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CHAPTER 1

PLOTS AND TESTS FOR EXPERIMENTAL DESIGNS

1.1 INTRODUCTION

This chapter follows Olive (2009, Ch.5) closely.

Definition 1.1. Models in which the response variable Y is quantitative,

but all of the predictor variables are qualitative are called analysis of variance

(ANOVA) models or experimental design models. Such models are the focus of

design of experiments (DOE). Each combination of the levels of the predictors

gives a different distribution for Y . A predictor variable W is often called a factor

and a factor level ai is one of the categories W can take.

Definition 1.2. A lurking variable is not one of the variables in the study,

but may affect the relationships among the variables in the study. A unit is the ex-

perimental material assigned treatments, which are the conditions the investigator

wants to study.

Definition 1.3. In an experiment, the investigators use randomization to

assign treatments to units. To assign p treatments to n = n1 + · · ·+np experimental

units, draw a random permutation of {1, ..., n}. Assign the first n1 units treatment

1, the next n2 units treatment 2, ..., and the final np units treatment p.

Randomization allows one to do valid inference such as F tests of hypothe-

ses and confidence intervals. Randomization also washes out the effects of lurking

variables and makes the p treatment groups similar except for the treatment. The
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effects of lurking variables are present in observational studies defined in Definition

1.4.

Definition 1.4. In an observational study, investigators simply observe the

response, and the treatment groups need to be p random samples from p populations

(the levels) for valid inference.

Example 1.1. Consider using randomization to assign the following nine

people (units) to three treatment groups.

Carroll, Collin, Crawford, Halverson, Lawes,

Stach, Wayman, Wenslow, Xumong

Balanced designs have the group sizes the same: ni = n/p. Label the units alpha-

betically so Carroll gets 1, ..., Xumong gets 9. The R/Splus function sample can be

used to draw a random permutation. Then the first 3 numbers in the permutation

correspond to group 1, the next 3 to group 2 and the final 3 to group 3. Using the

output shown below, gives the following 3 groups.

group 1: Stach, Wayman, Xumong

group 2: Lawes, Carroll, Halverson

group 3: Collin, Wenslow, Crawford

> sample(9)

[1] 6 7 9 5 1 4 2 8 3

Often there is a table or computer file of units and related measurements, and
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it is desired to add the unit’s group to the end of the table. The regpack function

rand reports a random permutation and the quantity groups[i] = treatment group

for the ith person on the list. Since persons 6, 7 and 9 are in group 1, groups[7] =

1. Since Carroll is person 1 and is in group 2, groups[1] = 2, et cetera.

> rand(9,3)

$perm

[1] 6 7 9 5 1 4 2 8 3

$groups

[1] 2 3 3 2 2 1 1 3 1

Definition 1.5. Replication means the response variables Yi,1, ..., Yi,ni are

approximately independently and identically distributed (iid) random variables.

Example 1.2. a) If ten students work two types of paper mazes three times

each, then there are 60 measurements that are not replicates. Each student should

work the six mazes in random order since speed increases with practice. For the ith

student, let Zi1 be the average time to complete the three mazes of type 1, let Zi2

be the average time for mazes of type 2 and let Di = Zi1 − Zi2. Then D1, ...,D10

are replicates.

b) Cobb (1998, p. 126) states that a student wanted to know if the shapes of

sponge cells depends on the color (green or white). He measured hundreds of cells

from one white sponge and hundreds of cells from one green sponge. There were

only two units so n1 = 1 and n2 = 1. The student should have used a sample of n1

green sponges and a sample of n2 white sponges to get more replicates.
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c) Replication depends on the goals of the study. Box, Hunter and Hunter

(2005, p. 215-219) describes an experiment where the investigator times how long

it takes him to bike up a hill. Since the investigator is only interested in his perfor-

mance, each run up a hill is a replicate (the time for the ith run is a sample from

all possible runs up the hill by the investigator). If the interest had been on the

effect of eight treatment levels on student bicyclists, then replication would need

n = n1 + · · · + n8 student volunteers where ni ride their bike up the hill under the

conditions of treatment i.

1.2 FIXED EFFECTS ONE WAY ANOVA

Definition 1.6. Let fZ(z) be the probability density function (pdf) of Z.

Then the family of pdf’s fY (y) = fZ(y − µ) indexed by the location parameter

µ, −∞ < µ < ∞, is the location family for the random variable Y = µ + Z with

standard pdf fZ(z).

Definition 1.7. A one way fixed effects ANOVA model has a single

qualitative predictor variable W with p categories a1, ..., ap. There are p different

distributions for Y , one for each category ai. The distribution of

Y |(W = ai) ∼ fZ(y − µi)

where the location family has second moments. Hence all p distributions come from

the same location family with different location parameter µi and the same variance

σ2.

Definition 1.8. The one way fixed effects normal ANOVA model is
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the special case where

Y |(W = ai) ∼ N(µi, σ
2).

Example 1.3. The pooled 2 sample t–test is a special case of a one way

ANOVA model with p = 2. For example, one population could be ACT scores for

men and the second population ACT scores for women. Then W = gender and Y

= score.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as the

vector Y = (Y11, ..., Y1,n1, Y21, ..., Y2,n2, ..., Yp1, ..., Yp,np)
T where the Yij are indepen-

dent and Yi1, ..., Yi,ni are iid. Here j = 1, ..., ni where ni is the number of cases

from the ith level where i = 1, ..., p. Thus n1 + · · · + np = n. Similarly use double

subscripts on the errors. Then there will be many equivalent parameterizations of

the one way fixed effects ANOVA model.

