Some Transformed Distributions

by

Hassan Abuhassan

Master of Science in Mathematics, The Jordanian University, 1991

A Dissertation
Submitted in Partial Fulfillment of the Requirements for the
Doctor of Philosophy Degree

Department of Mathematics
in the Graduate School
Southern Illinois University Carbondale
October, 2007
DISSERTATION APPROVAL

SOME TRANSFORMED DISTRIBUTIONS By

Hassan Abuhassan

A Dissertation Submitted in Partial
Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy
in the field of Mathematics

Approved by:
David Olive, Chair
Bhaskar Bhattacharya
Edward Neuman
Salah-Eldin Mohammed
Todd Headrick

Graduate School
Southern Illinois University Carbondale
October 18, 2007
Hassan Abuhassan, for the Doctor of Philosophy degree in MATHEMATICS, presented on October 00, 2007, at Southern Illinois University Carbondale.

TITLE: Some Transformed Distributions

MAJOR PROFESSOR: Dr. David. Olive

There are several useful asymmetric location-scale families that are one parameter exponential families when the location parameter is known. In this case inference is simple and the maximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) are important point estimators. The Burr, largest extreme value, Pareto, power, Rayleigh, smallest extreme value, truncated extreme value, and Weibull distributions are obtained by transforming the exponential distribution. By applying the same transformation to the half normal distribution, eight new competitors for these distributions are obtained.

Inference for some of these transformed distributions is simple using inference for the original distributions and the invariance principle. Pewsey [15] studied the half normal distribution $HN(\mu, \sigma^2)$ and gave confidence intervals for the parameters, we give a better confidence interval for μ.

We also studied the Pareto, Rayleigh, and Weibull distributions and give confidence intervals for the parameters. In the case of the Pareto distribution $Pareto(\sigma, \lambda)$, the obtained confidence intervals for σ and λ seem to be new, while in the case of the Weibull distribution $Weibull(\phi, \lambda)$ our contribution was that we used robust estimators for ϕ and λ which are used in the iteration procedures to find the MLEs.
DEDICATION

To my father who taught me that the sky is the limit

To my wife who stood by my side with me
ACKNOWLEDGMENTS

I would like to thank Dr. David Olive for his invaluable assistance and insights leading to the writing of this paper. My sincere thanks also goes to Dr. Bhaskar Bhattacharya, Dr. Edward Neuman, Dr. Salah-Eldin Mohammed, and Dr. Todd Headrick, for serving as my committee members.

I would like also to thank the many people at the Department of Mathematics who contributed to my work in so many ways. Special thanks to Diane Fritcher for your endless assistance, and Linda Gibson for your patient help on my thesis-writing.

At last, I would like to thank all my friends and family, particularly my father, my wife, and my kids for their patience and support, my sisters and their families for their help and hospitality.
TABLE OF CONTENTS

