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Regression is the study of the conditional distribution y|x of the response y

given a vector x of the predictors, and dimension reduction (DR) methods attempt

to find linear combinations β′
1x, ..., β′

dx such that the response y is independent of

x given the d linear combinations and d ≥ 1 is as small as possible. A 1D regression

model has d = 1, and the conditional distribution y|β′x is of primary interest.

Many of the most used statistical procedures, including multiple linear regression

and generalized linear models, are special cases of 1D regression.

Existing DR methods such as ordinary least squares and sliced inverse regres-

sion often perform poorly in the presence of outliers. Also the DR theory usually

assumes that the predictors satisfy the condition of linearly related predictors: e.g.,

for 1D regression E[x|β′x] must be a linear function of β′x. This dissertation devel-

ops outlier resistant DR methods that can give useful results when the assumption

of linearly related predictors is violated.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

Regression is the study of the conditional distribution y|x of the response

variable y given the (p − 1) × 1 predictor vector x = (x1, x2, · · · , xp−1)
′. Dimension

reduction (DR) searches for a lower dimensional d × 1 vector of predictors that

carries all the information relevant to the regression.

Resistant dimension reduction is closely related to the structural dimension of

the regression. We are trying to find a lower dimensional predictor w, without any

loss of information on the conditional distribution y|x. The purpose of dimension

reduction is to make y x|(βT
1 x, βT

2 x, · · · , βT
d x) with d be as small as possible, and

d is called the structural dimension. The problem is trivial if d = p − 1. However

if d < p − 1, we made an improvement. As a result, the response y depends on

the p − 1 dimensional predictor x only through the lower dimensional d × 1 vector

w = (βT
1 x, βT

2 x, · · · , βT
d x)′. The future study can be done on the simplified data.

Two important DR methods are ordinary least squares (OLS) and sliced in-

verse regression (SIR), which was proposed in Li (1991) [16]. One remarkable differ-

ence between SIR and OLS is that SIR reverses the role of the dependent variable y

and the predictor x. In this method we regress x versus y to study y|x. This is called

inverse regression. SIR could be implemented one-dimensionally if we regress each

entry xi of x versus y separately. This is a benefit of using SIR. Several other DR

methods have been suggested, including principal Hessian directions (PHD), which

was introduced in Li (1992) [17]; and sliced average variance estimation (SAVE),

which was introduced in Cook and Weisberg (1991) [10]. See Cook and Li for addi-

tional DR methods [8] [11]. We will discuss these methods later.
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1.2 LITERATURE REVIEW

DR methods often work well if the predictors follow an elliptically contoured

distribution. The definition of this distribution will be introduced in Section 2.2. If x

does not satisfy this specific distribution, applying DR methods to a subset (yM ,xM)

of the data with the xM ’s distribution closer to being elliptically contoured can be

an effective method for making DR methods such as OLS and SIR resistant to the

presence of strong nonlinearities. See Li and Duan (1989, p. 1011) [15], Brillinger

(1991) [3], Cook and Nachtsheim (1994) [9], Cook (1998, p. 152) [6] and Li, Cook

and Nachtsheim (2004) [18]. Outlier resistance is also studied by Gather, Hilker and

Becker (2001, 2002) [12] [13], Heng-Hui (2001) [14], and Olive (2002) [21].

1.3 DISSERTATION OVERVIEW

The dissertation is organized as follows.

In Chapter 1, we introduce dimension reduction and give a review of the

literature.

In Chapter 2, some important notation and definitions are introduced. A

major part in this chapter is the theory about the dimension reduction (DR) methods

ordinary least squares (OLS) and sliced inverse regression (SIR). For each method,

we study two problems in this chapter. First, we want to know the asymptotic

covariance matrix of the estimated coefficients β̂ from both methods. Second, what

are the test statistics for the hypothesis testing problem H0 : Aβ = 0 versus H1 :

Aβ 6= 0 for some full rank matrix A? For the OLS estimator, there are two test

statistics. We present a theorem to show that they are asymptotically equivalent.

DR methods often work well if the predictors follow an elliptically contoured

distribution, otherwise we can apply the DR method to a subset (yM ,xM) of the

original data. This is the idea of the resistant dimension reduction method. In

Chapter 3, the related theory about resistant dimension reduction is introduced.
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We first introduce some topics which are related to obtaining the appropriate subset

(yM ,xM) of the data. These topics include ellipsoidal trimming, the median ball

algorithm, the DD plot, and the EY plot. Similar to Chapter 2, we are also interested

in two resistant DR methods, OLS and SIR. For the resistant OLS estimator β̂M , we

introduce the theory about its asymptotic covariance matrix; for the resistant SIR

estimator β̂Mi, we introduce the asymptotic covariance matrix of Aβ̂Mi for some

full rank matrix A. We also introduce the corresponding test statistics for testing

H0 : Aβ = 0 versus H1 : Aβ 6= 0 for both methods.

We present all the simulations in Chapter 4. There are three different types

of simulations in this chapter. For the first type of simulation, we want to study the

behavior of the estimated resistant coefficients β̂M for both OLS and SIR. For the

OLS estimator, we also want to know their standard errors. We run our simulations

on the different 1D models (d = 1) and predictors. We run the second type of

simulation on a 2D model (d = 2). For this model, we also compare our results

from resistant DR methods using different predictor distributions. The third type

of simulation is related to the hypothesis testing problem. We test three different

matrices A. For each A, we run our simulations on the different 1D models and

predictor distributions.

For 1D models, the results suggest that OLS outperforms SIR, and that SIR

works best when the predictors x follow a multivariate normal distribution. The

OLS test can be implemented using standard output originally meant for multiple

linear regression.

3



CHAPTER 2

DIMENSION REDUCTION THEORY

In this chapter, we introduce some theoretical results relevant to dimension

reduction (DR) methods. In Section 2.1, kD regression and DR methods are in-

troduced; in Section 2.2, some basic definitions and theory are stated; in Section

2.3, some theoretical results about the ordinary least squares (OLS) estimator are

presented; and in Section 2.4, some theory about the sliced inverse regression (SIR)

estimator is presented.

2.1 INTRODUCTION

Let B = (β1,β2, · · · ,βk) be a (p − 1) × k matrix. An important regression

model states that y is independent of x given B′x, denoted by

y x|B′x. (2.1)

Equivalently, y x|β′
1x,β′

2x, · · · ,β′
kx. We can always find such a matrix B by

letting B be a (p − 1) × (p − 1) identity matrix.

The structural dimension d of the regression is the smallest number of the linear

combinations needed to make model (2.1) hold. Here d is an integer between 0 and

p − 1. The regression is also said to have dD structure or to be a dD regression

model. Most regression problems have 0D, 1D, or 2D structures. See Cook and

Weisberg (1999) [11].

If d = 0, then y is independent of x, written y x.

If d = 1, then y|x depends on a single linear combination β′x, written

y x|β′x. (2.2)

A very important 1D regression model, introduced by Li and Duan (1989)

4



[15], is

y = g(α + β′x, e), (2.3)

where g is a bivariate function and the error e has zero mean and finite variance σ2

and is independent of x. There are many important models with 1D structure. For

example, an additive error single index model is

y = m(α + β′x) + e, (2.4)

where the error e has zero mean and finite variance σ2. The multiple linear regression

(MLR) model

y = α + β′x + e, (2.5)

is a special case of the single index model where m is the identity function. Gener-

alized linear models (GLMs) are also 1D models.

2.2 DEFINITIONS AND NOTATION

Definition. [23] Let x be a (p − 1) × 1 random vector with the density function

f(z) = kp−1|V |−1/2g[(z − µ)′V −1(z − µ)], (2.6)

where kp−1 is a constant, then we say that x has an elliptically contoured distribution

or elliptically symmetric distribution and denote it as x ∼ ECp−1(µ,V , g). Also, the

characteristic function of x is

φx(t) = exp(it′µ)Ψ(t′V t) (2.7)

for some function Ψ.

Let cx = −2Ψ′(0). If x ∼ EC(µ,V , g) and the second moments of x exist,

then we have E(x) = µ and Cov(x) = cxV [23].

Definition. Linearity Condition (LC):

5



We say a (p − 1) × 1 random vector x satisfies the linearity condition if

for any (p − 1) × 1 vector b, there exists some constants (c0, c1, · · · , ck) such that

E(b′x|B ′x) = c0 + c1β
′
1x + · · · + ckβ

′
kx, where B = (β1, · · · ,βk). In other words,

x satisfies the linearity condition if E(b′x|B′x = M) is a linear function of M for

any b ∈ Rp−1.

If x ∼ EC(µ,V , g) with second moments where V is nondegenerate, then the

LC holds [15].

Many methods for regression estimate the unknown coefficients α and β by

minimizing some criterion function Q(a + b′x, y) with respect to (a, b) over some

domain Ω. If the expectation of Q(a + b′x, y) is well-defined, then we could define

the following minimization problem for the large sample:

minimize L(a, b) = EQ(a + b′x, y). (2.8)

Let (α∗,β∗) be the population solution for the problem (2.8) and let (α̂, β̂)

be the solution of the sampled minimization problem of (2.8). Under some extra

regularity conditions, we have [15]

(α̂, β̂)
a.s.→ (α∗,β∗). (2.9)

Consider the model (2.3). If the true function g is unknown, the following

theorem says that the regression coefficient β∗ is proportional to the true coefficient

β in the model:

Theorem 2.2.1. [15] Let the domain Ω = {(a, b)|L(a + b′x) < ∞} and assume

that Ω is a nonempty convex set. Let x satisfy LC. Also assume that

Condition 1: L(a + b′x) is convex in (a, b) almost surely.

Condition 2: The minimization problem (2.8) has a unique solution (α∗,β∗).

Then

β∗ = cβ, (2.10)

6



where c is some scalar.

Assume the criterion function L(·) is smooth enough to have derivatives. Let

L1(·) denote the first partial derivative of L(·) with respect to (a, b) and L11(·)

denote the second partial derivative of L(·) with respect to (a, b). Suppose both L1

and L11 exist and are continuous. Li and Duan (1989) also gave a general form of

the asymptotic covariance matrix for the estimator β̂ for the 1D model (2.3).

Theorem 2.2.2. [15] (p. 1031) Assume x ∼ EC(µ,V ), where the covariance

matrix Σx ≡ Cov(x) = cxV is nonsingular, then under regularity conditions, we

have
√

n(β̂ − cβ)
L→ Np−1(0,C), (2.11)

where

C = φ ηΣ−1
x + k (cβ)′(cβ), (2.12)

φ =
E[L1(α

∗ + cβ′x)2 Γ(x)]

E[L11(α∗ + cβ′x) Γ(x)]
, (2.13)

η =
p − 2

E[L11(α∗ + cβ′x) Γ(x)]
, (2.14)

and

Γ = (x − µ)′Σ−1
x (x− µ) − (cβ′(x− µ))2

(cβ)′Σx(cβ)
, (2.15)

and c, k are some constants.

In addition, if we have the condition Aβ = 0, where A is a q× (p− 1) matrix

with rank q ≤ p − 1, Li and Duan (1989, p. 1032) have the following theorem for

the asymptotic covariance matrix of Aβ̂.

Theorem 2.2.3. Consider the model (2.3). Given Aβ = 0 for some A and under

the same conditions of Theorem 2.2.2, then

√
n(Aβ̂ − cAβ)

L→ Nq(0,AC A′) (2.16)

7



if the inverse link function g is known, while

√
n(Aβ̂ − cAβ)

L→ Nq(0, φAC A′) (2.17)

under inverse link violation, where c is some constant. Here C is defined in (2.12)

and φ is defined in (2.13).

2.3 THEORETICAL RESULTS FOR OLS

2.3.1 Theoretical Results For The OLS Estimator

In this section we will introduce theoretical results for the OLS estimator. For

OLS the minimization problem is a special case of (2.8),

Minimize QOLS(a + b′x) = ‖r(a, b)‖2, (2.18)

where the “residual” r(a, b) = y − a − b′x. Suppose Cov(x) and Cov(x, y) exist

and let Σx = Cov(x) and Σxy = Cov(x, y). Let (αols,βols) be the population OLS

coefficients, then

αols = Ey − β′
olsEx, (2.19)

and

βols = Σ−1
x Σxy. (2.20)

Then we will define the OLS population “residual” r(αols,βols) as

r(αols,βols) = y − αols − β′
olsx. (2.21)

Using the definitions (2.19) and (2.20), (2.21) is equivalent to

r(αols,βols) = y − Ey − β′
ols(x − Ex). (2.22)

Let the data be (yi,xi) for i = 1, · · · , n and let (α̂ols, β̂ols) denote the estimator

of (αols,βols). The sample minimization problem is to minimize
∑n

i=1 r2
i , where

ri ≡ ri(α̂ols, β̂ols) = yi − α̂ols − β̂
′
olsxi.

8



Consider the multiple linear regression model

Y = Xη + e, (2.23)

where Y = (y1, · · · , yn)′,η = (α,β′)′, and X is the n × p design matrix with the

ith row (1,x′
i). Suppose X ′X is positive-definite, then the OLS estimator η̂ols =

(α̂ols, β̂
′
ols)

′ = (X ′X)−1X ′Y . Define Σ̂x =
1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)′ and Σ̂xy =

1

n

n∑
i=1

(xi − x̄)(yi − ȳ). Following Seber and Lee (2003, p. 99 - 106) [26], we have

(X ′X)−1 =




1

n
+ x̄′D−1x̄ −x̄′D−1

−D−1x̄ D−1


 , (2.24)

where x̄ =
1

n

n∑
i=1

xi and

D = (n − 1)Σ̂x,

D−1 =
Σ̂

−1

x
n − 1

.

(2.25)

Then

(X ′X)−1X ′Y =




1

n
+ x̄′D−1x̄ −x̄′D−1

−D−1x̄ D−1







1 · · · 1

x1 · · · xn







y1

...

yn




=




1

n
+ x̄′D−1x̄ −x̄′D−1

−D−1x̄ D−1







n∑
i=1

yi

n∑
i=1

xiyi




=




ȳ − x̄′D−1[
n∑

i=1

xiyi − x̄
n∑

i=1

yi]

D−1[
n∑

i=1

xiyi − x̄
n∑

i=1

yi]


 .

(2.26)
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According to (2.25),

D−1[
n∑

i=1

xiyi − x̄
n∑

i=1

yi] =
Σ̂

−1

x
n − 1

[
n∑

i=1

xiyi − x̄
n∑

i=1

yi]

=
n

n − 1
Σ̂

−1

x (
1

n

∑
xiyi − x̄

1

n

n∑

i=1

yi)

=
n

n − 1
Σ̂

−1

x (
1

n

∑
xiyi − x̄ȳ)

=
n

n − 1
Σ̂

−1

x Σ̂xy.

(2.27)

Therefore, the OLS estimators (α̂ols, β̂ols) are




α̂ols

β̂ols


 =




ȳ − β̂
′
olsx̄

n

n − 1
Σ̂

−1

x Σ̂xy


 . (2.28)

Recall (2.19) and (2.20), we have

α̂ols
L→ αols,

β̂ols
L→ βols,

(2.29)

when n → ∞ if the vectors (yi,x
′
i)
′ are iid such that Σ−1

x and Σxy exist.

Consider the 1D model (2.3). Chen and Li (1998) gave a special case of

Theorem 2.2.2 for β̂ols.

Theorem 2.3.1. [5] Under regularity conditions,

√
n(β̂ols − cβ)

L→ Np−1(0,Cols), (2.30)

where c is some constant, and

Cols = Σ−1
x E[(y − αols − β′

olsx)2(x − Ex)(x − Ex)′]Σ−1
x . (2.31)

In addition, if y − αols − β′
olsx x, then

Cols = τ 2Σ−1
x , (2.32)
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where

τ 2 = E[(y − αols − β′
olsx)2]. (2.33)

Chen and Li (1998) also gave results about the asymptotic covariance matrix

of Aβ̂ols for some matrix A:

Theorem 2.3.2. Under the same regularity conditions as Theorem 2.3.1, for some

q × (p − 1) matrix A, where the rank of A is q ≤ (p − 1), we have

√
n(Aβ̂ols − cAβ)

L→ Nq(0,AColsA
′), (2.34)

where c is some constant and Cols is defined in (2.31).

Let r = r(αols,βols) and let a′
i be the ith row of A where i = 1, · · · , q. In

addition, if Aβ = 0 and if Cov(r2, (a′
iΣ

−1
x (x − Ex))2) = 0, then (2.34) could be

simplified as the following

√
n(Aβ̂ols − cAβ)

L→ Nq(0, τ 2AΣ−1
x A′), (2.35)

where τ 2 is defined in (2.33).

Proof. By (2.31), the asymptotic covariance

Cov(a′
iβ̂ols) = n−1a′

i Cov(β̂ols)ai

= n−1a′
i Σ

−1
x E[r2(x − Ex)(x − Ex)′]Σ−1

x ai

= n−1E[r2a′
iΣ

−1
x (x− Ex)(x − Ex)′Σ−1

x ai]

= n−1E[r2(a′
iΣ

−1
x (x− Ex))2].

Since a′
iΣ

−1
x (x− Ex) is a scalar, we have (a′

iΣ
−1
x (x− Ex))′ = a′

iΣ
−1
x (x− Ex).

Since Ewz = EwEz + Cov(w, z),

Cov(a′
iβ̂ols) = n−1Er2E[(a′

iΣ
−1
x (x − Ex))2] + n−1Cov(r2, (a′

iΣ
−1
x (x − Ex))2).
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Since Cov(r2, (a′
iΣ

−1
x (x − Ex))2) = 0,

Cov(a′
iβ̂ols) = n−1τ 2a′

iΣ
−1
x E[(x −Ex)(x − Ex)′]Σ−1

x ai

= n−1τ 2a′
iΣ

−1
x ΣxΣ−1

x ai

= n−1τ 2a′
iΣ

−1
x ai.

Hence Cov(Aβ̂ols) = n−1τ 2AΣ−1
x A′.

In addition, if the predictor x has the multivariate normal distribution with

mean µ and the nonsingular covariance matrix Σx, then the asymptotic covariance

matrix of the regression coefficient β̂ols takes the following form. See [1] and [2].

Theorem 2.3.3. Consider the model (2.4). If E(x′x |m(α + β′x)|2 ) is finite, then

under regularity conditions

√
n(β̂ols − cβ)

L→ Np−1(0,Cbols), (2.36)

where

c =
1

Var(α + β′x)
Cov(m(α + β′x), α + β′x), (2.37)

the covariance matrix

Cbols = σ2Σ−1
x + Σ−1

x E(h(x)2(x − µ)(x − µ)′)Σ−1
x , (2.38)

where

h(x) = m(α + β′x) − α∗ − β∗′x, (2.39)

and

α∗ = Ey − β∗Ex and β∗ = cβ. (2.40)

Notice that Theorem 2.3.3 and Theorem 2.3.1 are both results about the

asymptotic covariance matrix of β̂ols. A natural question we may ask is what is

the relationship between them? We give the answer as the following theorem.
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Theorem 2.3.4. Suppose the regularity conditions are satisfied. If the single index

model (2.4) holds and x ∼ Np−1(µ,Σx), then (2.31) and (2.38) are equivalent.

Proof. Recall that σ2 = Ee2 = Var(e). According to (2.31), (2.39), and (2.22), the

asymptotic covariance matrix

Cov(β̂ols) = n−1Cols = n−1Σ−1
x E[r2(x −Ex)(x − Ex)′]Σ−1

x

= n−1Σ−1
x E[(y − αols − β′

olsx)2(x − Ex)(x − Ex)′]Σ−1
x

= n−1Σ−1
x E[(m(α + β′x) + e − Ey − β′

ols(x − Ex))2(x − Ex)(x − Ex)′]Σ−1
x

= n−1Σ−1
x E[(m(α + β′x) − Ey − β′

ols(x− Ex))2(x −Ex)(x − Ex)′]Σ−1
x

+ n−1Σ−1
x E[e2(x− Ex)(x − Ex)′]Σ−1

x

+ n−1Σ−1
x E[2e(m(α + βTx) − Ey − β′

ols(x − Ex))(x − Ex)(x − Ex′)]Σ−1
x

= n−1Σ−1
x E[(m(α + β′x) − Ey − β′

ols(x − Ex))2(x − Ex)(x −Ex)′]Σ−1
x

+ n−1Σ−1
x σ2ΣxΣ−1

x + 0 (since Ee = 0 and e x)

= n−1σ2Σ−1
x + n−1Σ−1

x E[(m(α + β′x) − αols − β′
olsx)2(x− Ex)(x − Ex)′]Σ−1

x

= n−1σ2Σ−1
x + n−1Σ−1

x E(h(x)2(x − µ)(x −µ)′)Σ−1
x .

If we have x ∼ Np−1(µ,Σx) and the MLR model (2.5) holds, then the mul-

tiplicative constant c in (2.37) and the function h(x) in (2.39) could be simplified

as

c =
1

Var(α + β′x)
Cov(α + β′x, α + β′x) = 1,

h(x) = α + β′x − α − β′x = 0.

(2.41)

Hence we can get the familiar least squares theory

√
n(β̂ols − cβ)

L→ Np−1(0,Cols), (2.42)
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where c = 1 and

Cols = σ2Σ−1
x . (2.43)

Recall the τ 2 in (2.33). If the MLR model holds, then τ 2 = σ2 and formula

(2.32) is equivalent to (2.43). Therefore, we have

Cov(β̂ols) = n−1 τ 2 Σ−1
x = n−1 σ2 Σ−1

x . (2.44)

When m(·) is unknown, estimating τ 2 and y−αols −β′
olsx is easier than estimating

σ2.

2.3.2 Theoretical Results For Testing Problem

In this section we will consider the hypotheses testing problem

H0 : Aβ = 0 versus H1 : Aβ 6= 0, (2.45)

where A is a full rank q × (p − 1) matrix with q ≤ (p − 1).

Later we will introduce two test statistics based on the OLS estimator β̂ols and

discuss their relationship. Then the main new theoretical results will be presented.

We will first examine the χ2 test statistic introduced by Li and Duan (1989).

Let the data be (yi,xi) for i = 1, · · · , n. A natural way to test (2.45) is using

Aβ̂ols as the test statistic, and H0 will be rejected if Aβ̂ols is sufficiently differ-

ent from 0. Because we do not treat every element in Aβ equally, the quadratic

(Aβ̂ols)(Cov(Aβ̂ols))
−1(Aβ̂ols)

′ which considers the precision of each entry β̂ols,i of

β̂ols should be used. To create the test statistic, we will define

x =
1

n

n∑

i=1

xi, (2.46)

Σ̂x =
1

n − 1

n∑

i=1

(xi − x)(xi − x)′, (2.47)

and

τ̂ 2 = MSE =
1

n − p

n∑

i=1

r2
i , (2.48)
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where ri is defined in Section 2.3. Recall (2.35), the asymptotic covariance matrix

of Aβ̂ols is n−1τ 2AΣ−1
x A′ when H0 is true. This result suggests that the following

test statistic for the testing problem (2.45) is

W0 =
n(Aβ̂ols)

′(AΣ̂
−1

x A′)−1(Aβ̂ols)

τ̂ 2
. (2.49)

If H0 : Aβ = 0 is true, then

W0
L→ χ2

q when n → ∞. (2.50)

Therefore we will reject H0 if W0 ≥ χ2
q(1 − α), where α denotes the type I

error.

Next we will introduce the F test statistic for (2.45). Let Ã = (0q,A). Using

the notation in Section 2.3.1, the testing problem (2.45) is equivalent to testing

H0 : Ãη = 0 versus H1 : Ãη 6= 0. (2.51)

Seber and Lee (2003, p. 99 - 106)[26] derive the usual MLR F-test for a more

generalized testing problem

H0 : Ãη = c versus H1 : Ãη 6= c, (2.52)

as

F0 =
(SSER − SSE)/q

SSE/(n − p)
=

(Ãη̂ − c)′[Ã(X ′X)−1Ã
′
]−1(Ãη̂ − c)

q MSE
. (2.53)

Here c is some vector. Obviously, problem (2.51) is a special case of (2.52) with

c = 0.

Next we will present our main new theorem to show that either (2.49) or (2.53)

can be used for testing (2.45).

Theorem 2.3.5. Assume that the 1D model (2.2) holds and that under H0 : Aβ = 0

(2.50) holds. Then the test statistic F0 which is defined by (2.53) satisfies

F0 =
(n − 1)W0

nq
L→

χ2
q

q
. (2.54)

as n → ∞.
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Proof. According to (2.24) and (2.25),

[Ã(X ′X)−1Ã
′
]−1 = (AD−1A′)−1 = (n − 1)(AΣ̂

−1

x A′)−1. (2.55)

With the condition c = 0 and the previous work, the test statistic for (2.53)

satisfies

F0 =
(n − 1)(Aβ̂ols)

′(AΣ̂
−1

x A′)−1(Aβ̂ols)

q MSE
=

(n − 1)W0

nq
. (2.56)

Hence the result follows by (2.50).

Thus Theorem 2.3.5 shows that hypotheses testing can be done using OLS

software originally meant for MLR. If H0 is true, the MLR model holds, and the

errors ei are iid N(0, σ2), then F0 ∼ Fq,n−p. Recall that if some statistic Tn ∼ Fq,n−p,

then Tn
L→ χ2

q/q as n → ∞. The OLS software is easier to use than the chi–square

test (2.49). Tests developed for parametric models such as the deviance tests for

GLMs will often have more power than the model free OLS tests. Simonoff and

Tsai (2002) [27] suggest tests for single index models while Cook (2004) [7] develops

model free tests for model (2.1).

To use the OLS output, the assumption that OLS is a useful estimator for the

1D model needs to be checked. Methods for checking OLS are suggested by Olive

and Hawkins (2005) [24] who showed that variable selection methods, originally

meant for MLR and based on OLS and the Mallow’s Cp criterion, can also be used

for 1D models. Since the Cp statistic is a one to one function of the F statistic

for testing the submodel, Theorem 2.3.5 provides additional support for using OLS

for variable selection for 1D models. Li, Cook and Nachtsheim (2005) [19] suggest

model free methods of variable selection for model (2.1).
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2.4 THEORETICAL RESULTS FOR SIR

2.4.1 Theoretical Results For The SIR Estimator

In this section we will introduce another DR method SIR and the related

results about SIR. In SIR the following eigenvalue decomposition is conducted to

find the SIR directions βi [5].

ΣE(x|y) βi = λiΣx βi, (2.57)

where ΣE(x|y) = Cov(E(x|y)).

There are at most p−1 nonzero eigenvalues λi and λ1 ≥ λ2 ≥ · · · ≥ λp−1. The

ith SIR direction βi corresponds to the ith largest eigenvalue λi. For a dD model,

use B = [β1, · · · ,βd].

For SIR, our interest is to find the asymptotic covariance matrix CiSIR of the

estimated SIR directions. In general, CiSIR does not have a simple formula and

the asymptotics for SIR are complicated and hard to explain. The following result,

given in Chen and Li (1998), is useful.

Theorem 2.4.1. For model (2.1), let A be a full rank q × (p− 1) matrix such that

Aβ = 0, then under regularity conditions

√
n(β̂iSIR − ciβ)

L→ Np−1(0,CiSIR), (2.58)

and
√

n(Aβ̂iSIR − ciAβ)
L→ Nq(0,ACiSIRA′), (2.59)

where AĈiSIRA′ = 1−λ̂i

λ̂i
AΣ̂

−1

x A′.

For the 1D regression (2.3), let β̂SIR = β̂1SIR.

Comparing definitions (2.58) and (2.43), we can see the estimated asymptotic

covariance matrices Aβ̂OLS and Aβ̂iSIR for the SIR directions are proportional to

each other.
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2.4.2 Theoretical Results For Testing Problem

In this section we will discuss the test statistics for the testing problem (2.45)

based on the SIR estimator β̂iSIR. According to (2.59), the estimated asymptotic

covariance matrix of Aβ̂iSIR is
1 − λ̂i

nλ̂i

AΣ̂
−1

x A′ when H0 is true. Therefore the test

statistic for (2.45) could be defined similarly to (2.49) as

WSIR = n (Aβ̂iSIR)′ [AΣ̂
−1

x A′]−1(Aβ̂iSIR)/(
1 − λ̂i

λ̂i

). (2.60)

In addition if H0 : Aβ = 0 is true, we have

WSIR
L→ χ2

q when n → ∞. (2.61)

This means WSIR has an approximate χ2
q distribution when n is large and if H0 is

true. Hence we will reject H0 if WSIR > χ2
q(1−α), where α denotes the type I error.
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CHAPTER 3

RESISTANT DIMENSION REDUCTION

3.1 INTRODUCTION

Existing DR methods such as OLS and SIR often perform poorly in the pres-

ence of outliers. Also the DR theory usually assumes that the predictors satisfy LC.

In this section we will introduce outlier resistant DR methods that can give useful

results when the assumption of linearly related predictors is violated. In Section

3.2, the ellipsoidal trimming method and the median ball algorithm are introduced;

in Section 3.3, two examples are given to explain the application of the DD plots; in

Section 3.4, the trimmed EY plots of several DR methods are compared; in Section

3.5, the related theorems about resistant DR methods are introduced; and in Section

3.6, we will discuss the theory for the testing problem (2.45) based on the trimmed

data set.

3.2 ELLIPSOIDAL TRIMMING

3.2.1 Introduction

As stated in the last chapter, one of the most important assumptions in the DR

literature is that the predictor x should satisfy LC. In addition, if x ∼ EC(µ,Σ)

then the related theorems could be simplified. If the original predictor x does

not have an EC distribution, ellipsoidal trimming can remove a portion of relatively

remote data from the predictor and make the trimmed predictor’s distribution closer

to being EC. In this section we will introduce this method and the median ball

algorithm which performs the trimming.

To perform ellipsoidal trimming, we first need to compute an estimator (T,C)

from the original predictors. Let T be a (p− 1)× 1 location estimator and let C be

19



a (p−1)× (p−1) symmetric positive definite dispersion estimator. Then use (T,C)

to create the Mahalanobis distance Di for each xi based on the following formula

D2
i ≡ D2

i (T,C) = (xi − T )′C−1(xi − T ), (3.1)

where i = 1, · · · , n.

Let D(1) ≤ D(2) ≤ · · · ≤ D(n). Consider the hyper ellipsoid {x : (x −

T )′C−1(x−T ) ≤ D2
(k)}. The ith observed case (yi,xi) will be trimmed if Di > D(k).

Then a resistant DR estimator β̂ of β is computed by applying the DR method, eg

SIR or OLS, to the remaining cases.

3.2.2 Median Ball Algorithm

The median ball algorithm (MBA) (Olive (2004) [22]) is used to compute

the estimator (T,C). We need to introduce a definition before we give a detailed

explanation about this algorithm.

Definition. The pair (T0i,C0i) is called a start if it is an initial trial fit and the

pair (Tki,Cki) is called an attractor if it is a final fit generated by some algorithm

from the start.

The following statements are the steps of the median ball algorithm:

1. Let the classical sample mean x0,1 =
1

n

n∑
i=1

xi and covariance S0,1 =

1

n − 1

n∑
i=1

(xi − x0,1)(xi − x0,1)
′, and let (T0,1,C0,1) = (x0,1,S0,1) be the first start.

Then compute the squared Mahalanobis distances D2
i (T0,1,C0,1) for all xi and let

md1 = MED(D2
i (T0,1,C0,1)) where i = 1, · · · , n and MED(W ) means the median

of W.

2. Let x1,1 and S1,1 be the classical sample mean and covariance of the set

of those xi whose squared distances D2
i (T0,1,C0,1) are less than or equal to md1.

Now we have the second start (T1,1,C1,1) = (x1,1,S1,1). Then recalculate md1 =

MED(D2
i (T1,1,C1,1)).
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3. Repeat step 2 for k times to get the sequence (T1,1,C1,1), · · · , (Tk,1,Ck,1)

where (Tk,1,Ck,1) is the first attractor.

4. Let the ith row of W be x′
i, the coordinatewise median ν = MED(W ), and

I be a (p − 1) × (p − 1) identity matrix. Then compute the squared Mahalanobis

distances D2
i (ν, I) for all xi where i = 1, · · · , n.

5. Let md = MED(D2
i (ν, I)), i = 1, · · · , n. Let T0,2 and C0,2 be the mean

and covariance of the set of those xi whose squared distances D2
i (ν, I) are less than

or equal to md. Here (T0,2,C0,2) is the second start. Then compute the squared

Mahalanobis distances D2
i (T0,2,C0,2) for all xi and let md2 = MED(D2

i (T0,2,C0,2))

where i = 1, · · · , n.

6. Let x1,2 and S1,2 be the classical sample mean and covariance of the set of

those xi whose squared distances D2
i (T0,2,C0,2) are less than or equal to md2. Now

we have (T1,2,C1,2) = (x1,2,S1,2). Then recalculate md2 = MED(D2
i (T1,2,C1,2)).

7. Repeat step 6 for k times to get the corresponding sequence

(T1,2,C1,2), · · · , (Tk,2,Ck,2) where (Tk,2,Ck,2) is the second attractor.

8. Let (Ta,Ca) be (Tk,1,Ck,1) if |Ck,1| ≤ |Ck,2| or (Tk,2,Ck,2) otherwise, where

| · | denotes the determinant of a matrix. Let

Tmba = Ta,

Cmba =
Ca

χ2
p−1,0.5

MED(D2
i (Ta,Ca)),

(3.2)

where χ2
p−1,0.5 is the 50th percentile of a chi-square distribution with p − 1 degrees

of freedom.

Then (Tmba,Cmba) is the MBA estimator. We will use (Tmba,Cmba) to perform

ellipsoidal trimming. MBA works well if there are outliers in the data and it is one

of the fastest robust estimators.
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3.3 DD PLOT

In this section we will introduce the DD plot. Prior to that, we need to

introduce some definitions.

Definition. [23] Let the data be x1, · · · ,xn, and let the (p − 1) × 1 vector

TM = x =
1

n

n∑

i=1

xi,

and the (p − 1) × (p − 1) matrix

CM = S =
1

n − 1

n∑

i=1

(xi − TM)(xi − TM)′.

The classical Mahalanobis distance MDi for each xi is defined as

MDi = MDi(TM ,CM ) =

√
(xi − TM)′C−1

M (xi − TM). (3.3)

Definition. [23] Suppose (TA,CA) is a consistent estimator for (µ, aAΣ), where

aA is some positive constant. Let (TR,CR) = (TA,CA/γ2) be the scaled algorithm

estimator for some to be determined constant γ > 0. Then the robust Mahalanobis

distance RDi for each xi is defined as

RDi = RDi(TR,CR) =
√

(xi − TR)′C−1
R (xi − TR) = γDi(TA,CA) (3.4)

Definition. [23] The DD plot is a plot of the classical Mahalanobis distance MDi

versus the robust Mahalanobis distance RDi.

In our study, (TR,CR) is obtained using the median ball algorithm. That

means the robust Mahalanobis distances RDi used in the DD plot were based on

the MBA estimator of the location and dispersion.

The DD plot has several important applications such as detecting multivariate

outliers. Olive (2002) [21] shows that the plotted points in the DD plot will follow the

identity line with zero intercept and unit slope if the data distribution is multivariate

normal (MVN), and will follow a line with zero intercept but non–unit slope if the
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Figure 3.1. DD Plots of Buxton Data

data distribution is elliptically contoured but not MVN. Delete M% of the cases

with the largest MBA distances so that the remaining cases follow the identity

line (or some line through the origin) closely. Then apply the DR method on those

remaining cases. We will illustrate this application of the DD plot using the following

two examples.

Example 1: The data set we used in this example was given by Buxton in

1920 [4]. This data set is a set of 5 measurements of the head length, nasal height,

bigonal breadth, cephalic index, and height of the 88 men in Cyprus. The first

four variables were used as predictors to predict the dependent variable height and

we will use the first four predictors to make the DD plot. There are five outliers,

numbered from 61 to 65, which had head lengths over five feet but were only about

0.75 inches tall.

The result is shown in Figure 3.1. The left plot is the DD plot of the original

data set. We can see that the majority of the data is clustering about the identity

line except the five outlying points which are far away from the other points. The

five outliers are the cases with huge head lengths. After removing these cases, we

made another DD plot which is shown as the right plot. Then most of the cases

are clustering about the identity line. This suggests that the trimmed data set
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Figure 3.2. DD Plots of Schaaffhausen Data

distribution is approximately multivariate normal.

Example 2: The data set we used in this example was given by Schaaffhausen

in 1878 [25]. This data set has 10 measurements on 47 humans (cases 1 to 47) and 13

apes (cases 48 to 60). The 9 predictors are head length, head breadth, head height,

lower jaw length, face length, upper jaw length, height of lower jaw, eye width, and

traverse diagonal length and they will be used to make the DD plot. The dependent

variable is the cranial capacity. The 13 apes are the outliers in this dataset and we

want to detect them.

The result is shown in Figure 3.2. Again, we put the DD plot of the original

data set on the left. There are 13 points far away from the majority of the data in

this plot. We found that they are the measurements of the 13 apes by examining

their case numbers. After dropping these 13 outliers we made another DD plot and

put it on the right side. Many of the points are above the identity line, suggesting

that more trimming is needed before the predictor distribution is approximately

multivariate normal.
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3.4 TRIMMED VIEWS

In this section we will compare the EY plots (also called trimmed views),

defined below, obtained from several DR methods.

Definition. [23] Suppose the 1D model (2.2) holds, then y x|β′x. Then y x|a+

cβ′x for any constants a and c 6= 0. The term a + cβ′x is called the sufficient

predictor (SP). The term α̃ + β̃
′
x is called the estimated sufficient predictor (ESP)

where β̃ is some estimator of cβ for some constant c.

Definition. [23] An EY plot is a plot of any ESP versus y.

We will give an example using the four DR methods OLS, SIR, PHD, and

SAVE. The MBA algorithm will be used to trim M% of the cases where M =

0%, 10%, · · · , 90% before we perform the DR method. Then the EY plot will be

made for each M. For the methods PHD, SIR, and SAVE, we let the number of

slices h = 4. By comparing all the EY plots, we will keep a record of the best M

and the corresponding estimated regression coefficient β̂ for each method. The best

plot had the smoothest mean function, visually. The results are shown in Table 3.1.

Let β = (β1, β2, β3)
′ = (1, 2, 3)′ and xi = (xi1, xi2, xi3)

′. The true model we

used in this example is

yi =
sin(β′xi)

β′xi
, (3.5)

where i = 1, · · · , 250.

Here the predictors x are coming from the data file “lsinc.lsp” [23]. They are

not from the EC distribution. Let β̂ = (β̂1, β̂2, β̂3) be the estimator of β and let

|corr(SP,ESP )| = |corr(x′β,x′β̂)|.

Table 3.1 gives the 0% trimming and the best trimming regression coefficients

β̂ obtained from all the DR methods. Obviously trimming greatly improved the

OLS, SAVE, and PHD estimators. The 0% trimming ESP is not highly correlated
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DR Method M β̂1 β̂2 β̂3 |corr(SP, ESP )|

OLS 0% 0.00447 -0.000865 0.00232 0.5015

OLS 90% 0.0421 0.0810 0.1910 0.978

SIR 0% -0.1926 -0.5305 -0.8255 0.996

SIR 20% -0.3000 -0.5632 -0.7700 0.998

SAVE 0% 0.8180 -0.4443 0.3654 0.292

SAVE 50% -0.2549 -0.5175 -0.8168 0.9996

PHD 0% 0.9934 0.0378 -0.1085 0.345

PHD 60% -0.2777 -0.5236 -0.8054 0.9998

Table 3.1. Comparison Of Eight ESPs Using Dataset “lsinc.lsp”

with SP except for the SIR estimator, while all the correlations between the best

trimmed ESP and SP are above 0.95.

We also give the EY plots of each method in Figure 3.3. As shown in this

figure, trimming was effective, especially for the methods SIR, SAVE, and PHD.

They have the best EY plots. We can clearly recognize the true model through

these three methods. Comparing all the nonzero trimmed EY plots, SIR used the

smallest amount of trimming while OLS used 90% trimming. For the 0% trimmed

EY plots, SIR works best but SAVE and OLS completely failed.

Now, we repeat our example on another dataset “sinc.lsp” [23]. Similar to the

previous dataset “lsinc.lsp,” the predictors x are not from the EC distribution. The

results are shown in Table 3.2.

As we can see, trimming greatly improved the OLS and SAVE estimators for

this dataset. The best trimmed ESPs are highly correlated with SP for the SIR,

SAVE, and PHD estimators.

The EY plots are given in Figure 3.4. The results are similar to Figure 3.3. All

the best trimmed EY plots are better than the 0% trimmed views, except for the OLS

26



Figure 3.3. EY Plots of Four DR Methods Using Dataset “lsinc.lsp”
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DR Method M β̂1 β̂2 β̂3 |corr(SP, ESP )|

OLS 0% 0.0032 0.0011 0.0047 0.4148

OLS 90% 0.0321 0.0366 0.2329 0.8757

SIR 0% -0.4066 -0.3916 -0.8254 0.8504

SIR 10% 0.3032 0.5003 0.8110 0.9918

SAVE 0% 0.0845 -0.7280 0.6804 0.4214

SAVE 60% -0.2116 -0.5657 -0.7970 0.9927

PHD 0% 0.9995 0.0097 -0.0316 0.8832

PHD 60% -0.2928 -0.6154 -0.7318 0.9651

Table 3.2. Comparison Of Eight ESPs Using Dataset “sinc.lsp”

estimator. The EY plots of the SIR, SAVE, and PHD estimators clearly displayed

the true model and the SIR estimator used the smallest amount of trimming. For

the 0% trimmed views, the SAVE and OLS estimators completely failed.
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Figure 3.4. EY Plots of Four DR Methods Using Dataset “sinc.lsp”
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3.5 RELATED THEOREMS

In this section, we will introduce some theorems about resistant DR methods.