Definition 1.9. The cell means model is the parameterization of the one

way fixed effects ANOVA model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith factor level.

The µi are the unknown means and E(Yij) = µi. The eij are iid from the location

family with pdf fZ(z) and unknown variance σ2 = VAR(Yij) = VAR(eij). For the

normal cell means model, the eij are iid N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is an ordinary least squares (OLS) model (without in-
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tercept) of the form Y = Xcβc + e =




Y11

...

Y1,n1

Y21

...

Y2,n2

...

Yp,1

...

Yp,np




=




1 0 0 . . . 0

...
...

...
...

1 0 0 . . . 0

0 1 0 . . . 0

...
...

...
...

0 1 0 . . . 0

...
...

...
...

0 0 0 . . . 1

...
...

...
...

0 0 0 . . . 1







µ1

µ2

...

...

...

...

...

...

...

µp




+




e11

...

e1,n1

e21

...

e2,n2

...

ep,1

...

ep,np




. (1.1)

Notation. Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y i0 = Yi0/ni =
1

ni

ni∑

j=1

Yij . (1.2)

Hence the “dot notation” means sum over the subscript corresponding to the 0, e.g.

j. Similarly, Y00 =
∑p

i=1

∑ni

j=1 Yij is the sum of all of the Yij.

Notice that the indicator variables used in the OLS cell means model (1.1)

are xhi = 1 if the hth case has W = ai, and xhi = 0, otherwise, for i = 1, ..., p and

h = 1, ..., n. So Yij has xhi = 1 where j = 1, ..., ni. The model can use p indicator

variables for the factor instead of p − 1 indicator variables because the model does

not contain an intercept. Also notice that

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,
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(XT
c Xc) = diag(n1, ...,np) and XT

c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)
T .

Hence (XT
c X c)

−1 = diag(1/n1, ..., 1/np) and

β̂c = (XT
c Xc)

−1XT
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ...Y p0, ..., Y p0)
T . Hence the ijth fitted value is

Ŷij = Y i0 = µ̂i (1.3)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (1.4)

Definition 1.10. Consider the one way fixed effects ANOVA model. The

response plot is a plot of Ŷij ≡ µ̂i versus Yij and the residual plot is a plot of µ̂i

versus rij.

Since the cell means model is an OLS model, there is an associated response

plot and residual plot. However, many of the interpretations of the OLS quantities

for ANOVA models differ from the interpretations for multiple linear regression

(MLR) models. First, for MLR models with continuous predictors x, the conditional

distribution Y |x makes sense even if x is not one of the observed xi if x is not far

from the xi. This fact makes MLR very powerful. For the one way fixed effects

ANOVA model, the p distributions Y |xi make sense are where xi is a column of

Xc.

Also, the OLS MLR ANOVA F test for the cell means model tests H0 : β =

0 ≡ H0 : µ1 = · · · = µp = 0, while the one way fixed effects ANOVA F test given

after Definition 1.12 tests H0 : µ1 = · · · = µp.
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The points in the response plot scatter about the identity line with unit slope

and zero intercept and the points in the residual plot scatter about the r = 0 line,

but the scatter need not be in an evenly populated band. A dot plot of Z1, ..., Zm

consists of an axis and m points each corresponding to the value of Zi. The response

plot consists of p dot plots, one for each value of µ̂i. The dot plot corresponding to µ̂i

is the dot plot of Yi1, ..., Yi,ni. The p dot plots should have roughly the same amount

of spread, and each µ̂i corresponds to level ai. If a new level af corresponding to xf

was of interest, hopefully the points in the response plot corresponding to af would

form a dot plot at µ̂f similar in spread to the other dot plots, but it will not be

possible to predict the value of µ̂f .

Similarly, the residual plot consists of p dot plots, and the plot corresponding

to µ̂i is the dot plot of ri1, ..., ri,ni. Assume that each ni ≥ 10. Under the assumption

that the Yij are from the same location scale family with different parameters µi, each

of the p dot plots should have roughly the same shape and spread. This assumption

is easier to judge with the residual plot. If the response plot looks like the residual

plot, then a horizontal line fits the p dot plots about as well as the identity line, and

there is not much difference in the µi. If the identity line is clearly superior to any

horizontal line, then at least some of the means differ.

The assumption of the Yij coming from the same location scale family with dif-

ferent location parameters µi and the same constant variance σ2 is a big assumption

and often does not hold. Another way to check this assumption is to make a box

plot of the Yij for each i. The box in the box plot corresponds to the lower, middle,
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and upper quartiles of the Yij . The middle quartile is just the sample median of the

data mij: at least half of the Yij ≥ mij and at least half of the Yij ≤ mij. The p

boxes should be roughly the same length and the median should occur in roughly

the same position (e.g. in the center of each box). The “whiskers” in each plot

should also be roughly similar. Histograms for each of the p samples could also be

made. All of the histograms should look similar in shape.

