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Abstract

Many statistics and math departments offer a one semester course in statistical

inference that covers minimal and complete sufficient statistics, maximum likeli-

hood estimators, uniform minimum variance estimators, uniformly most powerful

tests and large sample theory. Using the theory of exponential families can greatly

simplify the teaching of these and other topics, and the goal of this paper is to

present some of this theory in a manner that is accessible to graduate students.
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1 INTRODUCTION

A one semester Master’s level course in statistical inference typically covers minimal and

complete sufficient statistics, maximum likelihood estimators (MLE), uniform minimum

variance estimators (UMVUE) and the Fréchet Cramér Rao lower bound (FCRLB),

uniformly most powerful (UMP) tests and large sample theory. Such topics can be

greatly simplified by using the theory of exponential families, but the texts for this type

of course tend to devote only a few pages to these families. The goal of this paper is to

present some of this theory in a manner that is accessible to students.

Often a “brand name distribution” such as the normal distribution will have three

useful parameterizations: the usual parameterization with parameter space ΘU is simply

the formula for the probability distribution or mass function (pdf or pmf, respectively)

given when the distribution is first defined. The k-parameter exponential family parame-

terization with parameter space Θ, given in Equation (1.1) below, provides a simple way

to determine if the distribution is an exponential family while the natural parameteri-

zation with parameter space Ω, given in Equation (1.2) below, is used for theory that

requires a complete sufficient statistic.

A family of pdf’s or pmf’s {f(x|θ) : θ = (θ1, ..., θj) ∈ Θ } is an exponential family if

f(x|θ) = h(x)c(θ) exp[
k∑

i=1

wi(θ)ti(x)] (1.1)

for x ∈ X where c(θ) ≥ 0, and h(x) ≥ 0. The functions c, h, ti, and wi are real valued

functions. The parameter θ can be a scalar, and x can be vector valued. In the definition,

it is crucial that c, w1, ..., wk do not depend on x and that h, t1, ..., tk do not depend on
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θ. The support of the distribution is X and the parameter space is Θ. The family given

is a k-parameter exponential family if k is the smallest integer where (1.1) holds.

The parameterization is not unique since, for example, wi could be multiplied by a

nonzero constant b if ti is divided by b. Many other parameterizations are possible. If

h(x) = g(x)IX (x), then usually c(θ) and g(x) are positive, so another parameterization

is f(x|θ) = exp[
∑k

i=1 wi(θ)ti(x) + d(θ) + S(x)]IX (x) where S(x) = log(g(x)), d(θ) =

log(c(θ)), and X does not depend on θ. Thus the uniform(0,θ) family is not an exponential

family since the support (0, θ) depends on θ.

The parameterization that uses the natural parameter η is especially useful for

theory. Let Ω be the natural parameter space of η. The natural parameterization for

an exponential family is

f(x|η) = h(x)c∗(η) exp[
k∑

i=1

ηiti(x)] (1.2)

where h(x) and ti(x) are the same as in Equation (1.1) and η ∈ Ω. Again, the parame-

terization is not unique. If b 6= 0, then bηi and ti(x)/b would also work.

The next important idea is that of a regular exponential family (and of a full expo-

nential family). Let di(y) denote ti(x), wi(θ) or ηi. A linearity constraint is satisfied

by d1(y), ..., dk(y) if
∑k

i=1 aidi(y) = c for some constants ai and c and for all y in the

sample or parameter space where not all of the ai = 0. If
∑k

i=1 aidi(y) = c for all y only

if a1 = · · · = ak = 0, then the di(y) do not satisfy a linearity constraint. See Johanson

(1979, p. 3). In linear algebra, we would say that the di(y) are linearly independent if

they do not satisfy a linearity constraint. Let Ω̃ be the set where the integral of the
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kernel function is finite:

Ω̃ = {η = (η1, ..., ηk) :
1

c∗(η)
≡
∫ ∞

−∞
h(x) exp[

k∑

i=1

ηiti(x)]dx < ∞}.

(Replace the integral by a sum for a pmf.) An interesting fact is that Ω̃ is a convex set.

Condition E1: the natural parameter space Ω = Ω̃.

Condition E2: assume that in the natural parameterization, neither the ηi nor the ti

satisfy a linearity constraint.

Condition E3: Ω is a k-dimensional open set.

If conditions E1), E2) and E3) hold then the family is a regular exponential family

(REF). If conditions E1) and E2) hold then the family is full. For a one parameter

exponential family, a one dimensional rectangle is just an interval, and the only type of

function of one variable that satisfies a linearity constraint is a constant function.

Notice that every REF is full. For a one parameter exponential family, the open set

is usually an open interval, and the only type of function of one variable that satisfies a

linearity constraint is a constant function.

