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Abstract

In the literature, it is often stated that maximum likelihood estimators and uni-

formly minimum variance estimators are asymptotically efficient, under regularity

conditions. This paper shows that if X1, ..., Xn are iid from a k–parameter regular

exponential family with complete sufficient statistic T n with E(Tn) = µT , then

√
n(T n − µT ) D→ Nk(0, I(η)) where I(η) is the information matrix of the natural

parameterization of the family. This result avoids the use of complex regularity

conditions, and standard results can be obtained by applying the delta method.
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1 INTRODUCTION

A family of probability density or mass functions (pdf’s or pmf’s) {f(x|θ) : θ = (θ1, ..., θj) ∈

Θ } is an exponential family if

f(x|θ) = h(x)c(θ) exp[
k∑

i=1

wi(θ)ti(x)] (1)

for x ∈ X where c(θ) ≥ 0, and h(x) ≥ 0. The functions c, h, ti, and wi are real valued

functions. In the definition, it is crucial that c, w1, ..., wk do not depend on x and that

h, t1, ..., tk do not depend on θ. The support of the distribution is X and the parameter

space is Θ. The family given is a k-parameter exponential family if k is the smallest

integer where (1) holds.

The parameterization that uses the natural parameter η is especially useful for

theory. Let Ω be the natural parameter space of η. The natural parameterization for

an exponential family is

f(x|η) = h(x)c∗(η) exp[
k∑

i=1

ηiti(x)] (2)

where h(x) and ti(x) are the same as in Equation (1) and η ∈ Ω.

The one parameter exponential family f(x|θ) = h(x)c(θ) exp[w(θ)t(x)] has natural

parameterization

f(x|η) = h(x)c∗(η) exp[ηt(x)].

The next important idea is that of a regular exponential family (and of a full expo-

nential family). Let di(y) denote ti(x), wi(θ) or ηi. A linearity constraint is satisfied

by d1(y), ..., dk(y) if
∑k

i=1 aidi(y) = c for some constants ai and c and for all y in the

sample or parameter space where not all of the ai = 0. If
∑k

i=1 aidi(y) = c for all y only
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if a1 = · · · = ak = 0, then the di(y) do not satisfy a linearity constraint. See Johanson

(1979, p. 3). In linear algebra, we would say that the di(y) are linearly independent if

they do not satisfy a linearity constraint. Let Ω̃ be the set where the integral of the

kernel function is finite:

Ω̃ = {η = (η1, ..., ηk) :
1

c∗(η)
≡
∫ ∞

−∞
h(x) exp[

k∑

i=1

ηiti(x)]dx < ∞}.

(Replace the integral by a sum for a pmf.) An interesting fact is that Ω̃ is a convex set.

Condition E1: the natural parameter space Ω = Ω̃.

Condition E2: assume that in the natural parameterization, neither the ηi nor the ti

satisfy a linearity constraint.

Condition E3: Ω is a k-dimensional open set.

If conditions E1), E2) and E3) hold then the family is a regular exponential family

(REF). If conditions E1) and E2) hold then the family is full. For a one parameter

exponential family, a one dimensional rectangle is just an interval, and the only type of

function of one variable that satisfies a linearity constraint is a constant function.

Some care has to be taken with the definitions of Θ and Ω since formulas (1) and (2)

need to hold for every θ ∈ Θ and for every η ∈ Ω. For a continuous random variable

or vector, the pdf needs to exist. Hence all degenerate distributions need to be deleted

from Θ and Ω. For continuous and discrete distributions, the natural parameter needs

to exist (and often does not exist for discrete degenerate distributions). As a rule of

thumb, remove values from Θ that cause the pmf to have the form 00. For example, for

the binomial(n, p) distribution with n known, the natural parameter η = log(p/(1 − p)).

Hence instead of using Θ = [0, 1], use p ∈ Θ = (0, 1), so that η ∈ Ω = (−∞,∞).
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Often students are asked to show that a distribution is a k–parameter REF by setting

ηi = wi(θ). Then assume that the natural parameter space

Ω = {(η1, ..., ηk) : ηi = wi(θ) for θ ∈ Θ}.