FIT

Y

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2

a) Response Plot

FIT

R
E

S
ID

0.4 0.5 0.6 0.7 0.8 0.9 1.0
-1

0
1

b) Residual Plot

FIT

JY

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2

c) Jittered Response Plot

FIT

JR

0.4 0.5 0.6 0.7 0.8 0.9 1.0

-1
0

1

d) Jittered Residual Plot

Figure 1.1. Plots for Crab Data

Example 1.4. Kuehl (1994, p. 128) gives data for counts of hermit crabs

on 25 different transects in each of six different coastline habitats. Let Z be the

count. Then the response variable Y = log10(Z + 1/6). Although the counts Z

varied greatly, each habitat had several counts of 0 and often there were several

counts of 1, 2 or 3. Hence Y is not a continuous variable. The cell means model

was fit with ni = 25 for i = 1, ..., 6. Each of the six habitats was a level. Figure

1.1a and b shows the response plot and residual plot. There are 6 dot plots in each

plot. Because several of the smallest values in each plot are identical, it does not
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always look like the identity line is passing through the six sample means Y i0 for

i = 1, ..., 6. In particular, examine the dot plot for the smallest mean (look at the

25 dots furthest to the left that fall on the vertical line FIT ≈ 0.36). Random noise

(jitter) has been added to the response and residuals in Figure 1.1c and d. Now it

is easier to compare the six dot plots. They seem to have roughly the same spread.

The plots contain a great deal of information. The response plot can be used

to explain the model, check that the sample from each population (treatment) has

roughly the same shape and spread, and to see which populations have similar

means. Since the response plot closely resembles the residual plot in Figure 1.1, there

may not be much difference in the six populations. Linearity seems reasonable since

the samples scatter about the identity line. The residual plot makes the comparison

of “similar shape” and “spread” easier.

FIT

Y

5 6 7 8

5
6

7
8

19
20

9
8

Response Plot

FIT

R
E

S

5 6 7 8

-0
.4

-0
.2

0.
0

0.
2

Residual Plot

Figure 1.2. Plots for Textile Data

Example 1.5. Box and Cox (1964) analyze data from a 33 experiment on

the behavior of worsted yarn under cycles of repeated loadings. The response Y =
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log(Z) where Z is the number of cycles to failure and the three predictors are the

length, amplitude and load. To make Figure 1.2, a constant was used in the design

matrix, but no interactions. For this data set, there is one value of the response for

each of the 27 treatment level combinations.

Figure 1.2 shows that linearity with constant variance is reasonable, and that

the signal to noise ratio is high. To use the response plot to visualize the conditional

distribution of Y |xT β, use the fact that the fitted values Ŷ = xT β̂. Notice that

cases 19 and 20 had the largest time until failure. These cases correspond to wool

specimens with long length, short amplitude of loading cycle, and low load. Cases

8 and 9 had the shortest times with low length, high amplitude, and high load.

Definition 1.11. a) The total sum of squares

SSTO =

p∑

i=1

ni∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares

SSTR =

p∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p∑

i=1

ni∑

j=1

(Yij − Y io)
2.

Definition 1.12. Associated with each sum of squares (SS) in Definition 1.11

is a degrees of freedom (df) and a mean square = SS/df. For SSTO, df = n−1

and MSTO = SSTO/(n − 1). For SSTR, df = p − 1 and MSTR = SSR/(p − 1).

For SSE, df = n − p and MSE = SSE/(n − p).
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Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith group.

Then the residual mean square (MSE) is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n − p

p∑

i=1

ni∑

j=1

r2
ij =

1

n − p

p∑

i=1

ni∑

j=1

(Yij − Y i0)
2 =

1

n − p

p∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The one way ANOVA table is the same as that for regression, except that

SSTR replaces the regression sum of squares. The MSE is again an estimator of

σ2. The ANOVA F test tests whether all p means µi are equal. Shown below is an

ANOVA table given in symbols. Sometimes “Treatment” is replaced by “Between

treatments,” “Between Groups,” “Model,” “Factor” or “Groups.” Sometimes “Er-

ror” is replaced by “Residual,” or “Within Groups.” Sometimes “p-value” is replaced

by “P”, “Pr(> F )” or “PR > F.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Treatment p − 1 SSTR MSTR F0 = MSTR/MSE for H0:

Error n − p SSE MSE µ1 = · · · = µp

Next the 4 step fixed effects one way ANOVA F test of hypotheses

is given:

i) State the hypotheses H0: µ1 = µ2 = · · · = µp and Ha: not H0.

ii) Find the test statistic F0 = MSTR/MSE or obtain it from output.
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iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > F0).

iv) State whether you reject H0 or fail to reject H0. If the p–value < δ, reject H0

and conclude that the mean response depends on the factor. Otherwise fail to reject

H0 and conclude that the mean response does not depend on the factor. Give a

nontechnical sentence.

Rule of Thumb 1.1. Moore (2000, p. 512). If

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp),

then the one way ANOVA F test results will be approximately correct if the response

and residual plots suggest that the remaining one way ANOVA model assumptions

are reasonable.

Remark 1.1. If the units are a representative sample of some population

of interest, then randomization of units into groups makes the assumption that

Yi1, ..., Yi,ni are iid hold to a useful approximation. Random sampling from popula-

tions also induces the iid assumption. Linearity can be checked with the response

plot, and similar shape and spread of the location families can be checked with both

the response and residual plots. Also check that outliers are not present. If the p

dot plots in the response plot are approximately symmetric, then the sample sizes

ni can be smaller than if the dot plots are skewed.