Some care has to be taken with the definitions of Θ and Ω since formulas (1.1) and

(1.2) need to hold for every θ ∈ Θ and for every η ∈ Ω. For a continuous random variable

or vector, the pdf needs to exist. Hence all degenerate distributions need to be deleted

from Θ and Ω. For continuous and discrete distributions, the natural parameter needs

to exist (and often does not exist for discrete degenerate distributions). As a rule of

thumb, remove values from Θ that cause the pmf to have the form 00. For example, for

the binomial(n, p) distribution with n known, the natural parameter η = log(p/(1 − p)).

Hence instead of using Θ = [0, 1], use p ∈ Θ = (0, 1), so that η ∈ Ω = (−∞,∞).
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These conditions have some redundancy. If Ω contains a k-dimensional rectangle, no

ηi is completely determined by the remaining η′
js. In particular, the ηi cannot satisfy

a linearity constraint. If the ηi do satisfy a linearity constraint, then the ηi lie on a

hyperplane of dimension at most k, and such a surface cannot contain a k-dimensional

rectangle. For example, if k = 2, a line cannot contain an open box. If k = 2 and η2 = η2
1,

then the parameter space does not contain a 2-dimensional rectangle, although η1 and

η2 do not satisfy a linearity constraint.

Example 1. Let f(x|µ, σ) be the N(µ, σ2) family of pdf’s. Then θ = (µ, σ) where

−∞ < µ < ∞ and σ > 0. Recall that µ is the mean and σ is the standard deviation

(SD) of the distribution. The usual parameterization is

f(x|θ) =
1√
2πσ

exp(
−(x− µ)2

2σ2
)I<(x)

where < = (−∞,∞) and the indicator IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise.

Since

f(x|µ, σ) =
1√
2πσ

exp(
−µ2

2σ2
)

︸ ︷︷ ︸
c(µ,σ)≥0

exp(
−1

2σ2︸︷︷︸
w1(θ)

x2
︸︷︷︸
t1(x)

+
µ

σ2︸︷︷︸
w2(θ)

x︸︷︷︸
t2(x)

) I<(x)︸ ︷︷ ︸
h(x)≥0

,

this family is a 2-parameter exponential family. Hence η1 = −0.5/σ2 and η2 = µ/σ2

if σ > 0. Plotting η1 on the horizontal axis and η2 on the vertical axis yields the left

half plane which certainly contains a 2-dimensional rectangle. Since t1 and t2 lie on a

quadratic rather than a line, the family is a REF. Notice that if X1, ...,Xn are iid N(µ, σ2)

random variables, then the joint pdf

f(x|θ) = f(x1, ..., xn|µ, σ) = [
1√
2πσ

exp(
−µ2

2σ2
)]n

︸ ︷︷ ︸
C(µ,σ)≥0

exp(
−1

2σ2︸︷︷︸
w1(θ)

n∑

i=1

x2
i

︸ ︷︷ ︸
T1(x)

+
µ

σ2︸︷︷︸
w2(θ)

n∑

i=1

xi

︸ ︷︷ ︸
T2(x)

) 1︸︷︷︸
h(x)≥0

,

and is thus a 2-parameter REF.
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Some one parameter REF’s include the N(µ, σ2) family with either µ or σ2 > 0 known,

the gamma(α, β) family with either α > 0 or β > 0 known, the beta(α, β) family with

either α > 0 or β > 0 known, the exponential family, the Poisson family, and the Rayleigh

family. See Casella and Berger (2002, p. 131). The binomial(n, p) family with n known

and 0 < p < 1 is a REF as is the negative binomial family with r known and 0 < p < 1.

The geometric(p) and Pareto(α, β) families with α known are also one parameter REF’s.

The gamma(α, β) and beta(α, β) families are 2-parameter REF’s. The inverse Gaussian

distribution is full but not regular. The two parameter Cauchy distribution is not an

exponential family because its pdf cannot be put into the form of Equation (1.1).

If the ti or ηi satisfy a linearity constraint, then the number of terms in the exponent

of Equation (1.1) can be reduced. As an example, suppose that X1, ...,Xj follow the

multinomialj(n, p1, ..., pj) distribution which has dim(Θ) = j. Then
∑j

i=1 Xi = n and

∑j
i=1 pi = 1. Let h(x) = n!/(

∏j
i=1 xi!). Then

f(x1, ..., xj) = n!
j∏

i=1

pxi
i

xi!
= exp[n log(pj) + x1 log(p1/pj) + ... + xj−1 log(pj−1/pj)]h(x)

which is a j−1 dimensional REF. See Lehmann (1983, p. 28). Similarly, let µ be a 1× j

row vector and let Σ be a j×j positive definite matrix. Then the usual parameterization

of the multivariate normal MVNj(µ,Σ) distribution has dim(Θ) = j + j2 but is a j +

j(j + 1)/2 parameter REF. These are important examples of REF’s where dim(Θ) >

dim(Ω).