Abstract .. ii
Dedication .. iii
Acknowledgments .. iv
List of Tables .. vii
List of Figures .. x
1 Introduction and Literature Review 1
 1.1 Introduction .. 1
 1.2 Dissertation Overview 3
 1.3 Literature Review .. 4
2 Statistical Distributions .. 5
 2.1 The (two parameter) Exponential Distribution 5
 2.2 The Half Normal Distribution 8
 2.3 The Burr Distribution 15
 2.4 The HBurr Distribution 16
 2.5 The Largest Extreme Value Distribution 18
 2.6 The HLEV Distribution 19
 2.7 The Pareto Distribution 20
 2.8 The HPareto Distribution 24
 2.9 The Power Distribution 27
 2.10 The HPower Distribution 29
 2.11 The Rayleigh Distribution 32
 2.12 The HRayleigh Distribution 38
 2.13 The Smallest Extreme Value Distribution 39
 2.14 The HSEV Distribution 40
 2.15 The Truncated Extreme Value Distribution 41
2.16 The HTEV Distribution ... 43
2.17 The Weibull Distribution ... 45
2.18 The HWeibull Distribution ... 50
3 Simulations Coverage of Confidence Intervals 52
 3.1 Half-Normal Distribution .. 52
 3.2 HPareto Distribution .. 56
 3.3 HPower Distribution .. 58
 3.4 HTEV Distribution .. 59
 3.5 Two Parameter Exponential Distribution 60
 3.6 The Pareto Distribution .. 62
 3.7 The Power Distribution .. 64
 3.8 The Truncated Extreme Value Distribution 65
 3.9 The Weibull Distribution .. 66
 3.10 The Rayleigh Distribution 71
References ... 77
Appendix ... 78
Vita ... 100
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Actual Coverage Levels for Nominal 90% Confidence Interval for σ^2 when μ is unknown for sample sizes ranging from 5 to 500</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Actual Coverage Levels for Nominal 90% Confidence Interval for σ^2 when μ is known for sample sizes ranging from 5 to 500</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Actual Coverage Levels for Nominal 90% Confidence Interval for μ for sample sizes ranging from 5 to 500 - Modified and Pewsey intervals</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for σ^2 when μ is unknown for sample sizes ranging from 5 to 500</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for σ^2 when μ is known for sample sizes ranging from 5 to 500</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for μ for sample sizes ranging from 5 to 500 - Modified and Pewsey intervals</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for θ for sample sizes ranging from 5 to 500</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 when θ is unknown for sample sizes ranging from 5 to 500</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 when θ is known for sample sizes ranging from 5 to 500</td>
<td>57</td>
</tr>
<tr>
<td>3.10</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 for sample sizes ranging from 5 to 500</td>
<td>58</td>
</tr>
<tr>
<td>3.11</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 for sample sizes ranging from 5 to 500</td>
<td>59</td>
</tr>
<tr>
<td>3.12</td>
<td>Actual Coverage Levels for Nominal 95% Confidence Interval for λ when θ is unknown for sample sizes ranging from 5 to 500</td>
<td>60</td>
</tr>
</tbody>
</table>
3.13 Actual Coverage Levels for Nominal 95% Confidence Interval for λ when θ is known for sample sizes ranging from 5 to 500 61
3.14 Actual Coverage Levels for Nominal 95% Confidence Interval for θ for sample sizes ranging from 5 to 500 61
3.15 Actual Coverage Levels for Nominal 95% Confidence Interval for λ when σ is unknown for sample sizes ranging from 5 to 500 62
3.16 Actual Coverage Levels for Nominal 95% Confidence Interval for σ for sample sizes ranging from 5 to 500 63
3.17 Actual Coverage Levels for Nominal 95% Confidence Interval for λ for sample sizes ranging from 5 to 500 64
3.18 Actual Coverage Levels for Nominal 95% Confidence Interval for λ for sample sizes ranging from 5 to 500 65
3.19 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 66
3.20 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 67
3.21 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 67
3.22 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 68
3.23 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 68
3.24 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 69
3.25 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 69
3.26 Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500 70
3.27 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 71
3.28 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 71
3.29 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 72
3.30 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 72
3.31 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 73
3.32 Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500 73
3.33 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 74
3.34 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 74
3.35 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 75
3.36 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 75
3.37 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 76
3.38 Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500 76
LIST OF FIGURES

2.1 Plot of the pdf of the Exponential Distribution 5
2.2 Plot of the pdf of the Half-Normal Distribution 8
2.3 Plot of the pdf of the Burr Distribution 15
2.4 Plot of the pdf of the HBurr Distribution 16
2.5 Plot of the pdf of the Largest Extreme Value Distribution 18
2.6 Plot of the pdf of the HLEV Distribution 19
2.7 Plot of the pdf of the Pareto Distribution 21
2.8 Plot of the pdf of the HPareto Distribution 24
2.9 Plot of the pdf of the Power Distribution 27
2.10 Plot of the pdf of the HPower Distribution 29
2.11 Plot of the pdf of the Rayleigh Distribution 32
2.12 Plot of the pdf of the HRayleigh Distribution 38
2.13 Plot of the pdf of the Smallest Extreme Value Distribution 39
2.14 Plot of the pdf of the HSEV Distribution 40
2.15 Plot of the pdf of the Truncated Extreme Value Distribution 41
2.16 Plot of the pdf of the HTEV Distribution 43
2.17 Plot of the pdf of the Weibull Distribution 45
2.18 Plot of the pdf of the HWeibull Distribution 50
CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