Remark 1.2. When the assumption that the p groups come from the same

location family with finite variance σ2 is violated, the one way ANOVA F test may
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not make much sense because unequal means may not imply the superiority of one

category over another. Suppose Y is the time in minutes until relief from a headache

and that Y1j ∼ N(60, 1) while Y2j ∼ N(65, σ2). If σ2 = 1, then the type 1 medicine

gives headache relief 5 minutes faster, on average, and is superior, all other things

being equal. But if σ2 = 100, then many patients taking medicine 2 experience much

faster pain relief than those taking medicine 1, and many experience much longer

time until pain relief. In this situation, predictor variables that would identify which

medicine is faster for a given patient would be very useful.

fat1 fat2 fat3 fat4 One way Anova for Fat1 Fat2 Fat3 Fat4

64 78 75 55 Source DF SS MS F P

72 91 93 66 treatment 3 1636.5 545.5 5.41 0.0069

68 97 78 49 error 20 2018.0 100.9

77 82 71 64

56 85 63 70

95 77 76 68

Example 1.6. The output above represents grams of fat (minus 100 grams)

absorbed by doughnuts using 4 types of fat. See Snedecor and Cochran (1967, p.

259). Let µi denote the mean amount of fat i absorbed by doughnuts, i = 1, 2, 3

and 4. a) Find µ̂1. b) Perform a 4 step ANOVA F test.

Solution: a) β̂1c = µ̂1 = Y 10 = Y10/n1 =
∑n1

j=1 Y1j/n1 =

(64 + 72 + 68 + 77 + 56 + 95)/6 = 432/6 = 72.
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b) i) H0 : µ1 = µ2 = µ3 = µ4 Ha: not H0

ii) F = 5.41

iii) pvalue = 0.0069

iv) Reject H0, the mean amount of fat absorbed by doughnuts depends on the

type of fat.

Definition 1.13. A contrast C =
∑p

i=1 kiµi where
∑p

i=1 ki = 0. The esti-

mated contrast is Ĉ =
∑p

i=1 kiY i0.

If the null hypothesis of the fixed effects one way ANOVA test is not true, then

not all of the means µi are equal. Researchers will often have hypotheses, before

examining the data, that they desire to test. Often such a hypothesis can be put in

the form of a contrast. For example, the contrast C = µi = µj is used to compare

the means of the ith and jth groups while the contrast µ1 = −(µ2 + · · ·+µp)/(p−1)

is used to compare the last p− 1 groups with the 1st group. This contrast is useful

when the 1st group corresponds to a new treatment while the remaining groups

correspond to new treatments.

Assume that the normal cell means model is a useful approximation to the

data. Then the Y i0 ∼ N(µi, σ
2/ni) are independent, and

Ĉ =

p∑

i=1

kiY i0 ∼ N

(
C, σ2

p∑

i=1

k2
i

ni

)
.

Hence the standard error

SE(Ĉ) =

√√√√MSE

p∑

i=1

k2
i

ni
.

The degrees of freedom is equal to the MSE degrees of freedom = n − p.
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1.3 RANDOM EFFECTS ONE WAY ANOVA

For the random effects one way ANOVA, the levels of the factor are a

random sample of levels from some population of levels Λ. The cell means model for

the random effects one way ANOVA is Yij = µi + eij for i = 1, ..., r and j = 1, ..., n.

The µi are independent N(µo, σ
2
µ) random variables, and the eij are iid N(0, σ2)

random variables. The eij and the µi are independent. Note that the population of

levels Λ ∼ N(µo, σ
2
µ) and if σ2

µ = 0, then µi ≡ µo for all i ∈ Λ.

The 4 step random effects one way ANOVA test is

i) H0: σ2
µ = 0 Ha: σ2

µ > 0.

ii) F0 = MSTR/MSE ∼ Fr−1,nr−1 if H0 is true.

iii) p-value = P (Fr−1,nr−1 > F0) is usually obtained from output.

iv) If p–value < δ reject H0, conclude that σ2
µ > 0 and that the mean response

depends on the factor. Otherwise, fail to reject H0, conclude that σ2
µ = 0 and that

the mean response does not depend on the factor.

1.4 RESPONSE TRANSFORMATIONS FOR EXPERIMENTAL DE-

SIGNS

A model for an experimental design is Yi = E(Yi) + ei for i = 1, ..., n where

the error ei = Yi −E(Yi) and E(Yi) ≡ E(Yi|xi) is the expected value of the response

Yi for a given vector of predictors xi. Many models can be fit with least squares

(OLS) and have the form

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei
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for i = 1, . . . , n. Often xi,1 ≡ 1 for all i. In matrix notation, these n equations

become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p design matrix

of predictors, β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector

of unknown errors. If the fitted values are Ŷi = xT
i β̂, then Yi = Ŷi + ri where the

residuals ri = Yi − Ŷi.

The applicability of an experimental design model can be expanded by allowing

response transformations. An important class of response transformation models

adds an additional unknown transformation parameter λo, such that

Yi = tλo(Zi) ≡ Z
(λo)
i = E(Yi) + ei = xT

i β + ei.

If λo was known, then Yi = tλo(Zi) would follow the experimental design model.

Definition 1.14. Assume that all of the values of the “response” Zi are

positive. A power transformation has the form Y = tλ(Z) = Zλ for λ 6= 0 and

Y = t0(Z) = log(Z) for λ = 0 where λ ∈ ΛL = {−1,−1/2, 0, 1/2, 1}.

A graphical method for response transformations computes the fitted values

Ŵi from the experimental design model using Wi = tλ(Zi) as the “response” for

each of the five values of λ ∈ ΛL. The plotted points follow the identity line in

a (roughly) evenly populated band if the experimental design model is reasonable

for (Ŵ ,W ). If more than one value of λ ∈ ΛL gives a linear plot, consult subject

matter experts and use the simplest or most reasonable transformation.
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Definition 1.15. A transformation plot is a plot of (Ŵ ,W ) with the

identity line added as a visual aid.