The natural parameterization can result in a family that is much larger than the

family defined by the usual parameterization. See the definition of Ω = Ω̃ on p. 4.
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Casella and Berger (2002, p. 114) remarks that

{η : η = (w1(θ), ..., wk(θ))|θ ∈ Θ} ⊆ Ω,

but often Ω is a strictly larger set. An example is the χ2
p distribution. This distribution

is not a REF since the set of integers is not a convex subset of the real line. Nevertheless,

the natural parameterization is the gamma(α, β = 2) family which is a REF. Note that

this family has uncountably many members while the χ2
p family does not.

It may be a good idea to inform students that they will only be presented problems

where they can simply set ηi = wi(θ) for families other than the χ2
p distribution. Assume

that dim(Θ) = k = dim(Ω). Assume that in the usual parameterization ΘU is as big as

possible (replace the integral by a sum for a pmf):

ΘU = {θ ∈ <k :
∫

f(x|θ)dx = 1},

and let

Θ = {θ ∈ ΘU : w1(θ), ..., wk(θ) are defined }.

Then assume that the natural parameter space

Ω = {(η1, ..., ηk) : ηi = wi(θ) for θ ∈ Θ}.

In other words, simply define ηi = wi(θ). For many common distributions, η is a one to

one function of θ, and the above map is correct.

Example 2. The binomial(n, p) pmf is

f(x|p) =

(
n

x

)
px(1 − p)n−x =

(
n

x

)

︸ ︷︷ ︸
h(x)≥0

(1 − p)n

︸ ︷︷ ︸
c(p)≥0

exp[log(
p

1 − p
)

︸ ︷︷ ︸
w(p)

x︸︷︷︸
t(x)

]
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for x = 0, 1, . . . , n where ΘU = [0, 1]. Since η = log(p/(1 − p)) is undefined for p = 0 and

p = 1, Θ = (0, 1).

A curved exponential family is a k-parameter exponential family where the ele-

ments of θ = (θ1, ..., θk) are completely determined by d < k of the elements. This family

is neither full nor regular since it places a restriction on the parameter space Ω resulting

in a new parameter space Ω̃ where Ω̃ does not contain a k-dimensional rectangle. For ex-

ample, the N(θ, θ2) distribution is a 2-parameter exponential family with η1 = −1/(2θ2)

and η2 = 1/θ. Thus Ω̃ = {(η1, η2)|,−∞ < η1 < 0,−∞ < η2 < ∞, η2 6= 0}. The graph of

this parameter space is a quadratic and cannot contain a 2-dimensional rectangle.

The following sections show that exponential families can be used to simplify the

theory of sufficiency, MLE’s, UMVUE’s, and UMP tests.

2 Exponential Families and Sufficiency.

Finding sufficient, minimal sufficient, and complete sufficient statistics is often simple for

REF’s. A statistic T (X1, ...,Xn) is a sufficient statistic for θ if the conditional distribution

of (X1, ...,Xn) given T does not depend on θ. A sufficient statistic T (X) is a minimal

sufficient statistic if for any other sufficient statistic T ′(X), T (X) is a function of T ′(X).

Suppose that a statistic T (X) has a pmf or pdf f(t|θ). Then T (X) is a complete statistic

if Eθ[g(T )] = 0 for all θ implies that Pθ[g(T (X)) = 0] = 1 for all θ.

There are several important facts concerning such statistics. First, a one to one

function of a sufficient, minimal sufficient, or complete sufficient statistic is sufficient,

minimal sufficient, or complete sufficient respectively. Bahadur’s Theorem states that a
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finite dimensional complete sufficient statistic is also minimal sufficient (Bahadur 1958

and Lehmann and Scheffé 1950). Assume that a sample X = (X1, ...,Xn) consists on

n independent random variables. Three very important theorems for sufficient statistics

follow.

Factorization Theorem: Let f(x|θ) denote the pdf or pmf of a sample X. A

statistic T (X) is a sufficient statistic for θ if for all sample points x and for all parameter

points θ,

f(x|θ) = g(T (x)|θ)h(x)

where both g and h are nonnegative functions.

Lehmann-Scheffé Theorem for Minimal Sufficient Statistics: Let f(x|θ) be

the pmf or pdf of a sample X. Let cx,y be a constant. Suppose there exists a function

T (x) such that for any two sample points x and y, the ratio Rx,y(θ) = f(x|θ)/f(y|θ) =

cx,y for all θ in Θ iff T (x) = T (y). Then T (X) is a minimal sufficient statistic for θ.