There are several useful asymmetric location-scale families that are one parameter exponential families when the location parameter is known. In this case inference is simple and the maximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator (UMVUE) are important point estimators. The Burr, largest extreme value, Pareto, power, Rayleigh, smallest extreme value, truncated extreme value, and Weibull distributions are obtained by transforming the exponential distribution. By applying the same transformation to the half normal distribution, eight new competitors for these distributions are obtained.

Inference for some of these transformed distributions is simple using inference for the original distributions and the invariance principle. Pewsey [15] studied the half normal distribution $HN(\mu, \sigma^2)$ and gave confidence intervals for the parameters, we give a better confidence interval for μ.

We also studied the Pareto, Rayleigh, and Weibull distributions and give confidence intervals for the parameters. In the case of the Pareto distribution $Pareto(\sigma, \lambda)$ which is studied extensively by Arnold (1983) [1], the obtained confidence intervals for σ and λ seem to be new, while in the case of the Weibull distribution $Weibull(\phi, \lambda)$ our contribution was that we used robust estimators for ϕ and λ which are used in the iteration procedures to find the MLEs.

Definition 1. The population median is any value $MED(Y)$ such that $P(Y \leq MED(Y)) \geq 0.5$, and $P(Y \geq MED(Y)) \geq 0.5$.

Definition 2. The population median absolute deviation is \(\text{MAD}(Y) = \text{MED}(|Y - \text{MED}(Y)|) \).

Definition 3. A family of pdf’s (probability density functions) or pmf’s (probability mass functions) \(f(x, \theta) : \theta \in \Theta \) is an exponential family if
\[
f(x|\theta) = h(x)c(\theta)\exp\left[\sum_{i=1}^{k} w_i(\theta)t_i(x)\right] \tag{1.1}
\]
for \(x \in \mathcal{X} \) where \(c(\theta) \geq 0, \ h(x) \geq 0 \) does not depend on \(\theta \) and \(t_i(x) : \mathcal{X} \to R \) does not depend on \(\theta \). The family is a \(k \)-parameter exponential family if \(k \) is the smallest integer where the above equation holds. If \(k = 1 \) and the exponential family is regular then it is called one parameter regular exponential family denoted by a 1P–REF.

Suppose that \(Y = t(W) \) and \(W = t^{-1}(Y) \) where \(W \) has a pdf with parameters \(\theta \), the transformation \(t \) does not depend on any unknown parameters, and the pdf of \(Y \) is
\[
f_Y(y) = f_W(t^{-1}(y))\left|\frac{dt^{-1}(y)}{dy}\right|.
\]
[4] If \(W_1, W_2, \ldots, W_n \) are iid with pdf \(f_W(w) \), assume that the MLE of \(\hat{\theta} \) is \(\theta_W(w) \) where the \(w_i \) are the observed values of \(W_i \) and \(w = (w_1, w_2, \ldots, w_n)^T \).

If \(Y_1, Y_2, \ldots, Y_n \) are iid and the \(y_i \) are the observed values of \(Y_i \), then the likelihood is
\[
L_Y(\theta) = \left(\prod_{i=1}^{n} \left|\frac{dt^{-1}(y_i)}{dy}\right|\right) \prod_{i=1}^{n} f_W(t^{-1}(y_i)|\theta) = c \prod_{i=1}^{n} f_W(t^{-1}(y_i)|\theta)
\]
Hence the log likelihood is
\[
\log(L_Y(\theta)) = d + \sum_{i=1}^{n} \log[f_W(t^{-1}(y_i)|\theta)] = d + \sum_{i=1}^{n} \log[f_W(w_i|\theta)] = d + \log[L_W(\theta)]
\]
where \(w_i = t^{-1}(y_i) \). Hence maximizing the \(\log(L_Y(\theta)) \) is equivalent to maximizing \(\log(L_W(\theta)) \) and

\[
\hat{\theta}_Y(y) = \hat{\theta}_W(w) = \hat{\theta}_W(t^{-1}(y_1), t^{-1}(y_2), \ldots, t^{-1}(y_n)).
\]

