extrapolation. Hence OLS residuals behave well if the zero mean error distribution of the iid e_i has a finite variance σ^2 .

Remark 2.24. Note that both the residual bootstrap and parametric bootstrap for OLS are robust to the unknown error distribution of the iid e_i . For the residual bootstrap with $S \subseteq I$ where I is not the full model, we conjecture that $\sqrt{n}(\hat{\boldsymbol{\beta}}_I^* - \hat{\boldsymbol{\beta}}_I) \stackrel{D}{\to} N_{a_I}(\mathbf{0}, \mathbf{V}_I)$ as $n \to \infty$ since OLS estimators tend to be asymptotically normal with a distribution that depends on the covariance matrix of the estimator. For the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, the e_i are iid from a distribution that does not depend on n, and $\boldsymbol{\beta}_E = \mathbf{0}$ where E denotes the terms in the full model that are not in I. For $\mathbf{Y}^* = \mathbf{X}\hat{\boldsymbol{\beta}} + \mathbf{r}^W$, the distribution of the r_i^W depends on n and $\hat{\boldsymbol{\beta}}_E \neq \mathbf{0}$ although $\sqrt{n}\hat{\boldsymbol{\beta}}_E = O_P(1)$.

2.7.3 The Nonparametric Bootstrap

The nonparametric bootstrap (also called the empirical bootstrap, naive bootstrap, and the pairs bootstrap) draws a sample of n cases $(Y_i^*, \boldsymbol{x}_i^*)$ with replacement from the n cases (Y_i, \boldsymbol{x}_i) , and regresses the Y_i^* on the \boldsymbol{x}_i^* to get $\hat{\boldsymbol{\beta}}_{VS,1}^*$, and then draws another sample to get $\hat{\boldsymbol{\beta}}_{MIX,1}^*$. This process is repeated B times to get the two bootstrap samples for i=1,...,B. If $\sqrt{n}(\hat{\boldsymbol{\beta}}^*-\hat{\boldsymbol{\beta}})\overset{D}{\to} N_p(\mathbf{0},\boldsymbol{V})$ for the full model, then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j}^*-\hat{\boldsymbol{\beta}}_{I_j})\overset{D}{\to} N_{a_j}(\mathbf{0},\boldsymbol{V}_j)$ when $S\subseteq I_j$: just use I_j as the new full model. Thus Equation (2.38) should hold when the full model bootstrap works. The method is used for multiple linear regression, Cox proportional hazards regression with right censored Y_i , and GLMs. See, for example, Burr (1994), Efron and Tibshirani (1986), Freedman (1981), and Shao and Tu (1995, pp. 335-349).

Then for the full MLR model,

$$\mathbf{Y}^* = \mathbf{X}^* \hat{\boldsymbol{\beta}}_{OLS} + \mathbf{r}^W$$

and for a submodel I,

$$Y^* = X_I^* \hat{\boldsymbol{\beta}}_{LOLS} + r_I^W.$$

Freedman (1981) showed that under regularity conditions for the OLS MLR model, $\sqrt{n}(\hat{\boldsymbol{\beta}}^* - \hat{\boldsymbol{\beta}}) \stackrel{D}{\to} N_p(\mathbf{0}, \sigma^2 \boldsymbol{W}) \sim N_p(\mathbf{0}, \boldsymbol{V})$. Hence if $S \subseteq I$,

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_I^* - \hat{\boldsymbol{\beta}}_I) \stackrel{D}{\to} N_{a_I}(\mathbf{0}, \boldsymbol{V}_I)$$

as $n \to \infty$. (Treat I as if I is the full model.)

One set of regularity conditions is that the MLR model holds, and if $\mathbf{x}_i = (1 \ \mathbf{u}_i^T)^T$, then the $\mathbf{w}_i = (Y_i \ \mathbf{u}_i^T)^T$ are iid from some population with a nonsingular covariance matrix.

The nonparametric bootstrap uses $w_1^*, ..., w_n^*$ where the w_i^* are sampled with replacement from $w_1, ..., w_n$. By Example 2.3, $E(w^*) = \overline{w}$, and

$$Cov(\boldsymbol{w}^*) = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}_i - \overline{\boldsymbol{w}}) (\boldsymbol{w}_i - \overline{\boldsymbol{w}})^T = \widetilde{\boldsymbol{\Sigma}}_{\boldsymbol{w}} = \begin{bmatrix} \tilde{S}_Y^2 & \widetilde{\boldsymbol{\Sigma}}_Y \boldsymbol{u} \\ \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}Y} & \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}} \end{bmatrix}.$$

Note that $\hat{\beta}$ is a constant with respect to the bootstrap distribution. Assume all inverse matrices exist. Then it can be shown that

$$\hat{\boldsymbol{\beta}}^* = \begin{bmatrix} \hat{\beta}_1^* \\ \hat{\boldsymbol{\beta}}_{\boldsymbol{u}}^* \end{bmatrix} = \begin{bmatrix} \overline{Y}^* - \hat{\boldsymbol{\beta}}_{\boldsymbol{u}}^{*T} \overline{\boldsymbol{u}}^* \\ \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}}^{-1}^* \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}Y}^* \end{bmatrix} \stackrel{P}{\to} \begin{bmatrix} \overline{Y} - \hat{\boldsymbol{\beta}}_{\boldsymbol{u}}^T \overline{\boldsymbol{u}} \\ \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}}^{-1} \tilde{\boldsymbol{\Sigma}}_{\boldsymbol{u}Y} \end{bmatrix} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\boldsymbol{\beta}}_{\boldsymbol{u}} \end{bmatrix} = \hat{\boldsymbol{\beta}}$$

as $B \to \infty$. This result suggests that the nonparametric bootstrap for OLS MLR might work under milder regularity conditions than the w_i being iid from some population with a nonsingular covariance matrix.

2.8 Examples and Simulations

Example 2.9. Cook and Weisberg (1999, pp. 351, 433, 447) gives a data set on 82 mussels sampled off the coast of New Zealand. Let the response variable be the logarithm $\log(M)$ of the muscle mass, and the predictors are the length L and height H of the shell in mm, the logarithm $\log(W)$ of the shell width W, the logarithm $\log(S)$ of the shell mass S, and a constant. Inference for the full model is shown below along with the shorth(c) nominal 95% confidence intervals for β_i computed using the nonparametric and residual bootstraps. As expected, the residual bootstrap intervals are close to the classical least squares confidence intervals $\approx \hat{\beta}_i \pm 1.96SE(\hat{\beta}_i)$.

large sample full model inference

```
nparboot
                      Pr(>|t|)
   -1.249 0.838 -1.49 0.14 [-2.93, -0.093] [-3.045, 0.473]
    -0.001 0.002 -0.28 0.78 [-0.005,0.003][-0.005,0.004]
logW 0.130 0.374 0.35 0.73 [-0.457,0.829][-0.703,0.890]
                  1.50 0.14 [-0.002, 0.018] [-0.003, 0.016]
     0.008 0.005
logS 0.640 0.169
                  3.80 0.00 [ 0.244,1.040] [ 0.336,1.012]
output and shorth intervals for the min Cp submodel FS
      Est.
               SE
                       95% shorth CI
                                       95% shorth CI
      -0.9573
               0.1519 [-3.294, 0.495] [-2.769, 0.460]
int
       0
                       [-0.005, 0.004] [-0.004, 0.004]
L
loaW
                       [0.000, 1.024] [-0.595, 0.869]
       0
       0.0072
               0.0047 [ 0.000, 0.016] [ 0.000, 0.016]
               0.1160 [ 0.322, 0.901] [ 0.324, 0.913]
logS
       0.6530
                for forward selection for all subsets
```

The minimum C_p model from all subsets variable selection and forward selection both used a constant, H, and $\log(S)$. The shorth(c) nominal 95% confidence intervals for β_i using the residual bootstrap are shown. Note that the intervals for H are right skewed and contain 0 when closed intervals are used instead of open intervals. Some least squares output is shown, but should only be used for inference if the model was selected before looking at the data.