Sufficiency, Minimal Sufficiency, and Completeness of Exponential Fami-

lies: Suppose that X1, ...,Xn are iid from an exponential family with the natural param-

eterization given by Equation (1.2) so that the joint pdf or pmf is given by

f(x1, ..., xn|η) = (
n∏

j=1

h(xj))[c
∗(η)]n exp[η1

n∑

j=1

t1(xj) + · · · + ηk

n∑

j=1

tk(xj)]

which is a k-parameter exponential family. Then T (X) = (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj))is

a) a sufficient statistic for η,

b) a minimal sufficient statistic for η if η1, ..., ηk do not satisfy a linearity constraint,

c) a complete sufficient statistic for η if Ω contains a k-dimensional rectangle.

Proof: a) Use the factorization theorem.
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b) The ratio

f(x|η)

f(y|η)
=

∏n
j=1 h(xj)∏n
j=1 h(yj)

exp[
k∑

i=1

ηi(Ti(x) − Ti(y))]

is equal to a constant with respect to η iff

k∑

i=1

ηi[Ti(x) − Ti(y)] =
k∑

i=1

ηiai = d

for all ηi where d is some constant and where ai = Ti(x)−Ti(y) and Ti(x) =
∑n

j=1 ti(xj).

Since the ηi do not satisfy a linearity constraint,
∑k

i=1 ηiai = d iff all of the ai = 0. Hence

T (X) = (T1(X), ..., Tk(X))

is a minimal sufficient statistic by the Lehmann-Scheffé theorem.

c) See Lehmann (1986, p. 142).

Remarks. In the Lehmann-Scheffé Theorem, for R to be constant as a function of

θ, define 0/0 = cx,y . In a), k does not need to be as small as possible. Presenting the

various parameterizations of the exponential family immediately before presenting suf-

ficiency will help prepare students for the factorization theorem. Typically ηi = wi(θ),

and T is also a sufficient, minimal sufficient, or complete sufficient statistic for θ if the

appropriate conditions from the above theorem hold. (For completeness, also check that

η is a one to one map of θ.) The proof of part b) expands on remarks given in Jo-

hanson (1979, p. 3) and Lehmann (1983, p. 44) but is typically not given in inference

texts. The theorem gives a particularly simple way to find complete sufficient statistics

for one parameter exponential families and for any family that is known to be REF. If

it is known that the distribution is regular, find the exponential family parameteriza-

tion given by Equation (1.1) or (1.2). These parameterizations give t1(x), ..., tk(x). Then
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T (X) = (
∑n

j=1 t1(Xj), ...,
∑n

j=1 tk(Xj)). In Example 1, (
∑n

i=1 Xi,
∑n

i=1 X2
i ) is a complete

sufficient statistic for (µ, σ2). The one to one functions (X,S2) and (X,S) are also com-

plete sufficient where X is the sample mean and S is the sample standard deviation.

In Example 2,
∑n

i=1 t(Xi) =
∑n

i=1 Xi is complete sufficient statistic for p. Other tech-

niques for showing whether a statistic is minimal sufficient are illustrated in Sampson

and Spencer (1976).

Example 3, Cox and Hinckley (1974, p. 31). Let X1, ...,Xn be iid N(µ, γ2
oµ

2) ran-

dom variables where γ2
o > 0 is known and µ > 0. Then f(x|µ) is a two parameter

exponential family with Θ = (0,∞) (which contains a one dimensional rectangle), and

(
∑n

i=1 Xi,
∑n

i=1 X2
i ) is a minimal sufficient statistic. However

Eµ[
n + γ2

o

1 + γ2
o

n∑

i=1

X2
i − (

n∑

i=1

Xi)
2] = 0

for all µ so the minimal sufficient statistic is not complete. This example illustrates

that the rectangle needs to be contained in Ω rather than Θ. As a rule of thumb, a

k-parameter minimal sufficient statistic for a d-dimensional parameter where d < k will

not be complete. In this example d = 1 < 2 = k.

Example 4. The theory does not say that any sufficient statistic from a REF is

complete. Let X be a random variable from a normal N(0, σ2) distribution with σ2 > 0.

This family is a REF with complete minimal sufficient statistic X2. The data X is also

a sufficient statistic, but X is not a function of X2. Hence X is not minimal sufficient

and (by Bahadur’s theorem) not complete.