(1.2)

This result is useful since if the MLE based on the \(W_i \) has simple inference, then the MLE based on the \(Y_i \) will also have simple inference. For example, If \(W_1, W_2, \ldots, W_n \) are iid \(\sim \) \(EXP(\theta = \log(\sigma), \lambda) \) and \(Y_1, Y_2, \ldots, Y_n \) are iid Pareto \((\sigma = e^\theta, \lambda) \), then \(Y = e^W = t(W) \) and \(W = \log(Y) = t^{-1}(Y) \). The MLE of \((\theta, \lambda) \) based on the \(W_i \) is \((\hat{\theta}, \hat{\lambda}) = (W_{(1)}, \overline{W} - W_{(1)}) \). Hence by (1.2) and invariance, the MLE of \((\sigma, \lambda) \) based on the \(Y_i \) is \(\hat{\sigma} = \exp(\hat{\theta}) = \exp(W_{(1)}) = Y_{(1)} \) and

\[
\hat{\lambda} = \overline{W} - W_{(1)} = \frac{1}{n} \sum_{i=1}^{n} \log(Y_i) - \log(Y_{(1)}).
\]

1.2 DISSERTATION OVERVIEW

The Dissertation is organized as follows. The first introductory chapter introduces the new transformed distributions and gives a review of the literature. Chapter 2 studies inference in both the exponential distribution and the half-normal distribution, we give a modified confidence interval for \(\mu \) in the half-normal distribution which is better than the confidence interval given by Pewsey [15]. The Burr, largest extreme value, Pareto, power, Rayleigh, smallest extreme value, truncated extreme value, and Weibull distributions are obtained by transforming the exponential distribution. By applying the same transformation to the half normal distribution, new competitors for these distributions are obtained. We studied each of these sixteen transformed distributions in this chapter by allocating one section for each distribution. In each section we tried to give the pdf of the distribution, and its graph for selected values of it’s parameter(s). The MLEs and confidence intervals for the
parameter(s) were given for several distributions.

In chapter three, we present the results obtained from simulation studies to establish the actual coverage of the confidence intervals presented in chapter two. Sample sizes used in the simulations ranges from 5 to 500 and the number of runs ranges from 100 to 5000. The results of the simulation studies are found to give support for the confidence intervals presented in chapter two.

1.3 LITERATURE REVIEW

If \(Y \) has a (two parameter) exponential distribution, \(Y \sim \text{EXP}(\theta, \lambda) \) then the probability density function (pdf) of \(Y \) is

\[
f(y) = \frac{1}{\lambda} \exp\left(-\frac{(y - \theta)}{\lambda}\right) I[y \geq \theta]
\]

where \(\lambda > 0 \) and \(\theta \) is real. The cdf of \(Y \) is

\[
F(y) = 1 - \exp\left(-\frac{(y - \theta)}{\lambda}\right), y \geq \theta
\]

This is a location–scale family. If \(X \sim \text{EXP}(\lambda) \), then \(X \sim \text{EXP}(0, \lambda) \) has a one parameter exponential distribution and \(X \sim \text{G}(1, \lambda) \) where \(\text{G} \) stands for the Gamma distribution. Inference for this distribution is discussed in Johnson and Kotz (1970, p. 219)[7], Mann, Schafer, and Singpurwalla (1974, p. 176)[10], Bury[3], Evans[6], Lehmann[9], and Krishnamorthy[8].

