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Abstract

One of the most useful properties of the maximum likelihood estimator (MLE),

often called the invariance property, is that if θ̂ is the MLE of θ, then h(θ̂) is the

MLE of h(θ). Many texts either define the MLE of h(θ) to be h(θ̂), say that the

property is immediate from the definition of the MLE, or quote Zehna (1966). A

little known paper, Berk (1967), gives an elegant proof of the invariance property

that can be used in introductory statistical courses.
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1 INTRODUCTION

The method of maximum likelihood is a popular technique for deriving estimators. Recall

that if X1, ...,Xn is an iid sample from a population with pdf or pmf f(x|θ) then the

likelihood function

L(θ) = L(θ|x1, ..., xn) =
n∏

i=1

f(xi|θ). (1.1)

The Xi can be random variables or vectors, and the parameter θ can take many forms. If

the population is Poisson(λ), then θ = λ is a scalar. If the population is normal N(µ, σ2),

then θ is the vector (µ, σ2)T , and if the population is multivariate normal Np(µ,Σ), then

θ is the pair (µ,Σ) where µ is a p × 1 vector and Σ is a p × p matrix.

Following Casella and Berger (2002), let X = (X1, ...,Xn) and x = (x1, ..., xn). For

each sample point x, let θ̂(x) be the parameter value at which L(θ|x) attains its maximum

as a function of θ with x held fixed. Then the maximum likelihood estimator (MLE) of

the parameter θ based on the sample X is θ̂(X).

The MLE may not exist, and finding the global maximizer of a likelihood can be very

difficult. The fact that the range of the MLE coincides with the range of θ is useful, and

most introductory texts suggest the following four techniques for finding the MLE.

• Potential candidates can be found by differentiating the likelihood.

• Potential candidates can be found by differentiating log L(θ|x), the log likelihood.

• The MLE can sometimes be found by direct maximization of the likelihood.

• If θ̂ is the MLE of θ, then h(θ̂) is the MLE of h(θ).
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The last technique, often called the invariance property of the MLE, is usually stated

without proof. Bickel and Doksum (1977, p. 99), Devore (1991, p. 250), and Lehmann

(1983, p. 112) state that any function h can be used (implicitly assuming that h(θ̂) is a

well defined estimator). Cox and Hinkley (1974, p. 287) and Serfling (1980, p. 149) state

that the invariance property is immediate from the definition of the MLE. Several authors

note that the invariance principle can be proved when h is one to one. See Anderson

(1984, p. 64), DeGroot (1975, p. 291), Casella and Berger (2002, p. 320), Hogg and

Craig (1995, p. 265), and Lindgren (1962, pp. 224-225). For general h, Anderson (1984,

p. 64), Johnson and Wichern (1988, p. 141), and Casella and Berger (2002, p. 320) refer

to Zehna (1966).

The next section will show that Berk(1967) answers some questions about the MLE

which can not be answered using Zehna (1966).

2 TWO PROOFS OF THE INVARIANCE PRIN-

CIPLE

The argument of Zehna (1966) also appears in Zehna (1970, p. 367-369) and Casella and

Berger (2002, p. 320). Let θ ∈ Θ and let h : Θ → Λ be a function. Since the MLE θ̂ ∈ Θ,

h(θ̂) = λ̂ ∈ Λ. If h is not one to one, then many values of θ may be mapped to λ. Let

Θλ = {θ : h(θ) = λ}

and define the induced likelihood function M(λ) by

M(λ) = sup
θ∈Θλ

L(θ). (2.1)
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Then for any λ ∈ Λ,

M(λ) = sup
θ∈Θλ

L(θ) ≤ sup
θ∈Θ

L(θ) = L(θ̂) = M(λ̂). (2.2)

Hence h(θ̂) = λ̂ maximizes the induced likelihood M(λ). Zehna (1966) says that since

h(θ̂) maximizes the induced likelihood, we should call h(θ̂) the MLE of h(θ), but the

definition of MLE says that we should be maximizing a genuine likelihood.

This argument raises a two important questions.

• If we call h(θ̂) the MLE of h(θ) and h is not one to one, does h(θ̂) maximize a

likelihood or should h(θ̂) be called a maximum induced likelihood estimator?

• If h(θ̂) is an MLE, what is the likelihood function K(h(θ))?

Some examples might clarify these questions.

• If the population come from a N(µ, σ2) distribution, we say that the MLE of µ/σ

is X̄n/Sn where

X̄n =
1

n

n∑

i=1

Xi

and

S2
n =

1

n

n∑

i=1

(Xi − X̄n)2

are the MLE’s of µ and σ2. Since the function h(x, y) = x/
√

y is not one to one,

what is the likelihood K(h(µ, σ2)) = K(µ/σ) that is being maximized?

• If Xi comes from a Bernoulli(p) population, why is X̄n(1−X̄n) the MLE of p(1−p)?

Examining the invariance principle for one to one functions h is also useful. When h

is one to one, let η = h(θ). Then the inverse function h−1 exists and θ = h−1(η). Hence

f(x|θ) = f(x|h−1(η)) (2.3)
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is the joint pdf or pmf of x. So the likelihood function of h(θ) = η is

K(η) = L(h−1(η)). (2.4)

Also note that

sup
η

K(η|x) = sup
η

L(h−1(η)|x) = L(θ̂|x). (2.5)

Thus

η̂ = h(θ̂) (2.6)

is the MLE of η = h(θ) when h is one to one.

If h is not one to one, then the new parameters η = h(θ) do not give enough informa-

tion to define f(x|η). Hence we cannot define the likelihood. That is, a N(µ, σ2) density

cannot be defined by the parameter µ/σ alone. Before concluding that the MLE does

not exist if h is not one to one, note that if X = (X1, ...,Xn) is an iid Gaussian random

sample, then X is still an iid Gaussian random sample even if the statistician did not

rename the parameters wisely. Berk (1967) said that if h is not one to one, define

w(θ) = (h(θ), u(θ)) = (η, γ) = ξ (2.7)

such that w(θ) is one to one. Note that the choice

w(θ) = (h(θ), θ)

works. In other words, we can always take u to be the identity function.

The choice of w is not unique, but the inverse function

w−1(ξ) = θ
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is unique. Hence the likelihood is well defined, and w(θ̂) is the MLE of ξ. Thus calling

h(θ̂) the MLE of h(θ) is analogous to calling X̄n the MLE of µ when the data are from a

N(µ, σ2) population. It is often possible to choose the function u so that if θ is a p × 1

vector, then so is ξ. For the N(µ, σ2) example with h(µ, σ2) = µ/σ we can take u(θ) = µ

or u(θ) = σ2. For the Ber(p) example, w(p) = (p(1 − p), p) is a reasonable choice.

To summarize, the statistician who changes the names of the parameters of a sample

does not change the distribution of the sample. Hence if one starts with a Gaussian

likelihood but changes the names of the parameters, a Gaussian likelihood is still being

maximized. Lastly, the invariance principle holds if h(θ̂) is a random variable, not only

for one to one functions h, and Berk’s proof should be widely used.
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