Example 5. In testing theory, a single sample is often created by combining two sam-

ples of iid data. Let X1, ...,Xn be iid exponential(β) and Y1, ..., Ym iid exponential(β/2).
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If the two samples are independent, then the joint pdf f(x,y|β) belongs to a regular one

parameter exponential family with complete sufficient statistic T =
∑n

i=1 Xi + 2
∑m

i=1 Yi.

3 Exponential Families and MLE’s.

The following definitions are used in the theory of MLE’s. Let f(x|θ) be the pmf or pdf

of a sample X. If X = x is observed, then the likelihood function L(θ) = f(x|θ). For

each sample point x = (x1, ..., xn), let θ̂(x) ∈ Θ be the parameter value at which L(θ|x)

attains its maximum as a function of θ with x held fixed. Then the maximum likelihood

estimator (MLE) of the parameter θ based on the sample X is θ̂(X).

Existence and Limiting Distribution of the MLE (Barndorff–Nielsen 1982):

Suppose that the natural parameterization of the k-parameter REF is used so that Ω

is an open k-dimensional convex set (usually an open interval or cross product of open

intervals). Then the log likelihood function log L(η) is a strictly concave function of η.

Hence if η̂ is a critical point of log L(η) and if η̂ ∈ Ω then η̂ is the unique MLE of η.

(The Hessian matrix of 2nd derivatives does not need to be checked!) The MLE’s have a

Gaussian limiting distribution if the family is a REF (also see Schervish, 1995, p. 418).

Note: with discrete distributions, there is a positive probability that η̂ is not in Ω.

In this case the MLE does not exist. If t is the complete sufficient statistic and C is the

closed convex hull of the support of t, then the MLE exists iff t ∈ int C where int C

is the interior of C. An example is the Poisson distribution. The MLE does not exist if

∑n
i=1 Xi = 0 if Θ = (0,∞).

Remarks: For 1–parameter exponential families, check that the critical point is a
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global maximum using standard calculus techniques such as calculating the second deriva-

tive of the log likelihood log L(θ|x). Casella and Berger (2002, p. 317) give a very useful

result for a scalar valued parameter: if K(θ) is a continuous function defined on an in-

terval with endpoints a < b (not necessarily finite), differentiable on (a, b), and if the

critical point is unique, then the critical point is a global maximum if it is a local

maximum (since otherwise there would be a local minimum and then the critical point

would not be unique). These techniques should be used since verifying that the family is

regular is often more difficult than using calculus. Also, often the MLE is desired for a

parameter space ΘU which is not an open set (e.g. for ΘU = [0, 1] instead of Θ = (0, 1)).

For k-parameter exponential families with k > 1, it is usually easier to verify that the

family is regular than to calculate the Hessian matrix.

The Invariance Principle is also important: if θ̂ is the MLE of θ, then h(θ̂) is the

MLE of h(θ). Many texts refer to Zehna (1966) for a proof of the invariance principle,

but a compelling alternative proof that uses a genuine likelihood (unlike Zehna’s pseudo-

likelihood) is given in Berk (1967).

Another useful fact is that if the MLE is unique, then the MLE is a function of the

minimal sufficient statistic. See Levy (1985) and Moore (1971). This fact is useful since

exponential families tend to have a tractable log likelihood and an easily found minimal

sufficient statistic. In Example 5, the MLE for β is β̂ = T/(n + m).
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4 Exponential Families, UMVUE’s and the FCRLB.

The following notation will be useful. Let τ (θ) be a real valued function of θ, and let

W ≡ W (X1, ...,Xn) be an estimator of τ (θ). The bias of the estimator W for τ (θ) is

BiasW (τ (θ)) = EθW − τ (θ). The mean squared error (MSE) of an estimator W for τ (θ)

is

MSEW (τ (θ)) = Eθ[(W − τ (θ))2] = V arθ(W ) + [BiasW (τ (θ))]2.

W is an unbiased estimator of τ (θ) if EθW = τ (θ) for all θ ∈ Θ, and WU is the uniformly

minimum variance unbiased estimator (UMVUE) of τ (θ) if WU is an unbiased estimator

of τ (θ) and if VarθWU ≤ V arθW for all θ where W is any other unbiased estimator of

τ (θ). The following theorem is extremely useful since it is often easy to find a complete

sufficient statistic for a one parameter REF.

Lehmann-Scheffé Theorem for UMVUE’s: If T (X) is a complete sufficient

statistic for θ, then g(T (X)) is the UMVUE of its expectation. In particular, if S(X) is

any unbiased estimator of τ (θ), then WU ≡ E[S(X)|T (X)] is the UMVUE of τ (θ).