If \(Y \) has a half normal distribution, \(Y \sim \text{HN}((\mu, \sigma^2)) \), then the pdf of \(Y \) is

\[
f(y) = \frac{2}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - \mu)^2}{2\sigma^2}\right)
\]

where \(\sigma > 0 \) and \(y \geq \mu \) and \(\mu \) is real. This is a location-scale family. Let \(\Phi(y) \) denote the standard normal cdf. Then the cdf of \(Y \) is

\[
F(y) = 2\Phi\left(\frac{y - \mu}{\sigma}\right) - 1
\]

for \(y > \mu \) and \(F(y) = 0 \), otherwise. Inference for the this distribution is discussed by Pewsey [15].
2.1 THE (TWO PARAMETER) EXPONENTIAL DISTRIBUTION

If \(Y \) has a (two parameter) exponential distribution, \(Y \sim \text{EXP}(\theta, \lambda) \) then the probability density function (pdf) of \(Y \) is

\[
f(y) = \frac{1}{\lambda} \exp\left(-\frac{(y - \theta)}{\lambda}\right) I[y \geq \theta]
\]

where \(\lambda > 0 \) and \(\theta \) is real. The cdf of \(Y \) is

\[
F(y) = 1 - \exp\left(-\frac{(y - \theta)}{\lambda}\right), y \geq \theta
\]

This is a location–scale family. If \(X \sim \text{EXP}(\lambda) \), then \(X \sim \text{EXP}(0, \lambda) \) has a one parameter exponential distribution and \(X \sim \text{G}(1, \lambda) \) where G stands for the Gamma distribution. Inference for this distribution is discussed in Johnson and Kotz (1970, p. 219) and Mann, Schafer, and Singpurwalla (1974, p. 176).

Figure 2.1. Plot of the pdf of the Exponential Distribution
Let Y_1, \ldots, Y_n be iid $EXP(\theta, \lambda)$ random variables. Let $Y_{(1)} = \min(Y_1, \ldots, Y_n)$.

Then the MLE

$$(\hat{\theta}, \hat{\lambda}) = \left(Y_{(1)}, \frac{1}{n} \sum_{i=1}^{n} (Y_i - Y_{(1)}) \right) = (Y_{(1)}, \overline{Y} - Y_{(1)}).$$

Let $D_n = n\hat{\lambda}$. For $n > 1$, an exact $100(1 - \alpha)\%$ confidence interval (CI) for θ is

$$(Y_{(1)} - \hat{\lambda}[(\alpha)^{-1/(n-1)} - 1], Y_{(1)}) \quad (2.1)$$

while a $100(1 - \alpha)\%$ CI for λ is

$$\left(\frac{2D_n}{\chi^2_{2(n-1),1-\alpha/2}}; \frac{2D_n}{\chi^2_{2(n-1),\alpha/2}} \right). \quad (2.2)$$

where $P(X < \chi^2_{n,\alpha}) = \alpha$ if X is chi-square with n degrees of freedom.

Let $T_n = \sum_{i=1}^{n} (Y_i - \theta) = n(\overline{Y} - \theta)$. If θ is known, then

$$\hat{\lambda}_\theta = \frac{\sum_{i=1}^{n} (Y_i - \theta)}{n} = \overline{Y} - \theta$$

is the uniformly minimum variance unbiased estimator (UMVUE) and maximum likelihood estimator (MLE) of λ, and a $100(1 - \alpha)\%$ CI for λ is

$$\left(\frac{2T_n}{\chi^2_{2n,1-\alpha/2}}; \frac{2T_n}{\chi^2_{2n,\alpha/2}} \right). \quad (2.3)$$

Proof:

Let $X_i = Y_i - \theta \Rightarrow X_1, \ldots, X_n$ are iid $EXP(\lambda)$ random variables. Then

X_1, \ldots, X_n are iid $Gamma(1, \lambda)$

$\Rightarrow U = \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} (Y_i - \theta) \sim Gamma(n, \lambda)$

$\Rightarrow W = 2U = 2\sum_{i=1}^{n} (Y_i - \theta) \sim Gamma(n, 2\lambda)$

$\Rightarrow V = W/\lambda \sim Gamma(n, 2) \sim \chi^2_{2n}$

$\Rightarrow 1 - \alpha = P(\chi^2_{2n,\alpha/2} < V < \chi^2_{2n,1-\alpha/2})$

$= P(\chi^2_{2n,\alpha/2} < \frac{2\sum_{i=1}^{n} (Y_i - \theta)}{\lambda} < \chi^2_{2n,1-\alpha/2})$