Finally, show that Ω is a k-dimensional open set by showing that Ω is a cross product of

open intervals. For many “brand name” distributions, η is a one to one function of θ,

and the above map is correct.

Many references suggest that under regularity conditions, large classes of estimators

θ̂n are asymptotically efficient:

√
n(θ̂n − θ)

D→ Nk(0, I−1(θ)) (3)

where I(θ) is the information matrix for θ. Lehmann (1999, sections 7.4, 7.5) provides

a good discussion on constructing estimators such as the “Hodges counterexample” that

have “smaller” asymptotic variance than asymptotically efficient estimators.

For asymptotic efficiency in exponential families, Lehmann (1980) and Barndorff–

Nielsen (1982) cite Berk (1972). Brown (1986, Problem 5.15.1, p. 172) and McCulloch

(1988) have similar results to those in this paper for exponential families with ti(x) =

xi. Portnoy (1977) provides asymptotic theory for unbiased estimators in exponential

families, including conditions under which the UMVUE is asymptotically equivalent to

the MLE.

In the one parameter setting, Barndorff–Nielsen (1982), Casella and Berger (2002,

pp. 472, 515), Cox and Hinkley (1974, p. 286), Lehmann (1983, Section 6.3), Schervish

(1995, p. 418), and many others suggest that under regularity conditions if X1, ...,Xn
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are iid from a one parameter regular exponential family, and if θ̂ is the MLE of θ, then

√
n(τ (θ̂) − τ (θ))

D→ N [0, FCRLB1(τ (θ))] (4)

where the Fréchet Cramér Rao lower bound for τ (θ) is

FCRLB1(τ (θ)) =
[τ ′(θ)]2

I1(θ)

and the Fisher information based on a sample of size one is

I1(θ) = −Eθ[
∂2

∂θ2
log(f(x|θ))].

The Multivariate Central Limit Theorem states that if X1, ...,Xn are iid random

vectors with E(X) = µ and Cov(X) = Σ, then

√
n(X − µ)

D→ N(0,Σ)

where the sample mean

X =
1

n

n∑

i=1

X i.

An important special case is the Central Limit Theorem where the vectors are random

variables. Let X1, ...,Xn be iid with E(X) = µ and Var(X) = σ2. Let Xn = 1
n

∑n
i=1 Xi.

Then
√

n(Xn − µ)
D→ N(0, σ2).

The Multivariate Delta Method states that if

√
n(T n − θ)

D→ Nk(0,Σ),

then

√
n(g(T n) − g(θ))

D→ Nd(0,Dg(θ)
ΣDT

g(θ)
)
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where the d × k Jacobian matrix of partial derivatives

Dg(θ)
=




∂
∂θ1

g1(θ) . . . ∂
∂θk

g1(θ)

...
...

∂
∂θ1

gd(θ) . . . ∂
∂θk

gd(θ)




.

Here the mapping g : <k → <d needs to be differentiable in a neighborhood of θ ∈ <k.

See Ferguson (1996, p. 45), Lehmann (1999, p. 315), Mardia, Kent and Bibby (1979, p.

52), Sen and Singer (1993, p. 136) or Serfling (1980, p. 122). An important special case

is the Delta Method where the estimator Tn and parameter θ are real valued. Suppose

that
√

n(Tn − θ)
D→ N(0, σ2). Then

√
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2)

if g′(θ) 6= 0 exists.

The following sections will give simple limit theorems for the one parameter and

k–parameter exponential families that avoid the complex regularity conditions of Berk

(1972).

2 A SIMPLE LIMIT THEOREM FOR A ONE PA-

RAMETER EXPONENTIAL FAMILY

Cox and Hinkley (1974, p. 286) observe that in a one parameter regular exponen-

tial family, Tn = 1
n

∑n
i=1 t(Xi) is the uniformly minimum variance unbiased estimator

(UMVUE) and generally the maximum likelihood estimator (MLE) of its expectation

µT = Eθ(Tn) = Eθ[t(X)]. Let σ2
T = Varθ[t(X)]. These values can be found by using the
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distribution of t(X) or by using the Casella and Berger (2002, pp. 112, 133) formulas

µT =
−c′(θ)

c(θ)w′(θ)
=

−∂

∂η
log(c∗(η)),

and

σ2
T =

−∂2

∂θ2 log(c(θ)) − [w′′(θ)]µT

[w′(θ)]2
=

−∂2

∂η2
log(c∗(η)).