Consider the 1D model (2.3). Let (xMi, yMi), i = 1, · · · , nM be the cases that

remain after trimming M% of the data. The criterion function is Q(a+ b′xMi, yMi)

where i = 1, · · · , nM . Then the minimization problem is

Minimize L(a + b′xMi, yMi) = EQ(a + b′xMi, yMi). (3.6)

Suppose the above problem (3.6) has a proper solution and let (αM ,βM) be the

population solution. We are interested in the relationship between (αM ,βM) and

the true coefficients (α,β). Recall Theorem 2.2.1. If the trimmed data set satisfies

LC, we have a good reason to expect that (αM ,βM) has the same property as

(α∗,β∗) which is the proper solution of the minimization problem (2.8).

Theorem 3.5.1. Under regularity conditions, if xM satisfies LC, then

βM = kMβ, (3.7)

where kM is some constant.

Let the OLS estimator of (αM ,βM ) be (α̂M , β̂M) and the SIR estimator of

βMi = kMiβi be β̂Mi. The strong consistency of these estimators can be attained

under regularity conditions in a manner similar to the estimators with 0% trimming.

Now we will discuss the asymptotic covariance matrices of these estimators.

Theorem 3.5.2. Under regularity conditions, we have

√
nM (β̂M − kMβ)

L→ Np−1(0,CM ), (3.8)

where

CM = Σ−1
M E[r2

M(xM − ExM)(xM −ExM )′]Σ−1
M , (3.9)

ΣM = Cov(xM ), and the population OLS “residual” rM is defined as

rM = yM − αM − β′
MxM . (3.10)
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Under the same regularity conditions, for some q× (p−1) matrix A, where the rank

of A is q ≤ (p − 1), we have

√
nM(Aβ̂M − kMAβ)

L→ Nq(0,ACMA′). (3.11)

Now we can express the previous two equations in terms of n :

√
n(β̂M − kMβ)

L→ Np−1(0,
n

nM

CM), (3.12)

√
n(Aβ̂M − kMAβ)

L→ Nq(0,
n

nM
ACMA′). (3.13)

In addition, if the MLR model (2.5) holds and y−αM −β′
MxM xM , we have

Cov(β̂M) = n−1
M τ 2

M Σ−1
M = n−1

M σ2 Σ−1
M , (3.14)

where τ 2
M = E(yM − αM − β′

MxM)2.

By Chen and Li, if we also have Aβ = 0 for some q × (p − 1) matrix A, then

√
nM (Aβ̂M − kMAβ)

L→ Nq(0, τ 2
MAΣ−1

M A′). (3.15)

Now we will introduce a theorem about the SIR estimators β̂Mi.

Theorem 3.5.3. Under regularity conditions, if we have Aβi = 0 for some q ×

(p − 1) matrix A, then

√
nM (β̂Mi − kMiβi)

L→ Np−1(0,CMi), (3.16)

and

√
nM (Aβ̂Mi − kMiAβi)

L→ Nq(0,ACMiA
′), (3.17)

where

AĈMiA
′ =

1 − λ̂Mi

λ̂Mi

AΣ̂
−1

M A′. (3.18)

Similarly, we have the following expression in terms of n :

√
n(β̂Mi − kMiβi)

L→ Np−1(0,
n

nM
CMi). (3.19)
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3.6 THEORETICAL RESULTS FOR TESTING PROBLEM

In this section we will consider the hypothesis testing problem (2.45) based on

the trimmed data set.

1. The OLS estimator based on the data remaining after trimming.

Suppose we perform ellipsoidal trimming on the original data and let

(xMi, yMi) for i = 1, · · · , nM be the data that is not trimmed, and let β̂M be

the corresponding OLS regression coefficient. Then according to (2.56) and (3.15),

we can define the two test statistics as the follows:

FM =
(nM − 1)(Aβ̂M )′(AΣ̂

−1

M A′)−1(Aβ̂M )

q τ̂ 2
M

(3.20)

and

WM =
nM(Aβ̂M )′(AΣ̂

−1

M A′)−1(Aβ̂M )

τ̂ 2
M

, (3.21)

where τ̂ 2
M =

‖yM − ŷM‖2

nM − p
.

Under H0, we expect FM ≈ Fq,nM−p and WM ≈ χ2
q. Hence H0 will be rejected

for large values of FM and WM . We can also express one of the test statistics as a

function of the other as

FM =
(nM − 1)WM

q nM
. (3.22)

2. The SIR estimator based on the data remaining after trimming.

We also do the χ2 SIR test based on the trimmed data. Let β̂Mi be the SIR

coefficients for the trimmed data. Then the corresponding χ2 test statistic is

WSM = nM (Aβ̂Mi)
′ [ AΣ̂

−1

M A′]−1(Aβ̂Mi)/(
1 − λ̂Mi

λ̂Mi

), (3.23)

where λ̂Mi and β̂Mi are calculated from

Σ̂E(xM |yM ) β̂Mi = λ̂MiΣ̂M β̂Mi , (3.24)

where Σ̂E(xM |yM ) = Ĉov(E(xM |yM)).

If H0 holds, then WSM ≈ χ2
q and H0 will be rejected if WSM > χ2

q(1 − α),

where α denotes the type I error.
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CHAPTER 4

SIMULATIONS

4.1 INTRODUCTION

We will give all the simulation results in this chapter. In Section 4.2, we

will introduce the regression models and the predictor distributions used in the

simulation; in Section 4.3, we will use two resistant DR methods to estimate the

coefficients and their covariances; and in Section 4.4, we will discuss the testing

problem (2.45) for two resistant DR estimators. For all simulations, the number of

runs nruns = 1000. Simulations were done in R.

4.2 REGRESSION MODELS AND PREDICTOR DISTRIBUTIONS

In this section, we will discuss the models and predictor distributions which

we will use in the simulation.

1. Regression Models.

The MLR model is the most important 1D model, and we also pick 6 nonlinear

single index models for the comparison. Let the sufficient predictor

SP = α + x′β. (4.1)

Then the 7 single index models used in the simulation are

1. y = SP + e (MLR),

2. y = (SP )2 + e,

3. y = exp(SP ) + e,

4. y = (SP )3 + e,

5. y =
sin(SP )

SP
+ 0.01e,

33



6. y = SP + sin(SP ) + 0.1e,

7. y =
√

|SP | + 0.1e,

where the error e ∼ N(0, 1) is independent of x.

2. Distributions of x.

We choose 8 different distributions for xi = (xi1, · · · , xi(p−1))
′, where the (p −

1) × 1 vectors xi are i.i.d. for i = 1, · · · , n.

1. xi ∼ Np−1(0, I).

2. xi ∼ 0.6Np−1(0, I) + 0.4Np−1(0, 25I).

3. xi ∼ 0.4Np−1(0, I) + 0.6Np−1(0, 25I).

4. xi ∼ 0.9Np−1(0, I) + 0.1Np−1(0, 25I).

5. xi ∼ LN(0, I).

Here LN stands for the lognormal distribution. We construct the predictor by

letting xi = exp(zi), where zi ∼ Np−1(0, I).

6. xi ∼ MV T3.

Here MV T3 stands for the multivariate t distribution with 3 degrees of

freedom. The predictor xi is constructed by letting xi =
zi√
wi/3

, where

zi ∼ Np−1(0, I) and the scalar random variable wi ∼ χ2
3 is independent of xi.

The xi has first moments but not second moments [20].

7. xi ∼ MV T5.

This type of xi has a multivariate t distribution with 5 degrees of freedom.

We construct it by letting xi =
zi√
wi/5

, where zi ∼ Np−1(0, I) and the scalar

random variable wi ∼ χ2
5 is independent of xi. Now xi has both first and

second moments [20].
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8. xi ∼ MV T19.

Here xi =
zi√
wi/19

, where zi ∼ Np−1(0, I) and the scalar random variable

wi ∼ χ2
19 is independent of xi. It has the multivariate t distribution with 19

degrees of freedom and has both first and second moments. As the degrees

of the freedom of the random vector which has the multivariate t distribution

go to ∞, the joint distribution of these random vectors tends to a multivari-

ate normal distribution [20]. Therefore, xi behaves more like the standard

multivariate normal distribution.

All these 8 distributions except the lognormal distribution are elliptically con-

toured distributions.

4.3 COEFFICIENT ESTIMATION USING RESISTANT DR METH-

ODS

4.3.1 Introduction

In this section, we will use two DR methods, OLS and SIR, to find the esti-

mator β̂ of the coefficients cβ for the 7 single index models introduced in Section

4.2. Let the entire data be (xi, yi) for i = 1, · · · , n, the dimension of the coeffi-

cients p − 1 = 4, and the true coefficient β = (1, 1, 1, 1)′. Also we let the predictor

xi ∼ Np−1(0, I) for i = 1, · · · , n. In the simulation we will use the MBA algorithm

to trim M = 0% to 90% of the data and let (xMi, yMi) for i = 1, · · · , nM be the

data remaining after trimming.

Let β̂M = (β̂M1, · · · , β̂M(p−1))
′ be the OLS estimator and β̂M,SIR =

(β̂M1,SIR, · · · , β̂M(p−1),SIR)′ be the SIR estimator. For i = 1, · · · , p − 1, let

SD = SD(β̂Mi) be the sample standard deviation of the OLS estimators

β̂Mi,1, · · · , β̂Mi,1000 from the simulation, let the standard error of β̂Mi be

SE(β̂Mi) =
√

MSEM

√
(X ′

MXM )−1
i+1,i+1 ≈

1
√

nM

√
τ̂ 2
M (Σ̂M )−1

ii , (4.2)
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where MSEM = τ̂ 2
M =

‖yM − ŷM‖2

nM − p
and XM is the analog of X which is defined

in Section 2.3.1, and let the standard error of β̂Mi based on the theorem introduced

by Chen and Li (1998) be

SEcl(β̂Mi) =

√
n−1

M (ĈM )ii, (4.3)

where CM is defined in (3.9).

For the OLS estimator, we keep a record of β̂Mi, SE(β̂Mi), and SEcl(β̂Mi) for

each run; while for the SIR estimator, we keep a record of β̂Mi,SIR for each run.

Then the sample means of all the previous values coming from 1000 runs will be

calculated. We use βM , SE, SEcl, and βM,SIR to denote the corresponding sample

means. In this section, we are interested in the following questions.

• How large should the sample size n be for βM or βM,SIR to be approximately

equal to cβ for some constant c, where β = (1, 1, 1, 1)′? For the OLS MLR

model, c should be 1.

• For the OLS estimator, what is the relationship between SE,SEcl and SD for

large n?

4.3.2 The OLS Estimator

In this section, we will estimate the OLS coefficients β̂M and its standard

errors for the 7 single index models given in Section 4.2.

Normal Distributed Predictor x

In this section, the predictor x ∼ N4(0, I) and we will show the results in two

tables.

1. MLR Model.

The model we used here is y = SP + e, which is the MLR model introduced

in Section 4.2. We already defined the covariance matrix of β̂M as (2.44) in Section
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2.3.1 for the entire data and as (3.14) in Section 3.5 for the data after trimming. In

the previous two equations, we have Cov(β̂M ) = n−1
M σ2Σ−1

M ,M = 0%, 10%, · · · , 90%.

Here M = 0% means 0% trimming.

In the notation of Section 2.3.1, the covariance matrix of β̂M of the MLR

model could also take the following form

Cov(η̂ols) = σ2(X ′X)−1, (4.4)

for 0% trimming where ηols = (αols,β
′
ols)

′.

Now let us compare (4.2) with (4.4). We know MSE is an unbiased estimator

for σ2. Hence (4.2) should be close to the standard error of β̂Mi when n is large.

That means for large n, SEcl(β̂M) and SE(β̂M) should be close to each other.

For nonzero percent trimming, we will also compare SEcl(β̂M) and SE(β̂M)

and expect they are getting closer for large n.

All the results for the MLR model are shown in Table 4.1. Column “M” denotes

the trimming percentage, column“n” means the size of entire data, the last three

columns are the multiple of
√

n with the standard errors and the standard deviation

of β̂ols. By multiplying
√

n to each value, we can make the standard errors and the

standard deviation based on different n comparable. Recall (3.12) and (3.14), we

have
√

nSEcl ≈
√

n

nM
diag(CM ) =

√
1

1 −M
diag(CM), (4.5)

and
√

n SE ≈
√

n

nM
τ 2
M diag(Σ−1

M ) =

√
1

1 − M
τ 2
M diag(Σ−1

M ), (4.6)

where CM is defined in (3.9) and “diag(W )” means the main diagonal elements

of the matrix W. Therefore,
√

n SEcl calculated on different n should be close as

long as the trimming percentage M is the same. Similar remarks apply to
√

n SE.

Furthermore, we hope that
√

n SEcl and
√

nSE will be close for each M when n is

getting large.
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M n βM

√
n SEcl

√
nSE

√
n SD

0 60 1,.99,1,1 .96,.96,.96,.96 1.04,1.05,1.05,1.04 1.02,1.06,1.04,1.04
500 1,1,1,1 .99,.99,.99,1 1,1,1,1 1.04,1.01,1.03,1.01
1000 1,1,1,1 1,1,1,1 1,1,1,1 1,1,.98,1.03

10 60 1,.99,1,1 1.11,1.12,1.1,1.11 1.21,1.22,1.21,1.21 1.21,1.23,1.21,1.22
500 1,1,1,1 1.15,1.15,1.15,1.15 1.16,1.16,1.16,1.16 1.23,1.18,1.18,1.2
1000 1,1,1,1 1.15,1.16,1.16,1.15 1.16,1.16,1.16,1.16 1.16,1.18,1.13,1.17

20 60 1,1,1,1 1.27,1.29,1.27,1.28 1.41,1.42,1.41,1.4 1.41,1.47,1.41,1.41
500 1,1,1,1 1.31,1.31,1.31,1.31 1.33,1.33,1.33,1.33 1.39,1.35,1.35,1.36
1000 1,1,1,1 1.31,1.32,1.32,1.31 1.32,1.32,1.32,1.32 1.31,1.32,1.28,1.31

30 60 .99,.99,1,1 1.49,1.51,1.49,1.5 1.68,1.69,1.67,1.67 1.66,1.69,1.71,1.67
500 1,1,1,1 1.51,1.5,1.5,1.5 1.53,1.52,1.52,1.52 1.58,1.55,1.56,1.57
1000 1,1,1,1 1.5,1.51,1.51,1.5 1.51,1.52,1.52,1.51 1.5,1.54,1.46,1.51

40 60 .99,.99,1,1 1.8,1.81,1.79,1.79 2.05,2.06,2.03,2.04 1.98,2.05,2.09,2.02
500 1,1,1,1 1.75,1.75,1.74,1.74 1.78,1.77,1.77,1.77 1.8,1.88,1.82,1.79
1000 1,1,1,1 1.74,1.75,1.75,1.74 1.76,1.76,1.76,1.76 1.78,1.78,1.71,1.75

50 60 .99,1,1,.99 2.13,2.13,2.1,2.12 2.47,2.47,2.44,2.46 2.5,2.49,2.56,2.45
500 1,1,1,1 2.08,2.07,2.06,2.07 2.11,2.11,2.1,2.1 2.13,2.19,2.2,2.1
1000 1,1,1,1 2.06,2.06,2.07,2.06 2.08,2.08,2.08,2.08 2.09,2.09,2.06,2.06

60 60 .98,.99,.98,.99 2.65,2.63,2.6,2.62 3.22,3.19,3.16,3.18 3.44,3.22,3.31,3.33
500 1,1,1,1 2.51,2.51,2.5,2.5 2.57,2.56,2.56,2.56 2.66,2.58,2.66,2.52
1000 1,1,1,1 2.5,2.5,2.5,2.49 2.53,2.53,2.53,2.52 2.52,2.51,2.54,2.54

70 60 .99,.99,1,1 3.27,3.27,3.21,3.24 4.27,4.26,4.19,4.23 4.57,4.41,4.4,4.58
500 1,1.01,1,.99 3.2,3.2,3.18,3.19 3.29,3.28,3.28,3.28 3.37,3.3,3.27,3.31
1000 1,1,1,1 3.19,3.18,3.19,3.18 3.23,3.23,3.23,3.22 3.17,3.16,3.26,3.25

80 60 .99,.98,1.02,1.04 4.03,4.12,4.03,4.06 6.37,6.43,6.3,6.37 7.02,7.16,7.11,7.32
500 1,1,1,1 4.41,4.41,4.41,4.43 4.62,4.59,4.6,4.62 4.56,4.55,4.45,4.64
1000 1,.99,1,1 4.42,4.43,4.42,4.41 4.51,4.51,4.52,4.51 4.52,4.452,4.54,4.59

90 60 1,.75,.97,1.08 5.1,5.51,5.37,5.39 19.08,20.74,19.92,19.78 29.3,47.45,44.49,36.94
500 1.01,.99,.99,.99 7.49,7.47,7.44,7.46 8.16,8.12,8.11,8.16 8.06,8.27,8.54,8.08
1000 1,1,1.01,.99 7.56,7.61,7.6,7.54 7.9,7.9,7.92,7.89 7.81,8.02,7.76,7.59

Table 4.1. Results Of OLS Estimators For The MLR Model Based On Type 1 x

The results in Table 4.1 are as expected. First of all, all β̂M except M = 90%

estimate the true coefficients (1, 1, 1, 1)′ even for small n. Second of all, SE(β̂M)

and SEcl(β̂M) are approximately equal to each other for each M when n is large.

They both estimate (1, 1, 1, 1)′ for the 0% trimming. Also SE(β̂M ) increases with

M and results for n = 500 and n = 1000 are close. Last but not least, SD(β̂M ) is

close to the two standard errors for large n.

2. Nonlinear Models.

In this section we will run our simulations on the 6 nonlinear models which

were introduced in Section 4.2. We want to know whether the trimming improves
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the result if the result of the 0% trimming is not good. Therefore for each model,

we keep a record of the results based on 0%, 10%, and the trimming corresponding

to the best result. We consider the result as the best if all the entries of both β̂M

and SEcl(β̂M ) are approximately equal. If there are several similar results which

were based on the different trimming percentages M, we will pick the result which

corresponded to the smallest M as the best one. In column “M” of Table 4.2,

we denote them by 0, 10, and B correspondingly. The subscript of those values

denotes the type of the model we used. The number before B denotes the trimming

percentage corresponding to the best result. For example, 1B4 means the best result

for the type 4 model is obtained by trimming 10% of the original data.

M n βM

√
nSEcl

√
nSE

√
nSD

02 60 1.96,1.97,1.94,2 6.66,6.71,6.63,6.71 5.76,5.77,5.78,5.76 8.1, 7.98,8.02,8.09

500 2,2.01,2,2 7.81,7.79,7.76,7.8 5.71,5.72,5.72,5.72 7.87,8,8.02,7.88

1000 1.99,1.99,1.99,1.99 7.9,7.9,7.93,7.87 5.73,5.73,5.73,5.73 8.33,8.29,8.65,8.09

102 60 1.97,2,1.96,2 6.07,6.12,6.06,6.12 5.57,5.61,5.56,5.56 7.69,7.58,7.32,7.37

500 1.99,2,2,1.99 6.19,6.18,6.22,6.21 5.14,5.15,5.14,5.14 6.94,6.88,6.94,6.93

1000 1.99,1.99,1.99,1.99 6.19,6.2,6.2,6.19 5.13,5.13,5.13,5.13 6.66,6.78,6.69,6.41

0B2 60 1.96,1.97,1.94,2 6.66,6.71,6.63,6.71 5.76,5.77,5.78,5.76 8.1, 7.98,8.02,8.09

0B2 500 2,2.01,2,2 7.81,7.79,7.76,7.8 5.71,5.72,5.72,5.72 7.87,8,8.02,7.88

0B2 1000 1.99,1.99,1.99,1.99 7.9,7.9,7.93,7.87 5.73,5.73,5.73,5.73 8.33,8.29,8.65,8.09

03 60 20.75,21.05,20.92,21.3 84.5,85.16,85.46,86.68 67.27,67.8,67.93,67.37 494.8,459.2,472,422.8

500 20.83,20.49,21.3,21.07 167,160.3,177.3,172.4 96.8,96.7,96.81,96.9 759,641.3,1207,1046

1000 19.86,19.74,19.81,19.54 169.4,166,166.4,160.5 95.17,95.36,95.2,95.17 314.2,330.4,262.9,294.6

103 60 12.72,12.63,12.55,13.05 42.84,42.39,42.18,44.63 38.3,38.29,38.01,37.93 90.51,75.83,86.95,91.48

500 10.85,10.85,10.93,10.86 41.65,41.6,42.31,41.75 31.82,31.85,31.85,31.84 54.11,53.4,54.92,52.69

1000 10.7,10.73,10.71,10.69 41.32,41.7,41.46,41.15 31.17,31.2,31.21,31.16 49.63,50.89,47.86,48.57

2B3 60 10.05,10.39,10.16,10.18 31.59,32.34,31.68,31.62 30.16,30.05,29.76,29.85 61.06,60.26,63.75,57.62

1B3 500 10.85,10.85,10.93,10.86 41.65,41.6,42.31,41.75 31.82,31.85,31.85,31.84 54.11,53.4,54.92,52.69

2B3 1000 8.6,8.6,8.6,8.6 28.6,28.8,28.6,28.7 22.9,22.9,23,22.9 39.3,38.9,38.2,38.8

04 60 14.64,14.8,14.53,14.87 27.76,28.01,27.59,28.39 24.23,24.32,24.32,24.25 38.92,38.5,38.54,39.18

500 14.93,14.93,14.9,14.9 36.37,36,36.07,36.25 25.41,25.46,25.45,25.49 38.84,38.19,37.51,38.75

1000 14.92,14.92,14.95,14.88 37.28,37.02,37.39,36.79 25.53,25.55,25.53,25.55 39.27,39.99,39.38,39.48

104 60 12.48,12.61,12.44,12.66 23.63,23.93,23.41,24.25 21.95,22.03,21.85,21.86 33.3,30.43,31.11,32.35

500 11.9,11.91,11.96,11.91 24.31,24.25,24.54,24.35 19.92,19.94,19.93,19.93 29.54,29.12,29.9,29.15

Table 4.2. Results Of OLS Estimators For The Nonlinear Mod-
els Based On Type 1 x
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M n βM

√
nSEcl

√
nSE

√
nSD

1000 11.85,11.88,11.87,11.86 24.27,24.34,24.28,24.23 19.77,19.78,19.79,19.76 28.57,29.17,27.39,27.91

0B4 60 14.64,14.8,14.53,14.87 27.76,28.01,27.59,28.39 24.23,24.32,24.32,24.25 38.92,38.5,38.54,39.18

0B4 500 14.93,14.93,14.9,14.9 36.37,36,36.07,36.25 25.41,25.46,25.45,25.49 38.84,38.19,37.51,38.75

0B4 1000 14.92,14.92,14.95,14.88 37.28,37.02,37.39,36.79 25.53,25.55,25.53,25.55 39.27,39.99,39.38,39.48

05 60 -.11,-.11,-.11,-.11 .37,.37,.37,.37 .35,.35,.35,.35 .43,.42,.43,.43

500 -.11,-.11,-.11,-.11 .4,.4,.4,.4 .34,.34,.34,.34 .4,.41,.41,.4

1000 -.11,-.11,-.11,-.11 .4,.4,.4,.4 .34,.34,.34,.34 .41,.4,.42,.4

105 60 -.13,-.13,-.12,-.13 .39,.39,.39,.39 .38,.38,.38,.38 .46,.47,.47,.46

500 -.13,-.13,-.13,-.13 .41,.41,.41,.41 .36,.36,.36,.36 .45,.45,.47,.46

1000 -.13,-.13,-.13,-.13 .41,.41,.41,.41 .36,.36,.36,.36 .44,.44,.46,.44

0B5 60 -.13,-.13,-.12,-.13 .39,.39,.39,.39 .38,.38,.38,.38 .46,.47,.47,.46

0B5 500 -.13,-.13,-.13,-.13 .41,.41,.41,.41 .36,.36,.36,.36 .45,.45,.47,.46

0B5 1000 -.13,-.13,-.13,-.13 .41,.41,.41,.41 .36,.36,.36,.36 .44,.44,.46,.44

06 60 1.08,1.07,1.08,1.07 .7,.7,.7,.7 .72,.72,.72,.72 .77,.76,.77,.78

500 1.07,1.07,1.07,1.07 .73,.73,.73,.73 .69,.69,.69,.69 .73,.74,.75,.74

1000 1.07,1.07,1.07,1.07 .73,.73,.73,.73 .69,.69,.69,.69 .75,.75,.71,.73

106 60 1.11,1.1,1.11,1.1 .8,.81,.8,.8 .82,.82,.81,.81 .89,.88,.9,.89

500 1.11,1.11,1.11,1.11 .83,.83,.83,.83 .78,.79,.78,.78 .88,.87,.92,.91

1000 1.11,1.1,1.11,1.11 .83,.83,.83,.83 .78,.78,.78,.78 .89,.91,.88,.87

0B6 60 1.08,1.07,1.08,1.07 .7,.7,.7,.7 .72,.72,.72,.72 .77,.76,.77,.78

0B6 500 1.07,1.07,1.07,1.07 .73,.73,.73,.73 .69,.69,.69,.69 .73,.74,.75,.74

0B6 1000 1.07,1.07,1.07,1.07 .73,.73,.73,.73 .69,.69,.69,.69 .75,.75,.71,.73

07 60 .14,.14,.14,.14 .48,.48,.48,.48 .47,.47,.47,.47 .55,.54,.55,.55

500 .14,.14,.14,.14 .52,.52,.52,.52 .45,.45,.45,.46 .51,.53,.53,.53

1000 .14,.14,.14,.14 .52,.52,.52,.52 .45,.45,.45,.45 .53,.53,.56,.52

107 60 .15,.15,.15,.15 .51,.51,.51,.51 .51,.52,.51,.51 .6,.61,.6,.59

500 .16,.16,.16,.16 .53,.53,.53,.53 .49,.49,.49,.49 .58,.58,.59,.59

1000 .16,.16,.16,.16 .53,.53,.53,.53 .49,.49,.49,.49 .55,.57,.58,.55

0B7 60 .14,.14,.14,.14 .48,.48,.48,.48 .47,.47,.47,.47 .55,.54,.55,.55

0B7 500 .14,.14,.14,.14 .52,.52,.52,.52 .45,.45,.45,.46 .51,.53,.53,.53

0B7 1000 .14,.14,.14,.14 .52,.52,.52,.52 .45,.45,.45,.45 .53,.53,.56,.52

Table 4.2. (Continued)

Similar to Table 4.1, the predictor in Table 4.2 is xi ∼ N4(0, I), while the

models we used here are all nonlinear. Comparing these two tables, there are several

things to notice.

1) In Table 4.2, usually β̂M ≈ cβ where c is some constant which depends on

n, M, and the model, whereas c = 1 in Table 4.1.
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2) The best results for nonlinear models are mostly obtained at 0% trimming.

This is the same as the results for the MLR model. That means the 0% trimming

OLS regression works well no matter which 1D model we used if xi ∼ N4(0, I).

3) In Table 4.2 both SE(β̂M) and SEcl(β̂M ) estimate a(1, 1, 1, 1)′ where a is

some constant which depends on n, M, the model, and the formula. But unlike the

results for the MLR model, SE(β̂M ) 6≈ SEcl(β̂M) even for large n. This difference

is reasonable, because (4.2) can not be used to estimate the standard error of β̂ols

for the nonlinear model.

4) Similar to Table 4.1, most of the sample standard deviations SD(β̂M ) are

getting close to SEcl(β̂M ) for large n, although the two values are not as close as in

Table 4.1.

Nonnormal Distributed Predictor x

Now we will run the simulation for the 7 nonnormal predictor distributions

which were introduced in Section 4.2. The results which are based on the different

type of predictors are displayed in the different tables. For each type of predictor,

we run the simulation for all the 7 models which are introduced in Section 4.2.

Similar to Table 4.2, for each model, we keep a record of the results based on

0%, 10%, and the trimming corresponding to the best result. Here we use the same

method to choose the “best” result as used for Table 4.2. Similarly, we use column

“M” to denote the trimming percentage and the type of model. For example, 101

means the results in this row are obtained by using the type 1 model and trimming

10% of the original dataset, 4B2 means the results in this row are the best for the

type 2 model and the specific n and they are obtained by trimming 40% of the

original data. Since the predictors do not have the normal distribution, SE(β̂M)

is not appropriate to estimate the standard error of β̂M and we will only compare

SEcl(β̂M) with SD(β̂M ). Similarly, we multiply the two values by
√

n and denote
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them as
√

nSEcli and
√

nSDi in all tables, where the subscript i means the type

of predictor we used.

n M βM2

√
n SEcl2

√
n SD2

60 01 1,1,1,1 .29,.29,.29,.30 .35,.34,.35,.36
500 1,1,1,1 .3,.3,.3,.3 .31,.31,.3,.3
1000 1,1,1,1 .31,.3,.31,.31 .31,.31,.3,.31
60 101 1,1,1,1 .4,.4,.4,.4 .5,.48,.49,.5
500 1,1,1,1 .42,.42,.42,.42 .42,.42,.42,.43
1000 1,1,1,1 .42,.42,.42,.42 .43,.42,.43,.42
60 0B1 1,1,1,1 .29,.29,.29,.30 .35,.34,.35,.36
500 0B1 1,1,1,1 .3,.3,.3,.3 .31,.31,.3,.3
1000 0B1 1,1,1,1 .31,.3,.31,.31 .31,.31,.3,.31
60 02 1.91,1.75,1.39,2.05 43.69,43.85,43.74,43.61 62.49,62.49,62.44,63.26
500 2.07,1.92,2.04,2.05 61.76,62.31,62.41,61.6 68.15,65.41,66.82,65.64
1000 1.99,2.02,1.93,1.98 64.16,64.11,64.26,64.3 65.2,63.56,63.56,63.1
60 102 1.77,2,2.01,1.92 35.76,35.98,35.51,35.86 50.81,53.22,50.72,48.41
500 1.99,2,1.92,2.01 44.09,44.22,43.86,44.03 47.01,45.74,46.3,45.85
1000 2.01,2,1.99,2.01 44.39,44.31,44.51,44.57 44.72,44.14,45.95,44.84
60 4B2 2.08,2.06,2.07,2.1 9.67,9.64,9.52,9.65 16.21,17.76,16.18,16.57
500 3B2 1.95,1.97,1.97,1.97 27.44,27.44,27.73,27.94 30.15,31.12,30.91,31.1
1000 1B2 2.01,2,1.99,2.01 44.39,44.31,44.51,44.57 44.72,44.14,45.95,44.84
60 03 2.7e12,1.5e12,1.8e12,1.3e12 1.5e13,9.2e12,1.1e13,1.1e13 3.6e14,1.7e14,2.6e14,2.2e14
500 2.4e13,2e13,3.1e13,1.7e13 4.9e14,4.1e14,6.2e14,3.7e14 9.4e15,6.4e15,1.2e16,5.3e15
1000 2.7e14,4.7e14,3.5e14,2.5e14 8.3e15,1.4e16,1.1e16,7.5e15 2.3e17,4.3e17,3.1e17,1.9e17
60 103 7.6e8,1.7e9,8.4e8,9e8 7.9e9,1e10,8.3e9,6e9 1.3e11,3.5e11,1.6e11,1.9e11
500 1e7,1e7,1.1e7,1.1e7 1.9e8,1.8e8,2.1e8,1.9e8 8.4e8,7.8e8,1.1e9, 8.7e8
1000 6.5e6,6.4e6,6.7e6,6.5e6 1.5e8,1.5e8,1.6e8,1.5e8 3.8e8,4.2e8,4.1e8,3.7e8
60 6B3 8.03,8.05,8.45,8.31 26.19,26.02,26.83,25.86 54.46,58.05,77.37,59.29
500 5B3 9.06,9.05,9.04,9.08 37.56,37,37.31,37.41 55.35,54.02,53.35,55.03
1000 5B3 9.08,9.03,9.03,9.07 38.24,37.96,38.01,38.36 54.79,54.85,54.61,55.11
60 04 262.3,261.2,257.4,259.9 592.8,594.5,587.3,598.4 1056,1036,1004,1047
500 283.4,284.7,285.5,283.6 1001,1007,1024,992 1107,1131,1142,1141
1000 285.7,285.7,285.5,286.8 1091,1090,1089,1094 1199,1198,1169,1225
60 104 160.1,161.7,158.3,161.5 371.8,373.5,363.9,369.1 639.9,683.6,629.8,640.8
500 157.4,157.5,156.4,157.1 454.6,455.7,454.2,453.8 570.2,567.2,555.3,573.9
1000 156.3,156.3,156.6,156.7 456,455.6,460.2,461.1 566.2,555,573.8,561.8
60 5B4 11.39,11.32,11.53,11.5 24.85,24.94,25,25.09 42.68,46.66,46.57,42.4
500 4B4 15.05,15,15,14.95 45.5,45.26,45.73,44.82 82.52,79.14,82.71,79.11
1000 4B4 14.54,14.57,14.54,14.54 43,43.37,43.14,43.17 66.92,67.82,66.25,65.51
60 05 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .15,.16,.15,.15
500 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .14,.13,.13,.13
1000 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .13,.12,.12,.12
60 105 -.01,-.02,-.02,-.02 .18,.18,.19,.18 .22,.23,.22,.21
500 -.01,-.01,-.01,-.01 .18,.18,.18,.19 .19,.19,.2,.19
1000 -.01,-.01,-.01,-.01 .19,.18,.19,.19 .18,.18,.18,.19

Table 4.3. Results Of OLS Estimators Based On Type 2 x
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n M βM2

√
n SEcl2

√
n SD2

60 0B5 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .15,.16,.15,.15
500 0B5 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .14,.13,.13,.13
1000 0B5 -.01,-.01,-.01,-.01 .13,.13,.13,.13 .13,.12,.12,.12
60 06 1,1.01,1.01,1 .21,.21,.21,.21 .24,.25,.25,.25
500 1,1,1,1 .22,.22,.22,.22 .22,.22,.23,.22
1000 1,1,1,1 .22,.22,.22,.22 .22,.22,.22,.23
60 106 1.01,1.01,1.01,1.01 .29,.29,.29,.29 .34,.36,.35,.34
500 1.01,1.01,1.01,1.01 .3,.3,.3,.3 .3,.31,.31,.29
1000 1.01,1.01,1.01,1.01 .3,.3,.3,.3 .3,.3,.3,.31
60 0B6 1,1.01,1.01,1 .21,.21,.21,.21 .24,.25,.25,.25
500 0B6 1,1,1,1 .22,.22,.22,.22 .22,.22,.23,.22
1000 0B6 1,1,1,1 .22,.22,.22,.22 .22,.22,.22,.23
60 07 .02,.02,.02,.02 .42,.42,.43,.43 .53,.55,.53,.54
500 .02,.02,.02,.02 .49,.49,.49,.49 .54,.52,.51,.5
1000 .02,.02,.02,.02 .49,.49,.49,.49 .5,.49,.49,.48
60 107 .03,.03,.03,.03 .49,.49,.49,.49 .62,.65,.63,.61
500 .03,.03,.03,.03 .56,.56,.55,.56 .59,.58,.59,.58
1000 .03,.03,.03,.03 .56,.56,.56,.56 .56,.56,.58,.57
60 0B7 .02,.02,.02,.02 .42,.42,.43,.43 .53,.55,.53,.54
500 0B7 .02,.02,.02,.02 .49,.49,.49,.49 .54,.52,.51,.5
1000 0B7 .02,.02,.02,.02 .49,.49,.49,.49 .5,.49,.49,.48

Table 4.3. (Continued)

In Table 4.3, the predictor xi ∼ 0.6N4(0, I) + 0.4N4(0, 25I).

1) For the MLR model, β̂M ≈ (1, 1, 1, 1)′. Also SEcl(β̂M ) and SD(β̂M ) are

close to each other, both of them are estimating a(1, 1, 1, 1)′ for some constant a.

The best results are obtained at 0% trimming.

2) The results for type 5, 6, and 7 models are similar to the MLR model except

that β̂M ≈ c(1, 1, 1, 1)′ for some constant c.

3) For the type 2, 3, and 4 models, a large amount of trimming often greatly

improved the results, such as 40% or 50% trimming. But even for the best results,

SEcl(β̂M) and SD(β̂M) are not close when the model is type 3 or 4.

n M βM3

√
n SEcl3

√
n SD3

60 01 1,1,1,1 .24,.24,.24,.24 .29,.27,.27,.29
500 1,1,1,1 .25,.25,.25,.25 .26,.26,.25,.26
1000 1,1,1,1 .25,.25,.25,.25 .26,.26,.25,.26
60 101 1,1,1,1 .3,.3,.3,.3 .36,.35,.35,.36
500 1,1,1,1 .32,.32,.32,.32 .32,.32,.31,.32

Table 4.4. Results Of OLS Estimators Based On Type 3 x
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n M βM3

√
n SEcl3

√
n SD3

1000 1,1,1,1 .32,.32,.32,.32 .32,.32,.33,.31
60 0B1 1,1,1,1 .24,.24,.24,.24 .29,.27,.27,.29
500 0B1 1,1,1,1 .25,.25,.25,.25 .26,.26,.25,.26
1000 0B1 1,1,1,1 .25,.25,.25,.25 .26,.26,.25,.26
60 02 1.91,1.74,1.8,2.15 39.6,39.95,39.69,39.7 53.95,50.94,51.69,53.06
500 2.01,1.93,2.06,2.06 50.73,51.19,51.25,50.58 54.47,53.83,54.54,52.9
1000 1.99,2.05,1.98,2 52.39,52.18,52.2,52.52 53.6,52.3,53.92,53.76
60 102 2.06,1.96,1.86,2.03 34.67,34.71,34.56,35.11 45.66,44.22,44.79,45.61
500 1.97,1.98,2,2.03 38.69,38.82,38.53,38.79 40.68,39.76,39.91,39.8
1000 2.03,2.01,1.99,1.99 38.69,38.44,38.6,38.83 39.83,40.1,39.98,39.58
60 7B2 2.07,1.97,2.05,2.09 7.68,7.74,7.57,7.7 13.61,13.76,13.64,13.59
500 3B2 1.93,1.96,1.95,2.01 34.23,34.34,34.49,34.58 36.5,36.8,37.08,37.01
1000 2B2 2.01,2.02,2.02,2.01 35.89,35.68,35.7,35.94 36.94,36.76,37.52,36.63
60 03 3.1e12,2.1e12,1.8e12,1.9e12 1.7e13,1.3e13,1.1e13,1.2e13 3.3e14,2.2e14,1.9e14,2e14
500 2.2e13,1.9e13,2.6e13,1.8e13 4.6e14,4e14,5.5e14,3.8e14 6.7e15,5e15,8.1e15,4.3e15
1000 5.2e14,5.6e14,4.7e14,3.3e14 1.6e16,1.7e16,1.4e16,1e16 3.4e17,3.7e17,2.8e17,1.7e17
60 103 8.8e10,8.7e10,3.9e10,6.8e10 4.9e11,5.3e11,2.9e11,4.3e11 1.7e13,1.8e13,7.7e12,1.2e13
500 1.7e8,1.9e8,2.4e8,2.2e8 3.4e9,3.7e9,4.9e9,4.4e9 4.2e10,5.1e10,8.7e10,6.6e10
1000 8.4e7,8.6e7,8.2e7,9.3e7 2.1e9,2.2e9,2e9,2.4e9 1.4e10,1.5e10,1.1e10,1.8e10
60 8B3 7.17,6.92,7.14,7.57 22.72,22.31,22.64,22.53 77.29,70.31,79.06,97.52
500 7B3 7.98,8,8.02,8.06 37.73,37.84,38.19,38.65 56.52,57.82,60.13,61.25
1000 7B3 8.01,7.95,7.98,8 38.86,38.68,38.69,39.02 56.38,54.48,55.6,55.35
60 04 282.5,278.6,277,282.3 587.4,587.4,580.2,590.8 921.1,931.3,856.6,963.4
500 291.9,294,293.7,292.1 859.7,866.6,877.9,850.8 933,957.9,964.9,957.2
1000 294.8,294.2,293.9,296.1 932.9,924.9,924.5,935.7 1015,1024, 970.6,1032
60 104 203.4,201.1,199.1,205 411.1,413.8,406,422.9 681.3,669.7,657.6,691.9
500 193.7,193.8,192.5,193.7 453.4,455.7,453.7,457.3 584.2,587.6,586,588.9
1000 192.3,191.6,191.7, 192.8 452.2,448.6,451.2,454.1 603.3,602.2,605.2,619.7
60 7B4 11.45,11.22,11.33,11.75 28.73,29.12,29.01,29.41 68.43,78.94,63.33,69.86
500 6B4 14.58,14.6, 14.48,14.54 49.47,49.61,49.14,49.45 87.86,84.25,81.49,86.33
1000 6B4 14.19,14.22,14.21,14.19 48.55,48.47,47.93,48.26 75,76.87,76.58,71.92
60 05 -.004,-.004,-.005,-.004 .09,.09,.09,.09 .1,.11,.1,.1
500 -.004,-.004,-.004,-.004 .09,.09,.09,.09 .09,.09,.1,.09
1000 -.004,-.004,-.004,-.004 .09,.09,.09,.09 .09,.09,.09,.09
60 105 -.007,-.006,-.007,-.007 .12,.12,.12,.12 .14,.15,.14,.14
500 -.006,-.006,-.006,-.006 .12,.12,.12,.12 .12,.12,.13,.13
1000 -.006,-.006,-.006,-.006 .12,.12,.12,.12 .12,.12,.12,.12
60 0B5 -.004,-.004,-.005,-.004 .09,.09,.09,.09 .1,.11,.1,.1
500 0B5 -.004,-.004,-.004,-.004 .09,.09,.09,.09 .09,.09,.1,.09
1000 0B5 -.004,-.004,-.004,-.004 .09,.09,.09,.09 .09,.09,.09,.09
60 06 1,1,1,1 .17,.18,.18,.18 .19,.2,.2,.2
500 1,1,1,1 .18,.18,.18,.18 .18,.18,.19,.18
1000 1,1,1,1 .18,.18,.18,.18 .19,.18,.18,.19
60 106 1,1,1,1 .22,.22,.22,.22 .24,.25,.26,.25
500 1,1,1,1 .23,.23,.23,.23 .23,.23,.23,.23
1000 1,1,1,1 .23,.23,.23,.23 .24,.22,.23,.23

Table 4.4. (Continued)
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n M βM3

√
n SEcl3

√
n SD3

60 0B6 1,1,1,1 .17,.18,.18,.18 .19,.2,.2,.2
500 0B6 1,1,1,1 .18,.18,.18,.18 .18,.18,.19,.18
1000 0B6 1,1,1,1 .18,.18,.18,.18 .19,.18,.18,.19
60 07 .02,.01,.02,.02 .33,.34,.34,.34 .41,.4,.39,.4
500 .02,.02,.02,.02 .37,.37,.37,.37 .4,.39,.39,.38
1000 .02,.02,.02,.02 .37,.37,.37,.37 .38,.36,.38,.37
60 107 .02,.02,.02,.02 .38,.38,.38,.38 .46,.47,.45,.45
500 .02,.02,.02,.02 .41,.41,.41,.41 .42,.41,.42,.42
1000 .02,.02,.02,.02 .41,.4,.41,.41 .41,.41,.41,.42
60 1B7 .02,.02,.02,.02 .38,.38,.38,.38 .46,.47,.45,.45
500 0B7 .02,.02,.02,.02 .37,.37,.37,.37 .4,.39,.39,.38
1000 0B7 .02,.02,.02,.02 .37,.37,.37,.37 .38,.36,.38,.37

Table 4.4. (Continued)

In Table 4.4, the predictor xi ∼ 0.4N4(0, I) + 0.6N4(0, 25I).