The following facts can be useful for computing the conditional expectation (Rao-

Blackwellization). Suppose X1, ...,Xn are iid with finite expectation.

a) Then E[X1|
∑n

i=1 Xi = y] = y/n.

b) If the Xi are iid Poisson(λ), then (X1|
∑n

i=1 Xi = y) ∼ binomial(y, 1/n).

c) If the Xi are iid Bernoulli(p), then (X1|
∑n

i=1 Xi = y) ∼ Bernoulli(y/n).

d) If the Xi are iid N(µ, σ2), then (X1|
∑n

i=1 Xi = y) ∼ N [y/n, σ2(1 − 1/n)].

Often students will be asked to compute a lower bound on the variance of unbiased
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estimators when θ is a scalar. The information number or Fisher Information is

In(θ) = Eθ[(
∂

∂θ
log

n∏

i=1

f(Xi|θ))2].

If X comes from an exponential family, then

I1(θ) = Eθ[(
∂

∂θ
log f(X|θ))2] = −Eθ[

∂2

∂θ2
log f(X|θ)].

If the derivative and integral operators can be interchanged, and if X1, ...,Xn are iid,

then In(θ) = nI1(θ).

Lemma, Casella and Berger (1990, p. 312): If X comes from an exponential family,

then the derivative and integral operators can be interchanged:

d

dθ

∫
...
∫

g(x)f(x|θ)dx =
∫

...
∫

g(x)
∂

∂θ
f(x|θ)dx

for any function g(x) with Eθ|g(X)| < ∞.

Fréchet Cramér Rao Lower Bound or Information Inequality: Let X1, ...,Xn

be independent with joint pdf or pmf f(x|θ) that satisfies equation (4.1). Let W (X1, ...,Xn)

be any estimator of τ (θ) ≡ EθW (X). Then

V arθW (X) ≥
[ d
dθ

EθW (X)]2

Eθ[(
∂
∂θ

log f(X |θ))2]
=

[τ ′(θ)]2

In(θ)
.

The quantity
[τ ′(θ)]2

In(θ)
= FCRLB(τ (θ)) is the Fréchet Cramér Rao lower bound

(FCRLB) for the variance of unbiased estimators of τ (θ).

Many inference tests suggest that a UMVUE can be found by determining whether

an unbiased estimator W has a variance equal to the FCRLB. This method rarely works

since typically equality holds only if

1) the data come from a one parameter REF with complete sufficient statistic T , and

15



2) W = a + bT is a linear function of T .

The FCRLB inequality will typically be strict for nonlinear functions of T if the data

is from a one parameter REF. If T is complete, g(T ) is the UMVUE of its expectation,

and determining that T is the complete sufficient statistic from a one parameter REF is

simpler than computing V arθW and FCRLB(τ (θ)). If the family is not an exponential

family, the FCRLB may not be a lower bound on the variance of unbiased estimators

of τ (θ). For a more precise statement of when the FCRLB is achieved and for some

counterexamples, see Wijsman (1973) and Joshi (1976). Although the FCRLB is not

very useful for finding UMVUE’s, it is useful for finding the asymptotic variances of

UMVUE’s and MLE’s. See Portnoy (1977). Karakostas (1985) has useful references for

UMVUE’s.

5 Exponential Families, the Neyman Pearson Lemma,

and UMP tests.

The following concepts are useful in testing theory. The power function of a hypothesis

test of Ho vs HA is β(θ) = Pθ(Ho is rejected) for θ ∈ Θ. Let 0 ≤ α ≤ 1. Then a test with

power function β(θ) is a level α test if

sup
θ∈Θo

β(θ) ≤ α.

Consider all level α tests of Ho : θ ∈ Θo vs HA : θ ∈ ΘA. A uniformly most powerful

(UMP) level α test is a test with power function βUMP(θ) such that βUMP (θ) ≥ β ′(θ) for

every θ ∈ ΘA where β ′ is a power function for any level α test of Ho vs HA. The following
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three theorems can be used to find UMP tests.

One Sided UMP Tests for Exponential Families (Mood, Graybill, and Boes

1974, p. 424 and Bickel and Doksum 1977, p. 199): Let X1, ...,Xn be a sample with a

joint pdf or pmf from a one parameter exponential family where w(θ) is strictly increasing

and T (x) is the complete sufficient statistic. Alternatively, let X1, ...,Xn be iid with pdf

or pmf

f(x|θ) = h(x)c(θ) exp[w(θ)t(x)]

from a one parameter exponential family where θ is real and w(θ) is strictly increasing.

Here T (x) =
∑n

i=1 t(xi). Then the UMP test for Ho : θ ≤ θo vs HA : θ > θo rejects

Ho if T (x) > k and rejects Ho with probability γ if T (x) = k where α = Pθo(T >

k) + γPθo(T = k). The UMP test for Ho : θ ≥ θo vs HA : θ < θo rejects Ho if T (x) < k

and rejects Ho with probability γ if T (x) = k where α = Pθo (T < k) + γPθo(T = k).