It was expected that $\log(S)$ may be the only predictor needed, along with a constant, since $\log(S)$ and $\log(M)$ are both $\log(\text{mass})$ measurements and likely highly correlated. Hence we want to test $H_0: \beta_2 = \beta_3 = \beta_4 = 0$ with the I_{min} model selected by all subsets variable selection. (Of course this test would be easy to do with the full model using least squares theory.) Then $H_0: \mathbf{A}\mathbf{\beta} = (\beta_2, \beta_3, \beta_4)^T = \mathbf{0}$. Using the prediction region method with the full model gave an interval [0,2.930] with $D_{\mathbf{0}} = 1.641$. Note that $\sqrt{\chi^2_{3,0.95}} = 2.795$. So fail to reject H_0 . Using the prediction region method with the I_{min} variable selection model had $[0, D_{(U_B)}] = [0, 3.293]$ while $D_{\mathbf{0}} = 1.134$. So fail to reject H_0 .

Then we redid the bootstrap with the full model and forward selection. The full model had $[0,D_{(U_B)}]=[0,2.908]$ with $D_{\mathbf{0}}=1.577$. So fail to reject H_0 . Using the prediction region method with the I_{min} forward selection model had $[0,D_{(U_B)}]=[0,3.258]$ while $D_{\mathbf{0}}=1.245$. So fail to reject H_0 . The ratio of the volumes of the bootstrap confidence regions for this test was 0.392. (Use (2.33) with S_T^* and D from forward selection for the numerator, and from the full model for the denominator.) Hence the forward selection bootstrap test was more precise than the full model bootstrap test. Some R code used to produce the above output is shown below.

```
library(leaps)
y <- log(mussels[,5]); x <- mussels[,1:4]
x[,4] <- log(x[,4]); x[,2] <- log(x[,2])
out <- regboot(x,y,B=1000)</pre>
```

```
tem <- rowboot (x, y, B=1000)
outvs <- vselboot(x,y,B=1000) #get bootstrap CIs
outfs <- fselboot(x,y,B=1000) #get bootstrap CIs
apply(out$betas, 2, shorth3);
apply(tem$betas, 2, shorth3);
apply(outvs$betas,2,shorth3) #for all subsets
apply(outfs$betas,2,shorth3) #for forward selection
ls.print(outvs$full)
ls.print(outvs$sub)
ls.print(outfs$sub)
\#test if beta_2 = beta_3 = beta_4 = 0
Abeta <- out$betas[,2:4] #full model
#prediction region method with residual bootstrap
out <-predreg (Abeta)
Abeta <- outvs$betas[,2:4]
#prediction region method with Imin all subsets
outvs <- predreg(Abeta)</pre>
Abeta <- outfs$betas[,2:4]
#prediction region method with Imin forward sel.
outfs<-predreg(Abeta)
#ratio of volumes for forward selection and full model
(sqrt (det (outfs$cov)) *outfs$D0^3) / (sqrt (det (out$cov)) *out$D0^3)
```

Example 2.10. Consider the Gladstone (1905) data set that has 12 variables on 267 persons after death. The response variable was brain weight. Head measurements were breadth, circumference, head height, length, and size as well as cephalic index and brain weight. Age, height, and two categorical variables ageclass (0: under 20, 1: 20-45, 2: over 45) and sex were also given. The eight predictor variables shown in the output were used.

Output is shown below for the full model and the bootstrapped minimum C_p forward selection estimator. Note that the shorth intervals for length and sex are quite long. These variables are often in and often deleted from the bootstrap forward selection. Model I_I is the model with the fewest predictors such that $C_P(I_I) \leq C_P(I_{min}) + 1$. For this data set, $I_I = I_{min}$. The bootstrap CIs differ due to different random seeds.

```
large sample full model inference for Ex. 2.8
                  SE
                         t
                               Pr(>|t|) 95% shorth CI
       Estimate
      -3021.255 1701.070 -1.77 0.077 [-6549.8,322.79]
Int
age
         -1.656
                  0.314 - 5.27 \ 0.000 \ [-2.304, -1.050]
                  12.025 -0.72 0.469 [-34.229,14.458]
breadth -8.717
                  22.029 0.99 0.322 [-20.911,67.705]
cephalic 21.876
                   0.529 1.61 0.109 [ -0.065, 1.879]
circum
          0.852
                   1.225 6.03 0.000 [ 5.138, 9.794]
headht
          7.385
height
         -0.407
                   0.942 -0.43 0.666 [ -2.211, 1.565]
len
         13.475
                   9.422 1.43 0.154 [ -5.519,32.605]
```

```
25.130
                  10.015 2.51 0.013 [ 6.717,44.19]
output and shorth intervals for the min Cp submodel
       Estimate
                  SE
                          t
                               Pr(>|t|) 95% shorth CI
      -1764.516 186.046 -9.48 0.000 [-6151.6,-415.4]
Int
                   0.285 - 5.99 \ 0.000 \ [-2.299, -1.068]
         -1.708
age
                                     [-32.992, 8.148]
breadth
          0
cephalic 5.958
                   2.089 2.85 0.005 [-10.859,62.679]
circum
          0.757
                   0.512 1.48 0.140 [ 0.000, 1.817]
headht
          7.424
                   1.161 6.39 0.000 [
                                        5.028, 9.732]
                                     [-2.859, 0.000]
height
          0
len
          6.716
                   1.466 4.58 0.000 [ 0.000, 30.508]
                   9.920 2.55 0.011 [ 0.000, 42.144]
         25.313
output and shorth for I_I model
       Estimate Std.Err t-val Pr(>|t|) 95% shorth CI
      -1764.516 186.046 -9.48 0.000 [-6104.9, -778.2]
Int
         -1.708
                   0.285 - 5.99 \ 0.000 \ [-2.259, -1.003]
age
                                     [-31.012, 6.567]
breadth
cephalic 5.958
                   2.089 2.85 0.005 [ -6.700,61.265]
circum
          0.757
                   0.512 1.48 0.140 [ 0.000, 1.866]
headht
          7.424
                   1.161 6.39 0.000 [ 5.221,10.090]
                                     [-2.173, 0.000]
height
          0
                   1.466
                         4.58 0.000 [ 0.000,28.819]
len
          6.716
sex
         25.313
                   9.920 2.55 0.011 [ 0.000,42.847]
```

The R code used to produce the above output is shown below. The last four commands are useful for examining the variable selection output.

```
x < -cbrainx[,c(1,3,5,6,7,8,9,10)]
y<-cbrainy
library(leaps)
out \leftarrow regboot (x, y, B=1000)
outvs <- fselboot(x,cbrainy) #get bootstrap CIs,
apply(out$betas, 2, shorth3)
apply (outvs$betas, 2, shorth3)
ls.print(outvs$full)
ls.print(outvs$sub)
outvs <- modIboot(x,cbrainy) #get bootstrap CIs,
apply (outvs$betas, 2, shorth3)
ls.print(outvs$sub)
tem<-regsubsets(x,y,method="forward")</pre>
tem2<-summary(tem)</pre>
tem2$which
tem2$cp
```

2.8.1 Simulations

For variable selection with the $p \times 1$ vector $\hat{\boldsymbol{\beta}}_{I_{min},0}$, consider testing H_0 : $\boldsymbol{A}\boldsymbol{\beta} = \boldsymbol{\theta}_0$ versus $H_1: \boldsymbol{A}\boldsymbol{\beta} \neq \boldsymbol{\theta}_0$ with $\boldsymbol{\theta} = \boldsymbol{A}\boldsymbol{\beta}$ where often $\boldsymbol{\theta}_0 = \boldsymbol{0}$. Then let $T_n = \boldsymbol{A}\hat{\boldsymbol{\beta}}_{I_{min},0}$ and let $T_i^* = \boldsymbol{A}\hat{\boldsymbol{\beta}}_{I_{min},0,i}^*$ for i=1,...,B. The shorth estimator can be applied to a bootstrap sample $\hat{\beta}_{i1}^*,...,\hat{\beta}_{iB}^*$ to get a confidence interval for β_i . Here $T_n = \hat{\beta}_i$ and $\theta = \beta_i$.

Assume p is fixed, $n \geq 20p$, and that the error distribution is unimodal and not highly skewed. Then the plotted points in the response and residual plots should scatter in roughly even bands about the identity line (with unit slope and zero intercept) and the r=0 line, respectively. See Figure 1.1. If the error distribution is skewed or multimodal, then much larger sample sizes may be needed.

Next, we describe a small simulation study that was done using $B = \max(1000, n/25, 50p)$ and 5000 runs. The simulation used p = 4, 6, 7, 8, and 10; n = 25p and 50p; $\psi = 0, 1/\sqrt{p}$, and 0.9; and k = 1 and p - 2 where k and ψ are defined in the following paragraph. In the simulations, we use $\theta = \mathbf{A}\boldsymbol{\beta} = \beta_i$, $\theta = \mathbf{A}\boldsymbol{\beta} = \beta_S = \mathbf{1}$ and $\theta = \mathbf{A}\boldsymbol{\beta} = \beta_E = \mathbf{0}$.