If θ = g(η) and g′(η) 6= 0, then we will define I1(θ) = I1(η)/[g′(η)]2. This is a natural

definition when using the delta method or when g is one to one and onto. Also Lehmann

(1999, p. 468) shows that if θ = g(η), if g′ exists and is continuous, and if g′(η) 6= 0, then

I1(θ) = I1(η)/[g′(η)]2. The simplicity of the following result is rather surprising.

Theorem 1. Let X1, ...,Xn be iid from a one parameter exponential family with

E(t(X)) = µT ≡ g(η) and Var(T (X)) = σ2
T .

a) Then

√
n[Tn − µT ]

D→ N(0, I1(η))

where

I1(η) = σ2
T = g′(η) =

[g′(η)]2

I1(η)
.

Hence Tn is asymptotically efficient.

b) If η = g−1(µT ), η̂ = g−1(Tn) and g−1′(µT ) 6= 0, then

√
n[η̂ − η]

D→ N

(
0,

1

I1(η)

)
.

c) Suppose the conditions in b) hold. If θ = w−1(η), θ̂ = w−1(η̂)and w−1′(η) 6= 0,

then

√
n[θ̂ − θ]

D→ N

(
0,

1

I1(θ)

)
.
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d) If the conditions in c) hold and τ ′(θ) 6= 0, then

√
n[τ (θ̂) − τ (θ)]

D→ N

(
0,

[τ ′(θ)]2

I1(θ)

)
.

Proof: a) The result follows by the central limit theorem if σ2
T = I1(η) = g′(η). Since

log(f(x|η)) = log(h(x)) + log(c∗(η)) + ηt(x),

∂

∂η
log(f(x|η)) =

∂

∂η
log(c∗(η)) + t(x) = −g(η) + t(x).

Hence

∂2

∂η2
log(f(x|η)) =

∂2

∂η2
log(c∗(η)) = −g′(η),

and thus

I1(η) =
−∂2

∂η2
log(c∗(η)) = σ2

T = g′(η).

b) By the delta method,

√
n(η̂ − η)

D→ N(0, σ2
T [g−1′(µT )]2),

but

g−1′(µT ) =
1

g′(g−1(µT ))
=

1

g′(η)
.

Hence

σ2
T [g−1′(µT )]2 =

[g′(η)]2

I1(η)

1

[g′(η)]2
=

1

I1(η)
.

So

√
n(η̂ − η)

D→ N

(
0,

1

I1(η)

)
.

c) By the delta method,

√
n(θ̂ − θ)

D→ N

(
0,

[w−1′(η)]2

I1(η)

)
,
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but

[w−1′(η)]2

I1(η)
=

1

I1(θ)
.

The last equality holds since if θ = g(η) and if g′(η) 6= 0, then then I1(θ) = I1(η)/[g′(η)]2.

Use η = w(θ) so θ = g(η) = w−1(η).

d) The result follows by the delta method. QED

Tn is the UMVUE and of µT .

When (as is usually the case) Tn is the MLE of µT , the estimators in b), c) and d) will

be MLEs by the invariance principle, but will not generally be unbiased. For example,

η̂ = g−1(Tn) is the MLE of η by invariance. Many texts refer to Zehna (1966) for a

proof of the invariance principle, but a compelling alternative proof that uses a genuine

likelihood (unlike Zehna’s pseudo-likelihood) is given in Berk (1967).