Remarks: As a mnemonic, note that the inequality used in the rejection region is the

same as the inequality in the alternative hypothesis. Usually γ = 0 if f is a pdf. Suppose

that the parameterization is

f(x|θ) = h(x)c(θ) exp[w̃(θ)t̃(x)]

where w̃(θ) is strictly decreasing. Then set w(θ) = −w̃(θ) and t(x) = −t̃(x).

The Neyman Pearson Lemma: Consider testing Ho : θ = θo vs HA : θ = θA where

the pdf or pmf corresponding to θi is f(x|θi) for i = o,A. Suppose the test rejects Ho if

f(x|θA) > kf(x|θo), and rejects Ho with probability γ if f(x|θA) = kf(x|θo) for some

k ≥ 0. If

α = β(θo) = Pθo [f(x|θA) > kf(x|θo)] + γPθo [f(x|θA) = kf(x|θo)],
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then this test is an UMP level α test.

One Sided UMP Tests via the Neyman Pearson Lemma: Suppose that the

hypotheses are of the form Ho : θ ≤ θo vs HA : θ > θo or Ho : θ ≥ θo vs HA : θ < θo, or

that the inequality in Ho is replaced by equality. Also assume that

sup
θ∈Θo

β(θ) = β(θo).

Pick θA ∈ ΘA and use the Neyman Pearson lemma to find the UMP test for Ko : θ = θo

vs KA : θ = θA. Then the UMP test rejects Ko if f(x|θA) > kf(x|θo), and rejects Ko

with probability γ if f(x|θA) = kf(x|θo) for some k ≥ 0 where α = β(θo). This test is

also the UMP level α test for Ho : θ ∈ Θo vs HA : θ ∈ ΘA if k does not depend on the

value of θA.

The result for exponential families is simpler than using the Neyman Pearson lemma

since the test statistic T will have a distribution from an exponential family. See Casella

and Berger (2002, p. 217). This result often enables students to find the cutoff value

k. To find a UMP test via the Neyman Pearson lemma, students need to check that the

cutoff value k does not depend on θA ∈ ΘA and usually they need to transform the test

statistic to put the test in useful form. With exponential families, the transformed test

statistic is often T.

6 Limit Theorems For Exponential Families.

Barndorff–Nielsen (1982), Casella and Berger (2002, pp. 472, 515), Cox and Hinkley

(1974, p. 286), Lehmann and Casella (1998, Section 6.3), Schervish (1995, p. 418), and

many others suggest that under regularity conditions if X1, ...,Xn are iid from a one
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parameter regular exponential family, and if θ̂ is the MLE of θ, then

√
n(τ (θ̂) − τ (θ))

D→ N [0, FCRLB1(τ (θ))] (6.1)

where the Fréchet Cramér Rao lower bound based on a sample of size one for τ (θ) is

FCRLB1(τ (θ)) =
[τ ′(θ)]2

I1(θ)

and the Fisher information based on a sample of size one is

I1(θ) = −Eθ[
∂2

∂θ2
log(f(x|θ))].

Recall the Central Limit Theorem: Let X1, ...,Xn be iid with EX = µ and

V ar(X) = σ2. Let Xn = 1
n

∑n
i=1 Xi.

√
n(Xn − µ)

D→ N(0, σ2).

Hence

√
n

(
Xn − µ

σ

)
=

√
n

(∑n
i=1 Xi − nµ

nσ

)
D→ N(0, 1).

Recall the Delta Method: Suppose that
√

n(Tn − θ)
D→ N(0, σ2). Then

√
n(g(Tn) − g(θ))

D→ N(0, σ2[g′(θ)]2)

if g′(θ) 6= 0 exists.

Cox and Hinkley (1974, p. 286) observe that in a one parameter regular exponential

family, Tn = 1
n

∑n
i=1 t(Xi) is the UMVUE and generally the MLE of its expectation

µT = Eθ(Tn) = Eθ[t(X)]. Let σ2
T = V arθ[t(X)]. These values can be found by using the
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distribution of t(X) or by using the Casella and Berger (2002, pp. 112, 133) formulas

µT =
−c′(θ)

c(θ)w′(θ)
=

−∂

∂η
log(c∗(η)),

and

σ2
T =

−∂2

∂θ2 log(c(θ)) − [w′′(θ)]µT

[w′(θ)]2
=

−∂2

∂η2
log(c∗(η)).

The simplicity of the following result is rather surprising.