Let $\boldsymbol{x}=(1\ \boldsymbol{u}^T)^T$ where \boldsymbol{u} is the $(p-1)\times 1$ vector of nontrivial predictors. In the simulations, for i=1,...,n, we generated $\boldsymbol{w}_i\sim N_{p-1}(\boldsymbol{0},\boldsymbol{I})$ where the m=p-1 elements of the vector \boldsymbol{w}_i are iid N(0,1). Let the $m\times m$ matrix $\boldsymbol{A}=(a_{ij})$ with $a_{ii}=1$ and $a_{ij}=\psi$ where $0\leq\psi<1$ for $i\neq j$. Then the vector $\boldsymbol{u}_i=\boldsymbol{A}\boldsymbol{w}_i$ so that $Cov(\boldsymbol{u}_i)=\boldsymbol{\Sigma}\boldsymbol{u}=\boldsymbol{A}\boldsymbol{A}^T=(\sigma_{ij})$ where the diagonal entries $\sigma_{ii}=[1+(m-1)\psi^2]$ and the off diagonal entries $\sigma_{ij}=[2\psi+(m-2)\psi^2]$. Hence the correlations are $Cor(x_i,x_j)=\rho=(2\psi+(m-2)\psi^2)/(1+(m-1)\psi^2)$ for $i\neq j$ where x_i and x_j are nontrivial predictors. If $\psi=1/\sqrt{cp}$, then $\rho\to 1/(c+1)$ as $p\to\infty$ where c>0. As ψ gets close to 1, the predictor vectors cluster about the line in the direction of $(1,...,1)^T$. Let $Y_i=1+1x_{i,2}+\cdots+1x_{i,k+1}+e_i$ for i=1,...,n. Hence $\boldsymbol{\beta}=(1,...,1,0,...,0)^T$ with k+1 ones and p-k-1 zeros. The zero mean errors e_i were iid from five distributions: i) N(0,1), ii) t_3 , iii) EXP(1) - 1, iv) uniform(-1,1), and v) 0.9 N(0,1) + 0.1 N(0,100). Only distribution iii) is not symmetric.

When $\psi=0$, the full model least squares confidence intervals for β_i should have length near $2t_{96,0.975}\sigma/\sqrt{n}\approx 2(1.96)\sigma/10=0.392\sigma$ when n=100 and the iid zero mean errors have variance σ^2 . The simulation computed the Frey shorth(c) interval for each β_i and used bootstrap confidence regions to test $H_0: \boldsymbol{\beta}_S = \mathbf{1}$ (whether first k+1 $\beta_i=1$) and $H_0: \boldsymbol{\beta}_E = \mathbf{0}$ (whether the last p-k-1 $\beta_i=0$). The nominal coverage was 0.95 with $\delta=0.05$. Observed coverage between 0.94 and 0.96 suggests coverage is close to the nominal value.

The regression models used the residual bootstrap on the forward selection estimator $\hat{\boldsymbol{\beta}}_{I_{min},0}$. Table 2.2 gives results for when the iid errors $e_i \sim N(0,1)$ with $n=100,\ p=4,$ and k=1. Table 2.2 shows two rows for each model giving the observed confidence interval coverages and average lengths of the

confidence intervals. The term "reg" is for the full model regression, and the term "vs" is for forward selection. The last six columns give results for the tests. The terms pr, hyb, and br are for the prediction region method (2.30), hybrid region (2.32), and Bickel and Ren region (2.31). The 0 indicates the test was $H_0: \beta_E = \mathbf{0}$, while the 1 indicates that the test was $H_0: \beta_S = \mathbf{1}$. The length and coverage = P(fail to reject H_0) for the interval $[0, D_{(U_B)}]$ or $[0, D_{(U_B,T)}]$ where $D_{(U_B)}$ or $D_{(U_B,T)}$ is the cutoff for the confidence region. The cutoff will often be near $\sqrt{\chi^2_{g,0.95}}$ if the statistic T is asymptotically normal. Note that $\sqrt{\chi^2_{2,0.95}} = 2.448$ is close to 2.45 for the full model regression bootstrap tests.

Volume ratios of the three confidence regions can be compared using (2.33), but there is not enough information in Table 2.2 to compare the volume of the confidence region for the full model regression versus that for the forward selection regression since the two methods have different determinants $|S_T^*|$.

Table 2.2 Bootstrapping OLS Forward Selection with C_p , $e_i \sim N(0,1)$

ψ	β_1	β_2	β_{p-1}	β_p	pr0	hyb0	br0	pr1	hyb1	br1
reg,0	0.946	0.950	0.947	0.948	0.940	0.941	0.941	0.937	0.936	0.937
len	0.396	0.399	0.399	0.398	2.451	2.451	2.452	2.450	2.450	2.451
vs,0	0.948	0.950	0.997	0.996	0.991	0.979	0.991	0.938	0.939	0.940
len	0.395	0.398	0.323	0.323	2.699	2.699	3.002	2.450	2.450	2.457
reg, 0.5	0.946	0.944	0.946	0.945	0.938	0.938	0.938	0.934	0.936	0.936
len	0.396	0.661	0.661	0.661	2.451	2.451	2.452	2.451	2.451	2.452
vs,0.5	0.947	0.968	0.997	0.998	0.993	0.984	0.993	0.955	0.955	0.963
len	0.395	0.658	0.537	0.539	2.703	2.703	2.994	2.461	2.461	2.577
reg, 0.9	0.946	0.941	0.944	0.950	0.940	0.940	0.940	0.935	0.935	0.935
len	0.396	3.257	3.253	3.259	2.451	2.451	2.452	2.451	2.451	2.452
vs,0.9	0.947	0.968	0.994	0.996	0.992	0.981	0.992	0.962	0.959	0.970
len	0.395	2.751	2.725	2.735	2.716	2.716	2.971	2.497	2.497	2.599

The inference for forward selection was often as precise or more precise than the inference for the full model. The coverages were near 0.95 for the regression bootstrap on the full model, although there was slight undercoverage for the tests since (n-p)/n=0.96 when n=25p. Suppose $\psi=0$. Then from Section 2.2, $\hat{\boldsymbol{\beta}}_S$ has the same limiting distribution for I_{min} and the full model. Note that the average lengths and coverages were similar for the full model and forward selection I_{min} for β_1 , β_2 , and $\boldsymbol{\beta}_S=(\beta_1,\beta_2)^T$. Forward selection inference was more precise for $\boldsymbol{\beta}_E=(\beta_3,\beta_4)^T$. The Bickel and Ren (2.31) cutoffs and coverages were at least as high as those of the hybrid region (2.32).

For $\psi > 0$ and I_{min} , the coverages for the β_i corresponding to β_S were near 0.95, but the average length could be shorter since I_{min} tends to have less multicorrelation than the full model. For $\psi \geq 0$, the I_{min} coverages were higher than 0.95 for β_3 and β_4 and for testing $H_0: \beta_E = \mathbf{0}$ since zeros often

occurred for $\hat{\beta}_{j}^{*}$ for j=3,4. The average CI lengths were shorter for I_{min} than for the OLS full model for β_{3} and β_{4} . Note that for I_{min} , the coverage for testing $H_{0}: \beta_{S} = 1$ was higher than that for the OLS full model.