1) The results for the MLR model are almost the same as those in Table 4.3.

2) The results for the type 5, 6, and 7 models are almost the same as those

in Table 4.3 except that the best results for the type 7 model are obtained at 10%

trimming when n is small.

3) For the type 2, 3, and 4 models, the best results are obtained by using

larger amounts of trimming compared to the results in Table 4.3, for example 60%

or 70%. Also SEcl(β̂M ) and SD(β̂M ) are not close for type 3 and 4 models even for

the best results.

n M βM4

√
n SEcl4

√
n SD4

60 01 1,1,1,1 .57,.56,.57,.57 .72,.68,.69,.72
500 1,1,1,1 .53,.53,.54,.53 .56,.56,.56,.56
1000 1,1,1,1 .54,.54,.54,.54 .54,.57,.54,.55
60 101 1,1,1,1 .98,.99,.98,.98 1.12,1.07,1.07,1.11
500 1,1,1,1 1.04,1.04,1.04,1.04 1.08,1.04,1.05,1.04
1000 1,1,1,1 1.05,1.05,1.05,1.05 1.04,1.06,1.02,1.08
60 0B1 1,1,1,1 .57,.56,.57,.57 .72,.68,.69,.72
500 0B1 1,1,1,1 .53,.53,.54,.53 .56,.56,.56,.56
1000 0B1 1,1,1,1 .54,.54,.54,.54 .54,.57,.54,.55
60 02 2,2.17,1.4,1.51 32.38,32.61,32.46,33.15 71.56,75.4,72.07,74.14
500 2.06,2.05,2,2.01 89.11,89.57,89.07,88.78 102.4,105.1,103.7,102
1000 2.1,2.05,1.96,2.13 98.44,97.37,98.69,99.52 107.4,107.7,107.1,110.7
60 102 2.07,1.96,2,2.08 9.24,9.25,9.43,9.42 18.03,19.27,21.04,19.66
500 1.99,1.98,2.01,2 9.02,9.05,9.03,9.02 9.55,10.01,9.77,9.75

Table 4.5. Results Of OLS Estimators Based On Type 4 x
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n M βM4

√
n SEcl4

√
n SD4

1000 2,2.01,2,2 8.65,8.63,8.63,8.68 9.64,9.06,9.54,9.3
60 2B2 2.02,2,2.05,2.06 6.39,6.37,6.3,6.34 7.95,7.66,7.86,7.81
500 1B2 1.99,1.98,2.01,2 9.02,9.05,9.03,9.02 9.55,10.01,9.77,9.75
1000 1B2 2,2.01,2,2 8.65,8.63,8.63,8.68 9.64,9.06,9.54,9.3
60 03 9.8e10,3.8e10,1.1e11,1.3e11 4.4e11,3.2e11,4.1e11,4.6e11 1.3e13,7.5e12,1.6e13,2e13
500 4.2e12,7e12,4.9e12,5.7e12 7.9e13,1.2e14,8.7e13,1e14 2.1e15,3.7e15,2e15,2.6e15
1000 5.8e13,4.9e13,5.4e13,8.2e13 1.7e15,1.5e15,1.5e15,2.3e15 3.7e16,3.5e16,3.3e16,5e16
60 103 3.7e4,4.7e4,3.3e4,4.6e4 1.7e5,2.1e5,1.7e5,2e5 4e6,5.5e6,3.9e6,5.3e6
500 51.23,54.06,51.73,51.68 770.2,819.9,763.3,768.3 5993,5961,5723,6113
1000 32.4,32.81,33.76,34.77 476.2,497.8,515,552.9 4659,4198,4623,4927
60 5B3 6.34,6.39,6.46,6.34 16.67,17.08,17.16,16.71 31.77,35.06,36.22,31.51
500 2B3 10.66,10.63,10.67,10.67 42.74,42.53,42.87,42.65 55.05,54.27,54.57,55.88
1000 2B3 10.42,10.43,10.46,10.44 40.9,41.07,41.59,41.1 50.3,50.95,51.38,51.16
60 04 148.8,153.9,146.8,150.2 414,417.7,409.8,413.2 1202,1198,1187,1201
500 214.5,216.5,216.2,214 1347,1350,1362,1335 1741,1815,1853,1766
1000 221.8,220.3,221.9,224.8 1592,1558,1584,1632 1973,1978,1933,2123
60 104 22.91,23.45,24.4,24.68 60.66,61.19,62.14,62.4 226.7,253,295.1,267.6
500 15.65,15.68,15.7,15.66 46.08,46.4,46.64,46.32 79.7,83.79,79.35,82.5
1000 15.21,15.21,15.2,15.22 42.94,42.9,43.07,43.47 69.19,70.58,69.82,68.93
60 2B4 12.59,12.43,12.62,12.68 24.94,24.68,24.98,25.19 35.12,35.11,37.07,37.14
500 1B4 15.65,15.68,15.7,15.66 46.08,46.4,46.64,46.32 79.7,83.79,79.35,82.5
1000 1B4 15.21,15.21,15.2,15.22 42.94,42.9,43.07,43.47 69.19,70.58,69.82,68.93
60 05 -.05,-.05,-.05,-.05 .27,.27,.27,.27 .39,.39,.38,.39
500 -.03,-.03,-.03,-.03 .3,.3,.3,.3 .31,.32,.33,.31
1000 -.03,-.03,-.03,-.03 .3,.3,.3,.3 .31,.33,.3,.31
60 105 -.1,-.1,-.1,-.1 .38,.38,.38,.38 .46,.46,.46,.45
500 -.11,-.11,-.11,-.11 .42,.42,.42,.42 .44,.49,.46,.44
1000 -.11,-.11,-.11,-.11 .43,.42,.42,.42 .46,.45,.45,.45
60 0B5 -.05,-.05,-.05,-.05 .27,.27,.27,.27 .39,.39,.38,.39
500 0B5 -.03,-.03,-.03,-.03 .3,.3,.3,.3 .31,.32,.33,.31
1000 0B5 -.03,-.03,-.03,-.03 .3,.3,.3,.3 .31,.33,.3,.31
60 06 1.03,1.03,1.03,1.03 .42,.42,.42,.42 .53,.54,.52,.53
500 1.02,1.02,1.02,1.02 .4,.4,.4,.4 .42,.41,.41,.43
1000 1.02,1.02,1.02,1.02 .41,.4,.4,.41 .43,.42,.41,.39
60 106 1.07,1.08,1.07,1.07 .71,.71,.72,.71 .8,.81,.8,.8
500 1.07,1.07,1.07,1.07 .76,.76,.77,.76 .8,.81,.78,.79
1000 1.07,1.07,1.07,1.07 .77,.77,.77,.77 .76,.77,.78,.76
60 0B6 1.03,1.03,1.03,1.03 .42,.42,.42,.42 .53,.54,.52,.53
500 0B6 1.02,1.02,1.02,1.02 .4,.4,.4,.4 .42,.41,.41,.43
1000 0B6 1.02,1.02,1.02,1.02 .41,.4,.4,.41 .43,.42,.41,.39
60 07 .07,.07,.06,.06 .51,.51,.52,.52 .84,.87,.85,.87
500 .05,.05,.05,.05 .87,.87,.86,.87 .92,.95,.95,.93
1000 .05,.05,.05,.05 .9,.9,.91,.9 .93,.97,.94,.94
60 107 .13,.13,.13,.13 .51,.51,.52,.51 .63,.65,.64,.62
500 .14,.13,.14,.14 .56,.56,.55,.56 .57,.62,.59,.57
1000 .14,.14,.14,.14 .55,.55,.55,.55 .6,.57,.59,.58

Table 4.5. (Continued)
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n M βM4

√
n SEcl4

√
n SD4

60 1B7 .13,.13,.13,.13 .51,.51,.52,.51 .63,.65,.64,.62
500 0B7 .05,.05,.05,.05 .87,.87,.86,.87 .92,.95,.95,.93
1000 0B7 .05,.05,.05,.05 .9,.9,.91,.9 .93,.97,.94,.94

Table 4.5. (Continued)

In Table 4.5, the predictor xi ∼ 0.9N4(0, I) + 0.1N4(0, 25I).

1) The results for the MLR model are similar to the results in Table 4.3.

2) The results for the type 5, 6, and 7 models are similar to the results in

Table 4.3 except the best results for the type 7 model are obtained at 10% trimming

when n is small.

3) For the type 2, 3, and 4 models, the best results are obtained by using

smaller amount of trimming compared to the results in Table 4.3 and Table 4.4, for

example 10% or 20%. SEcl(β̂M ) and SD(β̂M) are not close for all three models

even for the best results.

n M βM5

√
n SEcl5

√
n SD5

60 01 1,1,1,1 .48,.48,.48,.49 .59,.61,.62,.62
500 1,1,1,1 .46,.46,.46,.46 .51,.5,.49,.5
1000 1,1,1,1 .46,.46,.46,.46 .49,.48,.48,.48
60 101 1,.99,1,1 .76,.77,.76,.78 .91,.92,.9,.93
500 1,1,1,1 .81,.81,.81,.81 .86,.81,.83,.84
1000 1,1,1,1 .81,.82,.82,.82 .81,.83,.81,.81
60 0B1 1,1,1,1 .48,.48,.48,.49 .59,.61,.62,.62
500 0B1 1,1,1,1 .46,.46,.46,.46 .51,.5,.49,.5
1000 0B1 1,1,1,1 .46,.46,.46,.46 .49,.48,.48,.48
60 02 20.7,21.1,20.9,21 16.7,17.2,17.1,17 52.1,57.27,52.87,51.13
500 25.5,24.9,24.8,25 68.6,63.9,63.7,65.2 166.8,147.8,155.2,185.2
1000 26.2,25.9,26.1,25.9 101.2,95.6,96.2,94.8 230,245.1,237.1,255.1
60 102 15,15.1,15,15 8.3,8.7,8.4,8.5 14.32,15.25,14.95,14.86
500 14.9,14.9,14.9,14.9 9.4,9.3,9.4,9.4 13.36,13.34,14.31,13.96
1000 14.8,14.8,14.8,14.8 9.3,9.3,9.3,9.3 14.5,13.58,13.5,13.71
60 1B2 15,15.1,15,15 8.3,8.7,8.4,8.5 14.32,15.25,14.95,14.86
500 1B2 14.9,14.9,14.9,14.9 9.4,9.3,9.4,9.4 13.36,13.34,14.31,13.96
1000 1B2 14.8,14.8,14.8,14.8 9.3,9.3,9.3,9.3 14.5,13.58,13.5,13.71
60 03 3e35,6e34,1.5e34,-7.7e33 7.7e34,1.7e35,1.5e35,2.5e35 7.4e37,1.5e37,3.6e36,1.9e36
500 1e48,2.8e49,-4.8e49,4.8e50 3.7e50,3.8e50,7.1e50,1.9e51 7e50,2e52,3.4e52,3.4e53
1000 5e78,4e78,5.2e78,2.3e80 1.4e80,1.1e80,1.4e80,11e81 5e81,4e81,5.2e81,2.3e83
60 103 2.3e6,2.2e6,1.6e6,4.9e6 1.1e7,9.7e6,1.2e7,1.3e7 5.3e8,2.6e8,2e8,9.9e8

Table 4.6. Results Of OLS Estimators Based On Type 5 x
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n M βM5

√
n SEcl5

√
n SD5

500 4.8e4,4.7e4,4.8e4,4.7e4 5.5e5,5.3e5,5.4e5,5.3e5 2.1e6,1.8e6,1.8e6,2e6
1000 3.7e4,3.7e4,3.6e4,3.6e4 4.1e6,4.1e6,4.1e6,4e6 7.9e5,7.9e5,7.6e5,7.8e5
60 8B3 139.7,130.2,141,133.9 291.1,283,295.8,298.9 1063,856,1440, 951.9
500 8B3 121,121.4,120.7,120.8 327.4,327.7,329,326.9 498,509.3,496.5,494.8
1000 8B3 119.1,119,118.9,119.2 334.4,333.9,334.2,335.1 463.4,468.6,467.2,464.8
60 04 417.9,438.5,427.8,425.2 696.8,738.5,724.6,714.2 3570,3705,3315,2946
500 689.9,642.4,643.3,676.8 4058,3679,3692,3796 14439,11525,13077,19442
1000 753.8,741.7,743.5,741.7 6664,6299,6345,6168 22698,27299,28397,38975
60 104 187.8,192.1,190.6,190.2 212.2,223.1,215.7,217 397.1,432.9,425,428.7
500 183.1,183,182.7,182.7 241,238.6,239.9,239.4 351.4,351,377.4,368
1000 181.7,181.8,181.6,181 237.3,237.6,237.8,235.9 379,354.7,350.2,356.2
60 4B4 95.2,95.4,95.5,95.6 90.4,90.4,90.6,90.7 153.9,157.1,158,158.4
500 3B4 109.4,109.5,109.6,109.5 106.3,105.8,106.1,106.2 155.8,154.5,158.8,155.1
1000 2B4 134.6,134.6,134.5,134.4 140.9,141.7,140.9,140.7 222.1,217.4,208.6,212.8
60 05 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.07,.07
500 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.06,.06
1000 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.06,.06
60 105 .02,.02,.02,.02 .09,.09,.09,.09 .1,.1,.11,.1
500 .02,.02,.02,.02 .09,.09,.09,.09 .1,.1,.11,.1
1000 .02,.02,.02,.02 .09,.09,.09,.09 .1,.1,.1,.1
60 0B5 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.07,.07
500 0B5 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.06,.06
1000 0B5 .01,.01,.01,.01 .05,.05,.05,.05 .06,.06,.06,.06
60 06 1.05,1.05,1.05,1.05 .36,.36,.36,.36 .46,.47,.48,.47
500 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.4
1000 1.04,1.04,1.04,1.04 .37,.38,.37,.37 .41,.41,.41,.42
60 106 1.1,1.09,1.1,1.09 .56,.56,.55,.56 .68,.69,.71,.69
500 1.08,1.09,1.09,1.09 .61,.61,.61,.61 .64,.66,.7,.67
1000 1.08,1.08,1.08,1.08 .61,.61,.61,.61 .69,.67,.65,.67
60 0B6 1.05,1.05,1.05,1.05 .36,.36,.36,.36 .46,.47,.48,.47
500 0B6 1.04,1.04,1.04,1.04 .36,.36,.37,.37 .41,.42,.42,.4
1000 0B6 1.04,1.04,1.04,1.04 .37,.38,.37,.37 .41,.41,.41,.42
60 07 .17,.17,.17,.17 .08,.08,.08,.08 .15,.15,.15,.15
500 .16,.16,.16,.16 .17,.16,.16,.17 .28,.27,.27,.28
1000 .16,.16,.16,.16 .22,.21,.21,.21 .33,.34,.34,.33
60 107 .19,.19,.19,.19 .09,.09,.09,.09 .12,.12,.12,.12
500 .19,.19,.19,.19 .1,.1,.1,.1 .11,.11,.12,.12
1000 .19,.19,.19,.19 .1,.1,.1,.1 .12,.11,.11,.11
60 0B7 .17,.17,.17,.17 .08,.08,.08,.08 .15,.15,.15,.15
500 0B7 .16,.16,.16,.16 .17,.16,.16,.17 .28,.27,.27,.28
1000 0B7 .16,.16,.16,.16 .22,.21,.21,.21 .33,.34,.34,.33

Table 4.6. (Continued)

In Table 4.6, the predictor xi ∼ LN(0, I).

1) The results for the MLR model are similar to the results in Table 4.3.
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2) For the type 5, 6, and 7 models, β̂M ≈ c(1, 1, 1, 1)′, SEcl(β̂M ) ≈ a(1, 1, 1, 1)′,

and SD(β̂M) ≈ g(1, 1, 1, 1)′ for some constants c,a, and g. When the model is type

6 or 7, the two values SEcl(β̂M ) and SD(β̂M) are close for the 10% trimming but

not for the “best” results. All “best” results are obtained at 0% trimming.

3) For the type 3 and 4 models, nonzero percentage trimming greatly improved

the results. For the type 3 model, 80% trimming gave the best results. Compared

to the other models, β̂M , SEcl(β̂M), and SD(β̂M) are very large and SEcl(β̂M ) and

SD(β̂M ) are much further apart for the type 3 and 4 models. For the type 2 model,

the best results are obtained by trimming 10% data and SEcl(β̂M ) and SD(β̂M)

are also not close.

n M βM6

√
n SEcl6

√
n SD6

60 01 1,1,1,1 .62,.61,.61,.61 .72,.72,.72,.72
500 1,1,1,1 .6,.6,.6,.59 .61,.63,.63,.6
1000 1,1,1,1 .59,.59,.59,.59 .58,.62,.59,.6
60 101 1,1,.99,1 .87,.86,.86,.85 .98,.98,.99,.97
500 1,1,1,1 .91,.92,.91,.92 .92,.96,.92,.95
1000 1,1,1,1 .92,.91,.91,.91 .86,.91,.92,.93
60 0B1 1,1,1,1 .62,.61,.61,.61 .72,.72,.72,.72
500 0B1 1,1,1,1 .6,.6,.6,.59 .61,.63,.63,.6
1000 0B1 1,1,1,1 .59,.59,.59,.59 .58,.62,.59,.6
60 02 1.54,1.85,1.8,1.55 22.1,21.9,22.4,22.2 68.09,64.09,67.43,63.63
500 2.19,1.99,2.19,1.5 90.8,92.8,91.1,93.7 297.1,278.3,259.9,258
1000 1.93,2.57,2.52,2.18 136.2,137,136.7,134.5 377.7,433.1,402.5,390.9
60 102 1.9,2.01,1.94,1.94 10.44,10.5,10.58,10.49 14.5,14.78,14.31,15.42
500 1.98,1.98,1.98,1.98 11.88,11.79,11.83,11.82 12,12.22,12.53,12.36
1000 1.98,2.01,2,2.01 11.97,11.97,12.01,12 12.03,12.08,12,12.12
60 2B2 1.96,2.05,1.98,2.03 8.22,8.21,8.26,8.16 10.6,11.31,11.08,10.87
500 2B2 1.98,1.98,1.98,1.98 8.74,8.75,8.76,8.76 9.47,8.82,9.6,9.34
1000 2B2 2,2,2.01,2.01 8.79,8.82,8.79,8.8 9.47,9.28,9.44,9.55
60 03 7.1e35,7.5e35,1.6e35,3.9e35 9e35,1.2e36,1.7e36,1.3e36 1.8e38,1.8e38,4e37,9.6e37
500 4.6e53,2.5e53,5.7e53,8.5e52 2e54,1.5e54,2.4e54,2e54 3.2e56,1.8e56,4e56,6e55
1000 1.1e66,7.5e66,4e66,6.1e65 1.4e67,3.8e67,2.3e67,1.5e67 1.1e69,7.5e69,4e69,6.1e68
60 103 48.5,308,223.3,531.7 1282,1522,1227,2249 24407,33572,18358,88332
500 62.5,60.8,61.5,61.1 643.2,621.8,633.4,624.6 1230,1099,1115,1153
1000 58.4,58.9,58.2,58.9 626,633.7,617.4,632.3 916.3,929.9,832.2,962.8
60 4B3 9.37,9.49,9.34,9.62 31.98,31.9,31.39,31.5 80.46,76.81,74.15,84.36
500 3B3 11.12,11.13,11.14,11.11 50.51,50.64,50.64,50.71 67.38,66.71,64.51,65
1000 3B3 11.08,11.09,11.1,11.09 51.64,51.43,51.32,51.28 65.12,67.41,66.48,64.27
60 04 113.8,115.1,117,116.9 325.1,320.1,340.2,330.6 3648,3553,2788,2809

Table 4.7. Results Of OLS Estimators Based On Type 6 x
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n M βM6

√
n SEcl6

√
n SD6

500 335,346.9,311,324.6 2984,3080,2870,3140 37110,24811,27794,20996
1000 398.3,451.9,383,393.5 5630,5922,5812,5533 38263,50943,45302,52062
60 104 23.6,24.3,24.1,24.3 54,55.4,54.5,55.3 101.3,113.1,103.4,132.2
500 22,21.9,21.9,21.9 62.6,61.9,62.5,62.2 78.39,74.22,73.66,72.46
1000 22,22.1,22.1,22.1 63.3,63.5,63.3,63.5 73.84,75.83,72.76,76.91
60 2B4 16.4,16.7,16.7,16.7 35.5,36.4,36.1,35.7 54.75,58.64,58.18,56.2
500 2B4 15.2,15.2,15.3,15.3 38,37.8,38,38.1 46.31,43.76,44.9,45.75
1000 1B4 22,22.1,22.1,22.1 63.3,63.5,63.3,63.5 73.84,75.83,72.76,76.91
60 05 -.04,-.04,-.04,-.04 .29,.29,.29,.29 .35,.37,.36,.37
500 -.03,-.03,-.03,-.03 .31,.31,.31,.31 .35,.36,.35,.36
1000 -.03,-.03,-.03,-.03 .32,.32,.32,.32 .37,.36,.37,.35
60 105 -.07,-.08,-.07,-.08 .38,.38,.38,.38 .45,.45,.46,.45
500 -.07,-.07,-.07,-.07 .41,.41,.42,.41 .44,.41,.44,.44
1000 -.07,-.07,-.07,-.07 .42,.41,.42,.42 .43,.42,.44,.42
60 0B5 -.04,-.04,-.04,-.04 .29,.29,.29,.29 .35,.37,.36,.37
500 0B5 -.03,-.03,-.03,-.03 .31,.31,.31,.31 .35,.36,.35,.36
1000 0B5 -.03,-.03,-.03,-.03 .32,.32,.32,.32 .37,.36,.37,.35
60 06 1.03,1.02,1.03,1.02 .46,.45,.45,.46 .53,.55,.52,.51
500 1.02,1.02,1.02,1.02 .44,.44,.44,.44 .48,.46,.47,.46
1000 1.02,1.02,1.02,1.02 .44,.44,.44,.44 .45,.45,.46,.49
60 106 1.05,1.05,1.04,1.04 .65,.64,.64,.65 .72,.75,.72,.71
500 1.04,1.04,1.04,1.04 .67,.67,.67,.67 .68,.68,.7,.68
1000 1.04,1.04,1.04,1.04 .67,.67,.67,.67 .67,.67,.69,.7
60 0B6 1.05,1.05,1.04,1.04 .65,.64,.64,.65 .53,.55,.52,.51
500 0B6 1.04,1.04,1.04,1.04 .67,.67,.67,.67 .48,.46,.47,.46
1000 0B6 1.04,1.04,1.04,1.04 .67,.67,.67,.67 .45,.45,.46,.49
60 07 .07,.07,.07,.07 .50,.49,.50,.49 .7,.71,.69,.7
500 .06,.06,.06,.06 .74,.74,.75,.75 .91,.95,.91,.94
1000 .06,.06,.06,.06 .83,.82,.83,.82 1.05,1,1.03,.97
60 107 .11,.11,.11,.11 .53,.52,.53,.52 .63,.63,.66,.64
500 .11,.11,.11,.11 .58,.57,.57,.57 .6,.58,.62,.61
1000 .11,.11,.11,.11 .58,.58,.58,.58 .59,.58,.6,.59
60 1B7 .11,.11,.11,.11 .53,.52,.53,.52 .63,.63,.66,.64
500 1B7 .11,.11,.11,.11 .58,.57,.57,.57 .6,.58,.62,.61
1000 1B7 .11,.11,.11,.11 .58,.58,.58,.58 .59,.58,.6,.59

Table 4.7. (Continued)

In Table 4.7, the predictor xi ∼ MV T3.

1) The results for the MLR model are similar to the results in Table 4.3.

2) For the type 5, 6, and 7 models, β̂M ≈ c(1, 1, 1, 1)′, SEcl(β̂M ) ≈ a(1, 1, 1, 1)′,

and SD(β̂M) ≈ g(1, 1, 1, 1)′ for some constants c,a, and g. When the model is type

5 or 6, the two values SEcl(β̂M) and SD(β̂M ) are not close even for the best results.

The best results are obtained at 0% trimming for the type 5 and 6 models, and at
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10% trimming for the type 7 model.

3) For the type 2, 3, and 4 models, the best results are obtained at nonzero

percentage trimming. When the model is type 2 or 4, we need to trim about 20%

data; when the model is type 3, we need to trim about 40% data. All SEcl(β̂M)

and SD(β̂M ) are not close to each other.

n M βM7

√
n SEcl7

√
n SD7

60 01 1,1,1,1 .76,.76,.76,.75 .86,.85,.92,.9
500 1,1,1,1 .77,.77,.77,.77 .78,.77,.77,.79
1000 1,1,1,1 .77,.77,.77,.77 .74,.74,.76,.8
60 101 1,1,1,1 .97,.95,.98,.96 1.1,1.06,1.16,1.14
500 .97,.95,.98,.96 1.01,1.01,1.01,1.01 1.03,1.02,1.03,1.05
1000 1,1,1,1 1.01,1.01,1.01,1.01 .99,.99,1,1.04
60 0B1 1,1,1,1 .76,.76,.76,.75 .86,.85,.92,.9
500 0B1 1,1,1,1 .77,.77,.77,.77 .78,.77,.77,.79
1000 0B1 1,1,1,1 .77,.77,.77,.77 .74,.74,.76,.8
60 02 1.84,1.9,1.88,1.79 13.5,13.51,13.58,13.56 27.19,26.45,26.65,25.78
500 1.99,1.89,1.95,1.99 29.72,29.67,28.57,28.34 47.58,44.54,44.31,41.12
1000 2.02,1.95,2.01,2.03 35.83,35.31,35.31,34.86 52,58.13,51.28,51.91
60 102 2,2,2.02,2.03 8.32,8.11,8.27,8.11 10.86,10.67,10.96,10.45
500 1.99,2,1.98,1.99 8.96,8.93,8.98,8.97 9.55,9.04,9.23,9.27
1000 2.01,2.01,2.02,2.01 9,8.96,8.95,8.96 9.66,9.22,9.43,9.25
60 1B2 2,2,2.02,2.03 8.32,8.11,8.27,8.11 10.86,10.67,10.96,10.45
500 1B2 1.99,2,1.98,1.99 8.96,8.93,8.98,8.97 9.55,9.04,9.23,9.27
1000 1B2 2.01,2.01,2.02,2.01 9,8.96,8.95,8.96 9.66,9.22,9.43,9.25
60 03 2.1e6,2.6e6,2e6,1.6e5 7.6e6,7.8e6,6.2e6,5.9e6 3.8e8,3.7e8,2.e8,1.3e8
500 1.3e12,1.4e12,8.1e11,1.9e12 1.9e13,2.1e13,1.4e13,2.8e13 7.4e14,8.8e14,4.2e14,1.2e15
1000 3.3e14,9.7e14,3.8e14,5.3e14 7.9e15,2.3e16,9e15,1.2e16 3.3e17,9.7e17,3.8e17,5.3e17
60 103 31.34,40.54,39.76,44.18 193.3,192.4,188.4,208 1181,1451,1057,1855
500 23.86,23.68,23.76,23.79 161.8,159.4,162.7,161 237.2,236.2,235.6,246.3
1000 23.55,23.39,23.53,23.45 166.2,165,167.1,165.8 225.8,219.4,222.6,219
60 4B3 8.25,8.28,8.32,8.4 24.86,25.46,25.77,25.44 48.09,48.25,49.54,55.79
500 3B3 9.19,9.16,9.14,9.15 35.81,35.41,35.47,35.46 47.82,46.76,48.74,46.54
1000 2B3 12.61,12.61,12.63,12.56 60.32,60.23,60.41,60.15 78.95,78.63,79.16,80.19
60 04 38.36,38.83,39.05,37.53 102.2,104.9,104.5,102.8 455.1,413.5,461.1,378
500 49.04,48.72,47.91,46.44 382.5,372.1,355.3,346.3 1187,1027,1152, 934.9
1000 50.95,51.22,51,50.1 531.8,535.4,521.9,516 1186,1635,1320,1370
60 104 17.71,17.59,17.84,17.54 37.32,36.65,37.86,36.71 58.65,58.8,59.5,60.66
500 16.63,16.63,16.6,16.62 41.08,40.76,41.11,40.94 50.67,49.17,49.29,49.81
1000 16.62,16.56,16.6,16.56 41.64,41.49,41.58,41.55 49.91,49.48,49.78,48.89
60 2B4 13.98,13.77,13.89,13.93 28.82,28.42,28.77,28.58 44.99,43.88,44.64,43.04
500 1B4 16.63,16.63,16.6,16.62 41.08,40.76,41.11,40.94 50.67,49.17,49.29,49.81
1000 1B4 16.62,16.56,16.6,16.56 41.64,41.49,41.58,41.55 49.91,49.48,49.78,48.89
60 05 -.07,-.07,-.07,-.07 .35,.34,.34,.34 .4,.4,.42,.41

Table 4.8. Results Of OLS Estimators Based On Type 7 x
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n M βM7

√
n SEcl7

√
n SD7

500 -.06,-.06,-.06,-.06 .38,.38,.38,.38 .4,.39,.4,.4
1000 -.06,-.06,-.06,-.06 .39,.39,.38,.38 .39,.4,.39,.39
60 105 -.1,-.1,-.1,-.1 .4,.39,.39,.39 .46,.45,.48,.47
500 -.09,-.1,-.09,-.1 .43,.43,.43,.43 .46,.43,.46,.46
1000 -.1,-.1,-.1,-.1 .43,.43,.43,.43 .45,.44,.44,.44
60 2B5 -.12,-.12,-.12,-.12 .42,.42,.42,.42 .52,.51,.5,.5
500 0B5 -.06,-.06,-.06,-.06 .38,.38,.38,.38 .4,.39,.4,.4
1000 1B5 -.1,-.1,-.1,-.1 .43,.43,.43,.43 .45,.44,.44,.44
60 06 1.04,1.04,1.04,1.04 .56,.55,.56,.56 .63,.61,.66,.64
500 1.04,1.03,1.04,1.03 .57,.57,.57,.57 .62,.58,.6,.59
1000 1.03,1.04,1.03,1.04 .57,.57,.57,.57 .57,.57,.57,.59
60 106 1.06,1.06,1.06,1.06 .72,.71,.72,.72 .8,.77,.81,.79
500 1.06,1.06,1.06,1.06 .74,.75,.74,.75 .78,.75,.78,.75
1000 1.06,1.06,1.06,1.06 .75,.75,.75,.75 .74,.74,.76,.78
60 0B6 1.04,1.04,1.04,1.04 .56,.55,.56,.56 .63,.61,.66,.64
500 1B6 1.06,1.06,1.06,1.06 .74,.75,.74,.75 .78,.75,.78,.75
1000 1B6 1.06,1.06,1.06,1.06 .75,.75,.75,.75 .74,.74,.76,.78
60 07 .1,.1,.1,.1 .51,.5,.51,.51 .64,.63,.67,.64
500 .09,.09,.09,.09 .65,.65,.64,.64 .71,.7,.7,.7
1000 .09,.09,.09,.09 .68,.68,.68,.67 .71,.74,.7,.7
60 107 .13,.13,.13,.13 .53,.52,.52,.52 .63,.61,.63,.6
500 .13,.13,.13,.13 .56,.56,.56,.56 .59,.57,.58,.59
1000 .13,.13,.13,.13 .56,.56,.56,.56 .59,.57,.58,.57
60 0B7 .1,.1,.1,.1 .51,.5,.51,.51 .64,.63,.67,.64
500 1B7 .13,.13,.13,.13 .56,.56,.56,.56 .59,.57,.58,.59
1000 1B7 .13,.13,.13,.13 .56,.56,.56,.56 .59,.57,.58,.57

Table 4.8. (Continued)

In Table 4.8, the predictor xi ∼ MV T5.

1) The results for the MLR model are similar to the results in Table 4.3.

2) For the type 5, 6, and 7 models, SEcl(β̂M) and SD(β̂M) are close for the

best results when n is large. The best results are often obtained at 10% trimming.

3) For the type 2, 3, and 4 models, the best results are obtained at nonzero

percentage trimming. When the model is type 3, we need to trim a larger percentage

of data to get the best results compared with the other two models. SEcl(β̂M ) and

SD(β̂M ) are not close especially for models 3 and 4.

n M βM8

√
n SEcl8

√
n SD8

60 01 1,1,1.01,1 .91,.91,.91,.9 .99,1.04,.98,.99
500 1,1,1,1 .95,.94,.94,.94 .94,.97,.95,.97

Table 4.9. Results Of OLS Estimators Based On Type 8 x
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n M βM8

√
n SEcl8

√
n SD8

1000 1,1,1,1 .94,.94,.94,.95 .91,.94,.95,.97
60 101 1,1,1.01,.99 1.08,1.07,1.07,1.08 1.21,1.2,1.17,1.21
500 1,1,1,1 1.12,1.12,1.11,1.12 1.15,1.14,1.13,1.15
1000 1,1,1,1 1.12,1.12,1.12,1.12 1.09,1.12,1.15,1.15
60 0B1 1,1,1.01,1 .91,.91,.91,.9 .99,1.04,.98,.99
500 0B1 1,1,1,1 .95,.94,.94,.94 .94,.97,.95,.97
1000 0B1 1,1,1,1 .94,.94,.94,.95 .91,.94,.95,.97
60 02 1.96,1.98,2,1.97 7.75,7.66,7.73,7.84 10.05,9.85,9.79,10.45
500 1.99,2,2.01,1.99 9.87,10.03,9.95,10.01 10.42,10.45,10.34,10.47
1000 2,1.99,1.99,1.99 10.29,10.4,10.4,10.38 10.22,10.63,10.81,10.67
60 102 1.98,1.97,2,2 6.58,6.47,6.59,6.57 8.29,8.12,7.81,7.9
500 1.99,2.01,2.01,2 6.81,6.8,6.8,6.81 7.24,7.33,7.3,7.22
1000 2.01,2,2,2 6.75,6.75,6.74,6.76 7.05,7.35,7.28,7.31
60 1B2 1.98,1.97,2,2 6.58,6.47,6.59,6.57 8.29,8.12,7.81,7.9
500 1B2 1.99,2.01,2.01,2 6.81,6.8,6.8,6.81 7.24,7.33,7.3,7.22
1000 1B2 2.01,2,2,2 6.75,6.75,6.74,6.76 7.05,7.35,7.28,7.31
60 03 49.63,67.36,46.86,48.89 249.3,332.2,229.7,247.1 2788,7318,2299,2793
500 58.44,60.53,54.99,55.97 838,880.4,768.1,787 6378,5931,5564,4263
1000 50.12,48.92,53.3,55.43 854.7,824.7,947.7,1011 2745,3205,4457,6535
60 103 16.04,15.86,16.16,15.99 60.18,59.19,61.51,60.62 162.1,200,179.9,157.5
500 12.82,12.89,12.93,12.87 57.83,58.09,58.51,57.82 74.61,74.01,72.92,73.77
1000 12.56,12.52,12.54,12.52 55.54,55.58,55.49,55.32 67.27,68.9,69.47,69.93
60 3B3 9.17,9.36,9.21,9.33 29.31,29.47,29.19,28.94 61.92,66.45,59.87,66.19
500 2B3 9.55,9.54,9.56,9.51 34.58,34.45,34.81,34.49 47.27,48.54,47.18,46.78
1000 1B3 12.56,12.52,12.54,12.52 55.54,55.58,55.49,55.32 67.27,68.9,69.47,69.93
60 04 17.26,17.11,17.27,17.4 35.77,35.82,36,36.85 58.92,61.3,56.05,57.37
500 17.83,17.97,17.94,17.91 53.66,54.9,54.05,54.13 61.96,65.62,62.47,63.79
1000 18.07,18.07,18.1,18.07 57.8,57.76,58.49,58.35 64.24,65.03,66.78,69.46
60 104 13.55,13.45,13.6,13.6 26.55,26.05,26.96,26.55 38.59,37.59,36.49,37.1
500 12.91,12.96,12.97,12.95 27.78,27.88,28.03,27.81 31.53,31.88,32.51,32.58
1000 12.87,12.83,12.84,12.84 27.59,27.55,27.53,27.5 31.04,32.11,32.06,32.27
60 1B4 13.55,13.45,13.6,13.6 26.55,26.05,26.96,26.55 38.59,37.59,36.49,37.1
500 1B4 12.91,12.96,12.97,12.95 27.78,27.88,28.03,27.81 31.53,31.88,32.51,32.58
1000 1B4 12.87,12.83,12.84,12.84 27.59,27.55,27.53,27.5 31.04,32.11,32.06,32.27
60 05 -.09,-.1,-.1,-.1 .37,.37,.37,.37 .42,.42,.42,.43
500 -.09,-.09,-.09,-.09 .4,.41,.4,.41 .42,.41,.41,.4
1000 -.09,-.09,-.09,-.09 .41,.41,.41,.41 .41,.42,.42,.42
60 105 -.12,-.12,-.12,-.12 .4,.39,.39,.4 .48,.47,.46,.45
500 -.12,-.12,-.12,-.12 .42,.42,.41,.42 .45,.46,.45,.42
1000 -.12,-.12,-.12,-.12 .42,.42,.42,.42 .44,.45,.45,.46
60 0B5 -.09,-.1,-.1,-.1 .37,.37,.37,.37 .42,.42,.42,.43
500 0B5 -.09,-.09,-.09,-.09 .4,.41,.4,.41 .42,.41,.41,.4
1000 0B5 -.09,-.09,-.09,-.09 .41,.41,.41,.41 .41,.42,.42,.42
60 06 1.07,1.07,1.07,1.07 .67,.67,.67,.67 .75,.76,.73,.74
500 1.06,1.06,1.06,1.06 .69,.69,.69,.69 .68,.69,.73,.7
1000 1.06,1.06,1.06,1.06 .69,.69,.69,.69 .67,.69,.7,.69

Table 4.9. (Continued)

53



n M βM8

√
n SEcl8

√
n SD8

60 106 1.1,1.1,1.1,1.09 .78,.78,.79,.78 .88,.89,.86,.9
500 1.09,1.09,1.09,1.09 .81,.81,.81,.81 .81,.83,.87,.83
1000 1.09,1.09,1.09,1.09 .81,.81,.81,.81 .8,.84,.82,.83
60 0B6 1.07,1.07,1.07,1.07 .67,.67,.67,.67 .75,.76,.73,.74
500 0B6 1.06,1.06,1.06,1.06 .69,.69,.69,.69 .68,.69,.73,.7
1000 0B6 1.06,1.06,1.06,1.06 .69,.69,.69,.69 .67,.69,.7,.69
60 07 .13,.13,.13,.13 .49,.48,.48,.49 .57,.56,.56,.58
500 .12,.13,.13,.12 .54,.54,.54,.54 .56,.56,.55,.55
1000 .13,.12,.12,.12 .54,.55,.55,.55 .56,.56,.56,.56
60 107 .15,.15,.15,.15 .52,.51,.51,.52 .62,.6,.59,.59
500 .15,.15,.15,.15 .54,.54,.54,.54 .58,.59,.58,.55
1000 .15,.15,.15,.15 .54,.54,.54,.54 .56,.57,.57,.58
60 0B7 .13,.13,.13,.13 .49,.48,.48,.49 .57,.56,.56,.58
500 1B7 .15,.15,.15,.15 .54,.54,.54,.54 .58,.59,.58,.55
1000 1B7 .15,.15,.15,.15 .54,.54,.54,.54 .56,.57,.57,.58

Table 4.9. (Continued)

In Table 4.9, the predictor xi ∼ MV T19.

1) The results for the MLR model are similar to the results in Table 4.3.

2) For the type 5, 6, and 7 models, SEcl(β̂M) and SD(β̂M) are close for the

best results when n is large. The best results are often obtained at 0% trimming.

3) For the type 2 and 4 model, the best results are obtained at 10% trimming.

When the model is type 3, we need to trim a larger percentage of data to get the

best results compared with the other two models. SEcl(β̂M ) and SD(β̂M ) are not

close especially for models 3 and 4.

4.3.3 The SIR Estimator

The resistant DR method we will use in this section is SIR. There are two SIR

algorithms that we will use. One is denoted as SSIR, another is denoted as WSIR.