After selecting the transformation, the usual checks should be made. A variant

of the method would plot the residual plot or both the response and the residual plot

for each of the five values of λ. Residual plots are also useful, but they no not dis-

tinguish between nonlinear monotone relationships and nonmonotone relationships.

See Fox (1991, p. 55).

In the following two examples, the plots show tλ(Z) on the vertical axis. The

label “TZHAT” of the horizontal axis are the fitted values that result from using

tλ(Z) as the “response” in the software.
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Figure 1.3. Transformation Plots for Crab Data

Example 1.4, continued. Following Kuehl (1994, p. 128), let C be the count

of crabs and let the “response” Z = C+1/6. Figure 1.3 shows the five transformation

plots. The transformation log(Z) results in dot plots that have roughly the same

shape and spread. The transformations 1/Z and 1/
√

Z do not handle the 0 counts
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well, while the transformations
√

Z and Z have variance that increases with the

mean.
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Figure 1.4. Transformation Plots for Textile Data

Example 1.5, continued. For the textile data, Z = number of cycles until

failure. Figure 1.4 shows four of the five transformation plots. The plotted points

for the log transformation follow the identity line with roughly constant variance.

1.5 COMMENTS ON THE DESIGN AND ANALYSIS OF EXPERI-

MENTS

All of the parameterizations of the one way fixed effects ANOVA model yield

the same predicted values, residuals and ANOVA F test, but the interpretations of

the parameters differ.

Three excellent tests on the design and analysis of experiments are Box, Hunter

and Hunter (2005), Cobb (1998) and Kuehl (1994). The response plot of fitted values

versus the response is useful for visualizing many of these models.
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Wilcox (2005) gives an excellent discussion of the problems that outliers and

skewness can cause for the one and two sample t–intervals, the t–test, tests for com-

paring 2 groups and the ANOVA F test. Wilcox (2005) replaces ordinary population

means by truncated population means and uses trimmed means to create analogs

of one way ANOVA and multiple comparisons.

Box and Cox (1964) give a numerical method for selecting the response trans-

formation for the modified power transformations. Although the method gives a

point estimator λ̂0, often an interval of “reasonable values” is generated (either

graphically or using a profile likelihood to make a confidence interval), and λ̂ ∈ ΛL

is used if it is also in the interval.

The modified power transformation family

Yi = tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ

for λ 6= 0 and t0(Zi) = log(Zi) for λ = 0 where λ ∈ ΛL.

There are several reasons to use a coarse grid ΛL of powers. First, several of

the powers correspond to simple transformations such as the log, square root, and

reciprocal. These powers are easier to interpret than λ = .28, for example. Secondly,

if the estimator λ̂n can only take values in ΛL, then sometimes λ̂n will converge in

probability to λ∗ ∈ ΛL. Thirdly, Tukey (1957) showed that neighboring modified

power transformations are often very similar, so restricting the possible powers to a

coarse grid is reasonable.

The graphical method for response transformations is due to Olive (2004,

2008), and alternative methods are given by Cook and Olive (2002) and Box, Hunter
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and Hunter (2005, p. 321).

1.6 ALTERNATIVES TO ONE WAY ANOVA

An alternative to one way ANOVA is to use feasible weighted least squares

(FWLS) on the cell means model with σ2V = diag(σ2
1, ..., σ

2
p) where σ2

i is the

variance of the ith group for i = 1, ..., p. Then V̂ = diag(S2
1, ..., S

2
p) where

S2
i = 1

ni−1

∑ni

j=1(Yij − Y i0)
2 is the sample variance of the Yij. Hence the estimated

weights for FWLS are ŵij ≡ ŵi = 1/S2
i . Then the FWLS cell means model has

Y = Xcβc + e as in (1.1) except Cov(e) = diag(σ2
1, ..., σ

2
p). Hence Z = U cβc + ε or




√
ŵ1Y1,1

...

√
ŵ1Y1,n1

√
ŵ2Y21

...

√
ŵ2Y2,n2

...

√
ŵpYp,1

...

√
ŵpYp,np




=




√
ŵ1 0 0 . . . 0

...
...

...
...

√
ŵ1 0 0 . . . 0

0
√

ŵ2 0 . . . 0

...
...

...
...

0
√

ŵ2 0 . . . 0

...
...

...
...

0 0 0 . . .
√

ŵp

...
...

...
...

0 0 0 . . .
√

ŵp







µ1

µ2

...

...

...

...

...

...

...

µp




+




ε11

...

ε1,n1

ε21

...

ε2,n2

...

εp,1

...

εp,np




. (1.5)

Then UT
c U c = diag(n1ŵ1, ..., npŵp), (UT

c U c)
−1 = diag(S2

1/n1, ..., S
2
p/np)

= (XV̂
−1

XT )−1, and UT
c Z = (ŵ1Y10, ..., ŵpYp0)

T . Thus

β̂FWLS = (Y 10, ..., Y p0)
T = β̂c.
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That is, the FWLS estimator equals the one way ANOVA estimator of β based on

OLS applied to the cell means model. The ANOVA F test generalizes the pooled

t test in that the two tests are equivalent for p = 2. The FWLS procedure is also

known as the Welch one way ANOVA and generalizes the Welch t test. The Welch

t test is thought to be much better than the pooled t test. See Brown and Forsythe

(1974), Kirk (1982, p. 100, 101, 121, 122) and Welch (1947, 1951).