Table 2.3 Bootstrap CIs with $C_p, p = 10, k = 8, \psi = 0.9$, error type v)

n	β_1	β_2	β_3	β_4	β_5	β_6	β_7	β_8	β_9	β_{10}
250	0.945	0.824	0.822	0.827	0.827	0.824	0.826	0.817	0.827	0.999
shlen	0.825	6.490	6.490	6.482	6.485	6.479	6.512	6.496	6.493	6.445
250			0.980							
prlen	0.807	7.836	7.850	7.842	7.830	7.830	7.851	7.840	7.839	7.802
250	0.947	0.976	0.978	0.984	0.978	0.978	0.979	0.973	0.980	0.996
brlen	0.811	8.723	8.760	8.765	8.736	8.764	8.745	8.747	8.753	8.756
2500	0.951	0.947	0.948	0.948	0.948	0.947	0.949	0.944	0.951	0.999
shlen	0.263	2.268	2.271	2.271	2.273	2.262	2.632	2.277	2.272	2.047
2500	0.945	0.961	0.959	0.955	0.960	0.960	0.961	0.958	0.961	0.998
prlen	0.258	2.630	2.639	2.640	2.632	2.632	2.641	2.638	2.642	2.517
2500	0.946	0.958	0.954	0.960	0.956	0.960	0.962	0.955	0.961	0.997
brlen	0.258	2.865	2.875	2.882	2.866	2.871	2.887	2.868	2.875	2.830
25000	0.952	0.940	0.939	0.935	0.940	0.942	0.938	0.937	0.942	1.000
shlen	0.083	0.809	0.808	0.806	0.805	0.807	0.808	0.808	0.809	0.224
25000	0.948	0.964	0.968	0.962	0.964	0.966	0.964	0.964	0.967	0.991
prlen	0.082	0.806	0.805	0.801	0.800	0.805	0.805	0.803	0.806	0.340
25000	0.949	0.969	0.972	0.968	0.967	0.971	0.969	0.969	0.973	0.999
brlen	0.082	0.810	0.810	0.805	0.804	0.809	0.810	0.808	0.810	0.317

Results for other values of n, p, k, and distributions of e_i were similar. For forward selection with $\psi = 0.9$ and C_p , the hybrid region (2.32) and shorth confidence intervals occasionally had coverage less than 0.93. It was also rare for the bootstrap to have one or more columns of zeroes so S_T^* was singular. For error distributions i)-iv) and $\psi = 0.9$, sometimes the shorth CIs needed $n \geq 100p$ for all p CIs to have good coverage. For error distribution v) and $\psi = 0.9$, even larger values of n were needed. Confidence intervals based on (2.30) and (2.31) worked for much smaller n, but tended to be longer than the shorth CIs.

See Table 2.3 for one of the worst scenarios for the shorth, where shlen, prlen, and brlen are for the average CI lengths based on the shorth, (2.30), and (2.31), respectively. In Table 2.3, k=8 and the two nonzero π_j correspond to the full model $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}}_{S,0}$. Hence $\beta_i=1$ for i=1,...,9 and $\beta_{10}=0$. Hence confidence intervals for β_{10} had the highest coverage and usually the shortest average length (for $i\neq 1$) due to zero padding. Theory in Section 2.2 showed that the CI lengths are proportional to $1/\sqrt{n}$. When n=25000, the shorth CI uses the 95.16th percentile while CI (2.30) uses the 95.00th percentile, allowing the average CI length of (2.30) to be shorter than that of the shorth CI, but the distribution for $\hat{\beta}_i^*$ is likely approximately symmetric for $i\neq 10$ since the average lengths of the three confidence intervals were about the same for each $i\neq 10$.

When BIC was used, undercoverage was a bit more common and severe, and undercoverage occasionally occurred with regions (2.30) and (2.31). BIC also occasionally had 100% coverage since BIC produces more zeroes than C_n .

Some R code for the simulation is shown below.

```
record coverages and 'lengths" for
b1, b2, bp-1, bp, pm0, hyb0, br0, pm1, hyb1, br1
regbootsim3(n=100,p=4,k=1,nruns=5000,type=1,psi=0)
$cicov
[1] 0.9458 0.9500 0.9474 0.9484 0.9400 0.9408 0.9410
0.9368 0.9362 0.9370
$avelen
[1] 0.3955 0.3990 0.3987 0.3982 2.4508 2.4508 2.4521
[8] 2.4496 2.4496 2.4508
$beta
[1] 1 1 0 0
$k
[1] 1
library(leaps)
vsbootsim4(n=100,p=4,k=1,nruns=5000,type=1,psi=0)
$cicov
[1] 0.9480 0.9496 0.9972 0.9958 0.9910 0.9786 0.9914
0.9384 0.9394 0.9402
$avelen
[1] 0.3954 0.3987 0.3233 0.3231 2.6987 2.6987 3.0020
[8] 2.4497 2.4497 2.4570
$beta
[1] 1 1 0 0
$k
[1] 1
```

2.9 Data Splitting

Data splitting is used for inference after model selection. Use a training set to select a full model, and a validation set for inference with the selected full model. Here p >> n is possible. See Hurvich and Tsai (1990, p. 216) and Rinaldo et al. (2019). Typically when training and validation sets are used, the training set is bigger than the validation set or half sets are used, often causing large efficiency loss.

Let J be a positive integer and let $\lfloor x \rfloor$ be the integer part of x, e.g., $\lfloor 7.7 \rfloor = 7$. Initially divide the data into two sets H_1 with $n_1 = \lfloor n/(2J) \rfloor$ cases and V_1 with $n - n_1$ cases. If the fitted model from H_1 is not good

2.10 **Summary** 139

enough, randomly select n_1 cases from V_1 to add to H_1 to form H_2 . Let V_2 have the remaining cases from V_1 . Continue in this manner, possibly forming sets $(H_1, V_1), (H_2, V_2), ..., (H_J, V_J)$ where H_i has $n_i = in_1$ cases. Stop when H_d gives a reasonable model I_d with a_d predictors if d < J. Use d = J, otherwise. Use the model I_d as the full model for inference with the data in V_d .

This procedure is simple for a fixed data set, but it would be good to automate the procedure. Forward selection with the Chen and Chen (2008) EBIC criterion and lasso are useful for finding a reasonable fitted model. BIC and the Hurvich and Tsai (1989) AIC_C criterion can be useful if $n \ge \max(2p, 10a_d)$. For example, if n = 500000 and p = 90, using $n_1 = 900$ would result in a much smaller loss of efficiency than $n_1 = 250000$.

2.10 Summary

1) A model for variable selection can be described by $\boldsymbol{x}^T\boldsymbol{\beta} = \boldsymbol{x}_S^T\boldsymbol{\beta}_S + \boldsymbol{x}_E^T\boldsymbol{\beta}_E = \boldsymbol{x}_S^T\boldsymbol{\beta}_S$ where $\boldsymbol{x} = (\boldsymbol{x}_S^T, \boldsymbol{x}_E^T)^T$ is a $p \times 1$ vector of predictors, \boldsymbol{x}_S is an $a_S \times 1$ vector, and \boldsymbol{x}_E is a $(p-a_S) \times 1$ vector. Given that \boldsymbol{x}_S is in the model, $\boldsymbol{\beta}_E = \mathbf{0}$. Assume p is fixed while $n \to \infty$.

2) If $\hat{\boldsymbol{\beta}}_I$ is $a \times 1$, form the $p \times 1$ vector $\hat{\boldsymbol{\beta}}_{I,0}$ from $\hat{\boldsymbol{\beta}}_I$ by adding 0s corresponding to the omitted variables. For example, if p = 4 and $\hat{\boldsymbol{\beta}}_{I_{min}} = (\hat{\beta}_1, \hat{\beta}_3)^T$, then $\hat{\boldsymbol{\beta}}_{I_{min},0} = (\hat{\beta}_1, 0, \hat{\beta}_3, 0)^T$. For the OLS model with $S \subseteq I$, $\sqrt{n}(\hat{\boldsymbol{\beta}}_I - \boldsymbol{\beta}_I) \stackrel{D}{\to} N_{a_I}(\mathbf{0}, \boldsymbol{V}_I)$ where $(\boldsymbol{X}_I^T \boldsymbol{X}_I)/(n\sigma^2) \stackrel{P}{\to} \boldsymbol{V}_I^{-1}$.

3) Theorem 2.4, Variable Selection CLT. Assume $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$, and let $T_n = \hat{\boldsymbol{\beta}}_{I_{min},0}$ and $T_{jn} = \hat{\boldsymbol{\beta}}_{I_j,0}$. Let $T_n = T_{kn} = \hat{\boldsymbol{\beta}}_{I_k,0}$ with probabilities π_{kn} where $\pi_{kn} \to \pi_k$ as $n \to \infty$. Denote the π_k with $S \subseteq I_k$ by π_j . The other $\pi_k = 0$ since $P(S \subseteq I_{min}) \to 1$ as $n \to \infty$. Assume $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j} - \boldsymbol{\beta}_{I_j}) \overset{D}{\to} N_{a_j}(\mathbf{0}, \mathbf{V}_j)$ and $\mathbf{u}_{jn} = \sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0} - \boldsymbol{\beta}) \overset{D}{\to} \mathbf{u}_j \sim N_p(\mathbf{0}, \mathbf{V}_{j,0})$. a) Then

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_{min},0}-\boldsymbol{\beta})\overset{D}{
ightarrow} \boldsymbol{w}$$

where the cdf of \boldsymbol{u} is $F_{\boldsymbol{w}}(\boldsymbol{z}) = \sum_{j} \pi_{j} F_{\boldsymbol{w}_{j}}(\boldsymbol{z})$. Thus \boldsymbol{w} is a mixture distribution of the \boldsymbol{w}_{j} with probabilities π_{j} .

b) Let **A** be a $g \times p$ full rank matrix with $1 \leq g \leq p$. Then

$$\sqrt{n}(\boldsymbol{A}\hat{\boldsymbol{\beta}}_{I_{min},0}-\boldsymbol{A}\boldsymbol{\beta})\overset{D}{
ightarrow}\boldsymbol{A}\boldsymbol{w}=\boldsymbol{v}$$

where Aw has a mixture distribution of the Aw_i with probabilities π_i .