3 A MULTIVARIATE LIMIT THEOREM

Now suppose that X1, ...,Xn are iid from a k-parameter REF (2). Then the complete min-

imal sufficient statistic is T n = 1
n
(
∑n

i=1 t1(Xi), ...,
∑n

i=1 tk(Xi)). Let µT = (E(t1(X), ...,

E(tk(X))). From Lehmann (1986, p. 66) and Lehmann (1999, pp. 497, 499), for η ∈ Ω,

E(ti(X)) =
−∂

∂ηi
log(c∗(η)),

and

Cov(ti(X), tj(X)) ≡ σi,j =
−∂2

∂ηi∂ηj
log(c∗(η)),

and the information matrix

I(η) = [Ii,j ]
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where

I i,j = E

[
∂

∂ηi
log(f(x|η))

∂

∂ηi
log(f(x|η))

]
= −E

[
∂2

∂ηi∂ηj
log(f(x|η))

]
.

Several authors, including Barndorff–Nielsen (1982), have noted that the multivariate

CLT can be used to show that
√

n(T n−µT )
D→ Nk(0,Σ). The fact that Σ = I(η) appears

in Lehmann (1983, p. 127). Also see Cox (1984) and McColloch (1988).

Theorem 2. If X1, ...,Xn are iid from a k-parameter regular exponential family, then

√
n(T n −µT )

D→ Nk(0, I(η)).

Proof. By the multivariate central limit theorem,

√
n(T n −µT )

D→ Nk(0,Σ)

where Σ = [σi,j]. Hence the result follows if σi,j = I i,j. Since

log(f(x|η)) = log(h(x)) + log(c∗(η)) +
k∑

l=1

ηltl(x),

∂

∂ηi

log(f(x|η)) =
∂

∂ηi

log(c∗(η)) + ti(X).

Hence

−I i,j = E

[
∂2

∂ηi∂ηj
log(f(x|η))

]
=

∂2

∂ηi∂ηj
log(c∗(η)) = −σi,j. QED

To obtain standard results, use the multivariate delta method, assume that both θ

and η are k × 1 vectors, and assume that η = g(θ) is a one to one mapping so that the

inverse mapping is θ = g−1(η). If Dg(θ)
is nonsingular, then

D−1

g(θ)
= Dg−1(η) (5)
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In analysis, the fact that

D−1

g(θ)
= Dg−1(η)

is a corollary of the inverse mapping theorem (or of the inverse function theorem). See

Apostol (1957, p. 146), Searle (1982, p. 339) and Wade (2004). Also

I(η) = [Dg(θ)
I−1(θ)DT

g(θ)
]−1 = [D−1

g(θ)
]TI(θ)D−1

g(θ)
= DT

g−1(η)I(θ)Dg−1(η). (6)

Compare Lehmann (1999, p. 500), Lehmann (1983, p. 127) and Serfling (1980, p. 158).

For example, suppose that µT and η are k × 1 vectors, and

√
n(η̂ − η)

D→ Nk(0, I−1(η))

where µT = g(η) and η = g−1(µT ). Also assume that T n = g(η̂) and η̂ = g−1(T n).

Then by the multivariate delta method and Theorem 2,

√
n(T n −µT ) =

√
n(g(η̂) − g(η))

D→ Nk[0, I(η)] = Nk[0,Dg(η)I
−1(η)DT

g(η)].

Hence

I(η) = Dg(η)I
−1(η)DT

g(η).

Similarly,

√
n(g−1(T n)−g−1(µT )) =

√
n(η̂−η)

D→ Nk[0, I−1(η)] = Nk[0,Dg−1(µT )I(η)DT
g−1(µT )].

Thus

I−1(η) = Dg−1(µT )I(η)DT
g−1(µT ) = Dg−1(µT )Dg(η)I

−1(η)DT
g(η)D

T
g−1(µT )

as expected by Equation (5). Typically θ̂ is a function of the sufficient statistic T n

and is the unique MLE of θ. Replacing η by θ in the above discussion shows that
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√
n(θ̂ − θ)

D→ Nk(0, I−1(θ)) is equivalent to
√

n(T n −µT )
D→ Nk(0, I(θ)) provided that

Dg(θ)
is nonsingular.

Theorem 1 can be taught whenever the CLT is taught while Theorem 2 can be taught

whenever the multivariate delta method is taught.
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