Four tests for H0 : µ1 = · · · = µp can be used if Rule of Thumb 1.1:

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp) fails. Let Y = (Y1, ..., Yn)
T , and let Y(1) ≤

Y(2) · · · ≤ Y(n) be the order statistics. Then the rank transformation of the re-

sponse is Z = rank(Y ) where Zi = j if Yi = Y(j) is the jth largest order statistic.

For example, if Y = (7.7, 4.9, 33.3, 6.6)T , then Z = (3, 1, 4, 2)T . The first test per-

forms the one way ANOVA F test with Z replacing Y . See Montgomery (1984,

p. 117-118). The two of the next three tests are described in Brown and Forsythe

(1974). Let dxe be the smallest integer ≥ x, e.g. d7.7e = 8. Then the Welch (1951)

ANOVA F test uses test statistic

FW =

∑p
i=1 wi(Y i0 − Ỹ00)

2/(p − 1)

1 + 2(p−2)
p2−1

∑p
i=1(1 −

wi

u
)2/(ni − 1)

where wi = ni/S
2
i , u =

∑p
i=1 wi and Ỹ00 =

∑p
i=1 wiY i0/u. Then the test statistic is

compared to an Fp−1,dW
distribution where dW = dfe and

1/f =
3

p2 − 1

p∑

i=1

(1 − wi

u
)2/(ni − 1).

For the modified Welch (1947) test, the test statistic is compared to an Fp−1,dMW
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distribution where dMW = dfe and

f =

∑p
i=1(S

2
i /ni)

2

∑p
i=1

1
ni−1

(S2
i /ni)2

=

∑p
i=1(1/wi)

2

∑p
i=1

1
ni−1

(1/wi)2
.

Some software uses f instead of dW or dMW , and variants on the denominator degrees

of freedom dW or dMW are common.

The modified ANOVA F test uses test statistic

FM =

∑p
i=1 ni(Y i0 − Y 00)

2

∑p
i=1(1 −

ni

n
)S2

i

The test statistic is compared to an Fp−1,dM
distribution where dM = dfe and

1/f =

p∑

i=1

c2
i /(ni − 1)

where

ci = (1 − ni

n
)S2

i /[

p∑

i=1

(1 − ni

n
)S2

i ].

The regpack function anovasim can be used to compare the five tests.
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CHAPTER 2

SIMULATIONS

The simulations were performed in R/Splus using the anovasim function. Each

simulation used 40,000 runs and had various sample sizes (ni), population means

(µi), and standard deviations (σi). The significance level was set at 0.05 for the

ANOVA F test (F ), the modified ANOVA F test (FM), the Welch ANOVA F test

(FW ), the modified Welch ANOVA F test (FMW ), and the ANOVA F rank test

(FR). This simulation is similar to that of Rodriguez (2007), which used 5000 runs

and did not include FMW .

For Table 2.1, we want levels near 0.05. Overall, the Welch test had the

best performance, giving simulated ANOVA F statistics closest to 0.05, ranging

from 0.04875 to 0.0671. The modified Welch test is almost as good with statistics

ranging from 0.0466 to 0.069425. The modified ANOVA F test is not quite as good,

with statistics ranging from 0.037975 to 0.062525. The rank and ANOVA F test are

not as good. The rank test did not perform well when ni and σi were not equal.

The ANOVA F test had levels near 0.05 when σ1 = σ2 = σ3 = σ4, but has values

ranging from 0.030175 to 0.1413 when σi were not equal.

In Tables 2.3, 2.4, 2.5, and 2.6, we want levels near 0.05 if µ1 = µ2 = µ3 = µ4.

Otherwise we want good power with levels near 1. For Table 2.3, all five tests gave

similar statistics. The ANOVA F test gives the most favorable statistics, and the

modified Welch test also gives favorable statistics, but is not as good. For Table
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2.4 and 2.5, the modified Welch test performs the best, and the Welch test is next

best with very similar values. The rank and modified ANOVA F tests seem to be

the weaker tests in these tables. For Table 2.6, the Welch test had the best levels

except when µ4 = 1 and µ1 = µ2 = µ3 = 0. In this case, we want the statistic to be

near 1, but the Welch test gives values near 0.05. For this case, the ANOVA F test

performed consistently better than the other four tests.
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Table 2.1. µ1 = µ2 = µ3 = µ4 = 0, F = proportion of times the
ANOVA F test rejected H0 with level .05, 40,000 runs

n1, n2, n3, n4 σ1, σ2, σ3, σ4 F FM FW FMW FR

4, 4, 4, 4 1, 1, 1, 1 0.0502 0.0380 0.0536 0.0664 0.0582

1, 2, 2, 3 0.0678 0.0496 0.0621 0.0679 0.0719

3, 2, 2, 1 0.0678 0.0497 0.0635 0.0694 0.0724

4, 8, 10, 12 1, 1, 1, 1 0.0505 0.0487 0.0596 0.0673 0.0513

1, 2, 2, 3 0.0302 0.0585 0.0502 0.0632 0.0353

3, 2, 2, 1 0.1413 0.0654 0.0671 0.0620 0.1003

8, 16, 20, 24 1, 1, 1, 1 0.0511 0.0506 0.0529 0.0562 0.0519

1, 2, 2, 3 0.0302 0.0614 0.0508 0.0584 0.0353

3, 2, 2, 1 0.1353 0.0608 0.0542 0.0466 0.0915

11, 11, 11, 11 1, 1, 1, 1 0.0534 0.0515 0.0534 0.0626 0.0535

1, 2, 2, 3 0.0634 0.0573 0.0512 0.0570 0.0596

3, 2, 2, 1 0.0670 0.0616 0.0535 0.0594 0.0640

11, 16, 16, 21 1, 1, 1, 1 0.0501 0.0493 0.0513 0.0573 0.0517

1, 2, 2, 3 0.0378 0.0607 0.0493 0.0557 0.0423

3, 2, 2, 1 0.1058 0.0605 0.0525 0.0522 0.0817

22, 32, 32, 42 1, 1, 1, 1 0.0485 0.0486 0.0490 0.0526 0.0482

1, 2, 2, 3 0.0360 0.0606 0.0503 0.0539 0.0410

3, 2, 2, 1 0.1046 0.0617 0.0512 0.0511 0.0825
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Table 2.2. (Table 2.1 continued)