4) For h > 0, the hyperellipsoid $\{ \boldsymbol{z} : (\boldsymbol{z} - T)^T \boldsymbol{C}^{-1} (\boldsymbol{z} - T) \leq h^2 \} = \{ \boldsymbol{z} : D_{\boldsymbol{z}}^2 \leq h^2 \} = \{ \boldsymbol{z} : D_{\boldsymbol{z}} \leq h \}$. A future observation (random vector) \boldsymbol{x}_f is in this region if $D_{\boldsymbol{x}_f} \leq h$. A large sample $100(1 - \delta)\%$ prediction region is a

- set \mathcal{A}_n such that $P(\boldsymbol{x}_f \in \mathcal{A}_n)$ is eventually bounded below by $1-\delta$ as $n \to \infty$ where $0 < \delta < 1$. A large sample $100(1-\delta)\%$ confidence region for a vector of parameters $\boldsymbol{\theta}$ is a set \mathcal{A}_n such that $P(\boldsymbol{\theta} \in \mathcal{A}_n)$ is eventually bounded below by $1-\delta$ as $n \to \infty$.
- 5) Let $q_n = \min(1 \delta + 0.05, 1 \delta + p/n)$ for $\delta > 0.1$ and $q_n = \min(1 \delta/2, 1 \delta + 10\delta p/n)$, otherwise. If $q_n < 1 \delta + 0.001$, set $q_n = 1 \delta$. If (T, \mathbf{C}) is a consistent estimator of $(\boldsymbol{\mu}, d\boldsymbol{\Sigma})$, then $\{\boldsymbol{z} : D\boldsymbol{z}(T, \mathbf{C}) \le h\}$ is a large sample $100(1-\delta)\%$ prediction regions if $h = D_{(U_n)}$ where $D_{(U_n)}$ is the $100q_n$ th sample quantile of the D_i . The large sample $100(1-\delta)\%$ nonparametric prediction region $\{\boldsymbol{z} : D^2\boldsymbol{z}(\overline{\boldsymbol{x}}, \mathbf{S}) \le D^2_{(U_n)}\}$ uses $(T, \mathbf{C}) = (\overline{\boldsymbol{x}}, \mathbf{S})$. We want $n \ge 10p$ for good coverage and $n \ge 50p$ for good volume.
- 6) Consider testing $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ versus $H_1: \boldsymbol{\theta} \neq \boldsymbol{\theta}_0$ where $\boldsymbol{\theta}_0$ is a known $g \times 1$ vector. Make a confidence region and reject H_0 if $\boldsymbol{\theta}_0$ is not in the confidence region. Let q_B and U_B be as in 5) with n replaced by B and p replaced by g. Let \overline{T}^* and \boldsymbol{S}_T^* be the sample mean and sample covariance matrix of the bootstrap sample $T_1^*, ..., T_B^*$. a) The prediction region method large sample $100(1-\delta)\%$ confidence region for $\boldsymbol{\theta}$ is $\{\boldsymbol{w}: (\boldsymbol{w}-\overline{T}^*)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-\overline{T}^*) \leq D_{(U_B)}^2\} = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2(\overline{T}^*, \boldsymbol{S}_T^*) \leq D_{(U_B)}^2\}$ where $D_{(U_B)}^2$ is computed from $D_i^2 = (T_i^*-\overline{T}^*)^T[\boldsymbol{S}_T^*]^{-1}(T_i^*-\overline{T}^*)$ for i=1,...,B. Note that the corresponding test for $H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0$ rejects H_0 if $(\overline{T}^*-\boldsymbol{\theta}_0)^T[\boldsymbol{S}_T^*]^{-1}(\overline{T}^*-\boldsymbol{\theta}_0) > D_{(U_B)}^2$. This procedure applies the nonparametric prediction region to the bootstrap sample. b) The modified Bickel and Ren (2001) large sample $100(1-\delta)\%$ confidence region is $\{\boldsymbol{w}: (\boldsymbol{w}-T_n)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-T_n) \leq D_{(U_B,T)}^2\} = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T^*) \leq D_{(U_B,T)}^2\}$ where the cutoff $D_{(U_B,T)}^2$ is the $100q_B$ th sample quantile of the $D_i^2 = (T_i^*-T_n)^T[\boldsymbol{S}_T^*]^{-1}(T_i^*-T_n)$. c) The hybrid large sample $100(1-\delta)\%$ confidence region: $\{\boldsymbol{w}: (\boldsymbol{w}-T_n)^T[\boldsymbol{S}_T^*]^{-1}(\boldsymbol{w}-T_n) \leq D_{(U_B)}^2\} = \{\boldsymbol{w}: D_{\boldsymbol{w}}^2(T_n, \boldsymbol{S}_T^*) \leq D_{(U_B)}^2\}$.

If g = 1, confidence intervals can be computed without S_T^* or D^2 for a), b), and c).

For some data sets, \mathbf{S}_T^* may be singular due to one or more columns of zeroes in the bootstrap sample for $\beta_1, ..., \beta_p$. The variables corresponding to these columns are likely not needed in the model given that the other predictors are in the model if n and B are large enough. Let $\mathbf{\beta}_O = (\beta_{i_1}, ..., \beta_{i_g})^T$, and consider testing $H_0: \mathbf{A}\mathbf{\beta}_O = \mathbf{0}$. If $\mathbf{A}\hat{\mathbf{\beta}}_{O,i}^* = \mathbf{0}$ for greater than $B\delta$ of the bootstrap samples i = 1, ..., B, then fail to reject H_0 . (If \mathbf{S}_T^* is nonsingular, the $100(1-\delta)\%$ prediction region method confidence region contains $\mathbf{0}$.)

7) Theorem 2.10: Geometric Argument. Suppose $\sqrt{n}(T_n - \theta) \stackrel{D}{\to} \boldsymbol{u}$ with $E(\boldsymbol{u}) = \boldsymbol{0}$ and $Cov(\boldsymbol{u}) = \boldsymbol{\Sigma}_{\boldsymbol{u}}$. Assume $T_1, ..., T_B$ are iid with nonsingular covariance matrix $\boldsymbol{\Sigma}_{T_n}$. Then the large sample $100(1 - \delta)\%$ prediction region $R_p = \{\boldsymbol{w} : D^2_{\boldsymbol{w}}(\overline{T}, \boldsymbol{S}_T) \leq D^2_{(U_B)}\}$ centered at \overline{T} contains a future value of the statistic T_f with probability $1 - \delta_B \to 1 - \delta$ as $B \to \infty$. Hence the region $R_c = \{\boldsymbol{w} : D^2_{\boldsymbol{w}}(T_n, \boldsymbol{S}_T) \leq D^2_{(U_B)}\}$ is a large sample $100(1 - \delta)\%$ confidence region for $\boldsymbol{\theta}$.