The SSIR algorithm was obtained from STATLIB and written by Thomas Koetter,

while the WSIR algorithm was due to Weisberg (2002) [28]. We need compare β̂SSIR

and β̂WSIR for different methods. For both algorithms, we let the number of slices

h = 4.
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The MLR Model And The Normal Distributed Predictor x

The results in this section are based on the MLR model and xi ∼ N4(0, I). We

show them in Table 4.10. Column “βSSIRi” represents the sample mean of β̂SSIR

with type i predictors, column “βWSIRi” represents the sample mean of β̂WSIR with

type i predictors, column “M” denotes the trimming percentage, and column“n”

means the size of the entire data.

M n βSSIR1 βWSIR1

0 60 -.24,-.25,-.25,-.25 .02,.02,.02,.02
500 -.22,-.22,-.22,-.22 .02,.02,.02,.02
1000 -.24,-.24,-.24,-.24 -.01,-.01,-.01,-.01
2000 -.24,-.24,-.24,-.24 .01,.01,.01,.01

10 60 -.19,-.21,-.21,-.22 .03,.03,.03,.03
500 -.22,-.22,-.22,-.22 -.003,-.003,-.002,-.003
1000 -.24,-.24,-.24,-.24 .003,.004,.002,.003
2000 -.24,-.24,-.24,-.24 .04,.04,.04,.04

20 60 -.16,-.19,-.19,-.19 .01,.01,.01,.01
500 -.25,-.25,-.25,-.25 .02,.02,.02,.02
1000 -.24,-.24,-.25,-.24 .003,.004,.004,.002
2000 -.25,-.25,-.25,-.25 .01,.01,.01,.01

30 60 -.13,-.17,-.16,-0.16 .03,.02,.02,.03
500 -.26,-.26,-.26,-.26 .03,.03,.03,.03
1000 -.24,-.24,-.24,-.24 -.01,-.01,-.02,-.02
2000 -.23,-.23,-.23,-.23 .01,.005,.005,.004

40 60 -.13,-.16,-.16,-.16 .01,.005,.002,.002
500 -.25,-.26,-.26,-.26 .005,.007,.006,.006
1000 -.25,-.25,-.25,-.25 .01,.01,.01,.01
2000 -.29,-.29,-.29,-.29 -.002,-.004,-.001,-.001

50 60 -.09,-.16,-.17,-.15 .02,.01,.02,.01
500 -.24,-.25,-.24,-.24 -.01,-.01,-.02,-.02
1000 -.25,-.25,-.25,-.25 .006,.005,.005,.004
2000 -.26,-.26,-.26,-.26 -.002,-.002,-.002,-.003

60 60 -.002,-.1,-.09,-.08 .02,-.002,.03,-.004
500 -.25,-.26,-.26,-.26 -.004,-.003,-.005,-.007
1000 -.22,-.22,-.22,-.22 -.007,-.005,-.009,-.011
2000 -.28,-.28,-.28,-.28 -.008,-.007,-.007,-.006

70 60 .04,-.1,-.09,-.07 .04,.01,.01,.02
500 -.21,-.23,-.23,-.22 .03,.03,.02,.03
1000 -.25,-.26,-.26,-.26 -.03,-.04,-.03,-.03
2000 -.22,-.22,-.22,-.22 -.008,-.008,-.004,-.008

80 60 .1,-.08,-.05,-.04 .007,-.0003,.017,.007
500 -.17,-.21,-.21,-.21 .03,.02,.02,.03
1000 -.21,-.22,-.23,-.23 -.02,-.02,-.02,-.02
2000 -.2,-.21,-.21,-.21 -.03,-.03,-.03,-.03

Table 4.10. Results Of SIR Estimators For The MLR Model
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M n βSSIR1 βWSIR1

90 60 .12,.001,.009,.14 .004,-.002,-.02,-.005
500 -.07,-.17,-.16,-.16 -.005,-.0002,.004,-.012
1000 -.16,-.2,-.2,-.2 -.005,-.01,-.001,-.005
2000 -.22,-.24,-.24,-.24 .01,.01,.01,.01

Table 4.10. (Continued)

We can see that both β̂SSIR and β̂WSIR estimate cβ when n is large, where c

is some constant which depends on n, M, and the algorithm. But for β̂WSIR, the

constant c is very close to 0.

Nonnormal Distributed Predictor x

The results in this section are based on the nonnormal predictor distributions

and are shown in Table 4.11 to Table 4.14. For each type of distribution, we ran

the simulations on 7 different models which were introduced in Section 4.2. Similar

to Table 4.2, we keep a record of the results based on 0%, 10%, and the trimming

corresponding to the best result. In column “M”, we denote them by 0, 10, and B

correspondingly. Similarly, the subscript denotes the type of model we used, and the

number before B denotes the trimming percentage corresponding to the best result.

Column “βSSIRi” represents the sample mean of β̂SSIR with type i predictors, and

column “βWSIRi” represents the sample mean of β̂WSIR with type i predictors.

n M βSSIR1 M βSSIR2 M βWSIR1 M βWSIR2

60 01 -.24,-.25,-.25,-.25 01 .07,.01,.02,.01 01 .02,.02,.02,.02 01 .004,.01,.01,.01

500 -.22,-.22,-.22,-.22 .1,.09,.09,.09 .02,.02,.02,.02 .01,.01,.01,.01

1000 -.24,-.24,-.24,-.24 .08,.08,.08,.08 -.01,-.01,-.01,-.01 -.02,-.02,-.02,-.02

2000 -.24,-.24,-.24,-.24 .08,.07,.07,.07 .01,.01,.01,.01 -.01,-.01,-.01,-.01

60 101 -.19,-.21,-.21,-.22 101 .08,.01,.03,.02 101 .03,.03,.03,.03 101 -.01,-.004,-.01,-.01

500 -.22,-.22,-.22,-.22 .12,.11,.11,.12 -.003,-.003,-.002,-.003 -.01,-.02,-.02,-.02

1000 -.24,-.24,-.24,-.24 .12,.12,.12,.12 .003,.004,.002,.003 .02,.02,.02,.02

2000 -.24,-.24,-.24,-.24 .09,.09,.09,.09 .04,.04,.04,.04 .005,.003,.003,.005

60 0B1 -.24,-.25,-.25,-.25 2B1 .08,.02,.03,.03 0B1 .02,.02,.02,.02 0B1 .004,.01,.01,.01

500 0B1 -.22,-.22,-.22,-.22 0B1 .1,.09,.09,.09 0B1 .02,.02,.02,.02 0B1 .01,.01,.01,.01

1000 0B1 -.24,-.24,-.24,-.24 0B1 .08,.08,.08,.08 0B1 -.01,-.01,-.01,-.01 0B1 -.02,-.02,-.02,-.02

Table 4.11. Results Of SIR Estimators Based On Type 1&2 x
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n M βSSIR1 M βSSIR2 M βWSIR1 M βWSIR2

2000 0B1 -.24,-.24,-.24,-.24 1B1 .09,.09,.09,.09 0B1 .01,.01,.01,.01 0B1 -.01,-.01,-.01,-.01

60 02 .15,-.06,-.02,-.004 02 .21,-.15,-.01,-.03 02 .03,.04,.03,.03 02 .02,.01,-.01,-.02

500 .11,.06,.06,.06 .19,-.17,-.04,-.02 -.004,-.01,-.004,-.01 .03,.01,.02,.03

1000 .08,.04,.04,.05 .19,-.13,-.001,-.03 .01,.01,.01,.01 -.01,.01,.004,.004

2000 .1,.08,.08,.08 .2,-.07,.004,-.01 .01,.01,.01,.01 .02,.02,.001,.02

60 102 .14,-.04,-.005,-.008 102 .21,-.17,-.02,-.02 102 .02,.02,.02,.02 102 .001,.005,.01,.02

500 .07,.05,.05,.05 .2,-.11,.02,-.001 -.01,-.01,.0002,-.002 .005,-.006,-.01,.0002

1000 .09,.07,.07,.07 .15,-.09,-.03,-.03 .02,.02,.02,.01 -.01,.003,.01,.001

2000 .07,.06,.06,.06 .14,-.01,.04,.01 -.01,-.01,-.01,-.01 .02,.01,-.003,.01

60 N/A N/A 1B2 .02,.02,.02,.02 2B2 .01,-.001,.01,.01

500 4B2 .05,.03,.03,.03 6B2 .05,.02,.02,.02 0B2 -.004,-.01,-.004,-.01 2B2 -.001,-.004,.002,.01

1000 4B2 .04,.03,.03,.03 5B2 .09,.08,.08,.08 0B2 .01,.01,.01,.01 2B2 -.01,-.01,.01,-.01

2000 1B2 .07,.06,.06,.06 6B2 .08,.07,.07,.07 0B2 .01,.01,.01,.01 2B2 .01,.02,.01,.01

60 03 .12,-.06,-.06,-.04 03 .2,-.09,-.04,-.03 03 .01,.01,.01,.01 03 .004,.01,.001,.0004

500 .11,-.02,-.004,-.02 .14,-.05,-.04,-.03 .02,.01,.01,.02 .01,.01,.01,.01

1000 .12,.002,.01,.001 .13,-.06,-.04,-.06 -.01,-.01,-.01,-.01 .003,.0003,.002,.002

2000 .1,.01,-.002,-.003 .13,-.04,-.04,-.03 .02,.02,.02,.02 .01,.01,.01,.01

60 103 .12,-.06,-.04,-.03 103 .18,-.11,-.02,-.03 103 .01,.02,.02,.02 103 .01,.01,.01,.01

500 .04,-.02,-.02,-.02 .08,-.08,-.07,-.06 .02,.01,.01,.02 -.01,-.01,-.01,-.01

1000 .05,.02,.02,.02 .08,-.04,-.04,-.03 .01,.01,.01,.01 -.02,-.02,-.02,-.02

2000 .09,.06,.06,.07 .09,.01,.02,.01 .01,.01,.01,.01 .004,.004,.003,.005

60 N/A N/A 0B3 .01,.01,.01,.01 1B3 .01,.01,.01,.01

500 4B3 .08,.05,.04,.04 6B3 .08,.03,.01,.02 0B3 .02,.01,.01,.02 0B3 .01,.01,.01,.01

1000 1B3 .05,.02,.02,.02 6B3 .07,.03,.03,.03 0B3 -.01,-.01,-.01,-.01 1B3 -.02,-.02,-.02,-.02

2000 2B3 .09,.07,.07,.07 5B3 .1,.07,.07,.08 0B3 .02,.02,.02,.02 0B3 .01,.01,.01,.01

60 04 .09,-.01,-.02,-.01 04 .13,-.03,-.02,-.01 04 .04,.04,.04,.04 04 -.002,.001,-.004,-.002

500 .07,.02,.02,.03 .1,.04,.04,.04 .03,.03,.03,.03 -.02,-.02,-.02,-.02

1000 .07,.05,.05,.05 .1,.06,.07,.06 -.03,-.03,-.03,-.03 .02,.02,.01,.01

2000 .09,.06,.06,.07 .1,.07,.07,.07 .02,.02,.02,.02 .01,.01,.01,.01

60 104 .1,-.01,-.01,-.003 104 .13,-.02,-.01,-.003 104 .02,.01,.02,.02 104
3.7e-5,3.7e-3,

7.2e-3,5.7e-3

500 .07,.04,.04,.03 .06,.03,.03,.03 .02,.02,.02,.02 .01,.01,.01,.01

1000 .09,.08,.08,.07 .09,.06,.07,.06 .01,.01,.01,.01 -.01,-.01,-.01,-.01

2000 .06,.06,.06,.06 .08,.06,.07,.07 .01,.01,.01,.01 .02,.01,.02,.02

60 N/A N/A 0B4 .04,.04,.04,.04 2B4 .02,.01,.02,.02

500 2B4 .08,.05,.05,.05 1B4 .06,.03,.03,.03 0B4 .03,.03,.03,.03 0B4 -.02,-.02,-.02,-.02

1000 1B4 .1,.08,.08,.08 2B4 .07,.05,.05,.05 0B4 -.03,-.03,-.03,-.03 1B4 -.01,-.01,-.01,-.01

2000 1B4 .06,.06,.06,.06 1B4 .08,.06,.07,.07 0B4 .02,.02,.02,.02 0B4 .01,.01,.01,.01

60 05 .09,-.08,-.05,-.05 05 .23,-.24,-.03,-.05 05 .04,.04,.04,.03 05 .03,.02,-.01,-.01

500 .11,.08,.08,.08 .18,-.14,-.04,-.04 .02,.01,.01,.02 .01,-.02,-.01,.003

Table 4.11. (Continued)
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n M βSSIR1 M βSSIR2 M βWSIR1 M βWSIR2

1000 .14,.13,.13,.13 .13,-.06,-.04,-.03 .01,.01,.005,.01 -.02,.01,-.0005,-.01

2000 .09,.09,.09,.09 .09,-.02,-.02,-.02 .02,.02,.02,.02 -.001,.01,-.005,-.01

60 105 .13,-.02,.01,.004 105 .25,-.2,-.02,-.01 105 .02,.004,.01,.02 105 .003,.02,-.01,.01

500 .06,.04,.05,.05 .16,-.09,-.04,-.05 .02,.02,.02,.01 .01,-.002,.01,.02

1000 .06,.05,.05,.05 .1,-.04,-.03,-.03 .01,.01,.01,.01 -.01,.01,-.01,-.0002

2000 .07,.07,.07,.06 .05,-.02,-.03,-.01 .02,.02,.02,.02 .01,.01,-.001,-.002

60 N/A N/A 0B5 .04,.04,.04,.03 4B5 .02,.03,.03,.03

500 1B5 .06,.04,.05,.05 6B5 .06,.03,.05,.04 0B5 .02,.01,.01,.02 4B5 .01,.01,.01,.01

1000 0B5 .14,.13,.13,.13 5B5 .08,.07,.07,.07 1B5 .01,.01,.01,.01 4B5 -.03,-.03,-.03,-.03

2000 0B5 .09,.09,.09,.09 4B5 .11,.1,.1,.1 0B5 .02,.02,.02,.02 4B5 -.01,-.01,-.01,-.01

60 06 .02,-.01,-.02,-.02 06 .1,.05,.06,.05 06 .02,.03,.02,.03 06 -.004,-.002,-.01,-.002

500 .04,.03,.03,.03 .1,.08,.08,.08 .01,.01,.01,.01 -.003,-.005,-.002,-.002

1000 .02,.02,.02,.02 .1,.1,.1,.1 .04,.04,.04,.04 .01,.01,.01,.01

2000 .05,.05,.05,.05 .1,.1,.1,.1 .01,.01,.01,.01 -.02,-.02,-.02,-.01

60 106 .05,.02,.02,.02 106 .07,.01,.03,.02 106 .03,.03,.03,.04 106 .02,.02,.02,.02

500 .06,.06,.06,.06 .1,.1,.1,.09 .004,.0001,.004,.0005 -.004,-.007,-.005,-.004

1000 .04,.04,.04,.04 .1,.09,.09,.1 .01,.01,.01,.01 .0005,-.001,-.001,-.003

2000 .04,.04,.04,.04 .08,.08,.08,.08 .02,.02,.01,.01 -.01,-.01,-.01,-.01

60 1B6 .05,.02,.02,.02 0B6 .1,.05,.06,.05 1B6 .03,.03,.03,.04 1B6 .02,.02,.02,.02

500 1B6 .06,.06,.06,.06 1B6 .1,.1,.1,.09 0B6 .01,.01,.01,.01 0B6 -.003,-.005,-.002,-.002

1000 0B6 .02,.02,.02,.02 0B6 .1,.1,.1,.1 0B6 .04,.04,.04,.04 0B6 .01,.01,.01,.01

2000 0B6 .05,.05,.05,.05 0B6 .1,.1,.1,.1 0B6 .01,.01,.01,.01 1B6 -.01,-.01,-.01,-.01

60 07 .1,-.09,-.06,-.05 07 .24,-.24,-.02,-.03 07 .02,.04,.02,.03 07 .003,.01,-.01,-.02

500 .05,.01,.01,.01 .25,-.19,.003,-.0005 .01,.01,.02,.02 .02,-.001,.004,.02

1000 .08,.06,.06,.06 .21,-.17,-.05,-.03 .006,.003,-.003,.001 -.01, .01,.001,.01

2000 .07,.06,.06,.06 .19,-.13,-.02,-.04 .04,.03,.04,.04 -.0002,-.005,-.01,-.002

60 107 .13,-.07,-.01,-.02 107 .25,-.23,-.02,-.005 107 .02,.01,.02,.03 107 .004,.001,.002,.02

500 .1,.07,.07,.07 .23,-.18,-.001,.004 -.001,-.003,.001,.001 .02,.02,.02,.01

1000 .09,.08,.08,.08 .2,-.15,-.04,-.04 .02,.02,.01,.01 -.01,.01,.002,.004

2000 .09,.08,.08,.08 .15,-.11,-.05,-.06 .02,.02,.02,.02 -.001,-.01,-.01,-.01

60 N/A N/A 1B7 .02,.01,.02,.03 4B7 .02,.01,.02,.01

500 2B7 .08,.06,.06,.06 5B7 .08,.04,.03,.03 1B7 -.001,-.003,.001,.001 6B7 .046,.045,.044,.045

1000 1B7 .09,.08,.08,.08 5B7 .08,.06,.06,.06 1B7 .02,.02,.01,.01 5B7 -.01,-.02,-.01,-.01

2000 1B7 .09,.08,.08,.08 6B7 .07,.06,.06,.06 1B7 .02,.02,.02,.02 4B7 -.01,-.01,-.01,-.01

Table 4.11. (Continued)

The results of Table 4.11 are based on the type 1 predictors xi ∼ N4(0, I) and

the type 2 predictors xi ∼ 0.6N4(0, I) + 0.4N4(0, 25I). We will discuss the results

separately.

58



For the type 1 x:

1) If the model is MLR, all the β̂SSIR and the β̂WSIR are estimating some

constant multiple of the true coefficient β. The best results are obtained at 0%

trimming.

2) If the method is SSIR, for models such as 2, 3, 4, 5, and 7, the best results

are often obtained at nonzero percentage trimming. When n is small, these best

results are not close to c (1, 1, 1, 1)′ for some constant c. If n = 60, we can not find

a good result for any of the ten values of M. For this case, we denote it by “N/A”.

Whereas for the method WSIR 0% trimming works well for most of the models.

For the type 2 x:

1) If the model is MLR or type 6, the β̂SSIR and the β̂WSIR are estimating

the true coefficient β multiplied by some constant when n is large. Most of the best

results for both methods are obtained at 0% trimming.

2) For models 2, 3, 5, and 7, the results for the method SSIR are never good for

0% and 10% trimming. Actually even the best results we could get are usually not

close to c (1, 1, 1, 1)′ for some constant c. For n > 60, the best results are obtained

at high percentage trimming such as 70% or 80%. When n = 60, none of the results

can be called the best no matter what M was used. For this case, we denote it by

“N/A”. The method WSIR has much better results. In general it needs a smaller

amount of trimming to obtain the best results, and most of the best results are

estimating c (1, 1, 1, 1)′ for some constant c.

3) For the type 4 model, we only need to trim 10% or 20% to get the best

results for the method SSIR, while 0% to 20% for the method WSIR. Similar to

other models, the method WSIR has better results than the SSIR.

Overall, the type 1 x has the better results than the type 2 x and the method

WSIR has the better results than SSIR. In addition the β̂WSIR are smaller than the

β̂SSIR.
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n M βSSIR3 M βSSIR4 M βWSIR3 M βWSIR4

60 01 .06,.01,.01,.02 01 .09,-.02,.001,.005 01 .002,.01,.002,.003 01 -.01, 0.01,.002,.01
500 .09,.08,.08,.09 .05,.02,.02,.03 .005,.001,.005,.005 -.01,-.01,-.01,-.01
1000 .12,.12,.12,.12 .05,.04,.04,.04 -.01,-.01,-.01,-.01 -.01,-.01,-.01,-.01
2000 .12,.12,.12,.12 .05,.05,.04,.05 -.02,-.02,-.02,-.02 .01,.01,.01,.01
60 101 .09,.04,.05,.05 101 .08,.02,.01,.01 101 -.02,-.02,-.02,-.02 101 .01,.01,.001,.01
500 .1,.09,.1,.09 .07,.06,.06,.06 -.003,-.01,-.01,-.005 .01,.01,.01,.01
1000 .1,.1,.1,.1 .09,.08,.08,.08 -.0004,-.002,-.002,.0001 .004,.003,.004,.005

2000 .09,.09,.09,.09 .06,.06,.06,.06 -.001,.001,-.0002,.0004 .02,.02,.02,.02
60 0B1 .06,.01,.01,.02 1B1 .08,.02,.01,.01 1B1 -.02,-.02,-.02,-.02 2B1 -.02,-.01,-.02,-.01
500 2B1 .09,.09,.09,.09 1B1 .07,.06,.06,.06 2B1 .02,.02,.02,.02 0B1 -.01,-.01,-.01,-.01
1000 0B1 .12,.12,.12,.12 3B1 .07,.07,.07,.07 0B1 -.01,-.01,-.01,-.01 0B1 -.01,-.01,-.01,-.01
2000 0B1 .12,.12,.12,.12 1B1 .06,.06,.06,.06 0B1 -.02,-.02,-.02,-.02 0B1 .01,.01,.01,.01
60 02 .22,-.14,-.04,-.03 02 .23,-.13,.01,.03 02 -.01,-.005,-.02,-.02 02 .005,.01,-.02,.005
500 .21,-.13,-.02,-.02 .18,-.19,-.02,-.02 .001,-.007,-.01,-.006 .02,.006,.004,.009
1000 .17,-.12,-.03,-.04 .19,-.15,-.03,-.04 -.008,.02,-.02,.01 .005,.02,.02,.02
2000 .15,-.09,-.03,-.05 .19,-.16,-.02,-.03 -.006,.01,.005,.005 .02,.02,.02,.02
60 102 .18,-.17,-.03,-.03 102 .18,-.06,.01,.01 102 .01,-.02,-.01,-.01 102 .02,.01,.01,.01

500 .17,-.11,.01,-.01 .09,-.02,.01,.02 .006,.01,.01,.003 .02,.02,.02,.02
1000 .15,-.07,-.003,.01 .08,.02,.03,.02 -.01,.01,.01,.01 -.001,-.006,-.005,.0004
2000 .1,-.04,-.003,-.01 .1,.07,.07,.07 .02,.02,.01,.01 -.01,-.01,-.01,-.01
60 N/A N/A 4B2 .03,.02,.002,.01 1B2 .02,.01,.01,.01
500 8B2 .08,.04,.04,.04 2B2 .06,.04,.03,.04 5B2 .03,.03,.02,.02 1B2 .02,.02,.02,.02
1000 7B2 .04,.01,.01,.02 2B2 .11,.1,.09,.1 5B2 -.01,-.02,-.02,-.01 2B2 -.01,-.01,-.015,-.01
2000 7B2 .08,.07,.06,.07 2B2 .1,.09,.09,.09 5B2 .007,.007,.007,.008 0B2 .02,.02,.02,.02
60 03 .16,-.12,-.05,-.05 03 .21,-.16,-.03,-.04 03 .007,.01,.005,.003 03 .005,.02,.007,.01
500 .12,-.07,-.06,-.06 .17,-.11,-.06,-.04 -.02,-.02,-.02,-.02 -.005,-.008,-.01,-.005
1000 .12,-.07,-.06,-.06 .16,-.08,-.05,-.05 .004,.002,.004,.003 -.02,-.03,-.02,-.03
2000 .1,-.06,-.05,-.06 .16,-.06,-.02,-.004 .02,.02,.02,.02 .007,.007,.008,.006

60 103 .17,-.08,-.04,-.03 103 .16,-.05,-.04,-.02 103 .01,.008,.002,.004 103 .002,-.002,-.008,-.003
500 .1,-.03,-.02,-.01 .12,-.02,-.02,-.01 -.02,-.02,-.02,-.02 .007,.007,.009,.008
1000 .1,-.004,-.01,-.02 .09,-.02,-.02,-.02 .002,.0002,.0002,.001 .005,.003,.002,.002
2000 .08,-.01,-.01,-.01 .07,-.01,-.01,-.01 .01,.01,.01,.01 -.004,-.005,-.004,-.003
60 N/A N/A 0B3 .007,.01,.005,.003 3B3 -.002,-.004,-.005,-.006
500 N/A 7B3 .07,.03,.02,.03 0B3 -.02,-.02,-.02,-.02 3B3 -.015,-.017,-.014,-.018
1000 8B3 .1,.05,.05,.05 6B3 .07,.05,.05,.05 0B3 .004,.002,.004,.003 2B3 -.03,-.03,-.03,-.03
2000 7B3 .09,.06,.05,.06 4B3 .09,.07,.07,.07 0B3 .02,.02,.02,.02 2B3 -.01,-.01,-.01,-.01
60 04 .1,-.03,-.02,-.02 04 .2,-.05,.01,.01 04 .007,.008,.004,.002 04 .002,.02,.006,.003

500 .09,.05,.06,.06 .09,-.04,-.03,-.03 .007,.005,.005,.003
1.9e-3,-5.5e-5,
-2.5e-3,1.3e-3

1000 .07,.04,.04,.04 .09,-.004,.01,-.003 .01,.01,.01,.01 .004,.001,.002,.005
2000 .1,.07,.08,.07 .08,.03,.03,.03 -.01,-.01,-.01,-.01 .02,.02,.02,.02
60 104 .09,-.03,-.01,-.02 104 .12,-.03,-.01,-.01 104 -.001,-.004,-.008,-.008 104 .02,.008,.008,.008
500 .06,.05,.04,.04 .07,.02,.02,.02 -.01,-.01,-.02,-.02 -.002,-.004,-.003,-.003
1000 .1,.09,.09,.09 .09,.05,.05,.05 .01,.01,.01,.01 .001,-.00004,-.0004,-.0008
2000 .08,.07,.07,.07 .08,.06,.06,.06 -.01,-.02,-.02,-.01 .003,.002,.003,.003
60 N/A N/A 0B4 .007,.008,.004,.002 3B4 .01,.003,.005,.006
500 1B4 .06,.05,.04,.04 3B4 .07,.04,.04,.04 0B4 .007,.005,.005,.003 1B4 -.002,-.004,-.003,-.003

1000 1B4 .1,.09,.09,.09 2B4 .08,.06,.06,.06 0B4 .01,.01,.01,.01 2B4 -.02,-.02,-.02,-.02
2000 1B4 .08,.07,.07,.07 2B4 .08,.08,.08,.08 0B4 -.01,-.01,-.01,-.01 0B4 .02,.02,.02,.02
60 05 .25,-.27,-.01,-.03 05 .17,-.17,-.02,-.02 05 -.01,.009,.009,.006 05 .01,.02,-.005,.01
500 .21,-.15,-.02,-.03 .12,-.01,.003,-.004 .01,-.01,.02,-.004 -.006,-.01,-.01,-.01
1000 .16,-.1,-.06,-.05 .08,.01,.01,.01 -.004,.03,-.0002,.03 -.007,-.002,-.002,-.004
2000 .11,-.07,-.05,-.05 .08,.03,.03,.03 -.02,-.02,-.02,-.02 -.006,-.003,-.01,-.007
60 105 .25,-.25,.01,-.02 105 .13,-.06,-.01,-.02 105 -.006,-.03,-.04,-.01 105 .009,.005,.002,.02
500 .18,-.12,-.05,-.05 .1,.07,.07,.07 .006,.02,.008,.003 .01,.02,.02,.01
1000 .15,-.06,-.03,-.03 .08,.06,.06,.06 -.01,-.009,-.02,-.009 .003,-.004,.0006,.0003
2000 .09,-.04,-.04,-.03 .05,.04,.04,.04 -.0001,-.008,-.006,-.0004 .02,.02,.02,.02
60 N/A N/A 0B5 -.01,.009,.009,.006 2B5 .009,.002,.002,.006

Table 4.12. Results Of SIR Estimators Based On Type 3&4 x
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n M βSSIR3 M βSSIR4 M βWSIR3 M βWSIR4

500 7B5 .06,.02,.02,.02 2B5 .07,.05,.05,.05 1B5 .006,.02,.008,.003 2B5 .002,.001,.007,.002
1000 7B5 .06,.04,.05,.04 2B5 .08,.07,.07,.07 1B5 -.01,-.009,-.02,-.009 2B5 -.02,-.02,-.02,-.02
2000 7B5 .09,.08,.08,.08 2B5 .03,.03,.03,.03 0B5 -.02,-.02,-.02,-.02 1B5 .02,.02,.02,.02
60 06 .08,.03,.03,.03 06 .09,-.02,-.004,.001 06 .02,.02,.02,.02 06 -.008,.002,-.0004,-.002
500 .12,.11,.11,.11 .06,.04,.04,.04 .009,.008,.009,.007 -.0009,-.002,-.005,-.003
1000 .11,.1,.1,.1 .05,.04,.04,.04 .01,.01,.01,.01 -.02,-.02,-.02,-.02
2000 .07,.07,.07,.07 .03,.03,.03,.03 -.007,-.008,-.007,-.007 .01,.01,.01,.01

60 106 .06,.01,.01,.01 106 .04,-.01,-.004,-.01 106 .003,.003,-.005,-.003 106 .007,.0002,-.005,-.004
500 .05,.04,.05,.05 .05,.05,.05,.05 .002,-.0006,.0005,.002 -.01,-.01,-.01,-.01
1000 .12,.12,.12,.12 .05,.04,.04,.04 -.003,-.003,-.004,-.005 -.004,-.004,-.004,-.004
2000 .08,.08,.08,.08 .05,.05,.05,.05 -.01,-.01,-.01,-.009 .02,.02,.02,.02
60 1B6 .06,.01,.01,.01 2B6 .03,-.01,-.01,-.02 0B6 .02,.02,.02,.02 4B6 -.01,-.02,-.01,-.01
500 1B6 .05,.04,.05,.05 1B6 .05,.05,.05,.05 0B6 .009,.008,.009,.007 1B6 -.01,-.01,-.01,-.01
1000 1B6 .12,.12,.12,.12 2B6 .06,.06,.06,.06 0B6 .01,.01,.01,.01 0B6 -.02,-.02,-.02,-.02
2000 0B6 .07,.07,.07,.07 0B6 .03,.03,.03,.03 0B6 -.007,-.008,-.007,-.007 0B6 .01,.01,.01,.01
60 07 .23,-.24,-.001,.002 07 .22,-.17,-.003,-.02 07 -.004,-.004,-.03,-.02 07 -.01,.01,-.004,.004
500 .24,-.2,-.02,-.02 .25,-.21,-.03,-.02 .005,.008,.007,.01 .01,.001,.006,.01

1000 .2,-.12,-.05,-.04 .22,-.2,.02,-.02 -.02,.003,-.006,.007 .01,.006,.02,.01
2000 .16,-.1,-.04,-.03 .26,-.2,-.01,.01 .001,.02,.007,.01 -.006,.003,-.007,-.006
60 107 .24,-.25,-.01,-.02 107 .12,-.09,-.02,-.03 107 .008,-.02,-.002,-.02 107 .008,.004,.01,.02
500 .23,-.17,-.01,.004 .07,.04,.04,.04 -.0002,.007,.004,.002 -.002,.002,-.0009,-.007
1000 .22,-.12,.005,-.01 .08,.07,.07,.06 -.004,.006,-.004,-.004 -.007,-.006,-.007,-.008
2000 .17,-.06,-.01,-.01 .07,.06,.06,.06 .02,.01,.007,.006 -.02,-.02,-.02,-.02
60 N/A N/A 6B7 .03,.03,.01,.01 2B7 .01,.009,.005,.009
500 7B7 .08,.01,.02,.02 1B7 .07,.04,.04,.04 6B7 .02,.03,.03,.02 3B7 -.02,-.02,-.02,-.03
1000 7B7 .06,.03,.03,.02 1B7 .08,.07,.07,.06 5B7 -.02,-.02,-.02,-.02 2B7 -.02,-.02,-.02,-.02
2000 6B7 .09,.07,.07,.08 1B7 .07,.06,.06,.06 6B7 -.02,-.02,-.02,-.02 1B7 -.02,-.02,-.02,-.02

Table 4.12. (Continued)

The results of Table 4.12 are based on the type 3 predictors xi ∼ 0.4N4(0, I)+

0.6N4(0, 25I) and the type 4 predictors xi ∼ 0.9N4(0, I) + 0.1N4(0, 25I).

For the type 3 x:

1) If the method is SSIR and the model is MLR or type 6, when n is large

the best results are obtained at 0% trimming and the β̂SSIR ≈ c(1, 1, 1, 1)′ for some

c. If the method is WSIR, the results are even better. For the type 6 model, the

best results are obtained at 0% and all the β̂WSIR ≈ c(1, 1, 1, 1)′. For the MLR

model, 10% or 20% trimming improved the results when n is small and all the

β̂WSIR ≈ c(1, 1, 1, 1)′.

2) If the method is SSIR, for models such as 2, 3, 5, and 7, we need to trim

70% or 80% of the data to get the best results but even the best results are not close

to c (1, 1, 1, 1)′ unless n is very large. The results for the method WSIR are much

better for these 4 models. The trimming percentages needed are smaller. For the
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type 3 model, even 0% works well. The β̂WSIR are estimating c(1, 1, 1, 1)′ for some

constant c when n is large.

3) If the model is the type 4, the best results are obtained at 10% for SSIR

and 0% for WSIR. Both the β̂SSIR and the β̂WSIR are estimating c(1, 1, 1, 1)′ when

n is large.

For the type 4 x:

1) For the model 1, 4, or 6, the results are similar to those for the type 3 x

except that we need to trim a larger amount of the data to obtain the best results

for most cases.

2) For the model 2, 3, 5, or 7 and the SSIR method, the results are similar to

those for the type 3 x except that we only need to trim a smaller amount of data

to get the best results. If the method is WSIR, the results depend on the model.

Larger amounts of trimming are needed for the models 3 and 5 compared to the

type 3 x, whereas smaller amounts of trimming are needed for the models 2 and 7.

n M βSSIR5 M βSSIR6 M βWSIR5 M βWSIR6

60 01 .09,-.07,-.02,-.04 01 .08,.01,.01,.02 01 .03,.01,.02,.02 01 .0003,-.002,-.005,.01
500 .12,-.02,.01,.001 .05,-.01,-.002,-.01 .02,.01,.01,.01 -.02,-.01,-.01,-.01
1000 .15,.01,.03,.05 .09,.03,.04,.04 .03,.02,.03,.02 -.003,.003,-.0004,.001
2000 .09,-.06,-.04,-.04 .07,.01,.02,.02 .05,.04,.04,.04 -.005,-.01,-.01,-.01
60 101 -.0004,-.06,-.06,-.06 101 .08,.03,.03,.03 101 .03,.02,.02,.03 101 -.005,-.01,-.003,-.01
500 -.01,-.02,-.02,-.02 .1,.1,.1,.1 -.02,-.03,-.03,-.03 .02,.02,.02,.02
1000 -.01,-.01,-.01,-.01 .09,.09,.09,.09 .004,.005,.003,.004 -.02,-.01,-.02,-.02
2000 -.002,-.01,-.01,-.01 .1,.1,.1,.1 -.03,-.03,-.03,-.03 .02,.02,.02,.02
60 N/A 1B1 .08,.03,.03,.03 1B1 .03,.02,.02,.03 1B1 -.005,-.01,-.003,-.01
500 1B1 -.01,-.02,-.02,-.02 1B1 .1,.1,.1,.1 2B1 -.02,-.02,-.02,-.02 1B1 .02,.02,.02,.02

1000 1B1 -.01,-.01,-.01,-.01 1B1 .09,.09,.09,.09 2B1 -.02,-.02,-.02,-.02 2B1 -.01,-.01,-.01,-.01
2000 2B1 -.04,-.04,-.04,-.04 1B1 .1,.1,.1,.1 1B1 -.03,-.03,-.03,-.03 1B1 .02,.02,.02,.02
60 02 .16,-.14,-.03,-.02 02 .22,-.14,-.002,-.0006 02 .02,.02,.02,.01 02 -.002,.004,.003,-.001
500 .22,-.12,-.0008,.007 .27,-.14,.007,-.01 .05,.05,.04,.05 .01,.01,.02,.01
1000 .21,-.11,-.006,.004 .25,-.18,-.02,-.003 .05,.05,.05,.05 -.002,-.01,-.01,-.01
2000 .19,-.14,-.02,-.02 .25,-.15,-.01,-.002 .04,.04,.03,.04 .01,.01,.001,.01
60 102 .08,-.06,-.05,-.04 102 .15,-.14,-.01,-.04 102 .02,.01,.02,.02 102 -.02,-.01,-.01,-.02
500 .08,.03,.03,.03 .09,-.01,-.001,.005 -.004,-.006,-.008,-.007 .01,.02,.02,.02
1000 .02,-.005,-.007,-.006 .09,.03,.03,.03 .03,.03,.03,.03 -.03,-.03,-.03,-.04
2000 .05,.03,.03,.02 .04,.01,.01,.01 .01,.01,.01,.01 -.01,-.005,-.01,-.01

60 N/A N/A 3B2 .01,.01,.01,.01 1B2 -.02,-.01,-.01,-.02
500 3B2 .03,.01,.01,.01 4B2 .08,.06,.05,.05 3B2 .006,.004,.005,.004 2B2 .02,.02,.02,.02
1000 3B2 .04,.03,.03,.03 4B2 .07,.05,.05,.05 0B2 .05,.05,.05,.05 1B2 -.03,-.03,-.03,-.04
2000 2B2 .05,.04,.04,.04 2B2 .09,.08,.08,.08 1B2 .01,.01,.01,.01 1B2 -.01,-.005,-.01,-.01

Table 4.13. Results Of SIR Estimators Based On Type 5&6 x
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n M βSSIR5 M βSSIR6 M βWSIR5 M βWSIR6

60 03 .25,-.22,.03,.04 03 .19,-.12,-.03,-.03 03 .01,.004,.01,.004 03 .003,.01,.001,.001
500 .27,-.22,.07,.06 .23,-.1,-.01,-.04 .03,.03,.03,.03 .03,.03,.03,.03
1000 .28,-.22,.03,.02 .2,-.13,-.03,-.01 .07,.06,.06,.06 -.02,-.02,-.03,-.02
2000 .25,-.24,.08,.05 .21,-.13,-.01,-.03 .02,.01,.01,.02 .01,.01,.01,.01
60 103 .19,-.18,-.04,-.04 103 .15,-.09,-.04,-.04 103 .03,.02,.02,.03 103 .0002,-.001,-.001,.002
500 .13,-.08,-.06,-.07 .1,-.02,-.02,-.02 -.0004,-.0004,.002,-.002 .01,.01,.01,.01
1000 .12,-.08,-.05,-.05 .1,.006,-.005,.005 -.02,-.02,-.02,-.02 -.01,-.01,-.02,-.02

2000 .1,-.05,-.03,-.04 .07,-.01,-.006,.002 .0004,-.001,.001,-.0003 .01,.01,.01,.01
60 N/A N/A 0B3 .01,.004,.01,.004 2B3 -.02,-.02,-.02,-.02
500 N/A 6B3 .09,.04,.04,.03 0B3 .03,.03,.03,.03 0B3 .03,.03,.03,.03
1000 N/A 6B3 .05,.02,.02,.02 1B3 -.02,-.02,-.02,-.02 0B3 -.02,-.02,-.03,-.02
2000 4B3 .05,.008,.003,.008 4B3 .08,.06,.05,.06 2B3 .006,.006,.006,.006 0B3 .01,.01,.01,.01
60 04 .18,-.17,-.02,.004 04 .17,-.07,-.02,-.01 04 .01,.004,.01,.001 04 -.02,-.01,-.02,-.02
500 .23,-.16,.02,.005 .2,-.07,.005,-.01 .01,.02,.006,.006 .005,-.001,.004,.01
1000 .25,-.16,.003,.008 .2,-.06,-.02,-.003 .07,.06,.06,.05 -.01,-.01,-.01,-.01

2000 .23,-.17,.01,.005 .18,-.06,-.03,-.03 .02,.01,.01,.02
3.3e-4,-2.1e-3,
-9.6e-5,2.4e-3

60 104 .11,-.1,-.06,-.04 104 .11,-.04,-.02,-.03 104 .02,.01,.02,.02 104 -.01,-.01,-.004,-.005
500 .06,-.01,-.03,-.02 .1,.05,.05,.05 .001,.001,.003,-.0005 -.003,-.001,-.003,-.0005
1000 .07,.01,.01,.01 .04,.02,.02,.01 -.005,-.005,-.007,-.007 -.02,-.02,-.02,-.02
2000 .02,-.02,-.02,-.02 .08,.07,.07,.07 -.007,-.008,-.005,-.007 -.01,-.01,-.01,-.01
60 N/A N/A 1B4 .02,.01,.02,.02 2B4 -.02,-.02,-.02,-.02
500 6B4 .07,.04,.03,.02 3B4 .06,.04,.04,.03 2B4 .01,.01,.01,.01 2B4 .01,.02,.01,.02
1000 7B4 .04,.02,.02,.02 3B4 .08,.07,.07,.07 1B4 -.02,-.02,-.02,-.02 1B4 -.02,-.02,-.02,-.02
2000 6B4 .06,.05,.05,.05 1B4 .08,.07,.07,.07 2B4 .01,.01,.01,.01 1B4 -.01,-.01,-.01,-.01
60 05 .18,-.14,-.01,-.02 05 .19,-.14,-.03,.001 05 .05,-.05,-.01,-.01 05 -.01,.01,-.002,.01
500 .19,-.15,-.01,-.002 .07,-.04,-.03,-.04 .03,.01,.01,.003 -.02,-.01,.003,-.02

1000 .13,-.08,-.05,-.02 .09,.03,.02,.02 .06,.05,.05,.05 -.004,-.01,-.002,-.01
2000 .13,.04,.04,.04 .1,.06,.06,.05 .03,.01,.01,.02 .02,.02,.02,.02
60 105 .16,-.14,-.02,-.02 105 .16,-.09,-.03,-.03 105 .06,-.003,-.002,.01 105 -.02,-.02,-.002,-.005
500 .14,-.13,-.05,-.05 .06,.02,.02,.01 .03,.005,-.0002,-.002 .02,.02,.02,.02
1000 .15,-.07,-.01,-.002 .08,.06,.06,.05 .01,.004,.01,.01 -.01,-.02,-.02,-.02
2000 .11,-.05,-.02,-.0003 .06,.04,.04,.04 .02,.01,.01,.01 -.003,.002,-.002,-.0004
60 N/A N/A N/A 2B5 -.03,-.02,-.01,-.01
500 N/A 6B5 .07,.05,.05,.06 3B5 -.01,-.02,-.01,-.02 1B5 .02,.02,.02,.02
1000 N/A 6B5 .07,.07,.06,.07 1B5 .01,.004,.01,.01 1B5 -.01,-.02,-.02,-.02
2000 6B5 .05,.03,.03,.03 5B5 .1,.1,.1,.1 3B5 -.01,-.01,-.01,-.01 0B5 .02,.02,.02,.02

60 06 .09,-.09,-.02,-.03 06 .07,.004,.01,.02 06 .02,.02,.02,.01 06 -.01,-.02,-.02,-.02
500 .17,-.01,.04,.03 .09,.02,.04,.03 .03,.03,.02,.02 -.002,-.01,.001,-.003
1000 .13,-.03,-.01,.01 .11,.04,.06,.06 .05,.05,.04,.04 -.02,-.01,-.02,-.02
2000 .13,-.04,-.01,-.02 .11,.06,.07,.07 .04,.04,.03,.04 .01,.01,.01,.01
60 106 .02,-.04,-.04,-.04 106 .03,.01,.007,.01 106 .03,.01,.02,.02 106 -.01,-.01,-.02,-.01
500 .0004,-.01,-.01,-.01 .05,.04,.04,.04 -.0002,-.002,-.003,-.003 .01,.02,.01,.01
1000 .004,-.0005,-.001,-.002 .02,.01,.01,.01 .01,.01,.01,.01 -.03,-.04,-.04,-.04
2000 .02,.02,.02,.02 .03,.03,.03,.03 -.01,-.01,-.01,-.01 -.01,-.01,-.01,-.01
60 N/A 1B6 .03,.01,.007,.01 0B6 .02,.02,.02,.01 0B6 -.01,-.02,-.02,-.02
500 3B6 -.02,-.03,-.03,-.03 3B6 .05,.05,.05,.05 2B6 -.01,-.01,-.01,-.01 2B6 .02,.02,.02,.02

1000 2B6 -.01,-.01,-.01,-.01 2B6 .05,.05,.05,.05 1B6 .01,.01,.01,.01 2B6 -.02,-.02,-.02,-.02
2000 1B6 .02,.02,.02,.02 1B6 .03,.03,.03,.03 1B6 -.01,-.01,-.01,-.01 0B6 .01,.01,.01,.01

60 07 .04,-.02,-.03,-.02 07 .19,-.16,-.02,-.05 07 .01,.01,.01,-.01 07
-1.3e-3,7.7e-3,
5.5e-5,-4.9e-3

500 .09,.06,.06,.05 .19,-.11,-.01,-.02 .04,.04,.04,.04 -.01,-.01,.005,-.01

1000
3.9e-2,-4.1e-3,

.2,-.12,-.04,.01 .05,.05,.04,.04 -.03,-.04,-.03,-.032.5e-5,5.6e-3
2000 .11,.08,.08,.08 .18,-.15,-.03,-.06 .03,.02,.02,.02 .02,.02,.02,.02

60 107 .004,-.02,-.02,-.02 107 .17,-.1,-.02,-.01 107 .03,.02,.02,.02 107 -.03,-.02,-.01,-.03
500 .007,.005,.005,.003 .09,.04,.03,.03 .003,.002,.002,.002 .02,.02,.02,.02
1000 .03,.03,.03,.03 .07,.04,.03,.04 .01,.01,.01,.01 -.03,-.03,-.03,-.04
2000 .03,.03,.03,.03 .06,.05,.05,.05 .04,.03,.03,.03 -.002,.0003,.0001,.002

Table 4.13. (Continued)
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n M βSSIR5 M βSSIR6 M βWSIR5 M βWSIR6

60 2B7 -.001,-.03,-.03,-.04 N/A 1B7 .03,.02,.02,.02 1B7 -.03,-.02,-.01,-.03
500 1B7 .007,.005,.005,.003 3B7 .07,.04,.05,.04 0B7 .04,.04,.04,.04 1B7 .02,.02,.02,.02
1000 1B7 .03,.03,.03,.03 3B7 .08,.07,.07,.07 1B7 .01,.01,.01,.01 0B7 -.03,-.04,-.03,-.03
2000 1B7 .03,.03,.03,.03 1B7 .06,.05,.05,.05 2B7 -.02,-.02,-.02,-.02 0B7 .02,.02,.02,.02

Table 4.13. (Continued)

The results of Table 4.13 are based on the type 5 predictors xi ∼ LN(0, I)

and the type 6 predictors xi ∼ MV T3. Here we will only discuss the results for the

type 5 x. We will compare the results for the type 6 predictors with the type 7 and

8 predictors later.