n1, n2, n3, n4 σ1, σ2, σ3, σ4 F FM FW FMW FR

5, 5, 5, 5 1, 1, 1, 1 0.0494 0.0417 0.0520 0.0669 0.0559

1, 2, 2, 3 0.0654 0.0514 0.0602 0.0676 0.0670

3, 2, 2, 1 0.0657 0.0516 0.0577 0.0646 0.0657

10, 10, 10, 10 1, 1, 1, 1 0.0505 0.0482 0.0496 0.0596 0.0514

1, 2, 2, 3 0.0644 0.0580 0.0540 0.0608 0.0628

3, 2, 2, 1 0.0640 0.0582 0.0533 0.0590 0.0618

20, 20, 20, 20 1, 1, 1, 1 0.0505 0.0500 0.0500 0.0554 0.0519

1, 2, 2, 3 0.0633 0.0603 0.0509 0.0544 0.0604

3, 2, 2, 1 0.0639 0.0604 0.0507 0.0543 0.0600

50, 50, 50, 50 1, 1, 1, 1 0.0516 0.0515 0.0519 0.0543 0.0522

1, 2, 2, 3 0.0628 0.0616 0.0503 0.0518 0.0610

3, 2, 2, 1 0.0629 0.0617 0.0498 0.0512 0.0590

100, 100, 100, 100 1, 1, 1, 1 0.0498 0.0498 0.0497 0.0508 0.0490

1, 2, 2, 3 0.0633 0.0628 0.0509 0.0516 0.0621

3, 2, 2, 1 0.0630 0.0625 0.0488 0.0497 0.0598
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Table 2.3. σ1 = σ2 = σ3 = σ4 = 1, F = proportion of times the
ANOVA F test rejected H0 with level .05, 40,000 runs

n1, n2, n3, n4 µ1, µ2, µ3, µ4 F FM FW FMW FR

4, 4, 4, 4 0, 0, 0, 0 0.0491 0.0386 0.0542 0.0676 0.0577

1, 0, 0, 0 0.2100 0.1757 0.1841 0.2232 0.2168

1, 0, 0, 0.7 0.2093 0.1736 0.1853 0.2234 0.2232

5, 0, 0, 0.5 1 1 0.9982 0.9987 0.9999

5, 5, 5, 5 0, 0, 0, 0 0.0500 0.0428 0.0535 0.0676 0.0566

1, 0, 0, 0 0.2757 0.2482 0.2373 0.2848 0.2718

1, 0, 0, 0.7 0.2734 0.2468 0.2390 0.2872 0.2792

5, 0, 0, 0.5 1 1 1 1 1

10, 10, 10, 10 0, 0, 0, 0 0.0489 0.0470 0.0519 0.0617 0.0522

1, 0, 0, 0 0.5692 0.5618 0.5280 0.5644 0.5511

1, 0, 0, 0.7 0.5782 0.5706 0.5447 0.0582 0.5676

5, 0, 0, 0.5 1 1 1 1 1

20, 20, 20, 20 0, 0, 0, 0 0.0521 0.0517 0.0509 0.0562 0.0525

1, 0, 0, 0 0.9017 0.9009 0.8841 0.8926 0.8836

1, 0, 0, 0.7 0.9086 0.9079 0.8982 0.9068 0.8961

5, 0, 0, 0.5 1 1 1 1 1

100, 100, 100, 100 0, 0, 0, 0 0.0515 0.0515 0.0513 0.0525 0.0501

1, 0, 0, 0 1 1 1 1 1

1, 0, 0, 0.7 1 1 1 1 1

5, 0, 0, 0.5 1 1 1 1 1
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Table 2.4. σ1 = 3, σ2 = 2, σ3 = 2, σ4 = 1, F = proportion of
times the ANOVA F test rejected H0 with level .05, 40,000 runs