2.10 **Summary** 141

8) Applying the nonparametric prediction region (2.22) to the iid data $T_1, ..., T_B$ results in the 100(1- δ)% confidence region { $\boldsymbol{w} : (\boldsymbol{w} - T_n)^T \boldsymbol{S}_T^{-1} (\boldsymbol{w$ T_n) $\leq D^2_{(U_B)}(T_n, S_T)$ where $D^2_{(U_B)}(T_n, S_T)$ is computed from the $(T_i - T_i)$ $(T_n)^T S_T^{-1}(T_i - T_n)$ provided the $S_T = S_{T_n}$ are "not too ill conditioned." For OLS variable selection, assume there are two or more component clouds. The bootstrap component data clouds have the same asymptotic covariance matrix as the iid component data clouds, which are centered at θ . The jth bootstrap component data cloud is centered at $E(T_{ij}^*)$ and often $E(T_{jn}^*)$ T_{in} . Confidence region (2.30) is the prediction region (2.22) applied to the bootstrap sample, and (2.30) is slightly larger in volume than (2.22) applied to the iid sample, asymptotically. The hybrid region (2.32) shifts (2.30) to be centered at T_n . Shifting the component clouds slightly and computing (2.22) does not change the axes of the prediction region (2.22) much compared to not shifting the component clouds. Hence by the geometric argument, we expect (2.32) to have coverage at least as high as the nominal, asymptotically, provided the S_T^* are "not too ill conditioned." The Bickel and Ren confidence region (2.31) tends to have higher coverage and volume than (2.32). Since \overline{T} tends to be closer to θ than T_n , (2.30) tends to have good coverage.

- 9) Suppose m independent large sample $100(1-\delta)\%$ prediction regions are made where $\boldsymbol{x}_1,...,\boldsymbol{x}_n,\boldsymbol{x}_f$ are iid from the same distribution for each of the m runs. Let Y count the number of times \boldsymbol{x}_f is in the prediction region. Then $Y \sim \text{binomial } (m,1-\delta_n)$ where $1-\delta_n$ is the true coverage. Simulation can be used to see if the true or actual coverage $1-\delta_n$ is close to the nominal coverage $1-\delta$. A prediction region with $1-\delta_n < 1-\delta$ is liberal and a region with $1-\delta_n > 1-\delta$ is conservative. It is better to be conservative by 3% than liberal by 3%. Parametric prediction regions tend to have large undercoverage and so are too liberal. Similar definitions are used for confidence regions.
- 10) For the bootstrap, perform variable selection on \boldsymbol{Y}_i^* and \boldsymbol{X} (or \boldsymbol{X}^* for the nonparametric bootstrap), fit the model that minimizes the criterion, and add 0s corresponding to the omitted variables, resulting in estimators $\hat{\boldsymbol{\beta}}_1^*,...,\hat{\boldsymbol{\beta}}_B^*$ where $\hat{\boldsymbol{\beta}}_i^*=\hat{\boldsymbol{\beta}}_{I_{min},0,i}^*$.

 11) Let $Z_1,...,Z_n$ be random variables, let $Z_{(1)},...,Z_{(n)}$ be the order
- 11) Let $Z_1,...,Z_n$ be random variables, let $Z_{(1)},...,Z_{(n)}$ be the order statistics, and let c be a positive integer. Compute $Z_{(c)} Z_{(1)}, Z_{(c+1)} Z_{(2)},...,Z_{(n)} Z_{(n-c+1)}$. Let shorth(c) = $[Z_{(d)},Z_{(d+c-1)}]$ correspond to the interval with the shortest length.

The large sample $100(1-\delta)\%$ shorth(c) CI uses the interval $[T^*_{(1)}, T^*_{(c)}], [T^*_{(2)}, T^*_{(c+1)}], \dots, [T^*_{(B-c+1)}, T^*_{(B)}]$ of shortest length. Here $c = \min(B, \lceil B \lceil 1 - \delta + 1.12\sqrt{\delta/B} \rceil \rceil)$. The shorth CI is computed by applying the shorth PI to the bootstrap sample.

12) **OLS CLT.** Suppose that the e_i are iid and

$$\frac{\boldsymbol{X}^T\boldsymbol{X}}{n} \to \boldsymbol{W}^{-1}.$$

Then the least squares (OLS) estimator $\hat{\beta}$ satisfies

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0}, \sigma^2 \ \boldsymbol{W}).$$

Also,

$$(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \stackrel{D}{\to} N_p(\boldsymbol{0},\sigma^2 \boldsymbol{I}_p).$$

2.11 Complements

This chapter followed Olive (2017b, ch. 5), Pelawa Watagoda and Olive (2021ab), and Rathnayake and Olive (2023) closely. Also see Olive (2013a, 2018). For MLR, Olive (2017a: p. 123, 2017b: p. 176) showed that $\hat{\boldsymbol{\beta}}_{I_{min},0}$ is a consistent estimator. Olive (2014: p. 283, 2017ab, 2018) recommended using the shorth(c) estimator for the percentile method. Olive (2017a: p. 128, 2017b: p. 181, 2018) showed that the prediction region method can simulate well for the $p\times 1$ vector $\hat{\boldsymbol{\beta}}_{I_{min},0}$. Hastie et al. (2009, p. 57) noted that variable selection is a shrinkage estimator: the coefficients are shrunk to 0 for the omitted variables. Olive (2013a) shows how to visualize some prediction regions while Welagedara and Olive (2023) shows how to visualize some bootstrap confidence regions.

Good references for the bootstrap include Efron (1982), Efron and Hastie (2016, ch. 10–11), and Efron and Tibshirani (1993). Also see Chen (2016) and Hesterberg (2014). One of the sufficient conditions for the bootstrap confidence region is that T has a well behaved Hadamard derivative. Fréchet differentiability implies Hadamard differentiability, and many statistics are shown to be Hadamard differentiable in Bickel and Ren (2001), Clarke (1986, 2000), Fernholtz (1983), Gill (1989), Ren (1991), and Ren and Sen (1995). Bickel and Ren (2001) showed that their method can work when Hadamard differentiability fails.

There is a massive literature on variable selection and a fairly large literature for inference after variable selection. See, for example, Leeb and Pötscher (2005, 2006, 2008), Leeb et al. (2015), Tibshirani et al. (2016), and Tibshirani et al. (2018). Knight and Fu (2000) have some results on the residual bootstrap that uses residuals from one estimator, such as full model OLS, but fit another estimator, such as lasso.

Inference techniques for the variable selection model, other than data splitting, have not had much success. For multiple linear regression, the methods are often inferior to data splitting, often assume normality, or are asymptotically equivalent to using the full model, or find a quantity to test that is not $A\beta$. See Ewald and Schneider (2018). Berk et al. (2013) assumes normality, needs p no more than about 30, assumes σ^2 can be estimated independently of the data, and Leeb et al. (2015) say the method does not work. The bootstrap confidence region (2.30) is centered at $\overline{T}^* \approx \sum_j \rho_{jn} T_{jn}$, which is

closely related to a model averaging estimator. Wang and Zhou (2013) show that the Hjort and Claeskens (2003) confidence intervals based on frequentist model averaging are asymptotically equivalent to those obtained from the full model. See Buckland et al. (1997) and Schomaker and Heumann (2014) for standard errors when using the bootstrap or model averaging for linear model confidence intervals.

Efron (2014) used the confidence interval $\overline{T}^* \pm z_{1-\delta}SE(\overline{T}^*)$ assuming \overline{T}^* is asymptotically normal and using delta method techniques, which require nonsingular covariance matrices. There is not yet rigorous theory for this method. Section 2.2 proved that \overline{T}^* is asymptotically normal: under regularity conditions: if $\sqrt{n}(T_n - \theta) \stackrel{D}{\to} N_g(\mathbf{0}, \Sigma_A)$ and $\sqrt{n}(T_i^* - T_n) \stackrel{D}{\to} N_g(\mathbf{0}, \Sigma_A)$, then under regularity conditions $\sqrt{n}(\overline{T}^* - \theta) \stackrel{D}{\to} N_g(\mathbf{0}, \Sigma_A)$. If g = 1, then the prediction region method large sample $100(1 - \delta)\%$ CI for θ has $P(\theta \in [\overline{T}^* - a_{(U_B)}, \overline{T}^* + a_{(U_B)}]) \to 1 - \delta$ as $n \to \infty$. If the Frey CI also has coverage converging to $1 - \delta$, than the two methods have the same asymptotic length (scaled by multiplying by \sqrt{n}), since otherwise the shorter interval will have lower asymptotic coverage.