The type 5 x:

If the method is SSIR, in general the results for the models 1, 2, 6, and 7 are

better than those for the other models. For these models, the β̂SSIR ≈ c(1, 1, 1, 1)′

for some constant c when n is large. For the models 3 and 5, none of the results

could be called the best unless n is very large.

For the method WSIR, the results are much better than those for the method

SSIR especially for the models 3 and 5. In general, 10% to 20% trimming work well

and β̂WSIR are estimating c(1, 1, 1, 1)′ for some constant c when n > 60.

n M βSSIR7 M βSSIR7 M βWSIR8 M βWSIR8

60 01 .11,.06,.06,.06 01 .07,.02,.03,.02 01 .02,.01,.01,.02 01 .02,.03,.01,.01
500 .11,.08,.09,.08 .04,.03,.03,.03 .04,.04,.04,.03 .001,.001,.001,.001
1000 .09,.07,.08,.07 .07,.07,.07,.07 .0005,.002,.001,.0003 -.04,-.04,-.04,-.04
2000 .08,.08,.08,.07 .09,.09,.08,.08 -.01,-.01,-.01,-.01 -.01,-.01,-.01,-.02
60 101 .07,.01,.02,.02 101 .1,.04,.04,.04 101 .02,.02,.01,.02 101 .005,.003,-.01,.001

500 .06,.05,.06,.05 .09,.07,.08,.08 .04,.04,.04,.04 .01,.01,.01,.01
1000 .1,.1,.1,.1 .09,.08,.08,.08 .01,.01,.01,.01 -.04,-.03,-.03,-.04
2000 .07,.06,.07,.06 .07,.06,.07,.06 -.02,-.02,-.02,-.02 -.002,-.002,-.001,-.002
60 0B1 .11,.06,.06,.06 0B1 .07,.02,.03,.02 0B1 .02,.01,.01,.02 0B1 .02,.03,.01,.01
500 2B1 .1,.09,.09,.09 0B1 .04,.03,.03,.03 1B1 .04,.04,.04,.04 0B1 .001,.001,.001,.001
1000 1B1 .1,.1,.1,.1 0B1 .07,.07,.07,.07 1B1 .01,.01,.01,.01 0B1 -.04,-.04,-.04,-.04
2000 2B1 .11,.11,.11,.11 0B1 .09,.09,.08,.08 0B1 -.01,-.01,-.01,-.01 0B1 -.01,-.01,-.01,-.02
60 02 .19,-.15,-.04,-.05 02 .15,-.1,-.02,-.02 02 .03,.02,.01,.02 02 -.004,.02,-.02,.005
500 .18,-.17,-.02,-.05 .09,-.01,-.01,-.01 .01,.02,.01,.02 .04,.04,.04,.04
1000 .21,-.14,-.02,-.03 .14,.05,.06,.06 .02,.02,.02,.02 -.02,-.02,-.02,-.02
2000 .22,-.14,-.01,-.04 .12,.05,.05,.05 -.01,-.02,-.02,-.02 -.01,-.01,-.01,-.01

60 102 .16,-.07,-.01,-.02 102 .12,-.06,-.01,-.02 102 .01,.01,.01,.02 102 .003,-.01,-.004,-.002
500 .1,.04,.05,.04 .09,.06,.06,.06 .01,.01,.02,.01 .03,.03,.03,.03
1000 .08,.05,.05,.05 .05,.04,.03,.04 .02,.03,.02,.02 -.01,-.02,-.02,-.02
2000 .08,.06,.06,.06 .04,.03,.04,.04 -.02,-.01,-.02,-.02 -.01,-.01,-.01,-.01

Table 4.14. Results Of SIR Estimators Based On Type 7&8 x
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n M βSSIR7 M βSSIR7 M βWSIR8 M βWSIR8

60 N/A N/A 1B2 .01,.01,.01,.02 2B2 .01,.01,.02,.01
500 3B2 .08,.06,.05,.06 2B2 .06,.04,.04,.04 2B2 .02,.02,.02,.02 0B2 .04,.04,.04,.04
1000 3B2 .1,.09,.08,.08 3B2 .06,.05,.05,.05 0B2 .02,.02,.02,.02 0B2 -.02,-.02,-.02,-.02
2000 2B2 .09,.08,.08,.08 1B2 .04,.03,.04,.04 2B2 -.01,-.01,-.01,-.01 0B2 -.01,-.01,-.01,-.01
60 03 .2,-.1,-.04,-.04 03 .15,-.06,-.05,-.04 03 .01,.002,-.0003,.01 03 .01,.02,.01,.02
500 .17,-.11,-.06,-.06 .11,-.04,-.05,-.03 .03,.03,.03,.03 .03,.03,.03,.02
1000 .18,-.11,-.02,-.03 .11,-.04,-.03,-.03 -.001,.003,.003,.002 -.04,-.04,-.04,-.04

2000 .15,-.11,-.03,-.06 .11,-.05,-.06,-.05 -.002,-.004,-.003,-.004 .01,.01,.01,.01
60 103 .14,-.06,-.05,-.04 103 .13,-.04,-.03,-.03 103 -.003,-.01,-.01,-.004 103 .001,.01,-.001,.01
500 .08,-.02,-.01,-.02 .06,-.02,-.01,-.02 .01,.01,.01,.01 .03,.03,.03,.03
1000 .09,.01,.003,.004 .09,.04,.04,.04 .02,.02,.02,.02 -.03,-.03,-.03,-.03
2000 .1,.05,.05,.04 .09,.05,.05,.04 -.01,-.01,-.01,-.01 -.02,-.02,-.02,-.02
60 N/A N/A 2B3 .01,.01,.01,.01 0B3 .01,.02,.01,.02
500 5B3 .07,.02,.03,.03 4B3 .08,.03,.03,.03 0B3 .03,.03,.03,.03 1B3 .03,.03,.03,.03
1000 4B3 .07,.03,.04,.03 5B3 .08,.06,.06,.06 1B3 .02,.02,.02,.02 0B3 -.04,-.04,-.04,-.04
2000 3B3 .09,.06,.07,.06 4B3 .08,.06,.06,.06 1B3 -.01,-.01,-.01,-.01 0B3 .01,.01,.01,.01
60 04 .15,-.04,-.02,-.02 04 .1,-.04,-.02,-.02 04 .03,.03,.03,.03 04 .02,.03,.02,.02

500 .1,-.07,-.03,-.06 .07,.01,.01,.01 .02,.02,.02,.02 .01,.01,.01,.004
1000 .12,-.05,-.02,-.03 .09,.05,.06,.05 .003,.005,.004,.004 -.03,-.03,-.03,-.03
2000 .12,-.03,-.02,-.01 .07,.04,.03,.03 -.004,-.008,-.005,-.007 -.01,-.01,-.01,-.01
60 104 .09,-.02,-.02,-.02 104 .11,-.01,-.005,-.005 104 .01,.01,.01,.01 104 .004,.01,.003,.01
500 .07,.04,.03,.04 .07,.04,.04,.04 .02,.02,.02,.02 .04,.04,.04,.04
1000 .06,.04,.04,.03 .09,.08,.08,.07 .02,.02,.03,.03 -.03,-.03,-.03,-.03
2000 .09,.08,.08,.08 .05,.04,.04,.04 .001,.001,.001,.001 -.01,-.01,-.01,-.01
60 N/A 5B4 .11,.02,.01,.03 0B4 .03,.03,.03,.03 3B4 .01,.01,.01,.01
500 2B4 .1,.07,.07,.07 3B4 .08,.06,.06,.06 0B4 .02,.02,.02,.02 1B4 .04,.04,.04,.04
1000 2B4 .09,.07,.08,.07 1B4 .09,.08,.08,.07 0B4 .003,.005,.004,.004 0B4 -.03,-.03,-.03,-.03
2000 1B4 .09,.08,.08,.08 1B4 .05,.04,.04,.04 1B4 .001,.001,.001,.001 0B4 -.01,-.01,-.01,-.01

60 05 .14,-.13,-.04,-.06 05 .1,-.09,-.07,-.06 05 .02,.02,.01,.01 05 -.01,.01,-.001,.02
500 .06,-.002,-.005,-.0001 .07,.03,.04,.04 .02,.02,.02,.02 .01,.005,.01,.004
1000 .1,.07,.06,.06 .06,.04,.04,.04 -.001,-.001,-.001,-.005 -.02,-.02,-.02,-.02
2000 .1,.08,.08,.07 .06,.05,.06,.05 -.02,-.01,-.01,-.02 -.01,-.01,-.005,-.01

60 105 .09,-.09,-.05,-.06 105 .11,-.07,-.03,-.04 105 -.004,.002,.0003,.02 105
9.6e-5,1.6e-2,
1.8e-2,8.5e-3

500 .09,.06,.06,.06 .09,.06,.06,.06 .03,.04,.04,.03 .03,.03,.03,.03
1000 .09,.08,.08,.08 .08,.06,.06,.06 .02,.02,.02,.02 -.03, -.03,-.03,-.03
2000 .08,.07,.07,.07 .06,.06,.06,.06 -.01,-.01,-.01,-.01 -.01,-.01,-.01,-.01

60 N/A N/A 0B5 .02,.02,.01,.01 5B5 .01,.01,.01,.01
500 2B5 .05,.03,.03,.03 3B5 .11,.09,.09,.09 0B5 .02,.02,.02,.02 1B5 .03,.03,.03,.03
1000 1B5 .09,.08,.08,.08 2B5 .07,.06,.06,.06 1B5 .02,.02,.02,.02 0B5 -.02,-.02,-.02,-.02
2000 2B5 .08,.08,.08,.08 1B5 .06,.06,.06,.06 1B5 -.01,-.01,-.01,-.01 1B5 -.01,-.01,-.01,-.01
60 06 .07,.03,.02,.02 06 .05,.02,.03,.03 06 .02,.01,.01,.01 06 -.01,.002,-.01,-.002
500 .05,.04,.04,.04 .05,.05,.05,.05 .02,.02,.02,.01 .002,.001,.0003,.002
1000 .05,.03,.03,.03 .04,.04,.04,.04 .02,.02,.01,.02 -.03,-.03,-.03,-.03
2000 .06,.05,.06,.05 .03,.02,.02,.02 -.01,-.01,-.01,-.01 -.01,-.01,-.01,-.01
60 106 .05,.02,.03,.02 106 .05,.03,.02,.02 106 5.1e-3,-9.6e-5,9.7e-4,2e-3 106 -.01,.0002,-.002,-.01
500 .05,.05,.05,.05 .04,.03,.03,.03 .03,.03,.03,.03 .01,.01,.01,.01

1000 .04,.04,.04,.04 .004,.003,.002,.002 .01,.01,.01,.01 -.04,-.04,-.04,-.04
2000 .08,.08,.08,.08 .04,.04,.04,.04 -.001,.0004,.0002,.0004 .001,.002,.001,.001
60 1B6 .05,.02,.03,.02 0B6 .05,.02,.03,.03 0B6 .02,.01,.01,.01 5B6 .01,.02,.01,.02
500 1B6 .05,.05,.05,.05 0B6 .05,.05,.05,.05 1B6 .03,.03,.03,.03 1B6 .01,.01,.01,.01
1000 1B6 .04,.04,.04,.04 0B6 .04,.04,.04,.04 1B6 .01,.01,.01,.01 0B6 -.03,-.03,-.03,-.03
2000 1B6 .08,.08,.08,.08 1B6 .04,.04,.04,.04 0B6 -.01,-.01,-.01,-.01 0B6 -.01,-.01,-.01,-.01
60 07 .16,-.12,-.04,-.03 07 .16,-.06,-.02,-.02 07 .01,.001,.01,.003 07 -.0001,.02,-.01,.01
500 .09,-.002,.0008,-.003 .06,.03,.03,.03 .001,.01,-.002,.01 .01,.01,.01,.01
1000 .1,.02,.04,.04 .08,.07,.07,.07 .002,.01,.01,.01 -.01,-.01,-.01,-.01
2000 .08,.03,.04,.03 .1,.09,.09,.08 .001,.003,.005,.001 -.02,-.02,-.02,-.02
60 107 .12,-.08,-.04,-.04 107 .12,-.08,-.05,-.03 107 .004,.0002,.01,.03 107 -.02,-.02,-.01,-.003

Table 4.14. (Continued)
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n M βSSIR7 M βSSIR7 M βWSIR8 M βWSIR8

500 .06,.03,.03,.03 .09,.05,.05,.06 .01,.02,.02,.02 .03,.02,.02,.02
1000 .07,.06,.06,.06 .09,.07,.07,.07 .003,.01,.003,.003 -.01,-.02,-.02,-.02
2000 .07,.06,.06,.06 .06,.05,.05,.05 -.004,-.002,-.002,-.0003 .003,.01,.01,.01
60 N/A N/A 5B7 .01,.02,.01,.02 4B7 .01,.02,.02,.02
500 3B7 .04,.02,.02,.02 2B7 .08,.05,.05,.05 1B7 .01,.02,.02,.02 0B7 .01,.01,.01,.01
1000 1B7 .07,.06,.06,.06 2B7 .09,.08,.08,.08 2B7 .01,.01,.01,.01 0B7 -.01,-.01,-.01,-.01
2000 1B7 .07,.06,.06,.06 1B7 .06,.05,.05,.05 3B7 -.02,-.02,-.02,-.02 0B7 -.02,-.02,-.02,-.02

Table 4.14. (Continued)

The results of Table 4.14 are based on the type 7 predictors xi ∼ MV T5 and

the type 8 predictors xi ∼ MV T19. We will also discuss the results for the type 6 x

here.

In general, the results for the type 8 x are better than those for the type 7

x and the results for the type 7 x are better than those for the type 6 x for most

cases. We made this conclusion based on the trimming percentage for the best

results. Similarly, the results for the method WSIR are better than those for the

method SSIR.

If we compare the results in this section with the corresponding results in

Section 4.3.2, we will find that the OLS method has better results than the SIR

method in general.

4.3.4 2D Simulation

In this section, we will run the simulation on a 2D model. As we said before,

most regression problems have 0D, 1D, or 2D structures. A general 2D model is

y|x = g(x) + σ(x)e, (4.7)

where y x|α′
1x,α′

2x.

Let the OLS population coefficient from regressing y on x be βols =

Σ−1
x Cov(x, g(x)), then the previous 2D model (4.7) is equivalent to

y|x = β0 + β′
olsx + gr(x) + σ(x)e (4.8)
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where β0 is the intercept and the residual regression function gr(x) = g(x) − β0 −

β′
olsx [6].

Let r = y − β̂0 − β̂
′
olsx be the OLS residual, then a plot r versus x could help

to explore the structure of gr(x) [6].

Let us consider a special case of model (4.7) as:

y|x = α′
1x + g2(α

′
2x) + σe, (4.9)

where α1 is independent of α2 and α′
2x is a scalar.

Following Cook (1998, p. 56 - 57), the OLS population coefficient is

βols = α1 + Σ−1
x Cov(x, g2(α

′
2x)), (4.10)

and the residual regression function is

gr(x) = g2(α
′
2x) − β0 − [Σ−1

x Cov(x, g2(α
′
2x))]′x. (4.11)

If Σ−1
x Cov(x, g2(α

′
2x)) is a linear function of α2, then the residual plot only

has the 1D structure. Since Cov(x, g2(α
′
2x)) = E[g2(α

′
2x)E(x|α′

2x)], that means

the residual plot will have the 1D structure if E(x|α′
2x) is a linear combination

of α′
2x. As we stated in Section 2.2, if x has an elliptically contoured distribution

then E(x|b′x) is a linear function of b′x for all b. Therefore, if x has an elliptically

contoured distribution, we can estimate the coefficient α2 by regressing r on x.

The model we used in this section is a type of (4.9). It is

y = β′
1x + (β2x

′)3 + e, (4.12)

where β1 = (1, 2, 3)′, β2 = (1, 1, 1)′, and the error e ∼ N(0, σ2) is independent of

xi.

We will run two DR methods, OLS and SIR, on the previous model in the

following pages.
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The OLS Estimator

Next we will run two kinds of OLS regression on model (4.12). The first

one is to regress y on x, and the second one is to regress the residual of the first

regression r on x. Let β̂y be the coefficients from the regression of y on x, and β̂r

be the coefficients from the regression of r on x. As we stated in Section 4.3.4, we

hope that β̂r will estimate cβ2 for some constant c. In this section, we will run

the regression for 4 different types of predictors as introduced in Section 4.2 and 4

different sample sizes n. For each case, we let the number of runs nruns = 1000.

For each run, we will use the MBA algorithm to trim M = 0%, · · · , 90% data. We

will keep a record of β̂y based on the 0%, 10%, and the adaptive trimming and

β̂r based on the 10% and the adaptive trimming. The definition of the adaptive

trimming is the same as the one defined in Section 4.4.2. If we trim 0% of the data,

the obtained β̂r = 0 theoretically. That is why we do not keep a record of the

coefficients based on the 0% trimming. Then we will calculate the sample means

of all the coefficients and show the results in Table 4.15. Column “Type” denotes

the type of predictor distribution, column “n” means the sample size, and column

“βy0
” means the sample mean of β̂y based on the 0% trimming, etc.

Type n βy0
βy10

βyadap
βr10

βradap

1 60 9.56,10.65,11.56 7.68,8.68,9.67 9.56,10.64,11.54 -1.89,-1.97,-1.9 -3.15,-3.26,-3.16
500 9.92,10.92,11.98 7.29,8.27,9.29 9.92,10.92,11.98 -2.63,-2.65,-2.69 -2.54,-2.56,-2.6
1000 9.95,10.94,11.97 7.22,8.21,9.23 9.95,10.94,11.97 -2.73,-2.73,-2.74 -2.62,-2.62,-2.64
2000 10.01,11.02,11.99 7.2,8.2,9.19 10.01,11.02,11.99 -2.8,-2.82,-2.8 -2.67,-2.69,-2.67

2 60 2.44,2.7,2.95 2.39,2.65,2.97 2.55,2.79,3.05 -.04,-.05,0.02 3.54,3.87,4.21
500 2.44,2.7,2.94 2.13,2.43,2.73 2.44,2.7,2.94 -.31,-.27,-.21 1.36,1.57,1.83
1000 2.45,2.69,2.95 2.13,2.41,2.71 2.45,2.69,2.95 -.32,-.27,-.24 .79,.96,1.13
2000 2.46,2.71,2.95 2.12,2.42,2.71 2.46,2.71,2.95 -.33,-.28,-.24 .39,.54,.68

5 60 4.42,4.91,5.33 5.41,6.19,6.72 4.92,5.41,5.88 .98,1.28,1.39 3.39,3.80,4.17
500 4.05,4.42,4.8 5.35,6.02,6.72 4.14,4.52,4.91 1.3,1.6,1.92 1.93,2.27,2.64
1000 3.97,4.36,4.68 5.37,6.03,6.7 4.01,4.42,4.73 1.4,1.67,2.02 1.68, 1.97,2.35
2000 3.97,4.33,4.68 5.36,6.03,6.7 3.98,4.33,4.69 1.39,1.71,2.02 1.46,1.77,2.08

Table 4.15. Results Of 2D OLS Estimator
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Type n βy0
βy10

βyadap
βr10

βradap

8 60 9.13,10.21,11.07 7.49,8.61,9.53 9.1,10.2,11.04 -1.63,-1.59,-1.54 -3.2,-3.3,-3.19
500 9.33,10.26,11.17 7.43,8.4,9.37 9.33,10.26,11.17 -1.89,-1.86,-1.8 -1.93,-1.89,-1.83
1000 9.3,10.24,11.19 7.36,8.34,9.33 9.3,10.24,11.19 -1.93,-1.9,-1.86 -1.85,-1.82,-1.79
2000 9.31,10.27,11.19 7.38,8.36,9.33 9.31,10.27,11.19 -1.93,-1.91,-1.86 -1.84,-1.82,-1.77

Table 4.15. (Continued)

The results of Table 4.15 are based on 4 different types of predictors.

1) For the type 1 predictor xi ∼ N3(0, I), both the 10% and the adaptive

trimming coefficients β̂r from the regression of r on x are estimating c(1, 1, 1)′ = cβ2

for n > 60. The coefficients β̂y from the regression of y on x are not estimating cβ1

or cβ2 for any constant c for all trimmings. For all n > 60, the adaptive trimming’s

results are equal to those of the 0% trimming.

2) For the type 8 predictor xi ∼ MV T19, all β̂r are estimating cβ2 for large

n for some constant c, but all β̂y are not estimating either cβ1 or cβ2. However all

β̂yadap
are equal to β̂y0

for large n.

3) The results based on the type 2 and 5 predictors are not good. The β̂r are

not close to cβ2.

The SIR Estimator

Now we will run two types of SIR, WSIR and SSIR, on the model (4.12). For

both methods, we let the number of runs nruns = 1000 and the number of slices

h = 4. Similarly, for each run we use the MBA algorithm to trim M = 0%, · · · , 90%

data. For each case, we keep a record of the first two eigenvalues and coefficients

based on the 0%, 10%, and the adaptive trimming. Then we will calculate all the

sample means and show all the results in Table 4.16 for the method WSIR and

Table 4.17 for the method SSIR. Let λ̂ denote the two eigenvalues. Column “Type”

denotes the type of predictors, column “n” denotes the sample size, column “λ0”

denotes the sample mean of the first two eigenvalues based on the 0% trimming,
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and column “β0” denotes the sample mean of the coefficients β̂ corresponding to

the first eigenvalue based on the 0% trimming, etc. As we noticed in the following

tables, the second eigenvalue is much smaller than the first eigenvalue. This means

both the SIR methods incorrectly suggest 1D structure. That is the reason why we

only keep one direction of the coefficients.

Type n λ0 β0 λ10 β10 βadap

1 60 .85,.08 .02,.02,.03 .85,.08 .01,.01,.01 .02,.02,.02
500 .86,.03 -.01,-.02,-.02 .84,.03 -.01,-.01,-.01 -.01,-.02,-.02
1000 .86,.03 -.004,-.006,-.007 .84,.03 .003,.004,.004 -.004,-.006,-.007
2000 .86,.02 -.02,-.02,-.03 .84,.02 .005,.007,.009 -.02,-.02,-.03

2 60 .57,.08 -.03,-.03,-.04 .56,.07 .001,-.007,-.006 -.02,-.03,-.03
500 .55,.02 .02,.03,.04 .54,.02 .02,.02,.03 .02,.03,.04
1000 .55,.02 .0004,.0002,-.0004 .54,.02 -.004,-.004,-.006 .0004, .0002,-.0004
2000 .55,.02 .004,.006,.007 .54,.02 -.01,-.01,-.01 .004,.006,.007

5 60 .71,.08 -.08,-.1,-.13 .61,.06 -.04,-.07,-.09 -.07,-.09,-.1
500 .69,.02 -.08,-.09,-.12 .52,.01 -.08,-.11,-.14 -.08,-.1,-.12
1000 .69,.02 -.05,-.07,-.08 .51,.01 -.07,-.1,-.13 -.05,-.07,-.08
2000 .69,.02 -.05,-.08,-.09 .5,.01 -.06,-.08,-.11 -.05,-.07,-.09

8 60 .84,.08 -.001,.005,.003 .82,.08 .004,.007,.009 -.0001,.007,.006
500 .84,.03 -.01,-.01,-.02 .82,.03 -.002,-.004,-.004 -.01,-.01,-.02
1000 .84,.03 .0006,.001,.002 .82,.02 .03,.04,.04 .001,.001,.002
2000 .84,.02 .01,.01,.01 .82,.02 .01,.02,.02 .01,.01,.01

Table 4.16. Results Of 2D WSIR Estimator

The results of Table 4.16 are based on the method WSIR.

1) For the type 1 x, β̂ which are based on the 10% trimming are estimating

cβ2 for some constant c when n is less than 2000. However, the adaptive trimming’s

results are equal to those based on the 0% trimming for large n.

2) For the type 2 and 8 predictors, the adaptive trimming’s results are also

equal to those based on the 0% trimming when n is large. However, most of the β̂

are not estimating cβ2 for some constant c except the following two cases. When

n = 2000, β̂10 = c(1, 1, 1)′ for the type 2 x, and β̂0 = cβ2 for the type 8 x.

3) The results for the type 5 predictor are the worst compared to the other

types of predictors. None of the β̂ is close to cβ2 for some constant c.
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Type n λ0 β0 λ10 β10 βadap

1 60 .68,.06 -.11,-.17,-.19 .65,.06 -.12,-.18,-.2 -.11,-.17,-.18
500 .59,.01 -.1,-.12,-.13 .44,.01 -.15,-.18,-.22 -.1,-.12,-.13
1000 .6,.01 -.12,-.14,-.15 .39,.004 -.19,-.23,-.26 -.12,-.14,-.15
2000 .61,.005 -.11,-.13,-.14 .35,.002 -.17,-.21,-.25 -.11,-.13,-.14

2 60 .38,.03 -.06,-.14,-.15 .47,.05 -.06,-.14,-.17 -.06,-.12,-.13
500 .19,.002 -.09,-.12,-.13 .29,.01 -.09,-.12,-.14 -.09,-.11,-.12
1000 .15,.001 -.08,-.1,-.11 .26,.004 -.12,-.14,-.16 -.08,-.1,-.11
2000 .14,.0004 -.09,-.1,-.11 .22,.002 -.11,-.14,-.16 -.09,-.1,-.11

5 60 .52,.04 -.003,-.15,-.13 .58,.09 -.07,-.17,-.19 -.06,-.11,-.13
500 .37,.003 -.05,-.14,-.14 .39,.02 -.14,-.17,-.2 -.08,-.13,-.14
1000 .35,.001 -.04,-.1,-.12 .34,.02 -.15,-.18,-.21 -.07,-.1,-.12
2000 .31,.001 -.07,-.11,-.13 .3,.01 -.17,-.2,-.23 -.08,-.11,-.12

8 60 .65,.06 -.12,-.18,-.19 .63,.06 -.14,-.2,-.23 -.11,-.16,-.18
500 .48,.01 -.11,-.13,-.14 .42,.01 -.12,-.15,-.17 -.11,-.13,-.14
1000 .45,.003 -.13,-.15,-.16 .37,.004 -.12,-.14,-.16 -.13,-.15,-.16
2000 .42,.002 -.07,-.09,-.09 .33,.002 -.13,-.16,-.18 -.07,-.09,-.09

Table 4.17. Results Of 2D SSIR Estimator

The results in Table 4.17 are based on the method SSIR. In general, the results

based on the method SSIR are worse than those based on the method WSIR. Most

of the β̂ are not close to cβ2 for some constant c.

4.4 TESTING PROBLEM

4.4.1 Three Testing Problems

In this section, we will discuss the three cases of the testing problems. For

each case, we have a different F test statistic, but all the χ2 test statistics take the

same form. Therefore, for each case we will explain in detail the F test statistic.

1. Testing H0 : β = 0 versus H1 : β 6= 0

This testing problem is a special case of (2.45) with A being a (p−1)× (p−1)

identity matrix. For the OLS estimator, if the regression was made based on the

original dataset (x, y), then the F test statistic in (2.56) could be simplified as

F =
MSR

MSE
=

n∑
i=1

(ŷi − y)2/(p − 1)

n∑
i=1

r2
i /(n − p)

; (4.13)
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where ri = yi−ŷi. If the regression was made based on the trimmed dataset (xM , yM),

then the corresponding F test statistic is

FM =

nM∑
i=1

(ŷM,i − yM )2/(p − 1)

nM∑
i=1

r2
M,i/(nM − p)

, (4.14)

where rM,i = yM,i − ŷM,i.

If H0 is true and the sample size large, then F ≈ Fp−1,n−p, FM ≈ Fp−1,nM−p,

and W ≈ χ2
p−1. As a result, H0 will be rejected if F > Fp−1,n−p(1 − α), FM >

Fp−1,nM−p(1 − α), or W > χ2
p−1(1 − α), where α denotes the type I error.

2. Testing H0 : βi = 0 versus H1 : βi 6= 0

This testing problem is another special case of (2.45) with A being a 1×(p−1)

vector with all entries zero except the ith one. For the OLS estimator, the Wald t

test is equivalent to the F test since t2n−p = F1,n−p. The t test statistic is

t =
β̂ols,i

se(β̂ols,i)
. (4.15)

The tM test statistic for the trimmed dataset could be defined in the same way.

If H0 holds, t ≈ tn−p and tM ≈ tnm−p, therefore H0 will be rejected if |t| >

t1−α/2,n−p or |tM | > t1−α/2,nM−p, where α denotes the type I error. When n − p or

nM − p is large, the Wald test converges to the Z test.

3. Testing H0 : βO = 0 versus H1 : βO 6= 0

Let β = (β′
R,β′

O)′ and x = (x′
R,x′

O)′, where βO is a j × 1 vector and xO is a

n × j matrix. Then let the full model be

SP = α + x′β (4.16)

and the reduced model be

SP = αR + x′
RβR. (4.17)

This testing problem is equivalent to testing the reduced model. It is also a

special case of (2.45) with A = (0 Ij) where 0 is a j × (p− 1− j) matrix of zeroes.
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For the OLS estimator, the F test statistic is

F =
(SSE(R) − SSE(F ))/(dfR − dfF )

MSE(F )
, (4.18)

where the subscript R denotes the reduced model and F denotes the full model,

dfR = n − j − p, dfF = n − p, SSE(R) =
n∑

i=1

r2
i,R, ri,R = yi − ŷR,i, SSE(F ) =

n∑
i=1

r2
i ,

and MSE(F ) =
SSE(F )

n − p
. We can define the test statistic FM for the trimmed

dataset similarly. If H0 holds, F ≈ F (j, n − p) and FM ≈ F (j, nM − p) and we will

reject H0 for large F values.

4.4.2 Testing Results

Prior to presenting the testing results, we will introduce the simulation process.

First of all, for each run we generate n i.i.d. (p−1)×1 random vectors xi using one of

the distributions described in Section 4.2 and an n × 1 vector of the random errors

with the standard normal distribution. The dependent variable y was obtained

according to one of the models described in Section 4.2. For the second and the

third testing problem, we will use the MBA algorithm to drop M% of the cases,

where M = 0%, 10%, 20%, · · · , 90%.

Second of all, both OLS and SIR were performed on the data (xM , yM) re-

maining after trimming for each M. The corresponding test statistics which were

introduced in Section 4.4.1 were also calculated for each M. At the same time we

calculated the so called adaptive trimming percentage Madp based on the following

algorithm.

1. Let β̂M denote the regression coefficients based on the dataset (xM , yM), β

denote the true coefficients of the model, and “Corr” represent the correlation. For

each run, the expression |Corr(x′
iβ,x′

iβ̂M )| where M = 0%, 10%, 20%, · · · , 90% was

calculated.

2. Find the maximum value of |Corr(x′
iβ,x′

iβ̂M )| and call the corresponding
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trimming percentage Mm. Then calculate |Corr(x′
iβ̂Mm

,x′
iβ̂M )| for all M.

3. Find the smallest value of M which makes |Corr(x′
iβ̂Mm

,x′
iβ̂M)| > 0.95,

and call it Madp. This is the adaptive trimming percentage.

4. Calculate all the corresponding test statistics on the adaptive trimming

percentage Madp.

Last, keep a record of all the rejection percentages of each test for M =

0%, · · · , 90% and for the adaptive trimming.

Now we will present the testing results for the three testing problems.

1. Test For H0 : β = 0,H1 : β 6= 0.

For this testing problem, the true coefficient is β = 0. According to (4.1), we

have SP = α, which is a constant. Therefore, the dependent variable y for all the

seven models introduced in Section 4.2 is equal to some constant plus the error.

We can show that the rejection percentages for the different models are the same.

Therefore, for this testing problem, the rejection percentages only depend on the

predictor distribution x.

The results are shown in Table (4.18). Column “x” expresses the predictor

distribution used in the simulation, column “F” expresses the rejection percentage

made by the F test based on the OLS estimator, column “χ2” expresses the rejection

percentage made by the χ2 test based on the OLS estimator, and columns “SSIR”

and “WSIR” denote the rejection percentage made by the χ2 test based on the two

algorithms of the SIR estimator. For both algorithms, we let the number of slices

h = 2. Larger values of h rejected too often.

x n F χ2 SSIR WSIR
Type 1 10 0.047 0.2 0.167 0.226

50 0.053 0.076 0.071 0.08
100 0.041 0.059 0.059 0.057
500 0.05 0.051 0.043 0.048

Type 2 10 0.04 0.209 0.857 0.739

Table 4.18. Test For H0 : β = 0,H1 : β 6= 0
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x n F χ2 SSIR WSIR
50 0.055 0.08 0.966 0.898
100 0.05 0.059 0.952 0.908
500 0.045 0.046 0.953 0.93

Type 3 10 0.05 0.238 0.671 0.896
50 0.053 0.071 0.891 0.947
100 0.047 0.053 0.91 0.955
500 0.05 0.052 0.93 0.93

Type 4 10 0.057 0.213 0.281 0.367
50 0.052 0.067 0.446 0.444
100 0.045 0.055 0.496 0.526
500 0.048 0.049 0.598 0.599

Type 5 10 0.053 0.205 0.329 0.428
50 0.055 0.074 0.582 0.606
100 0.055 0.063 0.635 0.621
500 0.061 0.061 0.71 0.709

Type 6 10 0.053 0.21 0.332 0.429
50 0.049 0.076 0.399 0.379
100 0.042 0.05 0.434 0.439
500 0.036 0.038 0.477 0.472

Type 7 10 0.048 0.215 0.256 0.332
50 0.05 0.065 0.2 0.224
100 0.054 0.064 0.214 0.214
500 0.047 0.049 0.202 0.197

Type 8 10 0.057 0.22 0.194 0.247
50 0.056 0.087 0.107 0.121
100 0.044 0.055 0.078 0.074
500 0.06 0.06 0.074 0.077

Table 4.18. (Continued)

We noticed that there are several interesting results shown by Table 4.18.

1) The F test works very well for all the predictor distributions and dimension

n’s. Even for n = 10, the rejection percentage is close to 0.05, which is the type I

error.

2) For large n, the χ2 test is as effective as the F test no matter which distri-

bution we used. If n is small, the χ2 test rejected H0 too often.

3) The quality of the χ2 SIR test depends on the predictor distribution. It

works well if x has normal distribution. For other distributions, the test rejected
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H0 too often.