Theorem. Let X1, ...,Xn be iid from a one parameter exponential family with

E(t(X)) = µT ≡ g(η) and V ar(T (X)) = σ2
T .

a) Then

√
n[Tn − µT ]

D→ N(0, I1(η))

where

I1(η) = σ2
T = g′(η) =

[g′(η)]2

I1(η)
.

b) If η = g−1(µT ), η̂ = g−1(Tn), g−1′(µT ) 6= 0 exists, and τ ′(η) 6= 0 exists, then

√
n[τ (η̂) − τ (η)]

D→ N

(
0,

[τ ′(η)]2

I1(η)

)
.

Proof: a) The result follows by the central limit theorem if σ2
T = I1(η) = g′(η). Since

f(x|η) = h(x)c∗(η) exp[ηt(x)],

∂

∂η
log(f(x|η)) =

c∗
′
(η)

c∗(η)
+ t(x) = −g(η) + t(x).

Hence

∂2

∂η2
log(f(x|η)) =

c∗
′
(η)c∗

′′
(η) − [c∗

′
(η)]2

[c∗(η)]2
= −g′(η),

and thus

I1(η) =
−c∗

′′
(η)

c∗(η)
+

[
c∗

′
(η)

c∗(η)

]2

=
−∂2

∂η2
log(c∗(η)) = σ2

T = g′(η).
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b) By the Delta Method,

√
n(η̂ − η) =

√
n[g−1(Tn) − g−1(µT )]

D→ N(0, σ2
T [g−1′(µT )]2),

but

g−1′(µT ) =
1

g′(g−1(µT ))
=

1

g′(η)
.

Hence

σ2
T [g−1′(µT )]2 =

[g′(η)]2

I1(η)

1

[g′(η)]2
=

1

I1(η)
.

So

√
n(η̂ − η)

D→ N

(
0,

1

I1(η)

)
,

and the result follows by the Delta Method. QED

When (as is usually the case) Tn is the MLE of µT , η̂ is the MLE of η by the invariance

principle. If η = w(θ) and θ = w−1(η), a limit theorem for θ̂ can also be obtained.

A similar result holds for k-parameter exponential families. Let T n =

(
∑n

i=1 t1(Xi), ...,
∑n

i=1 tk(Xi)) and let µT = (E(t1(X), ..., E(tk(X))). From Lehmann (1986,

p. 66) and Lehmann (1999, pp. 497, 499), for η ∈ Ω,

E(Ti(X)) =
−∂

∂ηi
log(c∗(η)),

and

Cov(Ti(X), Tj(X)) ≡ σi,j =
−∂2

∂ηi∂ηj
log(c∗(η)),

and the Information matrix

I(η) = [Ii,j ]

where

I i,j = E

[
∂

∂ηi
log(f(x|η))

∂

∂ηi
log(f(x|η))

]
= −E

[
∂2

∂ηi∂ηj
log(f(x|η))

]
.
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Theorem. If X1, ...,Xn are iid from a regular k-parameter exponential family, then

√
n(T n −µT )

D→ Nk(0, I(η)).

Proof. By the multivariate central limit theorem,

√
n(T n −µT )

D→ Nk(0,Σ)

where Σ = [σi,j]. Hence the result follows if σi,j = I i,j. Since

log(f(x|η)) = log(h(x)) + log(c∗(η)) +
k∑

l=1

ηlTl(x),

∂

∂ηi
log(f(x|η)) =

∂

∂ηi
log(c∗(η)) + Ti(X).

Hence

−I i,j =
∂2

∂ηi∂ηj

log(f(x|η)) =
∂2

∂ηi∂ηj

log(c∗(η)) = −σi,j.

7 Conclusions

One of the most important uses of exponential families is that the theory often provides

two methods for doing inference. For example, minimal sufficient statistics can be found

with either the Lehmann-Scheffé theorem or by finding T from the exponential family

parameterization. Similarly, if X1, ...,Xn are iid from a one parameter REF with complete

sufficient statistic T (X), then one sided UMP tests can be found by using the Neyman

Pearson lemma or by using exponential family theory.

It should be emphasized that the complete sufficient statistic from a regular exponen-

tial family is well behaved, even if the exponential family is not (see Casella and Berger

2002, pp. 112, 133). The one sided stable distribution with index 1/2 is an interesting
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example. See Lehmann (1999, p. 76) and Besbeas and Morgan (2004). An interesting

subclass of exponential families is given by Rahman and Gupta (1993).

The main focus of this paper is using exponential families for a one semester course,

and many important topics that might be covered by a two semester course have been

omitted. For example, exponential families are useful for finding conjugate priors when

Bayesian statistics are covered. History and references for additional topics can be found

in Lehmann (1983, p. 70), Brown (1986) and Barndorff-Nielsen (1978, 1982).
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