$= P\left(\frac{1}{\chi^2_{2n,1-\alpha/2}} < \frac{\lambda}{\sum_{i=1}^{n} (Y_i - \theta)} < \frac{1}{\chi^2_{2n,\alpha/2}} \right)$
\[P\left(\frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,1-\alpha/2}} < \lambda < \frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,\alpha/2}} \right) \]

Using \(\chi^2_{n,\alpha}/\sqrt{n} \approx \sqrt{2z_\alpha + \sqrt{n}} \), it can be shown that \(\sqrt{n} \) CI length converges to \(\lambda(z_{1-\alpha/2} - z_{\alpha/2}) \) for CIs (2.2) and (2.3) (in probability). It can be shown that \(n \) length CI (2.1) converges to \(-\lambda \log(\alpha) \) [12]. Proof:

\(\chi^2_{2n,\alpha/2}/\sqrt{2n} \approx \sqrt{2z_{\alpha/2} + \sqrt{2n}} \)

\[\Rightarrow \chi^2_{2n,\alpha/2}/\sqrt{n} = \sqrt{2\chi^2_{2n,\alpha/2}/\sqrt{2n}} \approx \sqrt{2[\sqrt{2z_{\alpha/2} + \sqrt{2n}}]} \]

\[= 2z_{\alpha/2} + 2\sqrt{n} = 2(z_{\alpha/2} + \sqrt{n}) \]

Now

\[\sqrt{n} \text{ CI length} = \sqrt{n}\left(\frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,\alpha/2}} - \frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,1-\alpha/2}} \right) \]

\[= \left(\frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,\alpha/2}/\sqrt{n}} - \frac{2\sum_{i=1}^{n}(Y_i - \theta)}{\chi^2_{2n,1-\alpha/2}/\sqrt{n}} \right) \text{ and by (B) above, this equals:} \]

\[\left(\frac{2\sum_{i=1}^{n}(Y_i - \theta)}{2(z_{\alpha/2} + \sqrt{n})} - \frac{2\sum_{i=1}^{n}(Y_i - \theta)}{2(z_{1-\alpha/2} + \sqrt{n})} \right) \]

\[= \frac{\sum_{i=1}^{n}(Y_i - \theta)[z_{1-\alpha/2} - z_{\alpha/2}] 1/n}{(z_{\alpha/2} + \sqrt{n})(z_{1-\alpha/2} + \sqrt{n})} 1/n \]

\[= \frac{1}{n} \sum_{i=1}^{n}(Y_i - \theta)[z_{1-\alpha/2} - z_{\alpha/2}] a_n \]

\[\xrightarrow{D} \lambda[z_{1-\alpha/2} - z_{\alpha/2}] . \]

since

\[a_n \xrightarrow{D} 1 . \]

Also

\[\lim n[\alpha^{-1/n-1} - 1] = \lim \frac{\alpha^{-1/n-1} - 1}{1/n} = 0 \]

so by L’Hopital Rule the limit equals

\[\lim \frac{\alpha^{-1/n-1} \log(\alpha)(-1/n^2)}{-1/n^2} \]

\[= -\log(\alpha) \lim \alpha^{-1/n} = -\log(\alpha) . \]
Hence, n length CI (2.1) converges to

$$\lim n\hat{\lambda}[\alpha^{-1/n-1} - 1] = -\lambda \log(\alpha).$$

2.2 THE HALF NORMAL DISTRIBUTION

If Y has a half normal distribution, $Y \sim HN(\mu, \sigma^2)$, then the pdf of Y is

$$f(y) = \frac{2}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

where $\sigma > 0$ and $y \geq \mu$ and μ is real. This is a location-scale family. Let $\Phi(y)$ denote the standard normal cdf. Then the cdf of Y is

$$F(y) = 2\Phi\left(\frac{y-\mu}{\sigma}\right) - 1$$

for $y > \mu$ and $F(y) = 0$, otherwise.