2. Test For H0 : βi = 0,H1 : βi 6= 0

Here the true coefficient β = [1, 0, 1, 1]′, i.e. β2 = 0 for the true model. The

results of the different distributions were displayed in a different table for each dis-

tribution. In each table, column “Model” means the model used in the simulation,

column “n” denotes the sample size, column “90%” to column “0%” gives the rejec-

tion percentage based on M% trimming, and column “ADAP” gives the rejection

percentage based on the adaptive percentage trimming. There are four rows of re-

sults for each model and each n. Row “t” has the results of the Wald test, row

“χ2” has the results of the χ2 test based on the OLS estimator, and rows “SSIR”

and “WSIR” both give the results of the χ2 test based on the SIR estimator. The

results are shown in Table 4.19 to Table 4.26.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .053 .055 .049 .050 .048 .042 .043 .050 .048 .056 .055

χ2 .320 .112 .092 .072 .066 .051 .056 .062 .061 .063 .062
SSIR .000 .002 .007 .010 .012 .020 .030 .033 .046 .048 .027
WSIR .180 .018 .012 .018 .023 .021 .028 .037 .043 .057 .046
t 150 .065 .073 .061 .056 .062 .051 .046 .05 .044 .043 .043
χ2 .098 .081 .071 .068 .072 .052 .051 .054 .049 .046 .046
SSIR .002 .001 .006 .012 .012 .011 .023 .026 .042 .057 .052
WSIR .004 .001 .007 .013 .015 .020 .027 .032 .045 .056 .056
t 500 .05 .042 .047 .039 .055 .057 .056 .057 .049 .051 .051
χ2 .062 .045 .051 .041 .058 .058 .056 .060 .053 .051 .051
SSIR .000 .000 .002 .009 .011 .011 .016 .025 .029 .065 .065
WSIR .000 .000 .002 .004 .008 .014 .013 .024 .035 .048 .048

2. t 60 .051 .051 .032 .026 .028 .027 .033 .038 .028 .051 .019
χ2 .324 .100 .054 .046 .036 .032 .044 .042 .033 .056 .022
SSIR .000 .007 .004 .004 .009 .011 .017 .016 .017 .066 .008
WSIR .192 .022 .013 .008 .016 .020 .028 .036 .039 .050 .021
t 150 .044 .048 .034 .035 .026 .029 .038 .029 .030 .038 .033
χ2 .078 .059 .043 .038 .033 .032 .041 .031 .032 .039 .034
SSIR .000 .002 .002 .004 .007 .007 .007 .017 .027 .055 .009
WSIR .005 .001 .004 .009 .010 .014 .020 .024 .046 .073 .025

Table 4.19. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 1 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 500 .039 .043 .03 .025 .029 .023 .014 .027 .025 .038 .038
χ2 .046 .048 .03 .026 .029 .023 .014 .027 .025 .038 .038
SSIR 0 0 0 .004 .002 .001 .006 .014 .017 .051 .036
WSIR .000 .001 .001 .005 .004 .009 .011 .017 .021 .054 .050

3. t 60 .050 .051 .023 .021 .018 .022 .023 .034 .022 .050 .019
χ2 .326 .095 .042 .032 .026 .031 .027 .041 .027 .057 .024
SSIR .000 .004 .005 .003 .006 .004 .009 .017 .021 .076 .004
WSIR .220 .020 .012 .020 .018 .030 .043 .035 .040 .062 .058
t 150 .040 .034 .024 .027 .016 .020 .026 .018 .025 .044 .034
χ2 .081 .047 .032 .029 .020 .022 .027 .022 .026 .048 .038
SSIR .000 .000 .000 .001 .003 .003 .004 .009 .017 .049 .003
WSIR .004 .003 .011 .009 .012 .019 .028 .026 .040 .056 .056
t 500 .029 .034 .022 .012 .010 .009 .009 .015 .010 .042 .038
χ2 .036 .035 .024 .013 .010 .009 .009 .015 .010 .044 .039
SSIR .000 .000 .000 .001 .000 .001 .001 .004 .015 .049 .006
WSIR .000 .002 .006 .008 .007 .014 .010 .021 .034 .055 .055

4. t 60 .045 .049 .024 .021 .016 .023 .023 .034 .023 .052 .046
χ2 .313 .083 .037 .039 .029 .029 .030 .042 .026 .060 .054
SSIR .000 .002 .002 .003 .007 .009 .016 .016 .027 .069 .014
WSIR .206 .021 .015 .016 .022 .030 .041 .036 .045 .053 .046
t 150 .041 .026 .020 .027 .023 .024 .029 .024 .029 .045 .045
χ2 .074 .039 .024 .034 .027 .026 .032 .026 .036 .049 .049
SSIR .000 .000 .001 .001 .004 .006 .010 .012 .020 .067 .021
WSIR .006 .004 .006 .007 .009 .018 .027 .034 .041 .060 .060
t 500 .030 .028 .020 .018 .011 .014 .017 .018 .020 .047 .047
χ2 .035 .031 .023 .019 .011 .014 .017 .018 .021 .049 .049
SSIR .000 .000 .000 .001 .001 .001 .005 .007 .012 .057 .037
WSIR .000 .001 .001 .007 .010 .013 .015 .019 .023 .055 .055

5. t 60 .054 .037 .019 .027 .022 .023 .030 .034 .030 .037 .019
χ2 .318 .088 .041 .043 .027 .032 .036 .044 .035 .041 .021
SSIR .000 .001 .006 .005 .009 .017 .021 .025 .026 .052 .016
WSIR .223 .021 .017 .011 .010 .016 .019 .035 .043 .044 .014
t 150 .025 .017 .019 .023 .019 .019 .020 .022 .027 .037 .029
χ2 .057 .025 .030 .026 .022 .024 .021 .023 .029 .044 .036
SSIR .000 .002 .002 .006 .011 .016 .014 .014 .024 .044 .030
WSIR .006 .001 .002 .003 .006 .005 .010 .014 .025 .055 .026
t 500 .024 .026 .020 .020 .018 .019 .012 .017 .027 .050 .050

Table 4.19. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
χ2 .028 .031 .022 .021 .018 .019 .012 .018 .029 .050 .050
SSIR .000 .000 .001 .005 .007 .009 .012 .018 .018 .044 .044
WSIR .000 .002 .000 .002 .004 .008 .003 .014 .024 .055 .051

6. t 60 .057 .036 .028 .024 .023 .031 .037 .041 .032 .047 .047
χ2 .314 .085 .047 .035 .040 .038 .048 .052 .037 .053 .053
SSIR .000 .001 .011 .012 .016 .012 .027 .025 .032 .058 .054
WSIR .220 .018 .021 .019 .030 .035 .029 .041 .050 .062 .058
t 150 .033 .029 .030 .030 .034 .038 .035 .032 .037 .040 .040
χ2 .063 .034 .035 .035 .039 .040 .040 .034 .040 .040 .040
SSIR .000 .003 .007 .010 .011 .009 .024 .025 .035 .058 .058
WSIR .009 .005 .006 .005 .006 .019 .018 .028 .038 .054 .054
t 500 .029 .030 .023 .023 .023 .020 .027 .030 .030 .037 .037
χ2 .043 .034 .024 .023 .024 .020 .027 .031 .030 .037 .037
SSIR .000 .000 .001 .005 .008 .011 .011 .017 .028 .045 .045
WSIR .001 .000 .002 .001 .008 .013 .014 .020 .024 .048 .048

7. t 60 .054 .050 .034 .033 .029 .030 .040 .045 .033 .034 .009
χ2 .329 .093 .057 .051 .043 .041 .045 .053 .038 .039 .015
SSIR .000 .003 .001 .007 .007 .017 .012 .021 .038 .061 .015
WSIR .216 .018 .012 .011 .013 .016 .016 .030 .042 .056 .018
t 150 .051 .036 .030 .029 .031 .034 .033 .036 .038 .044 .036
χ2 .080 .046 .035 .030 .033 .038 .034 .037 .040 .046 .038
SSIR .001 .000 .000 .003 .011 .009 .010 .020 .037 .055 .018
WSIR .008 .001 .001 .005 .007 .008 .011 .025 .040 .055 .015
t 500 .029 .034 .022 .017 .025 .029 .029 .030 .031 .046 .046
χ2 .035 .036 .023 .018 .028 .029 .029 .033 .032 .047 .047
SSIR .000 .000 .001 .002 .001 .004 .009 .013 .023 .057 .053
WSIR .000 .000 .001 .001 .001 .004 .006 .017 .026 .061 .055

Table 4.19. (Continued)

Table 4.19 gives the results for xi ∼ N4(0, I). For all the models, the best

results for all the tests are usually based on the 0% trimming, i.e. the original

dataset, and many of the results based on the adaptive trimming are the same as

those based on the 0% trimming. The t test and the χ2 OLS test perform similarly.

WSIR and SSIR are similar. Overall, all the tests work well for this predictor

distribution.
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .040 .047 .042 .058 .058 .047 .059 .042 .044 .049 .049

χ2 .302 .097 .076 .078 .069 .068 .065 .052 .052 .060 .060
SSIR .003 .022 .021 .028 .046 .080 .176 .331 .416 .540 .409
WSIR .218 .036 .031 .046 .067 .092 .146 .255 .335 .462 .398
t 150 .058 .049 .046 .046 .052 .051 .054 .043 .035 .045 .045
χ2 .091 .062 .061 .053 .062 .058 .055 .043 .045 .049 .049
SSIR .003 .008 .014 .027 .030 .059 .148 .292 .433 .577 .564
WSIR .017 .007 .013 .025 .029 .055 .119 .244 .338 .506 .505
t 500 .054 .044 .044 .046 .051 .041 .056 .052 .048 .049 .049
χ2 .060 .051 .045 .049 .053 .043 .058 .052 .049 .051 .051
SSIR .000 .006 .011 .018 .024 .047 .129 .230 .380 .549 .549
WSIR .001 .003 .009 .013 .027 .046 .136 .220 .356 .468 .468

2. t 60 .058 .033 .032 .027 .043 .080 .180 .195 .177 .195 .049
χ2 .310 .084 .054 .041 .058 .094 .209 .210 .192 .213 .057
SSIR .001 .007 .004 .013 .038 .120 .369 .523 .603 .682 .166
WSIR .228 .033 .033 .026 .047 .088 .171 .323 .446 .563 .056
t 150 .045 .033 .023 .024 .026 .070 .183 .182 .142 .166 .040
χ2 .077 .045 .028 .030 .028 .076 .192 .191 .144 .172 .042
SSIR .002 .004 .003 .014 .019 .077 .331 .475 .597 .685 .163
WSIR .010 .012 .007 .010 .021 .067 .177 .328 .452 .576 .050
t 500 .032 .039 .031 .026 .021 .049 .179 .152 .141 .167 .051
χ2 .043 .042 .033 .027 .021 .051 .179 .154 .142 .168 .051
SSIR .001 .003 .002 .008 .013 .044 .347 .437 .574 .670 .227
WSIR .001 .001 .005 .013 .027 .046 .163 .311 .417 .526 .137

3. t 60 .047 .028 .029 .032 .044 .070 .180 .228 .206 .216 .025
χ2 .330 .088 .049 .042 .054 .089 .197 .248 .220 .220 .027
SSIR .001 .007 .003 .014 .023 .126 .358 .549 .624 .675 .134
WSIR .231 .040 .036 .057 .060 .108 .174 .264 .379 .485 .427
t 150 .046 .023 .018 .021 .016 .066 .180 .177 .167 .220 .024
χ2 .076 .034 .025 .021 .020 .071 .189 .185 .174 .227 .027
SSIR .000 .002 .000 .008 .011 .089 .363 .494 .571 .722 .130
WSIR .008 .014 .014 .022 .040 .053 .133 .250 .357 .499 .497
t 500 .030 .029 .023 .014 .019 .037 .151 .096 .087 .177 .027
χ2 .033 .029 .025 .014 .019 .038 .153 .096 .089 .177 .027
SSIR .000 .002 .003 .000 .003 .043 .316 .392 .540 .687 .227
WSIR .001 .005 .011 .020 .029 .059 .130 .229 .340 .476 .476

4. t 60 .045 .029 .032 .035 .047 .062 .138 .160 .159 .179 .123
χ2 .325 .084 .055 .048 .054 .076 .153 .182 .167 .198 .138

Table 4.20. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 2 x

79



Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .001 .005 .006 .018 .032 .123 .347 .531 .614 .705 .355
WSIR .228 .039 .042 .051 .058 .102 .167 .271 .370 .466 .416
t 150 .044 .024 .023 .021 .025 .052 .131 .150 .138 .178 .173
χ2 .074 .035 .027 .025 .027 .056 .138 .154 .142 .184 .179
SSIR .001 .002 .002 .015 .016 .082 .314 .501 .592 .674 .475
WSIR .009 .012 .011 .020 .033 .058 .134 .260 .367 .502 .501
t 500 .019 .035 .027 .017 .024 .034 .132 .107 .134 .206 .206
χ2 .026 .037 .029 .018 .026 .035 .133 .107 .135 .207 .207
SSIR .000 .000 .000 .002 .008 .046 .332 .490 .597 .687 .648
WSIR .001 .000 .011 .015 .023 .055 .132 .212 .339 .461 .461

5. t 60 .050 .034 .027 .030 .045 .052 .098 .093 .082 .072 .028
χ2 .322 .084 .054 .041 .063 .066 .107 .105 .094 .076 .036
SSIR .002 .008 .016 .019 .034 .075 .205 .353 .456 .545 .043
WSIR .240 .038 .034 .029 .039 .092 .179 .333 .446 .549 .046
t 150 .040 .025 .021 .020 .029 .061 .112 .111 .071 .064 .020
χ2 .063 .039 .027 .024 .033 .068 .116 .116 .081 .068 .024
SSIR .001 .009 .009 .014 .025 .075 .227 .371 .460 .558 .058
WSIR .012 .006 .006 .011 .020 .068 .182 .329 .444 .572 .042
t 500 .026 .032 .030 .021 .031 .043 .094 .084 .064 .052 .030
χ2 .033 .032 .033 .022 .032 .045 .095 .086 .066 .052 .031
SSIR .000 .002 .008 .012 .015 .052 .202 .355 .441 .531 .157
WSIR .002 .002 .004 .014 .029 .056 .170 .319 .431 .538 .150

6. t 60 .046 .034 .035 .037 .039 .045 .058 .066 .051 .072 .072
χ2 .308 .084 .053 .050 .049 .054 .068 .074 .062 .079 .079
SSIR .001 .013 .025 .032 .036 .086 .192 .343 .440 .569 .453
WSIR .250 .044 .044 .056 .055 .107 .183 .280 .381 .460 .399
t 150 .043 .028 .023 .034 .032 .046 .054 .067 .049 .057 .057
χ2 .072 .039 .030 .038 .040 .056 .064 .070 .050 .058 .058
SSIR .002 .004 .011 .020 .032 .053 .161 .304 .404 .583 .575
WSIR .007 .013 .018 .021 .033 .068 .130 .256 .362 .509 .508
t 500 .031 .045 .037 .030 .041 .037 .071 .060 .060 .053 .053
χ2 .034 .048 .041 .031 .046 .038 .072 .061 .060 .054 .054
SSIR .000 .002 .009 .013 .027 .042 .171 .238 .393 .530 .530
WSIR .002 .004 .005 .013 .030 .053 .129 .218 .343 .473 .473

7. t 60 .050 .040 .038 .028 .041 .068 .102 .148 .132 .120 .035
χ2 .294 .081 .062 .050 .057 .078 .122 .159 .137 .134 .043
SSIR .000 .011 .013 .028 .041 .088 .218 .426 .558 .661 .072
WSIR .243 .037 .031 .023 .041 .090 .185 .319 .446 .559 .049

Table 4.20. (Continued)

80



Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 150 .036 .032 .027 .029 .026 .059 .141 .150 .119 .127 .027
χ2 .067 .048 .036 .034 .030 .060 .147 .156 .125 .129 .030
SSIR .002 .005 .006 .010 .024 .061 .257 .469 .588 .669 .060
WSIR .007 .008 .010 .010 .028 .066 .191 .334 .441 .573 .051
t 500 .031 .033 .031 .028 .028 .048 .109 .115 .108 .116 .042
χ2 .039 .038 .032 .029 .028 .050 .112 .117 .108 .117 .043
SSIR .002 .001 .004 .011 .023 .043 .227 .461 .529 .693 .139
WSIR .003 .001 .005 .006 .023 .047 .169 .318 .419 .533 .131

Table 4.20. (Continued)

The results in Table 4.20 are based on xi ∼ 0.6N4(0, I) + 0.4N4(0, 25I). This

distribution belongs to EC[23].

1) For the OLS estimator, both the t test and χ2 test work well for the original

dataset if the model is MLR. Also the results of the adaptive trimming and the

0% trimming are the same. If the model is nonlinear, such as model 2,3,4, or 7,

the 0% trimming rejected too often. The results based on higher M are better,

especially 40% and 50% trimming. The rejection rates based on these two trimming

percentages are closer to 0.05, the type I error. In general, the adaptive trimming

is better than the original dataset but OLS ADAP fails for model 4.

2) For the SIR estimator, the two methods WSIR and SSIR are similar. The

χ2 tests based on the original dataset are not applicable for all the models. Similar

to the OLS estimator, most of the results based on the trimmed data are better, and

the best results usually happened based on 40% and 50% trimming. The results

of the adaptive trimming depend on the model. For some models, the adaptive

trimming works well; but for other models, the rejection percentage of the adaptive

trimming are as high as the one for 0% trimming.
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .045 .053 .057 .049 .058 .055 .045 .050 .052 .049 .049

χ2 .324 .103 .089 .074 .073 .063 .053 .061 .059 .054 .054
SSIR .008 .028 .045 .106 .185 .299 .390 .466 .541 .601 .540
WSIR .250 .062 .065 .108 .182 .281 .331 .436 .492 .564 .549
t 150 .043 .048 .038 .041 .044 .048 .051 .052 .040 .050 .050
χ2 .082 .056 .048 .050 .050 .049 .052 .055 .045 .054 .054
SSIR .007 .019 .034 .062 .153 .256 .348 .436 .521 .601 .600
WSIR .017 .024 .035 .061 .152 .231 .317 .377 .471 .585 .584
t 500 .055 .054 .047 .046 .059 .055 .049 .050 .045 .045 .045
χ2 .068 .059 .051 .047 .061 .056 .051 .051 .046 .046 .046
SSIR .005 .010 .033 .046 .153 .233 .375 .446 .492 .576 .576
WSIR .006 .015 .031 .053 .159 .212 .320 .419 .485 .536 .536

2. t 60 .049 .048 .047 .081 .104 .121 .131 .101 .079 .109 .039
χ2 .295 .088 .086 .099 .134 .142 .147 .115 .088 .122 .053
SSIR .007 .019 .054 .114 .269 .433 .528 .569 .636 .702 .246
WSIR .260 .050 .052 .092 .185 .278 .392 .501 .541 .629 .119
t 150 .034 .037 .033 .056 .120 .110 .097 .076 .070 .108 .024
χ2 .062 .054 .041 .067 .131 .116 .101 .077 .074 .108 .027
SSIR .003 .013 .013 .098 .270 .407 .466 .555 .627 .712 .236
WSIR .021 .019 .029 .068 .191 .290 .397 .498 .560 .638 .067
t 500 .033 .029 .034 .048 .129 .104 .076 .069 .070 .103 .022
χ2 .041 .034 .035 .049 .133 .106 .077 .071 .070 .103 .022
SSIR .002 .006 .016 .050 .279 .390 .469 .554 .601 .680 .337
WSIR .002 .005 .026 .050 .191 .322 .410 .498 .545 .607 .123

3. t 60 .039 .043 .056 .082 .109 .165 .144 .115 .109 .116 .020
χ2 .310 .089 .082 .101 .130 .185 .166 .134 .117 .125 .028
SSIR .001 .024 .046 .118 .295 .466 .572 .607 .626 .687 .203
WSIR .293 .075 .074 .123 .189 .280 .342 .462 .531 .588 .557
t 150 .040 .030 .029 .056 .108 .111 .086 .062 .075 .130 .013
χ2 .067 .041 .032 .061 .120 .117 .094 .066 .079 .134 .017
SSIR .006 .009 .012 .079 .285 .412 .496 .546 .610 .712 .191
WSIR .022 .029 .031 .074 .159 .252 .327 .389 .463 .562 .561
t 500 .026 .013 .018 .039 .103 .043 .040 .034 .026 .123 .007
χ2 .030 .014 .019 .042 .104 .044 .041 .034 .028 .123 .009
SSIR .000 .001 .004 .027 .242 .310 .380 .432 .546 .698 .292
WSIR .003 .014 .029 .054 .180 .250 .330 .439 .482 .541 .541

Table 4.21. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 3 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
4. t 60 .047 .046 .062 .083 .087 .113 .106 .091 .092 .112 .081

χ2 .303 .089 .088 .099 .106 .134 .130 .101 .104 .118 .088
SSIR .004 .023 .050 .126 .283 .434 .526 .589 .655 .692 .483
WSIR .280 .074 .068 .112 .186 .275 .340 .438 .524 .588 .570
t 150 .044 .032 .027 .058 .096 .081 .071 .057 .062 .123 .120
χ2 .073 .044 .033 .066 .104 .084 .075 .065 .066 .125 .122
SSIR .007 .007 .018 .097 .294 .421 .518 .576 .642 .683 .590
WSIR .024 .028 .028 .069 .152 .263 .337 .378 .465 .541 .539
t 500 .027 .020 .022 .048 .117 .069 .060 .079 .058 .104 .104
χ2 .032 .020 .024 .049 .122 .071 .061 .081 .061 .105 .105
SSIR .000 .005 .004 .055 .310 .407 .500 .569 .619 .675 .668
WSIR .002 .007 .029 .058 .185 .249 .300 .408 .461 .537 .537

5. t 60 .047 .050 .057 .063 .096 .091 .069 .054 .036 .032 .027
χ2 .321 .096 .091 .088 .111 .106 .082 .059 .046 .043 .043
SSIR .002 .021 .047 .088 .198 .295 .402 .476 .522 .570 .068
WSIR .272 .047 .058 .090 .196 .273 .390 .498 .568 .633 .100
t 150 .035 .037 .034 .048 .099 .079 .060 .061 .034 .032 .019
χ2 .069 .056 .042 .052 .106 .083 .064 .063 .039 .036 .023
SSIR .008 .019 .027 .085 .198 .321 .385 .482 .540 .618 .058
WSIR .017 .013 .014 .066 .194 .295 .382 .505 .568 .631 .065
t 500 .026 .026 .033 .053 .104 .067 .059 .041 .033 .028 .025
χ2 .031 .030 .036 .053 .106 .069 .059 .041 .033 .030 .025
SSIR .001 .005 .012 .036 .211 .345 .424 .474 .529 .583 .139
WSIR .001 .008 .022 .055 .182 .324 .414 .489 .547 .594 .145

6. t 60 .045 .043 .057 .058 .060 .048 .051 .059 .058 .066 .066
χ2 .321 .093 .081 .086 .079 .058 .056 .065 .067 .070 .070
SSIR .000 .027 .044 .093 .190 .320 .408 .490 .525 .605 .560
WSIR .284 .079 .082 .133 .200 .284 .338 .449 .532 .586 .560
t 150 .035 .035 .037 .054 .054 .053 .065 .059 .057 .050 .050
χ2 .074 .055 .042 .061 .067 .053 .068 .059 .061 .052 .052
SSIR .006 .020 .023 .064 .169 .253 .358 .419 .520 .580 .576
WSIR .021 .024 .031 .071 .171 .236 .344 .401 .473 .567 .567
t 500 .033 .027 .037 .047 .077 .066 .057 .069 .070 .056 .056
χ2 .039 .030 .040 .051 .079 .066 .061 .071 .070 .056 .056
SSIR .000 .010 .020 .058 .186 .253 .356 .425 .503 .574 .574
WSIR .006 .010 .028 .050 .186 .251 .320 .420 .492 .537 .537

7. t 60 .043 .044 .042 .060 .071 .090 .093 .081 .060 .069 .022
χ2 .292 .095 .074 .085 .094 .107 .107 .093 .070 .079 .043

Table 4.21. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .003 .021 .042 .088 .211 .350 .476 .547 .601 .656 .121
WSIR .271 .047 .055 .102 .183 .276 .384 .493 .545 .625 .109
t 150 .027 .042 .042 .059 .089 .080 .076 .067 .059 .072 .016
χ2 .062 .060 .051 .067 .098 .091 .082 .071 .063 .078 .018
SSIR .009 .008 .020 .075 .219 .363 .466 .567 .596 .639 .089
WSIR .017 .019 .023 .069 .186 .286 .400 .500 .568 .621 .070
t 500 .032 .040 .047 .048 .116 .096 .071 .053 .043 .071 .022
χ2 .039 .042 .050 .048 .119 .099 .072 .054 .045 .072 .023
SSIR .001 .008 .025 .043 .222 .403 .498 .531 .578 .645 .147
WSIR .007 .006 .019 .053 .203 .321 .405 .475 .546 .596 .131

Table 4.21. (Continued)

The results in Table 4.21 are based on xi ∼ 0.4N4(0, I) + 0.6N4(0, 25I). This

distribution also belongs to EC[23]. Compared with those in Table 4.20, the results

are very similar here except that the best results are usually obtained at 60% or

70% trimming.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .043 .048 .041 .050 .040 .049 .052 .051 .037 .056 .056

χ2 .295 .108 .066 .074 .054 .064 .059 .063 .042 .063 .063
SSIR .003 .011 .009 .016 .019 .036 .039 .044 .074 .413 .164
WSIR .170 .023 .018 .014 .016 .032 .042 .043 .073 .265 .110
t 150 .049 .046 .041 .041 .041 .045 .054 .054 .050 .049 .049
χ2 .086 .062 .053 .045 .047 .050 .056 .056 .053 .049 .049
SSIR .002 .005 .006 .006 .013 .017 .032 .033 .072 .430 .282
WSIR .001 .007 .006 .014 .014 .022 .032 .051 .059 .329 .271
t 500 .056 .056 .056 .054 .046 .044 .050 .059 .051 .048 .048
χ2 .063 .062 .057 .058 .046 .045 .052 .060 .051 .050 .050
SSIR .000 .001 .009 .008 .009 .015 .030 .030 .044 .412 .384
WSIR .000 .001 .004 .004 .011 .016 .020 .033 .045 .314 .314

2. t 60 .053 .043 .036 .034 .024 .034 .029 .039 .112 .431 .056
χ2 .325 .095 .058 .041 .031 .040 .041 .044 .114 .437 .059
SSIR .002 .005 .005 .006 .008 .013 .023 .036 .177 .670 .072
WSIR .193 .019 .014 .010 .022 .032 .030 .045 .073 .267 .030
t 150 .039 .044 .027 .023 .024 .024 .022 .034 .097 .456 .067

Table 4.22. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 4 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
χ2 .074 .061 .037 .033 .027 .025 .025 .037 .101 .460 .070
SSIR .002 .004 .004 .006 .005 .010 .013 .023 .126 .682 .082
WSIR .005 .003 .006 .005 .007 .010 .016 .035 .077 .316 .035
t 500 .041 .032 .031 .024 .025 .023 .018 .024 .070 .452 .091
χ2 .050 .037 .034 .027 .025 .025 .018 .025 .071 .454 .093
SSIR .000 .000 .001 .006 .004 .002 .006 .020 .086 .681 .103
WSIR .001 .000 .002 .004 .006 .011 .019 .019 .060 .351 .126

3. t 60 .047 .040 .033 .029 .021 .025 .029 .034 .107 .420 .020
χ2 .325 .088 .058 .039 .028 .035 .038 .042 .114 .435 .025
SSIR .000 .000 .001 .004 .002 .011 .018 .021 .133 .614 .039
WSIR .202 .025 .024 .022 .036 .043 .047 .058 .093 .332 .140
t 150 .039 .040 .025 .021 .021 .017 .012 .025 .104 .463 .038
χ2 .069 .055 .030 .025 .023 .019 .015 .029 .104 .466 .040
SSIR .001 .000 .002 .002 .002 .003 .007 .011 .140 .693 .044
WSIR .003 .009 .006 .012 .014 .016 .028 .032 .074 .380 .318
t 500 .036 .025 .017 .012 .011 .008 .013 .017 .085 .465 .059
χ2 .044 .029 .018 .012 .012 .009 .013 .019 .087 .465 .060
SSIR .000 .000 .000 .002 .000 .001 .002 .003 .078 .691 .067
WSIR .000 .001 .004 .006 .011 .009 .016 .024 .054 .369 .369

4. t 60 .044 .040 .033 .026 .027 .031 .026 .030 .109 .390 .102
χ2 .319 .083 .055 .039 .036 .033 .036 .044 .116 .407 .113
SSIR .001 .003 .004 .003 .005 .014 .025 .035 .182 .667 .091
WSIR .196 .022 .017 .018 .033 .032 .040 .053 .095 .333 .143
t 150 .032 .037 .027 .020 .022 .023 .017 .030 .123 .412 .259
χ2 .058 .051 .035 .024 .029 .026 .017 .031 .128 .420 .267
SSIR .000 .001 .001 .002 .006 .011 .009 .020 .132 .715 .156
WSIR .004 .002 .008 .018 .014 .019 .030 .035 .063 .371 .311
t 500 .027 .023 .018 .016 .019 .010 .021 .028 .068 .399 .384
χ2 .036 .025 .019 .017 .019 .010 .022 .028 .070 .402 .388
SSIR .00 .001 .000 .001 .002 .001 .005 .013 .084 .649 .314
WSIR .000 .000 .002 .003 .013 .011 .012 .031 .059 .371 .370

5. t 60 .056 .036 .036 .021 .028 .025 .027 .039 .066 .187 .023
χ2 .362 .069 .056 .036 .035 .035 .036 .043 .069 .198 .025
SSIR .000 .004 .008 .005 .008 .012 .023 .032 .079 .358 .029
WSIR .211 .018 .009 .009 .017 .024 .028 .046 .080 .285 .025
t 150 .034 .026 .023 .016 .019 .025 .018 .034 .058 .196 .039
χ2 .058 .039 .028 .021 .023 .027 .021 .036 .063 .198 .042
SSIR .001 .000 .004 .010 .011 .015 .015 .029 .081 .410 .046

Table 4.22. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
WSIR .009 .003 .005 .005 .012 .011 .017 .024 .071 .344 .021
t 500 .019 .021 .026 .026 .023 .023 .017 .022 .048 .170 .048
χ2 .025 .024 .028 .026 .024 .023 .018 .022 .048 .171 .048
SSIR .000 .001 .002 .007 .012 .011 .015 .023 .053 .424 .165
WSIR .001 .002 .004 .004 .007 .008 .014 .019 .050 .352 .122

6. t 60 .063 .035 .037 .021 .029 .036 .035 .041 .048 .083 .083
χ2 .324 .062 .055 .037 .039 .048 .046 .046 .054 .091 .091
SSIR .000 .009 .014 .014 .019 .026 .031 .040 .093 .469 .164
WSIR .227 .024 .012 .018 .036 .039 .039 .065 .094 .344 .155
t 150 .040 .023 .026 .024 .030 .032 .028 .044 .051 .088 .088
χ2 .067 .040 .036 .027 .036 .036 .033 .048 .055 .091 .091
SSIR .000 .003 .005 .005 .012 .014 .021 .031 .079 .473 .316
WSIR .009 .006 .012 .009 .013 .016 .030 .040 .076 .386 .319
t 500 .028 .038 .034 .037 .024 .024 .036 .031 .041 .053 .053
χ2 .034 .042 .036 .041 .025 .024 .037 .031 .041 .055 .055
SSIR .000 .001 .003 .005 .009 .008 .012 .019 .058 .455 .416
WSIR .001 .002 .001 .010 .013 .015 .023 .034 .045 .380 .380

7. t 60 .043 .042 .042 .036 .027 .036 .022 .034 .071 .260 .036
χ2 .320 .097 .061 .052 .037 .047 .031 .042 .081 .267 .044
SSIR .000 .003 .010 .010 .008 .018 .021 .046 .082 .500 .058
WSIR .209 .019 .013 .007 .020 .022 .028 .047 .081 .272 .030
t 150 .036 .036 .030 .031 .023 .027 .028 .039 .056 .305 .053
χ2 .071 .059 .040 .036 .024 .032 .029 .040 .056 .306 .053
SSIR .002 .001 .005 .001 .006 .011 .014 .024 .075 .596 .048
WSIR .005 .003 .006 .005 .009 .015 .015 .028 .075 .323 .032
t 500 .036 .031 .032 .036 .036 .026 .027 .029 .052 .331 .070
χ2 .045 .037 .033 .037 .037 .026 .029 .030 .052 .335 .071
SSIR .000 .001 .002 .003 .003 .009 .018 .019 .047 .658 .062
WSIR .000 .001 .001 .005 .007 .011 .014 .015 .056 .362 .133

Table 4.22. (Continued)

The results in Table 4.22 are based on xi ∼ 0.9N4(0, I) + 0.1N4(0, 25I). This

distribution also belongs to EC[23]. Compared with Table 4.20 and Table 4.21, the

results here are better in general.

1) OLS estimator: For all nonlinear models, both the t test and the χ2 test

based on 0% trimming do not work well. Ellipsoidal trimming again improves the

results a lot. The best results are often obtained at 10% or 20% trimming. The

results based on the adaptive trimming are better than 0% trimming. But compared
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with the 10% or 20% trimming, the adaptive trimming rejection rate is often too

high.

2) SIR estimator: Compared to the OLS estimator, the rejection percentages

based on 0% trimming are too high although WSIR’s results are smaller than SSIR.

The other results are similar to the OLS estimator. The best results are based on

10% or 20% trimming, and the results of the adaptive trimming are better than 0%

trimming.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .042 .044 .051 .060 .047 .049 .038 .040 .039 .038 .038

χ2 .308 .105 .076 .074 .064 .060 .052 .050 .050 .041 .041
SSIR .001 .002 .002 .004 .011 .021 .038 .096 .127 .355 .223
WSIR .145 .004 .006 .013 .017 .024 .044 .083 .149 .289 .182
t 150 .058 .054 .057 .064 .051 .055 .043 .047 .053 .045 .045
χ2 .095 .071 .068 .069 .053 .059 .044 .054 .055 .049 .049
SSIR .000 .001 .000 .001 .002 .016 .029 .071 .131 .338 .242
WSIR .004 .000 .001 .003 .009 .010 .031 .072 .127 .295 .238
t 500 .052 .045 .043 .044 .040 .046 .055 .049 .047 .054 .054
χ2 .067 .050 .043 .044 .044 .047 .055 .050 .048 .054 .054
SSIR .000 .000 .000 .000 .003 .008 .026 .059 .120 .344 .246
WSIR .000 .000 .000 .001 .003 .008 .019 .054 .138 .318 .291

2. t 60 .048 .046 .043 .050 .039 .029 .032 .032 .027 .054 .055
χ2 .315 .099 .074 .066 .052 .039 .038 .037 .033 .061 .062
SSIR .000 .000 .002 .005 .013 .023 .033 .034 .155 .370 .131
WSIR .190 .010 .007 .009 .014 .013 .034 .074 .162 .298 .171
t 150 .054 .044 .044 .034 .039 .034 .039 .027 .034 .046 .047
χ2 .100 .056 .053 .041 .047 .040 .042 .028 .036 .049 .051
SSIR .000 .001 .001 .001 .005 .009 .022 .050 .121 .330 .123
WSIR .004 .004 .001 .001 .002 .008 .028 .080 .113 .320 .244
t 500 .053 .039 .036 .047 .059 .045 .043 .047 .035 .054 .052
χ2 .061 .043 .038 .051 .060 .046 .044 .048 .038 .054 .052
SSIR .000 .000 .000 .002 .000 .007 .011 .051 .091 .315 .125
WSIR .001 .000 .000 .000 .002 .009 .026 .065 .143 .321 .296

3. t 60 .043 .042 .027 .028 .021 .019 .018 .030 .027 .066 .017
χ2 .309 .090 .041 .039 .030 .028 .028 .033 .029 .071 .020
SSIR .000 .002 .003 .000 .006 .003 .024 .055 .120 .335 .024

Table 4.23. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 5 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
WSIR .191 .008 .005 .010 .017 .019 .033 .076 .156 .307 .181
t 150 .058 .032 .017 .020 .024 .023 .010 .017 .017 .042 .011
χ2 .083 .042 .025 .027 .025 .026 .011 .019 .018 .043 .011
SSIR .001 .000 .001 .001 .000 .000 .005 .016 .066 .291 .008
WSIR .006 .001 .000 .002 .004 .011 .035 .064 .114 .316 .247
t 500 .046 .028 .018 .014 .023 .012 .010 .018 .006 .048 .013
χ2 .052 .028 .020 .015 .024 .012 .011 .019 .007 .048 .013
SSIR .000 .000 .000 .000 .001 .000 .000 .003 .018 .257 .004
WSIR .000 .000 .000 .001 .002 .008 .028 .066 .139 .334 .310

4. t 60 .038 .035 .024 .028 .031 .024 .028 .029 .028 .059 .045
χ2 .322 .089 .037 .046 .048 .034 .035 .035 .033 .067 .050
SSIR .000 .002 .003 .005 .009 .014 .037 .062 .137 .357 .080
WSIR .191 .008 .005 .010 .018 .019 .033 .076 .154 .308 .179
t 150 .054 .034 .026 .029 .030 .032 .022 .026 .025 .045 .034
χ2 .084 .045 .033 .031 .034 .035 .028 .027 .026 .048 .034
SSIR .000 .000 .000 .001 .003 .006 .020 .033 .081 .332 .056
WSIR .006 .001 .000 .002 .004 .011 .035 .063 .116 .314 .250
t 500 .048 .033 .025 .031 .034 .039 .038 .048 .033 .053 .045
χ2 .053 .035 .025 .037 .035 .040 .038 .050 .035 .053 .045
SSIR .000 .000 .000 .000 .004 .000 .004 .032 .050 .285 .053
WSIR .000 .000 .000 .001 .002 .007 .029 .064 .135 .337 .311

5. t 60 .035 .035 .027 .033 .039 .039 .036 .043 .042 .051 .012
χ2 .315 .092 .043 .050 .053 .051 .046 .050 .047 .057 .022
SSIR .000 .002 .002 .002 .006 .010 .035 .064 .123 .256 .020
WSIR .187 .008 .006 .006 .006 .018 .028 .079 .143 .299 .019
t 150 .057 .037 .029 .033 .033 .041 .044 .038 .041 .043 .014
χ2 .085 .046 .034 .039 .040 .045 .050 .039 .042 .044 .016
SSIR .000 .000 .000 .002 .004 .007 .026 .057 .107 .270 .064
WSIR .001 .001 .002 .002 .002 .007 .020 .060 .136 .342 .021
t 500 .051 .033 .031 .037 .051 .056 .071 .065 .048 .044 .047
χ2 .054 .036 .032 .039 .052 .056 .072 .065 .048 .044 .048
SSIR .000 .000 .000 .000 .003 .019 .033 .077 .127 .310 .234
WSIR .000 .000 .000 .000 .003 .005 .037 .082 .141 .373 .094

6. t 60 .042 .054 .036 .041 .041 .029 .038 .045 .040 .040 .040
χ2 .328 .101 .056 .059 .056 .042 .043 .049 .051 .046 .046
SSIR .001 .001 .003 .001 .010 .017 .035 .081 .146 .375 .238
WSIR .153 .010 .004 .014 .006 .014 .037 .075 .162 .293 .178
t 150 .049 .042 .034 .034 .036 .039 .043 .036 .040 .047 .047

Table 4.23. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .001 .001 .001 .001 .002 .012 .017 .057 .123 .344 .201
WSIR .002 .000 .002 .002 .004 .012 .025 .074 .111 .322 .247
t 500 .055 .034 .040 .031 .036 .048 .055 .057 .041 .042 .042
χ2 .064 .038 .042 .033 .038 .050 .055 .057 .042 .045 .045
SSIR .000 .000 .000 .000 .002 .003 .018 .051 .122 .353 .247
WSIR .000 .000 .000 .000 .002 .005 .030 .069 .141 .319 .290

7. t 60 .047 .049 .054 .063 .055 .044 .037 .041 .053 .051 .051
χ2 .310 .103 .078 .079 .068 .057 .047 .046 .060 .061 .061
SSIR .000 .003 .008 .008 .007 .014 .047 .095 .143 .338 .259
WSIR .178 .011 .005 .011 .012 .026 .043 .071 .144 .300 .173
t 150 .056 .053 .058 .058 .053 .054 .046 .044 .051 .037 .037
χ2 .096 .072 .070 .064 .057 .060 .049 .049 .057 .040 .040
SSIR .000 .002 .000 .001 .007 .013 .026 .071 .120 .337 .314
WSIR .003 .002 .001 .000 .005 .005 .034 .080 .118 .319 .250
t 500 .051 .046 .041 .052 .048 .048 .058 .047 .051 .061 .060
χ2 .067 .054 .046 .054 .048 .049 .059 .047 .051 .061 .060
SSIR .000 .000 .000 .000 .001 .007 .023 .070 .111 .327 .298
WSIR .000 .000 .000 .000 .000 .009 .028 .071 .135 .348 .315

Table 4.23. (Continued)

The results in Table 4.23 are based on xi ∼ LN(0, I). This distribution does

not belong to EC[23]. To our surprise, the results in this table are even better

than the previous two tables which are made based on EC data. For the OLS

estimator, the best results are obtained from the original dataset. In general, the

rejection percentages of the adaptive trimming are less or equal to the original

dataset. For the SIR estimator, the original dataset still does not work well. 20%

or 30% trimming had the best results. The two SIR methods gave similar results,

but in general WSIR’s rejection percentages are higher than those for SSIR.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .065 .052 .055 .049 .051 .052 .054 .051 .047 .052 .052

χ2 .328 .109 .077 .072 .069 .060 .059 .058 .062 .063 .063
SSIR .001 .005 .006 .018 .015 .033 .048 .072 .087 .287 .150
WSIR .171 .015 .015 .025 .027 .050 .054 .079 .101 .231 .147

Table 4.24. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 6 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 150 .036 .039 .049 .050 .050 .042 .037 .057 .050 .048 .048
χ2 .082 .056 .062 .058 .053 .045 .041 .060 .051 .051 .051
SSIR .000 .001 .001 .004 .012 .024 .025 .052 .069 .359 .220
WSIR .001 .002 .007 .008 .017 .026 .035 .047 .074 .282 .218
t 500 .039 .052 .036 .057 .057 .050 .052 .059 .059 .058 .058
χ2 .047 .054 .040 .060 .059 .051 .055 .060 .060 .058 .058
SSIR .000 .000 .001 .001 .011 .007 .021 .045 .074 .456 .339
WSIR .000 .000 .000 .002 .007 .011 .025 .045 .064 .423 .375

2. t 60 .050 .051 .042 .037 .041 .034 .038 .056 .078 .282 .038
χ2 .334 .097 .067 .056 .058 .042 .046 .063 .091 .300 .044
SSIR .000 .004 .002 .004 .011 .010 .029 .068 .170 .528 .051
WSIR .166 .014 .008 .012 .014 .028 .033 .058 .094 .221 .015
t 150 .041 .038 .036 .029 .036 .038 .045 .043 .072 .405 .076
χ2 .078 .049 .044 .037 .041 .038 .048 .045 .074 .412 .079
SSIR .000 .001 .002 .006 .004 .010 .031 .061 .133 .623 .049
WSIR .001 .003 .006 .003 .013 .018 .026 .045 .100 .240 .040
t 500 .039 .039 .028 .022 .026 .025 .021 .050 .063 .580 .104
χ2 .046 .041 .029 .024 .027 .026 .022 .050 .064 .580 .105
SSIR .000 .000 .000 .002 .002 .005 .017 .040 .139 .739 .108
WSIR .000 .000 .001 .002 .004 .011 .025 .047 .092 .311 .139

3. t 60 .048 .040 .030 .031 .035 .038 .035 .054 .089 .276 .021
χ2 .321 .081 .064 .042 .044 .045 .043 .066 .094 .285 .025
SSIR .000 .003 .004 .005 .009 .015 .036 .082 .161 .464 .037
WSIR .183 .019 .020 .017 .023 .036 .054 .067 .095 .251 .152
t 150 .041 .030 .021 .024 .019 .025 .025 .034 .080 .374 .036
χ2 .076 .038 .025 .028 .022 .028 .030 .040 .083 .382 .036
SSIR .001 .001 .000 .003 .003 .008 .018 .046 .149 .556 .023
WSIR .004 .005 .003 .008 .007 .021 .019 .041 .084 .329 .264
t 500 .034 .027 .021 .012 .013 .018 .015 .019 .055 .528 .050
χ2 .040 .033 .021 .015 .013 .019 .015 .019 .056 .529 .050
SSIR .000 .000 .000 .000 .003 .005 .006 .026 .101 .696 .036
WSIR .000 .000 .000 .006 .009 .008 .015 .044 .057 .458 .401