For the mixture distribution with two or more component groups, $\sqrt{n}(T_n - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{v}$ by Theorem 2.3 b). If $\sqrt{n}(T_i^* - c_n) \stackrel{D}{\to} \boldsymbol{u}$ then c_n must be a value such as $c_n = \overline{T}^*$, $c_n = \sum_j \rho_{jn} T_{jn}$, or $c_n = \sum_j \pi_j T_{jn}$. Next we will examine \overline{T}^* . If $S \subseteq I_j$, then $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0} - \boldsymbol{\beta}) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{V}_{j,0})$, and for the parametric and nonparametric bootstrap, $\sqrt{n}(\hat{\boldsymbol{\beta}}_{I_j,0}^* - \hat{\boldsymbol{\beta}}_{I_j,0}) \stackrel{D}{\to} N_p(\mathbf{0}, \boldsymbol{V}_{j,0})$. Let $T_n = A\hat{\boldsymbol{\beta}}_{I_{min},0}$ and $T_{jn} = A\hat{\boldsymbol{\beta}}_{I_j,0} = AD_{j0}\boldsymbol{Y}$ using notation from Section 2.6. Let $\boldsymbol{\theta} = A\boldsymbol{\beta}$. Hence from Section 2.5.3, $\sqrt{n}(\overline{T}_j^* - T_{jn}) \stackrel{P}{\to} \mathbf{0}$. Assume $\hat{\rho}_{in} \stackrel{P}{\to} \rho_i$ as $n \to \infty$. Then $\sqrt{n}(\overline{T}^* - \boldsymbol{\theta}) =$

$$\sum_{i} \hat{\rho}_{in} \sqrt{n} (\overline{T}_{i}^{*} - \boldsymbol{\theta}) = \sum_{j} \hat{\rho}_{jn} \sqrt{n} (\overline{T}_{j}^{*} - \boldsymbol{\theta}) + \sum_{k} \hat{\rho}_{kn} \sqrt{n} (\overline{T}_{k}^{*} - \boldsymbol{\theta})$$

 $=d_n+a_n$ where $a_n\stackrel{P}{\longrightarrow} \mathbf{0}$ since $\rho_k=0$. Now

$$d_n = \sum_{j} \hat{\rho}_{jn} \sqrt{n} (\overline{T}_{j}^* - T_{jn} + T_{jn} - \boldsymbol{\theta}) = \sum_{j} \hat{\rho}_{jn} \sqrt{n} (T_{jn} - \boldsymbol{\theta}) + c_n$$

where $c_n = o_P(1)$ since $\sqrt{n}(\overline{T}_j^* - T_{jn}) = o_P(1)$. Hence under regularity conditions, if $\sqrt{n}(\overline{T}^* - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{w}$ then $\sum_j \rho_j \sqrt{n}(T_{jn} - \boldsymbol{\theta}) \stackrel{D}{\to} \boldsymbol{w}$. To examine the last term and \boldsymbol{w} , let the $n \times 1$ vector \boldsymbol{Y} have characteristic

To examine the last term and \boldsymbol{w} , let the $n \times 1$ vector \boldsymbol{Y} have characteristic function $\phi_{\boldsymbol{Y}}$, $E(\boldsymbol{Y}) = \boldsymbol{X}\boldsymbol{\beta}$, and $Cov(\boldsymbol{Y}) = \sigma^2 \boldsymbol{I}$. Let $\boldsymbol{Z} = (\boldsymbol{Y}^T, ..., \boldsymbol{Y}^T)^T$ be a $Jn \times 1$ vector with J copies of \boldsymbol{Y} stacked into a vector. Let $\boldsymbol{t} = (\boldsymbol{t}_1^T, ..., \boldsymbol{t}_J^T)^T$. Then \boldsymbol{Z} has characteristic function $\phi_{\boldsymbol{Z}}(\boldsymbol{t}) = \phi_{\boldsymbol{Y}}(\sum_{j=1}^J \boldsymbol{t}_i) = \phi_{\boldsymbol{Y}}(\boldsymbol{s})$. Now assume $\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$. Then $\boldsymbol{t}^T \boldsymbol{Z} = \boldsymbol{s}^T \boldsymbol{Y} \sim N(\boldsymbol{s}^T \boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{s}^T \boldsymbol{s})$. Hence \boldsymbol{Z} has a multivariate normal distribution by Definition 1.7 with $E(\boldsymbol{Z}) = \boldsymbol{s}^T \boldsymbol{Y}$

 $(\boldsymbol{X}\boldsymbol{\beta}^T,...,\boldsymbol{X}\boldsymbol{\beta}^T)^T$, and $\text{Cov}(\boldsymbol{Z})$ a block matrix with $J\times J$ blocks each equal to $\sigma^2\boldsymbol{I}$. Then

$$\sum_{j}
ho_{j} T_{jn} = \sum_{j}
ho_{j} oldsymbol{A} oldsymbol{D}_{j0} oldsymbol{Y} = oldsymbol{B} oldsymbol{Y} \sim N_{g}(oldsymbol{ heta}, \sigma^{2} oldsymbol{B} oldsymbol{B}^{T}) =$$

$$N_g(\boldsymbol{ heta}, \sigma^2 \sum_j \sum_k
ho_j
ho_k \boldsymbol{A} \boldsymbol{D}_{j0} \boldsymbol{D}_{k0}^T \boldsymbol{A})$$

since $E(T_{jn}) = E(\mathbf{A}\hat{\boldsymbol{\beta}}_{I_j,0}) = \mathbf{A}\boldsymbol{\beta} = \boldsymbol{\theta}$ if $S \subseteq I_j$. Since $(T_{1n}^T,...,T_{jn}^T)^T = diag(\mathbf{A}D_{10},...,\mathbf{A}\mathbf{D}_{J0})\mathbf{Z}$, then $(T_{1n}^T,...,T_{jn}^T)^T$ is multivariate normal and

$$\sum_{j} \rho_{j} T_{jn} \sim N_{g}[\boldsymbol{\theta}, \sum_{j} \sum_{k} \pi_{j} \pi_{k} \text{Cov}(T_{jn}, T_{kn})].$$

Now assume $n\mathbf{D}_{j0}\mathbf{D}_{k0}^T \stackrel{P}{\to} \mathbf{W}_{jk}$ as $n \to \infty$. Then

$$\sum_{j} \rho_{j} \sqrt{n} (T_{jn} - \boldsymbol{\theta}) \stackrel{D}{\rightarrow} \boldsymbol{w} \sim N_{g}(\boldsymbol{0}, \sigma^{2} \sum_{j} \sum_{k} \rho_{j} \rho_{k} \boldsymbol{A} \boldsymbol{W}_{jk} \boldsymbol{A}).$$

We conjecture that this result may hold under milder conditions than $Y \sim N_n)X\beta$, σ^2I), but even the above results are not yet rigorous. If $\sqrt{n}(T_{jn}-\theta) \stackrel{D}{\to} w_j \sim N_g(\mathbf{0}, \Sigma_j)$, then a possibly poor approximation is $\overline{T}^* \approx \sum_j \rho_j T_{jn} \approx N_g[\theta, \sum_j \sum_k \rho_j \rho_k Cov(T_{jn}, T_{kn})]$, and estimating $\sum_j \sum_k \rho_j \rho_k Cov(T_{jn}, T_{kn})$ with delta method techniques may not be possible. The double bootstrap technique may be useful. See Hall (1986) and Chang and Hall (2015) for references. The double bootstrap for $\overline{T}^* = \overline{T}_B^*$ says that $T_n = \overline{T}^*$ is a statistic that can be bootstrapped. Let $B_d \geq 50 g_{max}$ where $1 \leq g_{max} \leq p$ is the largest dimension of θ to be tested with the double bootstrap. Draw a bootstrap sample of size B and compute $\overline{T}^* = T_1^*$. Repeat for a total of B_d times. Apply the confidence region (2.30), (2.31), or (2.32) to the double bootstrap sample $T_1^*, ..., T_{B_d}^*$. If $D_{(U_{B_d})} \approx D_{(U_{B_d}, T)} \approx \sqrt{\chi_{g, 1-\delta}^2}$, then \overline{T}^* may be approximately multivariate normal. The CI (2.30) applied to the double bootstrap sample could be regarded as a modified Frey CI without delta method techniques. Of course the double bootstrap tends to be too computationally expensive to simulate.

We can get a prediction region by randomly dividing the data into two half sets H and V where H has $n_H = \lceil n/2 \rceil$ of the cases and V has the remaining $m = n_V = n - n_H$ cases. Compute $(\overline{\boldsymbol{x}}_H, \boldsymbol{S}_H)$ from the cases in H. Then compute the distances $D_i^2 = (\boldsymbol{x}_i - \overline{\boldsymbol{x}}_H)^T \boldsymbol{S}_H^{-1}(\boldsymbol{x}_i - \overline{\boldsymbol{x}}_H)$ for the m vectors \boldsymbol{x}_i in V. Then a large sample $100(1-\delta)\%$ prediction region for \boldsymbol{x}_F is $\{\boldsymbol{x}: D_{\boldsymbol{x}}^2(\overline{\boldsymbol{x}}_H, \boldsymbol{S}_H) \leq D_{(k_m)}^2\}$ where $k_m = \lceil m(1-\delta) \rceil$. This prediction region

may give better coverage than the nonparametric prediction region (2.22) if $5p \le n \le 20p$.