n1, n2, n3, n4 µ1, µ2, µ3, µ4 F FM FW FMW FR

4, 4, 4, 4 0, 0, 0, 0 0.0671 0.0500 0.0613 0.0676 0.0715

1.5, 0, 0, 0 0.1516 0.1162 0.1046 0.1174 0.1430

0, 0, 0, 1 0.0921 0.0670 0.1199 0.1314 0.1069

1.3, 0, 0, 1.3 0.1374 0.1036 0.1572 0.1700 0.1535

5, 5, 5, 5 0, 0, 0, 0 0.0642 0.0503 0.0582 0.0653 0.0641

1.5, 0, 0, 0 0.1761 0.1454 0.1155 0.1307 0.1550

0, 0, 0, 1 0.1003 0.0797 0.1398 0.1552 0.1154

1.3, 0, 0, 1.3 0.1617 0.1309 0.1904 0.2109 0.1804

10, 10, 10, 10 0, 0, 0, 0 0.0626 0.0566 0.0489 0.0551 0.0592

1.5, 0, 0, 0 0.3085 0.2889 0.1932 0.2082 0.2492

0, 0, 0, 1 0.1490 0.1347 0.2821 0.3014 0.1988

1.3, 0, 0, 1.3 0.2987 0.2771 0.4208 0.4427 0.3514

20, 20, 20, 20 0, 0, 0, 0 0.0628 0.0599 0.0491 0.0524 0.0592

1.5, 0, 0, 0 0.5444 0.5347 0.3767 0.3893 0.4475

0, 0, 0, 1 0.2739 0.2626 0.5799 0.5924 0.4014

1.3, 0, 0, 1.3 0.5861 0.5741 0.7845 0.7940 0.6827

100, 100, 100, 100 0, 0, 0, 0 0.0609 0.0602 0.0502 0.0509 0.0592

1.5, 0, 0, 0 0.9964 0.9964 0.9875 0.9877 0.9884

0, 0, 0, 1 0.9890 0.9889 0.9999 0.9999 0.9974

1.3, 0, 0, 1.3 1 1 1 1 1
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Table 2.5. σ1 = 1, σ2 = 2, σ3 = 2, σ4 = 3, F = proportion of
times the ANOVA F test rejected H0 with level .05, 40,000 runs

n1, n2, n3, n4 µ1, µ2, µ3, µ4 F FM FW FMW FR

4, 4, 4, 4 0, 0, 0, 0 0.0691 0.0505 0.0621 0.0687 0.0730

1.3, 0, 0, 0 0.1151 0.0854 0.1604 0.1754 0.1344

0, 0, 0, 1 0.1045 0.0784 0.0818 0.0896 0.1050

1, 0, 0, 1 0.1085 0.0811 0.1162 0.1255 0.1191

5, 5, 5, 5 0, 0, 0, 0 0.0686 0.0540 0.0595 0.0665 0.0672

1.3, 0, 0, 0 0.1290 0.1023 0.2050 0.2277 0.1589

0, 0, 0, 1 0.1161 0.0947 0.0835 0.0951 0.1054

1, 0, 0, 1 0.1200 0.0965 0.1344 0.1493 0.1302

10, 10, 10, 10 0, 0, 0, 0 0.0646 0.0585 0.0521 0.0580 0.0635

1.3, 0, 0, 0 0.2245 0.2044 0.4601 0.4837 0.3186

0, 0, 0, 1 0.1721 0.1594 0.1096 0.1201 0.1412

1, 0, 0, 1 0.1926 0.1773 0.2609 0.2787 0.2216

20, 20, 20, 20 0, 0, 0, 0 0.0641 0.0602 0.0497 0.0530 0.0606

1.3, 0, 0, 0 0.48883 0.4732 0.8301 0.8385 0.6575

0, 0, 0, 1 0.2857 0.2777 0.1816 0.1915 0.2299

1, 0, 0, 1 0.3596 0.3489 0.5343 0.5468 0.4334

100, 100, 100, 100 0, 0, 0, 0 0.0632 0.0628 0.0524 0.0532 0.0617

1.3, 0, 0, 0 0.9999 0.9999 1 1 1

0, 0, 0, 1 0.8781 0.8770 0.7675 0.7694 0.7946

1, 0, 0, 1 0.9913 0.9911 0.9994 0.9994 0.9969
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Table 2.6. σ1 = 1, σ2 = 1, σ3 = 1, σ4 = 9, F = proportion of
times the ANOVA F test rejected H0 with level .05, 40,000 runs

n1, n2, n3, n4 µ1, µ2, µ3, µ4 F FM FW FMW FR

4, 4, 4, 4 0, 0, 0, 0 0.1496 0.0793 0.0632 0.0385 0.1113

1.3, 0, 0, 0 0.1552 0.0834 0.2467 0.1462 0.1543

0, 0, 0, 1 0.1539 0.0830 0.0664 0.0399 0.1170

1, 0, 0, 1 0.1553 0.0836 0.1648 0.0939 0.1392

5, 5, 5, 5 0, 0, 0, 0 0.1410 0.0792 0.0584 0.0327 0.0802

1.3, 0, 0, 0 0.1513 0.0863 0.3286 0.2025 0.2106

0, 0, 0, 1 0.1461 0.0841 0.0620 0.0344 0.0856

1, 0, 0, 1 0.1492 0.0838 0.2118 0.1245 0.1558

10, 10, 10, 10 0, 0, 0, 0 0.1196 0.0824 0.0504 0.0317 0.0899

1.3, 0, 0, 0 0.1395 0.0974 0.7165 0.6304 0.4921

0, 0, 0, 1 0.1405 0.1005 0.0591 0.0372 0.1032

1, 0, 0, 1 0.1363 0.0961 0.4808 0.3861 0.3115

20, 20, 20, 20 0, 0, 0, 0 0.1133 0.0944 0.0503 0.0389 0.0835

1.3, 0, 0, 0 0.1526 0.1261 0.9766 0.9687 0.8960

0, 0, 0, 1 0.1521 0.1284 0.0643 0.0509 0.1083

1, 0, 0, 1 0.1489 0.1248 0.8462 0.8153 0.6531

100, 100, 100, 100 0, 0, 0, 0 0.1030 0.0994 0.0499 0.0470 0.0802

1.3, 0, 0, 0 0.4588 0.4388 1 1 1

0, 0, 0, 1 0.3038 0.2974 0.1303 0.1253 0.2029

1, 0, 0, 1 0.3342 0.3239 1 1 1
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