4. t 60 .045 .030 .033 .035 .043 .034 .038 .054 .090 .280 .101
χ2 .318 .069 .070 .047 .048 .043 .046 .065 .098 .297 .108
SSIR .000 .003 .003 .008 .015 .011 .035 .077 .171 .495 .080
WSIR .180 .017 .016 .016 .020 .036 .050 .073 .096 .241 .145
t 150 .035 .025 .014 .028 .022 .034 .033 .026 .072 .411 .170
χ2 .070 .032 .016 .034 .025 .036 .039 .031 .076 .418 .177

Table 4.24. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .001 .001 .004 .002 .010 .026 .060 .118 .623 .098
WSIR .003 .004 .005 .008 .006 .026 .025 .040 .080 .320 .244
t 500 .027 .030 .021 .018 .020 .022 .023 .026 .064 .562 .275
χ2 .033 .034 .021 .018 .022 .023 .024 .026 .064 .565 .277
SSIR .000 .000 .000 .000 .002 .005 .015 .038 .126 .711 .164
WSIR .000 .000 .002 .005 .010 .010 .025 .035 .055 .461 .406

5. t 60 .056 .031 .032 .030 .035 .037 .043 .046 .087 .109 .021
χ2 .333 .074 .056 .046 .043 .052 .048 .062 .096 .116 .031
SSIR .000 .001 .003 .007 .007 .025 .029 .067 .132 .264 .026
WSIR .191 .018 .024 .014 .015 .021 .030 .048 .102 .214 .021
t 150 .034 .026 .021 .025 .028 .034 .035 .054 .061 .133 .033
χ2 .066 .039 .028 .033 .033 .037 .039 .058 .063 .140 .035
SSIR .000 .004 .004 .005 .010 .015 .020 .055 .094 .318 .050
WSIR .006 .002 .003 .003 .009 .016 .022 .044 .083 .259 .025
t 500 .022 .027 .021 .027 .019 .019 .036 .049 .062 .159 .066
χ2 .029 .031 .021 .027 .019 .020 .036 .051 .064 .162 .069
SSIR .000 .000 .001 .002 .002 .007 .025 .044 .097 .356 .163
WSIR .000 .000 .001 .003 .006 .010 .023 .041 .085 .302 .114

6. t 60 .053 .036 .044 .042 .039 .038 .036 .051 .072 .062 .062
χ2 .322 .073 .066 .057 .051 .048 .040 .057 .080 .066 .066
SSIR .001 .002 .008 .012 .020 .028 .044 .060 .099 .316 .167
WSIR .201 .018 .022 .017 .028 .028 .041 .064 .095 .254 .144
t 150 .030 .028 .019 .032 .039 .041 .043 .048 .066 .054 .054
χ2 .068 .036 .025 .045 .043 .042 .046 .050 .069 .059 .059
SSIR .001 .002 .002 .005 .008 .021 .026 .040 .087 .379 .242
WSIR .002 .003 .005 .006 .012 .026 .031 .053 .077 .327 .247
t 500 .023 .035 .027 .039 .032 .036 .045 .056 .065 .071 .071
χ2 .026 .037 .028 .039 .032 .036 .045 .057 .065 .073 .073
SSIR .001 .000 .000 .002 .006 .013 .029 .048 .068 .486 .363
WSIR .000 .000 .001 .007 .005 .014 .020 .043 .055 .470 .412

7. t 60 .049 .054 .036 .046 .043 .047 .042 .052 .082 .155 .031
χ2 .328 .098 .067 .062 .051 .059 .053 .062 .091 .163 .040
SSIR .002 .004 .005 .009 .012 .026 .026 .056 .116 .330 .035
WSIR .182 .014 .013 .010 .009 .025 .025 .057 .102 .217 .017
t 150 .043 .024 .035 .025 .028 .044 .043 .049 .051 .246 .040
χ2 .073 .036 .040 .030 .033 .048 .046 .053 .055 .249 .043
SSIR .000 .000 .005 .007 .012 .017 .016 .052 .088 .427 .045
WSIR .002 .002 .004 .003 .010 .014 .020 .042 .099 .237 .033

Table 4.24. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 500 .023 .025 .031 .033 .028 .025 .029 .045 .060 .293 .093
χ2 .027 .030 .033 .036 .028 .025 .029 .047 .062 .296 .095
SSIR .000 .000 .001 .006 .006 .005 .018 .047 .105 .538 .130
WSIR .000 .000 .001 .003 .004 .011 .024 .043 .094 .329 .152

Table 4.24. (Continued)

The results in Table 4.24 are based on xi ∼ MV T3. As mentioned before, xi

has no second moments. So it is not a surprise that almost all the results for the

original data set are not good. Most of the best results are obtained at 10% or 20%

trimming. The adaptive trimming has better results than the original data set. For

some models, the adaptive trimming works very well. As with the previous predictor

distribution, the two SIR methods have similar results.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .045 .036 .045 .044 .050 .040 .040 .038 .046 .045 .045

χ2 .298 .087 .070 .069 .068 .054 .048 .046 .057 .046 .046
SSIR .001 .003 .007 .010 .016 .025 .042 .050 .071 .131 .055
WSIR .167 .015 .012 .016 .024 .021 .039 .040 .064 .121 .091
t 150 .055 .052 .068 .060 .043 .053 .069 .061 .063 .067 .067
χ2 .086 .070 .073 .064 .049 .061 .075 .066 .065 .069 .069
SSIR .002 .003 .005 .007 .009 .010 .025 .031 .064 .143 .113
WSIR .007 .001 .006 .010 .012 .014 .032 .047 .062 .147 .142
t 500 .038 .055 .044 .047 .049 .052 .055 .044 .049 .048 .048
χ2 .047 .059 .049 .049 .050 .053 .055 .044 .050 .049 .049
SSIR .000 .000 .002 .007 .005 .011 .017 .028 .055 .173 .152
WSIR .000 .001 .000 .001 .007 .012 .017 .039 .049 .159 .159

2. t 60 .049 .037 .036 .030 .030 .021 .034 .030 .072 .167 .040
χ2 .337 .098 .065 .042 .042 .033 .038 .043 .082 .184 .050
SSIR .001 .005 .003 .003 .009 .009 .016 .041 .092 .293 .022
WSIR .175 .016 .013 .010 .014 .022 .032 .036 .072 .142 .018
t 150 .040 .042 .041 .026 .021 .031 .029 .037 .039 .211 .037
χ2 .076 .057 .049 .035 .022 .032 .032 .040 .043 .222 .042
SSIR .000 .000 .001 .005 .008 .009 .020 .045 .084 .379 .034
WSIR .004 .003 .002 .003 .009 .018 .022 .026 .050 .152 .024
t 500 .034 .030 .035 .032 .029 .026 .020 .027 .040 .335 .131
χ2 .042 .031 .037 .033 .030 .026 .022 .027 .041 .337 .132

Table 4.25. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 7 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .000 .000 .004 .008 .008 .011 .032 .054 .471 .053
WSIR .000 .001 .002 .003 .002 .005 .018 .036 .068 .177 .121

3. t 60 .055 .030 .033 .022 .023 .021 .030 .034 .067 .181 .023
χ2 .341 .096 .057 .036 .026 .025 .034 .040 .087 .187 .030
SSIR .001 .004 .002 .003 .004 .007 .018 .037 .099 .291 .015
WSIR .194 .020 .017 .014 .020 .025 .031 .040 .068 .144 .119
t 150 .039 .034 .023 .015 .018 .020 .016 .032 .041 .240 .031
χ2 .070 .043 .028 .021 .019 .020 .020 .033 .045 .243 .032
SSIR .000 .002 .000 .000 .001 .004 .005 .028 .066 .357 .006
WSIR .004 .004 .006 .005 .014 .017 .030 .035 .057 .157 .148
t 500 .032 .022 .015 .019 .014 .018 .008 .014 .026 .348 .047
χ2 .036 .023 .017 .022 .015 .019 .008 .016 .028 .350 .049
SSIR .000 .000 .001 .001 .002 .003 .006 .009 .036 .463 .018
WSIR .000 .002 .002 .004 .005 .011 .015 .035 .045 .185 .184

4. t 60 .040 .036 .032 .025 .025 .020 .024 .029 .058 .167 .079
χ2 .329 .092 .048 .038 .032 .029 .029 .039 .066 .175 .089
SSIR .002 .002 .002 .005 .005 .010 .028 .043 .091 .312 .050
WSIR .180 .023 .021 .017 .025 .025 .030 .048 .063 .137 .104
t 150 .033 .029 .018 .019 .020 .022 .025 .035 .037 .243 .133
χ2 .057 .039 .024 .021 .021 .023 .028 .036 .040 .248 .139
SSIR .000 .000 .001 .001 .002 .009 .020 .035 .061 .343 .061
WSIR .003 .004 .004 .006 .015 .015 .028 .037 .054 .161 .155
t 500 .028 .019 .014 .021 .022 .022 .016 .025 .038 .352 .265
χ2 .036 .022 .016 .023 .023 .022 .016 .025 .039 .352 .265
SSIR .000 .000 .001 .000 .002 .007 .009 .022 .058 .424 .129
WSIR .000 .002 .001 .005 .010 .017 .017 .035 .050 .191 .190

5. t 60 .041 .036 .022 .023 .029 .032 .031 .039 .055 .108 .026
χ2 .294 .083 .051 .037 .035 .042 .042 .043 .068 .117 .031
SSIR .000 .004 .005 .001 .006 .020 .034 .048 .080 .175 .033
WSIR .196 .019 .013 .007 .016 .014 .033 .033 .072 .141 .020
t 150 .037 .029 .030 .021 .019 .032 .033 .034 .041 .092 .030
χ2 .083 .039 .035 .026 .023 .038 .036 .041 .043 .097 .032
SSIR .001 .000 .005 .004 .007 .012 .017 .039 .070 .190 .051
WSIR .004 .002 .004 .004 .005 .010 .019 .034 .056 .148 .027
t 500 .031 .026 .017 .024 .032 .027 .027 .034 .051 .139 .105
χ2 .035 .027 .022 .025 .033 .027 .027 .034 .052 .139 .105
SSIR .000 .000 .002 .004 .004 .006 .013 .020 .056 .202 .150
WSIR .000 .002 .001 .001 .003 .008 .016 .029 .067 .179 .128

Table 4.25. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
6. t 60 .034 .030 .030 .023 .025 .030 .022 .033 .051 .054 .054

χ2 .293 .072 .051 .033 .033 .040 .032 .035 .062 .060 .060
SSIR .000 .003 .007 .011 .016 .019 .025 .038 .054 .156 .088
WSIR .191 .018 .020 .019 .027 .026 .038 .039 .066 .155 .121
t 150 .041 .032 .027 .032 .023 .041 .047 .053 .052 .055 .055
χ2 .080 .046 .035 .036 .028 .044 .051 .055 .055 .056 .056
SSIR .000 .003 .002 .010 .009 .017 .025 .038 .054 .163 .138
WSIR .009 .003 .007 .006 .013 .022 .019 .025 .054 .176 .169
t 500 .034 .020 .026 .028 .035 .035 .027 .037 .042 .061 .061
χ2 .042 .025 .028 .029 .035 .035 .027 .038 .043 .061 .061
SSIR .000 .001 .001 .004 .010 .016 .022 .030 .041 .203 .182
WSIR .000 .001 .000 .001 .003 .007 .013 .033 .047 .195 .194

7. t 60 .042 .033 .035 .038 .032 .037 .043 .031 .049 .098 .018
χ2 .290 .088 .052 .056 .038 .046 .056 .038 .057 .106 .022
SSIR .000 .002 .006 .004 .010 .012 .031 .039 .072 .172 .021
WSIR .200 .020 .017 .009 .013 .020 .026 .033 .063 .142 .019
t 150 .050 .034 .029 .029 .030 .034 .037 .038 .037 .100 .024
χ2 .087 .043 .038 .033 .033 .037 .041 .041 .041 .102 .027
SSIR .003 .004 .002 .001 .006 .009 .023 .032 .054 .171 .034
WSIR .007 .002 .002 .002 .006 .010 .016 .033 .050 .148 .022
t 500 .027 .028 .033 .034 .039 .032 .035 .048 .052 .168 .100
χ2 .037 .030 .033 .035 .040 .032 .035 .050 .052 .168 .100
SSIR .000 .000 .000 .003 .008 .008 .012 .033 .071 .262 .138
WSIR .000 .000 .000 .004 .004 .010 .009 .037 .071 .170 .119

Table 4.25. (Continued)

The results in Table 4.25 are based on xi ∼ MV T5. Now the predictor has both

first and second moments. Compared with Table 4.24, the rejection percentages of

0% trimming here are lower. Generally we can get the best results after trimming

10% of the data. The other results are similar to the previous table.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. t 60 .043 .063 .066 .054 .056 .051 .051 .051 .051 .056 .056

χ2 .341 .115 .090 .074 .073 .064 .062 .057 .055 .062 .062
SSIR .001 .006 .005 .013 .016 .018 .030 .034 .052 .075 .050
WSIR .167 .022 .018 .020 .018 .017 .027 .038 .054 .075 .066

Table 4.26. Test For H0 : βi = 0,H1 : βi 6= 0 With Type 8 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 150 .058 .047 .047 .044 .045 .047 .049 .060 .048 .049 .049
χ2 .095 .065 .055 .054 .049 .050 .051 .065 .050 .052 .052
SSIR .001 .002 .006 .012 .010 .012 .018 .032 .041 .068 .068
WSIR .003 .004 .000 .009 .013 .022 .019 .035 .035 .070 .070
t 500 .051 .034 .032 .043 .048 .046 .047 .039 .044 .046 .046
χ2 .059 .039 .034 .043 .048 .047 .048 .042 .045 .047 .047
SSIR .000 .000 .000 .001 .004 .007 .015 .025 .027 .063 .063
WSIR .000 .000 .000 .000 .004 .009 .016 .022 .027 .057 .057

2. t 60 .040 .050 .048 .030 .036 .037 .042 .038 .045 .070 .033
χ2 .327 .095 .078 .050 .052 .050 .047 .044 .047 .080 .038
SSIR .001 .002 .005 .003 .009 .010 .017 .023 .042 .097 .018
WSIR .178 .024 .017 .014 .019 .014 .016 .027 .043 .067 .011
t 150 .045 .042 .028 .030 .024 .024 .028 .023 .034 .072 .046
χ2 .083 .056 .032 .036 .027 .028 .029 .027 .035 .073 .046
SSIR .001 .001 .005 .002 .007 .006 .012 .015 .029 .089 .017
WSIR .005 .006 .003 .001 .013 .010 .021 .022 .039 .069 .023
t 500 .046 .028 .028 .022 .024 .023 .015 .027 .039 .071 .070
χ2 .053 .028 .029 .022 .024 .023 .016 .027 .039 .072 .071
SSIR .000 .000 .000 .001 .002 .002 .009 .015 .027 .090 .038
WSIR .000 .000 .000 .003 .004 .005 .010 .017 .032 .055 .048

3. t 60 .041 .044 .028 .022 .026 .026 .029 .025 .029 .050 .026
χ2 .307 .091 .062 .036 .033 .037 .038 .036 .033 .058 .032
SSIR .000 .003 .003 .004 .005 .006 .010 .019 .032 .093 .004
WSIR .192 .023 .029 .018 .020 .033 .031 .029 .060 .077 .070
t 150 .040 .026 .018 .025 .012 .019 .015 .018 .036 .081 .036
χ2 .071 .035 .024 .030 .012 .022 .018 .018 .036 .081 .036
SSIR .000 .000 .002 .005 .001 .002 .008 .010 .028 .105 .002
WSIR .007 .005 .003 .008 .014 .014 .019 .036 .037 .070 .069
t 500 .037 .023 .021 .017 .019 .018 .005 .014 .026 .100 .058
χ2 .041 .023 .023 .017 .020 .020 .005 .015 .027 .101 .059
SSIR .000 .000 .000 .001 .000 .000 .003 .004 .015 .129 .004
WSIR .000 .001 .001 .003 .005 .007 .019 .022 .030 .060 .060

4. t 60 .035 .044 .032 .019 .030 .026 .027 .027 .035 .050 .038
χ2 .292 .086 .057 .037 .041 .033 .039 .035 .043 .057 .046
SSIR .000 .001 .001 .003 .004 .007 .017 .028 .044 .087 .016
WSIR .186 .024 .031 .020 .021 .029 .030 .037 .057 .074 .062
t 150 .038 .028 .022 .022 .010 .021 .028 .018 .035 .076 .073
χ2 .072 .038 .025 .028 .011 .025 .030 .019 .036 .077 .073

Table 4.26. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .000 .001 .004 .002 .005 .010 .013 .042 .094 .037
WSIR .008 .004 .005 .006 .006 .012 .021 .033 .043 .066 .065
t 500 .031 .025 .024 .019 .022 .021 .015 .022 .025 .086 .086
χ2 .037 .025 .026 .019 .023 .022 .015 .022 .026 .088 .088
SSIR .000 .000 .000 .000 .000 .003 .005 .012 .033 .098 .055
WSIR .000 .000 .000 .002 .005 .006 .012 .021 .033 .064 .064

5. t 60 .045 .035 .031 .031 .026 .032 .039 .038 .035 .063 .028
χ2 .319 .081 .057 .047 .039 .040 .050 .045 .043 .071 .033
SSIR .001 .004 .009 .005 .009 .017 .024 .033 .037 .069 .021
WSIR .178 .023 .019 .007 .017 .018 .022 .027 .042 .080 .012
t 150 .034 .023 .022 .015 .017 .022 .034 .029 .036 .066 .047
χ2 .059 .036 .026 .019 .020 .026 .035 .030 .042 .070 .052
SSIR .000 .003 .001 .003 .003 .015 .016 .021 .039 .078 .038
WSIR .009 .002 .001 .003 .007 .010 .015 .024 .039 .066 .018
t 500 .023 .023 .025 .012 .021 .027 .019 .026 .037 .059 .059
χ2 .025 .027 .026 .013 .024 .029 .020 .026 .040 .060 .060
SSIR .000 .000 .002 .001 .007 .007 .008 .017 .027 .062 .062
WSIR .000 .002 .000 .001 .002 .003 .009 .017 .035 .075 .068

6. t 60 .042 .040 .019 .028 .034 .030 .031 .030 .041 .049 .049
χ2 .288 .077 .048 .041 .045 .043 .046 .040 .052 .055 .055
SSIR .000 .000 .007 .018 .011 .016 .018 .033 .042 .063 .048
WSIR .184 .024 .028 .014 .021 .026 .031 .045 .053 .073 .068
t 150 .031 .030 .032 .024 .027 .038 .030 .036 .049 .055 .055
χ2 .057 .043 .035 .030 .031 .042 .030 .036 .051 .058 .058
SSIR .001 .002 .001 .005 .004 .006 .023 .025 .031 .068 .067
WSIR .009 .000 .004 .006 .007 .014 .020 .024 .045 .068 .068
t 500 .023 .018 .025 .020 .030 .030 .025 .035 .040 .059 .059
χ2 .029 .019 .028 .022 .030 .030 .026 .035 .041 .060 .060
SSIR .000 .000 .001 .002 .009 .014 .015 .018 .037 .070 .070
WSIR .000 .001 .000 .001 .008 .010 .019 .023 .036 .068 .068

7. t 60 .038 .037 .046 .037 .031 .035 .034 .036 .035 .058 .015
χ2 .332 .095 .069 .054 .044 .046 .047 .045 .041 .063 .022
SSIR .001 .005 .008 .008 .007 .008 .022 .024 .039 .073 .015
WSIR .187 .015 .018 .008 .017 .014 .017 .031 .044 .074 .010
t 150 .041 .034 .033 .028 .029 .023 .038 .032 .037 .060 .032
χ2 .065 .047 .037 .033 .033 .026 .045 .034 .038 .063 .034
SSIR .001 .001 .001 .000 .005 .012 .019 .021 .037 .058 .022
WSIR .005 .002 .002 .002 .004 .010 .018 .020 .041 .065 .024

Table 4.26. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
t 500 .038 .022 .022 .033 .033 .033 .019 .026 .043 .053 .053
χ2 .043 .026 .024 .036 .033 .033 .020 .026 .045 .053 .053
SSIR .000 .000 .000 .001 .002 .007 .010 .009 .030 .066 .064
WSIR .001 .000 .000 .001 .003 .005 .009 .010 .021 .063 .061

Table 4.26. (Continued)

The results in Table 4.26 are based on xi ∼ MV T19. As mentioned in Section

4.2, this kind of distribution behaves like the multivariate normal distribution. Our

results also reflect this tendency. Unlike the previous two tables, most of the best

results here are obtained at the original data set, which is similar to the results

based on the predictors with the multivariate normal distribution.

In general, for type 2 to 8 x distributions, adaptive trimming usually helped

for OLS except for the type 4 model; whereas for SIR, adaptive trimming helped

about as often as it failed.

3. Test For H0 : βO = 0,H1 : βO 6= 0

For this case, the coefficient in the true model is β = [1, 1, 0, 0]′. Similar to the

previous test, we put our results for the different distributions in different tables.

Tables 4.27 to 4.34 have the results for the type 1 to 8 predictor distributions. The

columns in these tables are the same as the tables for the previous tests.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .054 .063 .040 .050 .041 .056 .041 .039 .041 .044 .041

χ2 .416 .134 .090 .070 .076 .076 .056 .060 .053 .049 .045
SSIR .002 .007 .006 .007 .012 .023 .036 .037 .046 .063 .036
WSIR .217 .012 .012 .016 .014 .023 .045 .056 .059 .080 .057
F 150 .052 .042 .048 .059 .056 .042 .048 .047 .048 .046 .046
χ2 .115 .073 .064 .069 .063 .050 .057 .049 .057 .049 .049
SSIR .000 .002 .003 .005 .009 .010 .020 .021 .040 .058 .050
WSIR .002 .003 .001 .007 .006 .017 .017 .027 .039 .054 .051
F 500 .044 .038 .057 .054 .062 .063 .058 .049 .050 .059 .059
χ2 .058 .043 .059 .056 .065 .064 .060 .051 .051 .062 .062

Table 4.27. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 1 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .000 .002 .002 .005 .012 .013 .017 .035 .051 .051
WSIR .000 .000 .000 .003 .006 .013 .014 .024 .041 .063 .063

2.F 60 .052 .050 .028 .031 .030 .026 .026 .039 .034 .057 .033
χ2 .424 .111 .075 .046 .046 .036 .036 .049 .037 .064 .041
SSIR .001 .003 .004 .004 .009 .010 .012 .017 .027 .065 .010
WSIR .212 .023 .014 .007 .015 .016 .029 .034 .044 .077 .030
F 150 .045 .041 .044 .043 .035 .028 .024 .022 .028 .047 .046
χ2 .101 .062 .056 .052 .044 .030 .030 .028 .031 .050 .049
SSIR .002 .000 .005 .003 .006 .004 .006 .010 .023 .062 .010
WSIR .006 .002 .006 .003 .007 .007 .012 .016 .035 .062 .039
F 500 .041 .031 .033 .035 .031 .018 .026 .022 .024 .062 .062
χ2 .059 .037 .038 .040 .031 .021 .026 .024 .025 .063 .063
SSIR .000 .000 .000 .000 .001 .001 .006 .008 .018 .055 .042
WSIR .000 .000 .001 .002 .007 .007 .011 .012 .028 .054 .053

3. F 60 .044 .039 .024 .022 .023 .020 .016 .034 .032 .058 .030
χ2 .428 .095 .055 .037 .034 .026 .024 .037 .041 .065 .038
SSIR .001 .005 .003 .004 .004 .004 .004 .013 .028 .080 .004
WSIR .229 .025 .020 .014 .024 .022 .030 .047 .050 .071 .066
F 150 .048 .039 .030 .026 .026 .020 .005 .012 .009 .036 .029
χ2 .095 .057 .044 .032 .030 .023 .007 .013 .011 .041 .034
SSIR .000 .000 .003 .001 .001 .000 .001 .006 .016 .061 .001
WSIR .007 .003 .004 .001 .005 .012 .025 .027 .038 .062 .062
F 500 .042 .031 .025 .015 .015 .009 .011 .012 .013 .061 .061
χ2 .055 .034 .026 .017 .016 .010 .011 .012 .013 .061 .061
SSIR .000 .000 .000 .000 .000 .000 .001 .006 .003 .045 .003
WSIR .000 .000 .001 .001 .006 .009 .014 .011 .026 .044 .044

4. F 60 .053 .029 .019 .018 .019 .020 .012 .029 .028 .053 .039
χ2 .403 .092 .046 .035 .027 .021 .027 .042 .040 .071 .054
SSIR .001 .002 .001 .003 .005 .005 .008 .014 .028 .076 .009
WSIR .228 .025 .013 .017 .022 .024 .042 .049 .059 .082 .070
F 150 .041 .039 .027 .013 .028 .021 .013 .016 .018 .046 .045
χ2 .086 .053 .033 .018 .032 .023 .015 .019 .019 .048 .048
SSIR .000 .000 .002 .001 .002 .000 .001 .007 .015 .058 .012
WSIR .007 .003 .004 .003 .005 .013 .06 .025 .043 .059 .059
F 500 .027 .026 .021 .012 .012 .011 .016 .014 .020 .057 .057
χ2 .035 .029 .021 .012 .013 .012 .017 .014 .021 .058 .058
SSIR .000 .000 .000 .001 .000 .000 .001 .002 .009 .053 .024
WSIR .000 .000 .000 .002 .004 .013 .013 .010 .026 .042 .042

Table 4.27. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
5. F 60 .047 .031 .032 .017 .025 .023 .023 .027 .029 .057 .026

χ2 .408 .086 .056 .038 .037 .033 .036 .038 .037 .074 .038
SSIR .001 .005 .008 .007 .009 .013 .019 .028 .039 .074 .023
WSIR .260 .032 .014 .019 .022 .009 .012 .033 .040 .066 .021
F 150 .033 .030 .009 .013 .017 .018 .014 .022 .037 .048 .047
χ2 .078 .038 .017 .015 .021 .022 .016 .023 .039 .051 .050
SSIR .000 .000 .000 .002 .004 .007 .014 .018 .029 .057 .040
WSIR .010 .005 .002 .001 .003 .005 .010 .012 .024 .052 .026
F 500 .018 .019 .022 .015 .009 .011 .018 .018 .018 .042 .042
χ2 .024 .023 .023 .016 .010 .012 .019 .019 .018 .044 .044
SSIR .000 .000 .001 .002 .002 .004 .010 .014 .021 .051 .051
WSIR .000 .000 .000 .001 .002 .005 .007 .008 .019 .049 .049

6. F 60 .044 .044 .038 .020 .026 .020 .021 .027 .030 .055 .055
χ2 .405 .107 .069 .041 .045 .034 .034 .034 .040 .058 .058
SSIR .000 .006 .008 .007 .011 .018 .019 .035 .032 .061 .041
WSIR .262 .032 .019 .019 .024 .021 .027 .045 .050 .076 .068
F 150 .041 .026 .018 .019 .019 .027 .025 .023 .027 .036 .036
χ2 .091 .042 .024 .025 .026 .034 .026 .024 .032 .045 .045
SSIR .000 .000 .007 .004 .009 .008 .014 .024 .045 .070 .069
WSIR .006 .003 .002 .002 .002 .006 .013 .022 .033 .052 .052
F 500 .024 .025 .027 .019 .015 .011 .015 .020 .028 .056 .056
χ2 .035 .026 .029 .021 .016 .011 .017 .020 .028 .056 .056
SSIR .000 .000 .001 .001 .005 .006 .010 .015 .025 .044 .044
WSIR .000 .000 .001 .001 .004 .008 .017 .020 .027 .054 .054

7. F 60 .048 .039 .034 .026 .022 .023 .031 .034 .039 .059 .025
χ2 .407 .101 .079 .053 .047 .042 .042 .041 .047 .072 .030
SSIR .002 .004 .007 .006 .008 .008 .013 .023 .035 .060 .011
WSIR .245 .031 .020 .011 .013 .016 .017 .031 .048 .074 .028
F 150 .053 .036 .023 .024 .024 .018 .019 .029 .042 .056 .051
χ2 .101 .059 .036 .038 .032 .024 .022 .035 .044 .061 .055
SSIR .000 .002 .004 .004 .002 .004 .007 .012 .028 .063 .037
WSIR .007 .004 .002 .001 .003 .010 .010 .015 .032 .062 .039
F 500 .032 .024 .028 .022 .027 .031 .023 .017 .029 .053 .053
χ2 .045 .032 .028 .025 .027 .033 .023 .017 .032 .054 .054
SSIR .000 .000 .001 .001 .003 .005 .004 .014 .018 .063 .062
WSIR .001 .000 .001 .000 .002 .005 .004 .012 .017 .055 .055

Table 4.27. (Continued)

The predictors used in Table 4.27 have the multivariate normal distribution

N4(0, I). We compared this table with Table 4.19. We found that most of the results

here are similar to Table 4.19 except that the adaptive trimming does not have the
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same results as the 0% trimming as frequently in this table.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .033 .043 .060 .042 .049 .046 .051 .041 .058 .057 .057

χ2 .389 .120 .107 .074 .077 .064 .062 .055 .072 .065 .065
SSIR .002 .019 .030 .043 .060 .088 .245 .435 .604 .743 .607
WSIR .286 .039 .029 .047 .069 .088 .227 .363 .523 .661 .586
F 150 .051 .054 .047 .055 .059 .058 .050 .054 .040 .045 .045
χ2 .113 .079 .062 .063 .068 .064 .051 .059 .045 .049 .049
SSIR .003 .004 .010 .019 .040 .067 .221 .402 .555 .723 .701
WSIR .003 .010 .011 .028 .041 .082 .189 .315 .468 .662 .659
F 500 .059 .047 .050 .049 .048 .048 .050 .043 .059 .038 .038
χ2 .067 .053 .055 .052 .051 .050 .052 .043 .062 .038 .038
SSIR .001 .001 .003 .012 .019 .053 .179 .356 .560 .735 .735
WSIR .000 .001 .003 .009 .021 .039 .147 .324 .466 .675 .675

2. F 60 .046 .039 .041 .033 .038 .077 .244 .271 .247 .257 .045
χ2 .374 .091 .088 .059 .058 .103 .270 .296 .276 .276 .060
SSIR .002 .011 .013 .022 .042 .126 .491 .723 .803 .881 .230
WSIR .286 .039 .028 .035 .045 .095 .256 .459 .626 .746 .068
F 150 .043 .034 .024 .014 .015 .080 .239 .247 .212 .273 .056
χ2 .103 .052 .034 .023 .020 .085 .252 .255 .224 .277 .058
SSIR .004 .000 .005 .006 .015 .117 .520 .690 .775 .896 .255
WSIR .012 .005 .013 .018 .033 .069 .260 .489 .640 .738 .080
F 500 .043 .028 .020 .023 .018 .043 .218 .207 .193 .214 .057
χ2 .056 .036 .023 .027 .019 .045 .221 .210 .195 .215 .058
SSIR .000 .001 .001 .006 .010 .054 .499 .658 .755 .889 .438
WSIR .000 .000 .005 .015 .020 .069 .258 .504 .659 .740 .252

3. F 60 .054 .034 .027 .022 .030 .073 .248 .294 .297 .286 .028
χ2 .388 .094 .060 .046 .045 .100 .286 .334 .321 .316 .042
SSIR .003 .010 .007 .011 .034 .149 .500 .740 .818 .887 .163
WSIR .311 .054 .047 .054 .064 .097 .243 .370 .557 .672 .592
F 150 .044 .028 .015 .014 .015 .086 .267 .223 .192 .270 .017
χ2 .105 .043 .028 .015 .017 .086 .280 .240 .200 .280 .021
SSIR .004 .000 .001 .005 .008 .116 .537 .706 .801 .879 .221
WSIR .018 .008 .017 .024 .045 .074 .203 .351 .475 .678 .677
F 500 .035 .017 .020 .012 .016 .045 .191 .135 .107 .280 .019
χ2 .044 .019 .022 .012 .017 .047 .194 .137 .110 .281 .019
SSIR .000 .000 .000 .001 .001 .069 .458 .598 .683 .897 .318
WSIR .000 .002 .006 .012 .031 .054 .162 .324 .490 .687 .687

Table 4.28. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 2 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
4. F 60 .044 .028 .024 .026 .025 .064 .202 .194 .238 .265 .187

χ2 .382 .101 .059 .043 .042 .087 .231 .233 .261 .286 .214
SSIR .002 .008 .008 .013 .037 .142 .504 .716 .798 .891 .475
WSIR .305 .059 .049 .047 .063 .090 .224 .366 .553 .675 .595
F 150 .042 .024 .022 .014 .019 .073 .212 .174 .172 .247 .237
χ2 .095 .037 .027 .023 .022 .081 .220 .182 .181 .256 .247
SSIR .002 .000 .001 .005 .010 .105 .503 .686 .782 .874 .664
WSIR .012 .008 .016 .027 .044 .065 .209 .343 .477 .666 .661
F 500 .022 .013 .020 .018 .022 .040 .201 .163 .139 .274 .274
χ2 .030 .017 .022 .019 .023 .044 .206 .166 .143 .277 .277
SSIR .000 .000 .000 .001 .007 .052 .510 .703 .778 .889 .855
WSIR .000 .000 .003 .012 .028 .061 .153 .333 .477 .661 .661

5. F 60 .045 .021 .026 .028 .039 .057 .154 .192 .135 .098 .032
χ2 .382 .089 .050 .050 .060 .075 .182 .221 .150 .114 .050
SSIR .001 .008 .016 .021 .036 .103 .321 .552 .697 .764 .085
WSIR .298 .049 .035 .040 .046 .095 .274 .460 .637 .736 .073
F 150 .029 .021 .026 .019 .020 .063 .140 .168 .116 .094 .036
χ2 .085 .040 .030 .024 .024 .066 .150 .180 .125 .105 .039
SSIR .002 .003 .007 .018 .025 .079 .336 .565 .671 .787 .104
WSIR .013 .008 .008 .015 .026 .075 .263 .476 .634 .768 .081
F 500 .014 .022 .013 .025 .023 .046 .175 .155 .122 .068 .038
χ2 .027 .025 .015 .025 .023 .048 .179 .0157 .125 .071 .041
SSIR .000 .002 .004 .013 .012 .052 .331 .581 .704 .780 .325
WSIR .000 .002 .003 .004 .014 .057 .266 .471 .662 .759 .284

6. F 60 .056 .040 .033 .034 .029 .050 .086 .092 .085 .073 .073
χ2 .390 .095 .068 .053 .051 .070 .110 .112 .103 .089 .089
SSIR .000 .006 .023 .032 .039 .117 .276 .463 .629 .777 .623
WSIR .314 .062 .055 .060 .075 .115 .229 .370 .541 .657 .578
F 150 .034 .025 .026 .020 .024 .052 .109 .092 .081 .074 .074
χ2 .091 .040 .039 .029 .030 .059 .121 .100 .091 .078 .078
SSIR .003 .005 .014 .014 .026 .070 .246 .414 .579 .737 .721
WSIR .018 .009 .015 .020 .025 .077 .214 .358 .488 .675 .675
F 500 .025 .023 .019 .035 .035 .048 .099 .096 .076 .082 .082
χ2 .041 .027 .021 .036 .036 .051 .100 .098 .077 .084 .084
SSIR .000 .000 .002 .011 .021 .063 .214 .384 .552 .771 .771
WSIR .000 .000 .005 .009 .023 .037 .190 .342 .478 .689 .689

7. F 60 .047 .035 .032 .033 .041 .071 .164 .201 .188 .174 .028
χ2 .393 .098 .069 .060 .057 .085 .189 .223 .208 .198 .043

Table 4.28. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .002 .009 .017 .024 .049 .103 .317 .604 .753 .860 .118
WSIR .306 .044 .041 .048 .038 .087 .267 .467 .638 .744 .073
F 150 .041 .023 .025 .026 .026 .064 .150 .191 .157 .187 .042
χ2 .091 .033 .037 .034 .033 .071 .159 .202 .168 .199 .047
SSIR .002 .006 .007 .013 .020 .075 .338 .627 .748 .877 .102
WSIR .019 .005 .011 .022 .033 .071 .261 .494 .640 .744 .074
F 500 .030 .029 .024 .024 .023 .042 .148 .177 .150 .157 .043
χ2 .045 .035 .027 .025 .024 .043 .149 .179 .154 .161 .045
SSIR .000 .001 .001 .008 .015 .064 .343 .637 .800 .859 .257
WSIR .000 .002 .004 .010 .015 .069 .245 .491 .663 .740 .266

Table 4.28. (Continued)

The results in Table 4.28 are based on xi ∼ 0.6N4(0, I) + 0.4N4(0, 25I). We

compared this table with Table 4.20 and found that they are very similar. For

example, the best results are obtained at 40% or 50% trimming except for the MLR

model, the adaptive trimming has better results than the original data and so on.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .042 .060 .068 .049 .043 .045 .048 .042 .046 .040 .040

χ2 .403 .144 .119 .080 .063 .066 .056 .057 .063 .049 .049
SSIR .013 .047 .077 .136 .231 .402 .563 .665 .752 .818 .759
WSIR .318 .101 .086 .127 .231 .368 .513 .612 .720 .787 .760
F 150 .051 .045 .057 .059 .055 .053 .065 .061 .051 .056 .056
χ2 .108 .079 .077 .071 .074 .062 .071 .065 .053 .062 .062
SSIR .005 .019 .037 .079 .235 .372 .505 .640 .692 .799 .794
WSIR .018 .013 .045 .085 .221 .354 .491 .562 .665 .760 .760
F 500 .053 .046 .056 .052 .062 .051 .058 .048 .052 .052 .052
χ2 .064 .051 .058 .054 .062 .052 .060 .049 .053 .052 .052
SSIR .001 .007 .021 .055 .225 .355 .484 .624 .674 .797 .797
WSIR .001 .005 .024 .054 .186 .336 .479 .584 .654 .774 .774

2. F 60 .055 .045 .055 .067 .131 .164 .135 .139 .111 .135 .045
χ2 .407 .139 .099 .101 .173 .200 .177 .165 .134 .156 .062
SSIR .007 .033 .057 .155 .377 .599 .707 .764 .824 .887 .345
WSIR .345 .079 .081 .107 .251 .388 .562 .677 .773 .825 .138
F 150 .036 .033 .033 .053 .144 .155 .106 .074 .077 .134 .012
χ2 .089 .052 .044 .061 .159 .169 .113 .083 .084 .142 .012
SSIR .005 .015 .017 .092 .403 .592 .693 .734 .798 .879 .383

Table 4.29. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 3 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
WSIR .020 .019 .029 .096 .251 .432 .586 .684 .764 .847 .105
F 500 .033 .039 .029 .047 .165 .130 .087 .066 .066 .138 .017
χ2 .044 .042 .031 .048 .173 .134 .088 .068 .066 .139 .019
SSIR .000 .008 .011 .053 .428 .545 .679 .737 .794 .877 .537
WSIR .001 .006 .025 .068 .288 .470 .616 .692 .766 .823 .227

3. F 60 .050 .043 .044 .068 .131 .170 .168 .147 .136 .150 .011
χ2 .406 .123 .076 .108 .170 .212 .202 .174 .157 .174 .017
SSIR .005 .028 .057 .163 .410 .637 .753 .789 .842 .895 .299
WSIR .370 .086 .087 .135 .235 .379 .507 .623 .688 .800 .766
F 150 .036 .027 .026 .048 .134 .119 .081 .080 .079 .133 .006
χ2 .097 .042 .032 .061 .158 .130 .085 .084 .081 .142 .006
SSIR .006 .012 .015 .103 .412 .619 .689 .743 .813 .885 .332
WSIR .029 .022 .048 .101 .246 .371 .479 .557 .681 .744 .742
F 500 .023 .033 .018 .035 .117 .057 .028 .022 .039 .160 .006
χ2 .037 .034 .019 .038 .118 .058 .029 .023 .040 .160 .007
SSIR .000 .001 .005 .047 .327 .474 .568 .672 .728 .894 .446
WSIR .002 .008 .024 .064 .220 .366 .473 .580 .689 .775 .775

4. F 60 .051 .041 .042 .079 .121 .138 .118 .133 .137 .153 .105
χ2 .405 .118 .074 .101 .154 .170 .145 .153 .166 .168 .118
SSIR .005 .029 .051 .172 .409 .642 .721 .773 .818 .892 .643
WSIR .362 .087 .084 .130 .226 .384 .496 .633 .695 .802 .770
F 150 .034 .028 .025 .050 .133 .089 .071 .065 .081 .125 .125
χ2 .082 .045 .034 .065 .150 .102 .082 .071 .087 .132 .132
SSIR .004 .008 .017 .112 .380 .609 .692 .755 .810 .858 .767
WSIR .026 .024 .046 .099 .255 .384 .482 .567 .668 .752 .751
F 500 .018 .031 .022 .047 .146 .070 .063 .064 .064 .157 .157
χ2 .027 .039 .024 .048 .151 .073 .068 .067 .065 .159 .159
SSIR .000 .001 .006 .054 .440 .603 .702 .768 .821 .884 .867
WSIR .003 .004 .027 .062 .223 .361 .480 .590 .675 .765 .765

5. F 60 .049 .043 .047 .061 .099 .117 .092 .079 .058 .045 .031
χ2 .377 .112 .087 .092 .143 .148 .119 .099 .073 .054 .062
SSIR .002 .030 .052 .116 .259 .437 .593 .681 .731 .807 .120
WSIR .361 .075 .071 .115 .257 .399 .577 .677 .769 .819 .110
F 150 .029 .024 .038 .043 .139 .118 .098 .073 .047 .047 .025
χ2 .081 .047 .043 .058 .153 .135 .106 .080 .054 .050 .030
SSIR .008 .015 .030 .084 .289 .505 .626 .700 .762 .819 .121
WSIR .017 .031 .042 .091 .265 .459 .599 .673 .774 .845 .095
F 500 .024 .024 .025 .037 .168 .117 .098 .067 .047 .033 .027