The iid sample $T_1, ..., T_B$ has sample mean \overline{T} . Let $T_{in} = T_{ijn}$ if T_{jn} is chosen D_{jn} times where the random variables $D_{jn}/B \xrightarrow{P} \pi_{jn}$. The D_{jn} follow a multinomial distribution. Then the iid sample can be written as

$$T_{1,1},...,T_{D_{1n},1},...,T_{1,J},...,T_{D_{Jn},J},$$

where the T_{ij} are not iid. Denote $T_{1j},...,T_{D_{jn},j}$ as the jth component of the iid sample with sample mean \overline{T}_j and sample covariance matrix $S_{T,j}$. Thus

$$\overline{T} = \frac{1}{B} \sum_{i=1}^{B} T_{ijn} = \sum_{j} \frac{D_{jn}}{B} \frac{1}{D_{jn}} \sum_{i=1}^{D_{jn}} T_{ij} = \sum_{j} \hat{\pi}_{jn} \overline{T}_{j}.$$

Hence \overline{T} is a random linear combination of the \overline{T}_j . Conditionally on the D_{jn} , the T_{ij} are independent, and \overline{T} is a linear combination of the \overline{T}_j . Note that $\text{Cov}(\overline{T}) = \text{Cov}(T_n)/B$.

Software. The simulations were done in R. See R Core Team (2016). We used several R functions including forward selection as computed with the regsubsets function from the leaps library. Several slpack functions were used. The function predrgn makes the nonparametric prediction region and determines whether x_f is in the region. The function predreg also makes the nonparametric prediction region, and determines if $\mathbf{0}$ is in the region. For multiple linear regression, the function regboot does the residual bootstrap for multiple linear regression, reqbootsim simulates the residual bootstrap for regression, and the function rowboot does the empirical nonparametric bootstrap. The function vsbootsim simulates the bootstrap for all subsets variable selection, so needs p small, while vsbootsim2 simulates the prediction region method for forward selection. The functions fselboot and vselboot bootstrap the forward selection and all subsets variable selection estimators that minimize C_p . See Examples 2.9 and 2.10. The shorth3 function computes the shorth(c) intervals with the Frey (2013) correction used when q=1. Table 2.2 was made using regbootsim3 for the OLS full model and vsbootsim4 for forward selection. The functions bicboot and bicbootsim are useful if BIC is used instead of C_p . For forward selection with C_p , the function vscisim was used to make Table 2.3, and can be used to compare the shorth, prediction region method, and Bickel and Ren CIs for β_i .

2.12 Problems

2.1. Consider the Cushny and Peebles data set (see Staudte and Sheather 1990, p. 97) listed below. Find shorth(7). Show work.

0.0 0.8 1.0 1.2 1.3 1.3 1.4 1.8 2.4 4.6

2.2. Find shorth(5) for the following data set. Show work.

6 76 90 90 94 94 95 97 97 1008

2.3. Find shorth(5) for the following data set. Show work.

66 76 90 90 94 94 95 95 97 98

2.4. Suppose you are estimating the mean θ of losses with the maximum likelihood estimator (MLE) \overline{X} assuming an exponential (θ) distribution. Compute the sample mean of the fourth bootstrap sample.

actual losses 1, 2, 5, 10, 50: $\overline{X} = 13.6$

bootstrap samples:

2, 10, 1, 2, 2: $\overline{X} = 3.4$

50, 10, 50, 2, 2: $\overline{X} = 22.8$

10, 50, 2, 1, 1: $\overline{X} = 12.8$

 $5, 2, 5, 1, 50: \overline{X} = ?$

2.5. The data below are a sorted residuals from a least squares regression where n = 100 and p = 4. Find shorth(97) of the residuals.

```
number 1 2 3 4 ... 97 98 99 100 residual -2.39 -2.34 -2.03 -1.77 ... 1.76 1.81 1.83 2.16
```

2.6. To find the sample median of a list of n numbers where n is odd, order the numbers from smallest to largest and the median is the middle ordered number. The sample median estimates the population median. Suppose the sample is $\{14, 3, 5, 12, 20, 10, 9\}$. Find the sample median for each of the three bootstrap samples listed below.

Sample 1: 9, 10, 9, 12, 5, 14, 3

Sample 2: 3, 9, 20, 10, 9, 5, 14

Sample 3: 14, 12, 10, 20, 3, 3, 5

- **2.7.** Suppose you are estimating the mean μ of losses with $T = \overline{X}$. actual losses 1, 2, 5, 10, 50: $\overline{X} = 13.6$,
- a) Compute $T_1^*, ..., T_4^*$, where T_i^* is the sample mean of the *i*th bootstrap sample. bootstrap samples:

2, 10, 1, 2, 2:

50, 10, 50, 2, 2:

10, 50, 2, 1, 1:

5, 2, 5, 1, 50:

2.12 **Problems** 147

b) Now compute the bagging estimator which is the sample mean of the T_i^* : the bagging estimator $\overline{T}^* = \frac{1}{B}\sum_{i=1}^B T_i^*$ where B=4 is the number of bootstrap samples.

- **2.8.** Consider the output for Example 2.9 for the minimum C_p forward selection model based on the residual bootstrap.
 - a) What is $\hat{\boldsymbol{\beta}}_{I_{min}}$?
 - b) What is $\hat{\boldsymbol{\beta}}_{I_{min},0}$?
- c) The large sample 95% shorth CI for H is [0,0.016]. Is H needed is the minimum C_p model given that the other predictors are in the model?
- d) The large sample 95% shorth CI for $\log(S)$ is [0.324, 0.913] for all subsets. Is $\log(S)$ needed is the minimum C_p model given that the other predictors are in the model?
- e) Suppose $x_1 = 1$, $x_4 = H = 130$, and $x_5 = \log(S) = 5.075$. Find $\hat{Y} = (x_1 \ x_4 \ x_5) \hat{\beta}_{I_{min}}$. Note that $Y = \log(M)$.

R Problems

Use the command source("G:/slpack.txt") to download the functions and the command source("G:/sldata.txt") to download the data. See Preface or Section 8.1. Typing the name of the linmodpack function, e.g. regbootsim2, will display the code for the function. Use the args command, e.g. args(regbootsim2), to display the needed arguments for the function. For the following problem, the R command can be copied and pasted from (http://parker.ad.siu.edu/Olive/slrhw.txt) into R.

- **2.9.** a) Type the R command predsim() and paste the output into Word. This program computes $x_i \sim N_4(\mathbf{0}, diag(1,2,3,4))$ for i=1,...,100 and $x_f = x_{101}$. One hundred such data sets are made, and nover, sover, and mover count the number of times x_f was in the nonparametric, semiparametric, and parametric MVN 90% prediction regions. The volumes of the prediction regions are computed and voln, vols, and volm are the average ratio of the volume of the ith prediction region over that of the semiparametric region. Hence vols is always equal to 1. For multivariate normal data, these ratios should converge to 1 as $n \to \infty$.
 - b) Were the three coverages near 90%?
- **2.10.** Consider the multiple linear regression model $Y_i = \beta_1 + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + e_i$ where $\beta = (1,1,0,0)^T$. The function regbootsim2 bootstraps the regression model, finds bootstrap confidence intervals for β_i and a bootstrap confidence region for $(\beta_3, \beta_4)^T$ corresponding to the test $H_0: \beta_3 = \beta_4 = 0$ versus $H_A:$ not H_0 . See the R code near Table 2.3. The lengths of the CIs along with the proportion of times the CI for β_i contained β_i are given. The fifth interval gives the length of the interval $[0, D_{(c)}]$ where H_0 is rejected if $D_0 > D_{(c)}$ and the fifth "coverage" is the proportion of times the test fails to reject H_0 . Since nominal 95% CIs were used and the nominal level of the test is 0.05 when H_0 is true, we want the coverages near 0.95.

The CI lengths for the first 4 intervals should be near 0.392. The residual bootstrap is used.

Copy and paste the commands for this problem into R, and include the output in Word.