Table 4.29. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
χ2 .029 .029 .025 .039 .174 .120 .102 .071 .049 .033 .028
SSIR .000 .005 .006 .055 .337 .521 .640 .700 .770 .819 .274
WSIR .004 .006 .017 .054 .323 .483 .614 .689 .773 .826 .222

6. F 60 .041 .039 .050 .060 .091 .096 .091 .075 .063 .068 .068
χ2 .384 .125 .091 .096 .125 .117 .114 .094 .081 .084 .084
SSIR .003 .036 .050 .144 .288 .462 .558 .679 .736 .813 .767
WSIR .397 .087 .088 .157 .245 .388 .509 .625 .696 .792 .772
F 150 .026 .040 .033 .047 .101 .106 .072 .058 .050 .041 .041
χ2 .086 .063 .047 .056 .114 .114 .077 .063 .057 .047 .047
SSIR .006 .022 .034 .083 .242 .417 .564 .639 .718 .809 .809
WSIR .025 .025 .050 .105 .239 .385 .493 .590 .663 .766 .765
F 500 .019 .025 .035 .040 .111 .107 .099 .073 .064 .060 .060
χ2 .028 .033 .039 .043 .111 .109 .106 .075 .065 .062 .062
SSIR .000 .004 .027 .046 .243 .399 .512 .596 .689 .813 .813
WSIR .005 .007 .020 .048 .230 .356 .461 .558 .651 .761 .761

7. F 60 .042 .051 .046 .057 .095 .110 .105 .099 .083 .083 .029
χ2 .401 .142 .085 .101 .139 .145 .141 .119 .096 .097 .056
SSIR .007 .030 .049 .095 .276 .466 .665 .742 .827 .853 .161
WSIR .366 .075 .065 .102 .256 .384 .568 .680 .768 .821 .127
F 150 .029 .023 .032 .061 .106 .122 .103 .071 .058 .084 .014
χ2 .068 .042 .047 .075 .117 .140 .111 .076 .064 .089 .017
SSIR .003 .014 .030 .100 .298 .532 .661 .756 .814 .850 .129
WSIR .024 .017 .033 .098 .249 .437 .581 .687 .769 .844 .094
F 500 .034 .031 .029 .042 .141 .095 .087 .065 .052 .076 .015
χ2 .042 .038 .030 .044 .145 .099 .088 .068 .056 .078 .016
SSIR .002 .004 .012 .055 .335 .556 .671 .746 .842 .875 .284
WSIR .003 .005 .017 .056 .306 .479 .613 .685 .762 .825 .222

Table 4.29. (Continued)

The results in Table 4.29 are based on xi ∼ 0.4N4(0, I) + 0.6N4(0, 25I) and

they are similar to the results in Table 4.21.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .042 .037 .036 .041 .047 .049 .051 .052 .048 .063 .063

χ2 .380 .115 .086 .083 .069 .071 .068 .069 .061 .076 .076
SSIR .002 .010 .007 .009 .015 .026 .040 .063 .098 .525 .194
WSIR .233 .020 .020 .024 .027 .042 .045 .067 .098 .404 .146
F 150 .051 .049 .065 .056 .060 .054 .057 .057 .043 .045 .045
χ2 .114 .074 .078 .070 .070 .063 .066 .065 .049 .047 .047

Table 4.30. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 4 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .003 .003 .003 .005 .013 .022 .035 .037 .079 .572 .359
WSIR .002 .002 .007 .006 .012 .023 .031 .034 .070 .442 .360
F 500 .050 .046 .044 .046 .037 .047 .041 .043 .045 .052 .052
χ2 .062 .050 .046 .054 .039 .050 .043 .044 .047 .052 .052
SSIR .000 .000 .001 .002 .005 .005 .022 .025 .048 .568 .541
WSIR .000 .000 .000 .003 .003 .005 .011 .024 .039 .481 .480

2. F 60 .045 .044 .038 .036 .029 .022 .034 .038 .153 .641 .094
χ2 .389 .115 .078 .064 .045 .044 .042 .047 .167 .663 .109
SSIR .000 .005 .008 .008 .008 .017 .011 .034 .205 .864 .109
WSIR .258 .019 .019 .021 .014 .029 .034 .037 .099 .416 .033
F 150 .052 .044 .038 .030 .039 .016 .029 .031 .143 .641 .121
χ2 .106 .065 .052 .035 .047 .021 .035 .033 .147 .645 .124
SSIR .000 .002 .001 .000 .002 .007 .008 .023 .156 .885 .110
WSIR .005 .001 .005 .005 .007 .014 .011 .028 .072 .503 .052
F 500 .041 .034 .029 .026 .015 .018 .014 .026 .065 .680 .112
χ2 .051 .040 .035 .028 .018 .018 .016 .028 .066 .683 .113
SSIR .000 .000 .001 .001 .001 .003 .008 .021 .089 .889 .128
WSIR .000 .000 .001 .003 .004 .007 .012 .026 .067 .534 .250

3. F 60 .046 .044 .033 .030 .020 .016 .022 .024 .153 .641 .031
χ2 .380 .115 .072 .060 .039 .024 .028 .039 .166 .656 .040
SSIR .000 .003 .011 .004 .001 .008 .008 .020 .181 .808 .047
WSIR .267 .026 .020 .024 .028 .031 .047 .054 .115 .496 .187
F 150 .049 .036 .025 .019 .016 .015 .020 .024 .127 .666 .045
χ2 .096 .047 .030 .025 .021 .016 .023 .026 .130 .678 .046
SSIR .000 .002 .000 .000 .003 .004 .003 .014 .175 .885 .046
WSIR .007 .003 .010 .007 .012 .013 .030 .027 .081 .506 .421
F 500 .037 .027 .019 .012 .008 .009 .010 .016 .096 .666 .081
χ2 .046 .032 .020 .013 .008 .010 .010 .016 .098 .668 .083
SSIR .000 .000 .000 .000 .001 .000 .001 .004 .105 .875 .071
WSIR .000 .000 .001 .005 .004 .011 .019 .032 .048 .552 .552

4. F 60 .043 .035 .040 .031 .023 .020 .021 .032 .141 .607 .176
χ2 .386 .109 .066 .051 .038 .029 .031 .038 .159 .626 .191
SSIR .000 .004 .007 .004 .001 .006 .013 .028 .200 .860 .118
WSIR .265 .027 .019 .024 .026 .033 .049 .059 .112 .502 .192
F 150 .037 .029 .018 .016 .021 .015 .019 .022 .119 .598 .352
χ2 .093 .042 .030 .019 .027 .017 .026 .026 .127 .600 .356
SIR .000 .000 .001 .000 .003 .005 .005 .018 .168 .878 .186
WSIR .006 .003 .008 .014 .016 .021 .028 .027 .080 .501 .416

Table 4.30. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
F 500 .028 .027 .020 .012 .015 .015 .011 .013 .091 .591 .554
χ2 .034 .030 .022 .013 .015 .016 .012 .013 .091 .591 .554
SSIR .000 .000 .000 .000 .000 .001 .002 .007 .085 .875 .400
WSIR .000 .000 .000 .002 .003 .008 .016 .034 .051 .534 .534

5. F 60 .044 .028 .030 .023 .019 .025 .026 .025 .100 .316 .026
χ2 .376 .097 .063 .044 .028 .031 .038 .035 .112 .335 .034
SSIR .000 .003 .009 .006 .012 .013 .029 .041 .123 .575 .050
WSIR .294 .038 .019 .019 .013 .018 .035 .041 .090 .438 .035
F 150 .033 .025 .015 .019 .014 .021 .023 .034 .085 .345 .064
χ2 .076 .041 .024 .021 .015 .024 .026 .036 .088 .355 .071
SSIR .000 .003 .002 .001 .008 .009 .016 .026 .088 .628 .095
WSIR .011 .003 .007 .005 .007 .015 .009 .024 .080 .507 .061
F 500 .028 .018 .017 .018 .013 .013 .016 .019 .063 .344 .095
χ2 .034 .020 .018 .018 .013 .016 .016 .021 .064 .346 .096
SSIR .000 .000 .001 .000 .002 .006 .014 .026 .065 .661 .255
WSIR .001 .000 .001 .000 .002 .005 .011 .016 .063 .539 .267

6. F 60 .051 .033 .030 .031 .028 .028 .027 .037 .064 .137 .137
χ2 .370 .096 .057 .050 .042 .042 .036 .049 .077 .164 .164
SSIR .000 .000 .004 .016 .012 .014 .029 .037 .116 .649 .240
WSIR .293 .042 .026 .025 .029 .037 .047 .055 .112 .515 .197
F 150 .041 .026 .025 .021 .017 .018 .024 .036 .071 .158 .158
χ2 .081 .042 .036 .025 .021 .021 .027 .045 .073 .164 .164
SSIR .002 .000 .003 .005 .003 .011 .018 .035 .087 .659 .434
WSIR .005 .003 .011 .009 .011 .021 .023 .034 .086 .529 .445
F 500 .027 .025 .025 .016 .024 .024 .021 .034 .050 .149 .149
χ2 .040 .030 .027 .019 .026 .026 .024 .034 .054 .151 .151
SSIR .000 .001 .000 .002 .001 .013 .023 .017 .067 .639 .604
WSIR .000 .002 .003 .006 .007 .016 .024 .030 .046 .574 .574

7. F 60 .051 .043 .033 .036 .024 .035 .041 .045 .094 .424 .040
χ2 .400 .120 .064 .052 .040 .050 .053 .054 .109 .448 .049
SSIR .000 .003 .010 .008 .014 .018 .031 .032 .105 .683 .072
WSIR .270 .027 .021 .021 .014 .023 .031 .036 .083 .429 .031
F 150 .053 .026 .038 .032 .037 .023 .022 .025 .072 .475 .059
χ2 .100 .045 .048 .038 .040 .023 .027 .032 .078 .484 .064
SSIR .004 .002 .001 .008 .004 .009 .008 .025 .089 .785 .053
WSIR .006 .003 .004 .007 .005 .006 .009 .027 .074 .480 .048
F 500 .028 .026 .029 .025 .024 .018 .017 .026 .047 .509 .102
χ2 .037 .027 .031 .026 .025 .018 .017 .030 .047 .513 .103

Table 4.30. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .001 .002 .002 .003 .007 .010 .024 .060 .864 .087
WSIR .000 .000 .001 .004 .003 .007 .013 .021 .051 .533 .269

Table 4.30. (Continued)

We will compare Table 4.30 with Table 4.22. The predictors for both tables

have the distribution 0.9N4(0, I) + 0.1N4(0, 25I). Like Table 4.22, the best results

here are obtained at 10% or 20%.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .047 .057 .058 .054 .046 .045 .041 .051 .057 .045 .045

χ2 .391 .152 .112 .091 .077 .064 .051 .071 .071 .058 .058
SSIR .000 .001 .002 .007 .014 .018 .054 .079 .181 .471 .327
WSIR .189 .009 .003 .005 .011 .034 .070 .112 .197 .426 .232
F 150 .055 .039 .050 .046 .055 .063 .054 .045 .052 .047 .047
χ2 .100 .061 .060 .059 .064 .069 .060 .052 .059 .050 .050
SSIR .000 .000 .000 .002 .003 .012 .032 .099 .168 .451 .360
WSIR .000 .001 .001 .003 .005 .024 .035 .074 .180 .455 .361
F 500 .042 .051 .056 .054 .052 .058 .051 .046 .051 .047 .047
χ2 .049 .057 .060 .058 .053 .060 .052 .046 .053 .050 .050
SSIR .000 .000 .000 .001 .001 .006 .014 .059 .166 .471 .393
WSIR .000 .000 .000 .000 .001 .007 .043 .068 .165 .486 .458

2. F 60 .046 .056 .054 .043 .033 .031 .033 .031 .039 .068 .067
χ2 .394 .149 .101 .071 .052 .051 .042 .046 .051 .076 .075
SSIR .000 .001 .003 .004 .010 .020 .028 .095 .180 .493 .237
WSIR .235 .018 .004 .005 .020 .024 .054 .105 .182 .427 .252
F 150 .055 .040 .036 .044 .035 .027 .025 .042 .023 .058 .058
χ2 .102 .059 .050 .053 .041 .032 .034 .044 .024 .058 .058
SSIR .000 .000 .000 .003 .001 .004 .023 .082 .113 .457 .194
WSIR .004 .001 .000 .000 .005 .014 .028 .085 .180 .464 .364
F 500 .039 .048 .043 .045 .054 .052 .053 .053 .051 .056 .054
χ2 .052 .055 .050 .047 .059 .055 .056 .057 .051 .057 .055
SSIR .000 .000 .000 .000 .002 .010 .019 .057 .112 .415 .201
WSIR .000 .000 .000 .001 .002 .007 .028 .079 .160 .474 .437

3. F 60 .058 .041 .038 .023 .018 .010 .016 .019 .034 .078 .006
χ2 .366 .121 .073 .045 .029 .015 .022 .027 .046 .084 .009
SSIR .000 .000 .001 .003 .003 .003 .016 .053 .155 .499 .067
WSIR .229 .014 .004 .003 .017 .023 .048 .092 .184 .450 .254

Table 4.31. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 5 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
F 150 .028 .026 .026 .014 .012 .010 .017 .011 .011 .068 .006
χ2 .075 .038 .033 .020 .017 .011 .017 .013 .012 .068 .007
SSIR .000 .000 .000 .000 .000 .000 .006 .015 .056 .414 .028
WSIR .004 .001 .000 .001 .004 .012 .032 .073 .170 .440 .354
F 500 .035 .028 .014 .017 .027 .018 .017 .012 .004 .060 .007
χ2 .045 .032 .015 .019 .027 .018 .017 .013 .004 .060 .007
SSIR .000 .000 .000 .000 .000 .000 .001 .001 .016 .347 .026
WSIR .000 .000 .000 .000 .002 .005 .028 .077 .183 .469 .434

4. F 60 .057 .039 .037 .030 .024 .021 .018 .029 .039 .070 .050
χ2 .376 .117 .075 .053 .038 .029 .028 .040 .048 .081 .058
SSIR .000 .000 .002 .003 .006 .008 .027 .075 .174 .487 .134
WSIR .232 .014 .004 .002 .019 .025 .049 .094 .183 .449 .255
F 150 .032 .029 .028 .023 .021 .016 .023 .034 .012 .053 .036
χ2 .078 .044 .037 .028 .033 .016 .027 .036 .012 .058 .058
SSIR .000 .000 .001 .000 .003 .005 .005 .018 .168 .878 .186
WSIR .004 .001 .000 .000 .004 .012 .032 .071 .172 .439 .352
F 500 .032 .032 .021 .029 .043 .037 .041 .043 .027 .062 .044
χ2 .039 .035 .022 .035 .045 .040 .043 .043 .031 .062 .045
SSIR .000 .000 .000 .001 .000 .001 .012 .023 .077 .405 .158
WSIR .000 .000 .000 .000 .004 .006 .025 .079 .190 .466 .431

5. F 60 .055 .040 .040 .033 .026 .023 .026 .035 .040 .054 .008
χ2 .389 .126 .068 .060 .044 .030 .035 .047 .054 .061 .016
SSIR .000 .001 .002 .004 .008 .022 .037 .072 .164 .400 .130
WSIR .248 .009 .007 .001 .014 .021 .028 .072 .168 .432 .041
F 150 .030 .029 .027 .021 .019 .018 .024 .046 .037 .046 .020
χ2 .077 .042 .038 .028 .025 .019 .032 .049 .045 .051 .021
SSIR .000 .001 .000 .000 .003 .007 .025 .079 .157 .484 .284
WSIR .000 .002 .001 .000 .006 .010 .019 .053 .147 .451 .069
F 500 .033 .033 .019 .026 .040 .041 .049 .073 .063 .051 .048
χ2 .043 .037 .023 .026 .042 .041 .050 .076 .064 .054 .050
SSIR .000 .000 .000 .000 .002 .008 .029 .071 .189 .487 .433
WSIR .000 .000 .000 .000 .002 .008 .016 .060 .170 .504 .311

6. F 60 .058 .059 .040 .037 .026 .018 .022 .034 .042 .057 .057
χ2 .413 .147 .088 .063 .053 .037 .030 .040 .055 .069 .069
SSIR .001 .001 .001 .002 .004 .011 .025 .104 .179 .501 .339
WSIR .000 .000 .000 .000 .002 .008 .016 .060 .170 .504 .311
F 150 .034 .044 .033 .036 .032 .017 .022 .043 .037 .039 .039
χ2 .088 .062 .045 .048 .041 .022 .027 .047 .040 .045 .045

Table 4.31. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .001 .000 .000 .002 .002 .012 .068 .150 .463 .333
WSIR .195 .012 .011 .011 .013 .019 .060 .109 .213 .427 .236
F 500 .045 .054 .045 .050 .033 .022 .046 .057 .060 .056 .056
χ2 .056 .065 .046 .051 .035 .023 .048 .059 .063 .057 .057
SSIR .000 .000 .000 .000 .000 .002 .013 .061 .168 .473 .382
WSIR .001 .000 .001 .002 .004 .017 .029 .077 .163 .418 .338

7. F 60 .045 .056 .055 .052 .052 .044 .050 .056 .048 .060 .060
χ2 .403 .151 .107 .098 .077 .057 .067 .066 .060 .069 .069
SSIR .000 .001 .003 .008 .008 .032 .049 .082 .176 .429 .337
WSIR .000 .000 .000 .000 .003 .007 .029 .071 .146 .469 .430
F 150 .045 .039 .053 .048 .050 .054 .047 .047 .033 .038 .038
χ2 .097 .062 .059 .057 .063 .062 .057 .053 .040 .042 .042
SSIR .001 .000 .001 .000 .003 .009 .031 .077 .175 .476 .434
WSIR .223 .012 .005 .006 .019 .022 .052 .108 .189 .451 .240
F 500 .043 .053 .053 .055 .050 .071 .057 .052 .039 .060 .060
χ2 .054 .056 .058 .058 .053 .072 .058 .053 .039 .064 .064
SSIR .000 .000 .000 .000 .002 .009 .024 .053 .148 .484 .464
WSIR .003 .001 .000 .000 .005 .015 .030 .073 .150 .473 .375

Table 4.31. (Continued)

The results in Table 4.31 are based on xi ∼ LN(0, I) and they are similar to

the results in Table 4.23.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .052 .040 .039 .041 .044 .058 .063 .047 .054 .049 .049

χ2 .411 .120 .081 .060 .071 .080 .081 .067 .068 .059 .059
SSIR .001 .002 .007 .008 .019 .024 .043 .064 .135 .358 .168
WSIR .234 .019 .016 .013 .025 .029 .046 .086 .117 .339 .188
F 150 .046 .042 .051 .039 .062 .046 .046 .042 .045 .050 .050
χ2 .110 .063 .066 .059 .069 .052 .055 .046 .049 .058 .058
SSIR .001 .001 .003 .007 .011 .018 .027 .052 .113 .443 .297
WSIR .004 .002 .005 .002 .014 .021 .036 .053 .100 .396 .292
F 500 .048 .052 .040 .041 .049 .052 .052 .049 .045 .047 .047
χ2 .060 .055 .049 .042 .050 .055 .053 .050 .046 .047 .047
SSIR .000 .000 .001 .004 .006 .015 .027 .050 .088 .569 .436
WSIR .000 .000 .003 .004 .003 .012 .029 .048 .081 .504 .442

2. F 60 .042 .040 .038 .028 .025 .041 .045 .065 .084 .433 .063
χ2 .408 .123 .072 .044 .036 .059 .054 .073 .110 .466 .085

Table 4.32. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 6 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .001 .004 .007 .005 .006 .019 .035 .094 .211 .722 .087
WSIR .258 .019 .013 .010 .014 .031 .045 .069 .133 .345 .032
F 150 .042 .030 .037 .037 .024 .035 .031 .042 .068 .582 .098
χ2 .105 .047 .048 .044 .031 .037 .037 .046 .074 .598 .105
SSIR .000 .000 .001 .001 .003 .006 .023 .064 .151 .812 .091
WSIR .001 .000 .001 .006 .013 .017 .032 .054 .124 .384 .047
F 500 .047 .041 .031 .020 .016 .025 .028 .030 .066 .744 .143
χ2 .060 .042 .032 .022 .018 .030 .028 .030 .066 .746 .145
SSIR .000 .000 .000 .000 .003 .005 .010 .056 .164 .904 .142
WSIR .000 .000 .000 .003 .004 .008 .013 .039 .102 .480 .227

3. F 60 .044 .043 .031 .023 .020 .028 .039 .055 .111 .388 .025
χ2 .410 .107 .060 .036 .038 .043 .053 .065 .131 .405 .034
SSIR .000 .002 .001 .003 .007 .010 .027 .092 .256 .639 .049
WSIR .271 .026 .016 .014 .022 .026 .060 .071 .107 .380 .202
F 150 .053 .030 .035 .026 .017 .021 .026 .035 .087 .530 .039
χ2 .102 .040 .046 .030 .019 .026 .030 .041 .094 .540 .045
SSIR .001 .000 .001 .002 .003 .005 .021 .055 .192 .735 .033
WSIR .001 .001 .003 .007 .012 .017 .025 .051 .086 .479 .377
F 500 .047 .029 .020 .016 .010 .021 .017 .020 .066 .711 .077
χ2 .059 .038 .022 .018 .010 .023 .017 .020 .066 .712 .077
SSIR .000 .000 .000 .000 .000 .003 .006 .026 .126 .864 .058
WSIR .000 .000 .000 .004 .007 .007 .014 .044 .080 .599 .532

4. F 60 .051 .036 .036 .024 .027 .030 .038 .056 .102 .417 .124
χ2 .395 .099 .058 .047 .047 .041 .054 .064 .120 .427 .132
SSIR .000 .003 .001 .003 .007 .014 .035 .095 .224 .702 .120
WSIR .270 .025 .012 .018 .019 .027 .056 .068 .113 .374 .203
F 150 .046 .028 .033 .021 .018 .028 .032 .042 .071 .597 .242
χ2 .102 .043 .045 .028 .024 .034 .037 .050 .078 .600 .248
SSIR .000 .000 .000 .001 .003 .007 .024 .058 .150 .795 .143
WSIR .001 .000 .003 .007 .009 .019 .030 .052 .082 .489 .378
F 500 .039 .020 .021 .019 .011 .026 .018 .028 .070 .757 .381
χ2 .050 .028 .027 .020 .012 .027 .019 .028 .070 .758 .382
SSIR .000 .000 .000 .000 .000 .005 .015 .039 .165 .875 .223
WSIR .000 .001 .001 .001 .002 .012 .017 .040 .079 .572 .506

5. F 60 .049 .030 .025 .024 .037 .039 .046 .050 .076 .228 .033
χ2 .416 .090 .072 .041 .053 .055 .057 .062 .097 .257 .043
SSIR .000 .006 .006 .008 .015 .026 .036 .062 .153 .466 .054
WSIR .286 .017 .009 .011 .015 .021 .040 .064 .117 .359 .023

Table 4.32. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
F 150 .038 .025 .021 .021 .024 .028 .035 .049 .062 .220 .037
χ2 .074 .038 .032 .029 .028 .030 .038 .052 .064 .229 .038
SSIR .000 .000 .000 .004 .005 .015 .029 .057 .141 .494 .090
WSIR .005 .001 .000 .002 .005 .012 .017 .052 .118 .387 .040
F 500 .016 .012 .021 .019 .016 .020 .030 .028 .064 .324 .119
χ2 .025 .018 .025 .019 .016 .021 .030 .029 .065 .326 .122
SSIR .000 .000 .000 .003 .003 .008 .015 .038 .132 .605 .309
WSIR .000 .000 .000 .001 .003 .010 .019 .045 .097 .519 .264

6. F 60 .054 .028 .032 .035 .028 .038 .043 .045 .063 .095 .095
χ2 .405 .093 .074 .051 .046 .054 .058 .059 .075 .109 .109
SSIR .000 .002 .004 .012 .013 .021 .045 .068 .123 .409 .197
WSIR .293 .023 .015 .020 .022 .031 .053 .078 .124 .398 .223
F 150 .036 .040 .027 .033 .028 .032 .039 .057 .066 .102 .102
χ2 .091 .061 .037 .044 .031 .032 .042 .064 .074 .107 .107
SSIR .000 .002 .001 .002 .008 .018 .026 .054 .108 .521 .369
WSIR .000 .001 .002 .007 .008 .021 .026 .047 .096 .502 .394
F 500 .026 .017 .027 .026 .023 .035 .032 .048 .064 .103 .103
χ2 .036 .019 .029 .028 .023 .036 .035 .048 .066 .105 .105
SSIR .000 .000 .002 .004 .004 .012 .024 .042 .099 .635 .485
WSIR .000 .001 .000 .001 .004 .011 .028 .039 .100 .599 .535

7. F 60 .041 .035 .037 .028 .037 .033 .049 .049 .069 .253 .027
χ2 .377 .112 .073 .044 .054 .047 .065 .065 .087 .266 .041
SSIR .000 .005 .004 .003 .011 .013 .038 .063 .145 .499 .055
WSIR .284 .034 .010 .007 .016 .016 .053 .071 .134 .356 .025
F 150 .041 .042 .032 .028 .027 .027 .042 .051 .062 .320 .047
χ2 .105 .060 .044 .036 .031 .030 .047 .054 .071 .324 .050
SSIR .000 .001 .002 .001 .007 .010 .023 .064 .125 .588 .082
WSIR .003 .000 .002 .003 .007 .012 .026 .056 .123 .392 .044
F 500 .043 .033 .027 .030 .030 .029 .028 .039 .046 .444 .145
χ2 .055 .038 .029 .031 .033 .031 .028 .043 .049 .447 .147
SSIR .000 .000 .000 .000 .003 .007 .017 .036 .107 .732 .205
WSIR .000 .000 .000 .002 .002 .011 .015 .037 .106 .491 .240

Table 4.32. (Continued)

The results in Table 4.32 are based on xi ∼ MV T3 and they are similar to the

results in Table 4.24.
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .045 .050 .043 .047 .055 .058 .048 .048 .067 .077 .070

χ2 .384 .116 .084 .084 .084 .082 .068 .063 .077 .089 .082
SSIR .000 .007 .005 .014 .015 .032 .037 .063 .094 .192 .098
WSIR .207 .024 .007 .016 .025 .025 .051 .063 .095 .167 .125
F 150 .050 .042 .060 .053 .051 .047 .053 .046 .045 .046 .046
χ2 .103 .072 .076 .062 .063 .055 .059 .050 .049 .049 .049
SSIR .000 .000 .001 .005 .005 .015 .026 .037 .068 .178 .136
WSIR .003 .000 .002 .009 .014 .019 .030 .038 .066 .166 .153
F 500 .059 .061 .050 .046 .058 .066 .060 .058 .050 .044 .044
χ2 .075 .066 .058 .051 .059 .066 .063 .061 .051 .045 .045
SSIR .000 .000 .000 .002 .005 .011 .015 .035 .060 .225 .206
WSIR .000 .000 .000 .004 .007 .015 .020 .040 .052 .196 .196

2. F 60 .045 .048 .032 .027 .034 .039 .041 .047 .065 .252 .049
χ2 .390 .125 .070 .056 .056 .045 .056 .055 .082 .281 .062
SSIR .000 .007 .005 .006 .015 .022 .036 .054 .115 .433 .041
WSIR .223 .029 .012 .016 .026 .030 .023 .045 .081 .182 .027
F 150 .047 .045 .041 .035 .032 .026 .032 .036 .050 .306 .086
χ2 .101 .061 .052 .041 .037 .031 .035 .038 .054 .316 .089
SSIR .000 .000 .002 .003 .002 .005 .012 .034 .106 .510 .046
WSIR .006 .002 .003 .002 .010 .011 .021 .031 .067 .219 .050
F 500 .057 .040 .032 .028 .033 .025 .026 .032 .037 .453 .187
χ2 .068 .043 .036 .033 .036 .027 .026 .032 .038 .453 .188
SSIR .000 .000 .000 .002 .004 .014 .015 .022 .055 .660 .087
WSIR .000 .000 .001 .001 .003 .006 .015 .027 .051 .221 .179

3. F 60 .047 .046 .029 .019 .033 .030 .034 .036 .068 .241 .028
χ2 .391 .115 .054 .041 .047 .043 .045 .051 .080 .262 .036
SSIR .001 .003 .007 .007 .008 .014 .023 .041 .121 .423 .015
WSIR .234 .034 .013 .019 .022 .041 .042 .052 .086 .199 .142
F 150 .045 .035 .034 .029 .015 .021 .022 .029 .055 .305 .044
χ2 .103 .051 .042 .035 .023 .023 .026 .031 .064 .317 .050
SSIR .001 .000 .003 .001 .002 .002 .006 .028 .072 .507 .019
WSIR .007 .004 .005 .006 .009 .017 .028 .041 .064 .208 .204
F 500 .049 .030 .019 .012 .019 .009 .013 .018 .024 .485 .064
χ2 .060 .037 .021 .014 .019 .009 .014 .021 .024 .488 .065
SSIR .000 .000 .000 .000 .001 .000 .002 .009 .035 .617 .017
WSIR .000 .000 .000 .000 .002 .005 .011 .021 .034 .237 .237

4. F 60 .049 .042 .022 .020 .032 .029 .031 .039 .062 .247 .095
χ2 .402 .099 .053 .039 .043 .048 .045 .046 .079 .267 .112

Table 4.33. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 7 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .001 .002 .005 .005 .008 .021 .028 .053 .132 .468 .057
WSIR .245 .031 .013 .017 .023 .027 .039 .050 .080 .190 .143
F 150 .038 .029 .018 .027 .017 .020 .022 .034 .058 .334 .199
χ2 .092 .042 .030 .031 .024 .025 .025 .035 .062 .346 .209
SSIR .000 .000 .001 .000 .001 .003 .011 .027 .096 .488 .072
WSIR .006 .004 .004 .007 .010 .012 .021 .036 .063 .214 .208
F 500 .027 .017 .017 .011 .017 .011 .018 .028 .037 .481 .373
χ2 .041 .023 .018 .012 .020 .013 .018 .029 .040 .484 .377
SSIR .000 .000 .000 .000 .000 .000 .002 .015 .068 .612 .146
WSIR .000 .000 .000 .002 .002 .006 .010 .031 .052 .237 .237

5. F 60 .044 .033 .021 .031 .026 .032 .033 .037 .057 .145 .032
χ2 .397 .112 .055 .045 .042 .042 .048 .049 .069 .163 .042
SSIR .000 .004 .005 .008 .011 .020 .028 .053 .098 .263 .038
WSIR .250 .022 .011 .010 .016 .018 .028 .047 .083 .202 .020
F 150 .031 .019 .019 .019 .019 .016 .017 .030 .049 .163 .042
χ2 .073 .032 .026 .021 .022 .016 .023 .034 .051 .173 .050
SSIR .000 .000 .003 .007 .008 .010 .013 .022 .075 .276 .077
WSIR .004 .003 .001 .004 .002 .007 .019 .030 .060 .216 .045
F 500 .018 .018 .018 .020 .024 .020 .016 .036 .040 .170 .142
χ2 .026 .020 .019 .022 .027 .021 .017 .036 .041 .170 .142
SSIR .000 .000 .000 .001 .001 .005 .013 .037 .056 .296 .259
WSIR .000 .000 .000 .000 .002 .000 .011 .016 .045 .233 .191

6. F 60 .044 .034 .034 .031 .031 .037 .028 .039 .050 .091 .091
χ2 .397 .107 .068 .054 .046 .052 .040 .048 .061 .106 .106
SSIR .000 .000 .004 .005 .016 .021 .035 .049 .083 .222 .131
WSIR .267 .033 .020 .018 .022 .026 .032 .045 .071 .192 .135
F 150 .039 .019 .024 .026 .023 .026 .022 .037 .059 .097 .097
χ2 .095 .038 .036 .030 .029 .028 .025 .041 .063 .102 .102
SSIR .000 .001 .001 .005 .009 .011 .017 .025 .068 .216 .173
WSIR .009 .004 .002 .004 .007 .012 .020 .038 .066 .236 .229
F 500 .030 .018 .021 .023 .030 .013 .034 .036 .049 .093 .093
χ2 .049 .020 .025 .025 .030 .014 .036 .040 .050 .093 .093
SSIR .000 .000 .000 .002 .003 .006 .016 .028 .048 .277 .234
WSIR .000 .000 .000 .003 .003 .003 .012 .022 .038 .283 .283

7. F 60 .044 .034 .040 .032 .030 .040 .034 .039 .054 .134 .028
χ2 .383 .108 .072 .055 .048 .052 .047 .048 .070 .158 .037
SSIR .000 .003 .005 .006 .009 .016 .022 .035 .075 .248 .026
WSIR .256 .027 .014 .018 .013 .020 .026 .046 .078 .192 .024

Table 4.33. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
F 150 .031 .030 .029 .026 .028 .023 .028 .034 .040 .151 .036
χ2 .085 .054 .041 .036 .033 .027 .034 .040 .043 .159 .042
SSIR .001 .000 .000 .001 .001 .002 .016 .031 .065 .256 .060
WSIR .009 .002 .002 .004 .004 .009 .016 .037 .074 .219 .049
F 500 .045 .026 .027 .019 .024 .020 .021 .029 .032 .197 .151
χ2 .056 .029 .028 .021 .025 .022 .024 .030 .033 .199 .153
SSIR .000 .000 .000 .001 .000 .003 .006 .017 .051 .324 .229
WSIR .000 .000 .000 .000 .000 .002 .007 .021 .051 .235 .197

Table 4.33. (Continued)

The results in Table 4.33 are based on xi ∼ MV T5 and they are similar to the

results in Table 4.25.

Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
1. F 60 .061 .053 .051 .047 .045 .049 .063 .054 .055 .043 .041

χ2 .399 .132 .105 .078 .077 .072 .073 .066 .061 .050 .048
SSIR .001 .003 .003 .015 .014 .020 .030 .040 .056 .073 .039
WSIR .236 .018 .016 .019 .023 .031 .035 .056 .063 .093 .064
F 150 .048 .053 .053 .051 .052 .044 .047 .050 .040 .057 .057
χ2 .109 .080 .068 .061 .061 .054 .053 .053 .046 .058 .058
SSIR .000 .004 .001 .010 .004 .014 .021 .029 .052 .066 .059
WSIR .002 .001 .000 .007 .006 .015 .025 .040 .054 .087 .080
F 500 .051 .039 .053 .059 .059 .061 .058 .052 .048 .054 .054
χ2 .063 .051 .054 .060 .065 .063 .060 .055 .050 .055 .055
SSIR .000 .000 .000 .000 .005 .004 .012 .017 .032 .075 .074
WSIR .000 .000 .000 .001 .006 .004 .018 .021 .039 .069 .069

2. F 60 .048 .042 .038 .028 .038 .034 .034 .040 .034 .077 .035
χ2 .388 .109 .068 .060 .053 .049 .042 .050 .050 .082 .041
SSIR .000 .001 .005 .008 .007 .008 .018 .019 .042 .107 .013
WSIR .232 .018 .018 .017 .010 .023 .030 .043 .062 .091 .020
F 150 .043 .041 .040 .035 .029 .024 .023 .023 .024 .085 .061
χ2 .100 .067 .052 .045 .041 .028 .027 .028 .029 .093 .066
SSIR .000 .000 .002 .004 .004 .007 .009 .016 .031 .122 .016
WSIR .001 .000 .006 .007 .008 .008 .013 .023 .040 .085 .029
F 500 .052 .040 .039 .032 .037 .026 .031 .023 .032 .096 .096
χ2 .058 .048 .043 .034 .038 .026 .033 .026 .032 .100 .100
SSIR .000 .001 .001 .000 .000 .003 .007 .003 .018 .151 .056
WSIR .000 .002 .000 .005 .005 .008 .012 .016 .034 .086 .081

Table 4.34. Test For H0 : βo = 0,H1 : βo 6= 0 With Type 8 x
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
3. F 60 .051 .035 .033 .021 .032 .027 .027 .027 .034 .070 .028

χ2 .392 .107 .058 .040 .046 .042 .038 .037 .042 .087 .038
SSIR .000 .001 .002 .005 .005 .004 .014 .016 .045 .125 .005
WSIR .254 .020 .017 .033 .023 .030 .037 .043 .061 .091 .074
F 150 .046 .037 .033 .026 .023 .015 .015 .015 .018 .087 .043
χ2 .085 .061 .042 .028 .027 .017 .017 .019 .022 .097 .048
SSIR .000 .001 .001 .001 .002 .002 .003 .004 .019 .123 .004
WSIR .002 .000 .004 .010 .009 .020 .013 .024 .046 .077 .077
F 500 .041 .033 .026 .020 .013 .009 .011 .007 .018 .123 .096
χ2 .055 .037 .030 .021 .015 .011 .013 .007 .018 .124 .096
SSIR .000 .000 .000 .000 .000 .001 .001 .003 .012 .170 .001
WSIR .000 .000 .002 .002 .003 .009 .019 .023 .034 .077 .077

4. F 60 .047 .039 .025 .020 .027 .031 .027 .029 .037 .073 .048
χ2 .389 .105 .048 .036 .045 .036 .041 .043 .049 .079 .053
SSIR .000 .000 .002 .003 .005 .006 .010 .022 .048 .120 .019
WSIR .240 .019 .015 .026 .022 .032 .033 .038 .065 .095 .076
F 150 .037 .031 .022 .021 .021 .015 .015 .018 .027 .088 .085
χ2 .077 .054 .033 .027 .029 .016 .019 .020 .029 .091 .088
SSIR .000 .000 .001 .001 .000 .002 .004 .009 .031 .126 .016
WSIR .000 .000 .005 .009 .010 .021 .029 .027 .036 .079 .079
F 500 .029 .029 .023 .018 .013 .013 .017 .008 .023 .093 .093
χ2 .036 .035 .026 .021 .013 .013 .017 .009 .023 .094 .094
SSIR .000 .000 .000 .000 .000 .002 .002 .007 .013 .132 .040
WSIR .000 .000 .002 .002 .002 .006 .015 .019 .032 .084 .084

5. F 60 .051 .037 .030 .019 .025 .024 .026 .036 .037 .072 .031
χ2 .403 .101 .060 .032 .038 .037 .042 .046 .048 .086 .043
SSIR .000 .004 .010 .011 .011 .019 .020 .037 .054 .093 .030
WSIR .274 .027 .019 .017 .015 .015 .015 .043 .050 .088 .011
F 150 .030 .021 .020 .024 .017 .017 .020 .025 .029 .076 .065
χ2 .083 .038 .022 .030 .023 .021 .023 .030 .033 .080 .068
SSIR .000 .002 .002 .004 .006 .008 .014 .019 .043 .094 .059
WSIR .008 .001 .001 .005 .003 .011 .010 .017 .029 .080 .030
F 500 .023 .019 .021 .021 .019 .018 .025 .021 .029 .077 .077
χ2 .027 .021 .023 .021 .020 .018 .026 .023 .031 .080 .080
SSIR .000 .001 .001 .002 .004 .006 .013 .014 .030 .100 .100
WSIR .000 .001 .000 .000 .002 .004 .007 .013 .026 .082 .081

6. F 60 .050 .050 .031 .024 .029 .022 .032 .034 .038 .058 .058
χ2 .406 .113 .068 .045 .043 .038 .045 .043 .047 .073 .073

Table 4.34. (Continued)
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Model n 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% ADAP
SSIR .000 .003 .003 .004 .005 .016 .016 .033 .053 .095 .067
WSIR .278 .024 .018 .023 .026 .028 .030 .050 .052 .089 .076
F 150 .036 .028 .019 .028 .020 .018 .022 .029 .045 .061 .061
χ2 .084 .059 .028 .031 .028 .020 .027 .033 .049 .064 .064
SSIR .001 .001 .000 .001 .007 .013 .014 .024 .041 .068 .064
WSIR .007 .000 .001 .007 .016 .011 .012 .027 .041 .091 .091
F 500 .030 .022 .033 .021 .022 .021 .025 .021 .035 .062 .062
χ2 .036 .025 .036 .022 .022 .021 .026 .022 .037 .066 .066
SSIR .001 .000 .001 .001 .003 .005 .008 .012 .030 .058 .058
WSIR .000 .001 .002 .001 .001 .004 .007 .013 .028 .080 .080

7. F 60 .043 .048 .044 .034 .030 .021 .032 .044 .037 .061 .031
χ2 .398 .107 .083 .060 .042 .034 .041 .059 .052 .074 .038
SSIR .000 .004 .004 .010 .008 .010 .020 .038 .046 .086 .017
WSIR .267 .021 .016 .015 .015 .022 .029 .043 .051 .079 .020
F 150 .047 .030 .033 .032 .028 .030 .030 .026 .037 .059 .041
χ2 .097 .049 .041 .038 .035 .033 .032 .031 .041 .062 .046
SSIR .001 .002 .001 .006 .006 .008 .008 .014 .034 .093 .043
WSIR .005 .000 .001 .005 .006 .009 .014 .015 .042 .098 .045
F 500 .039 .030 .030 .023 .029 .026 .027 .029 .034 .082 .082
χ2 .047 .037 .032 .026 .031 .026 .028 .030 .034 .082 .082
SSIR .000 .000 .000 .002 .002 .002 .004 .013 .024 .085 .084
WSIR .000 .000 .001 .001 .002 .001 .007 .016 .020 .083 .083

Table 4.34. (Continued)

The results in Table 4.34 are based on xi ∼ MV T19 and they are similar to

the results in Table 4.26.

In general, SIR does not have good results except for the type 1 distribution

although the adaptive trimming sometimes helped SSIR. For OLS, the adaptive

trimming usually helped if the results for the 0% were bad.
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