\[
E(Y) = \mu + \sigma \sqrt{\frac{2}{\pi}} \approx \mu + 0.797885\sigma.
\]

\[
VAR(Y) = \frac{\sigma^2(\pi-2)}{\pi} \approx 0.363380\sigma^2.
\]

![Half-Normal Distribution HN(mu = 0, sigma = 1)](image.png)

Figure 2.2. Plot of the pdf of the Half-Normal Distribution
This is an asymmetric location–scale family that has the same distribution as
\(\mu + \sigma |Z| \) where \(Z \sim N(0,1) \). Note that \(Z^2 \sim \chi^2_1 \). Hence the formula for the \(r \)th moment of the \(\chi^2_1 \) random variable can be used to find the moments of \(Y \) [12].

\[
M E D(Y) = \mu + 0.6745\sigma.
\]

\[
M A D(Y) = 0.3990916\sigma.
\]

Notice that

\[
f(y) = \frac{2}{\sqrt{2\pi} \sigma} I(y > \mu) \exp \left[\left(\frac{-1}{2\sigma^2} \right) (y - \mu)^2 \right]
\]
is a 1P–REF if \(\mu \) is known. Hence \(\Theta = (0, \infty), \eta = -1/(2\sigma^2) \) and \(\Omega = (-\infty, 0) \).

\[
W = (Y - \mu)^2 \sim G(1/2, 2\sigma^2). \text{ If } Y_1, ..., Y_n \text{ are iid } HN(\mu, \sigma^2), \text{ then }
\]

\[
T_n = \sum (Y_i - \mu)^2 \sim G(n/2, 2\sigma^2).
\]

If \(\mu \) is known, then the likelihood

\[
L(\sigma^2) = c \frac{1}{\sigma^n} \exp \left[\left(\frac{-1}{2\sigma^2} \right) \sum (y_i - \mu)^2 \right],
\]

and the log likelihood

\[
\log(L(\sigma^2)) = d - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum (y_i - \mu)^2.
\]

Hence

\[
\frac{d}{d(\sigma^2)} \log(L(\sigma^2)) = \frac{-n}{2(\sigma^2)} + \frac{1}{2(\sigma^2)^2} \sum (y_i - \mu)^2 \overset{set}{=} 0,
\]

or \(\sum (y_i - \mu)^2 = n\hat{\sigma}^2 \) or

\[
\hat{\sigma}^2 = \frac{1}{n} \sum (Y_i - \mu)^2.
\]

Notice that

\[
\frac{d^2}{d(\sigma^2)^2} \log(L(\sigma^2)) = \frac{n}{2(\sigma^2)^2} - \frac{\sum (y_i - \mu)^2}{(\sigma^2)^3} \bigg|_{\sigma^2 = \hat{\sigma}^2} = \frac{n}{2(\hat{\sigma}^2)^2} - \frac{n\hat{\sigma}^2}{(\hat{\sigma}^2)^3} = \frac{-n}{2\hat{\sigma}^2} < 0.
\]

9
Thus $\hat{\sigma}^2$ is the UMVUE and MLE of σ^2 if μ is known, while $\hat{\mu} = Y(1)$ is the ML estimate of μ for the case where σ is known.

Likelihood Based Confidence Intervals

Let $Y \sim HN(\mu, \sigma^2), Y = \mu + \sigma X, X = |Z|, Z \sim N(0, 1)$

Since $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2 = \sum_{i=1}^{n} (\sigma X_i)^2 \Rightarrow n\hat{\sigma}^2 / \sigma^2 \sim \chi^2_n$.

$\hat{\sigma}^2$ is a consistent estimator of σ^2 if μ is known and the 100(1 - α)% confidence interval for σ^2 is

$$\left(\frac{T_n}{\chi^2_{n-1, 1-\alpha/2}}, \frac{T_n}{\chi^2_{n, 1-\alpha/2}} \right)$$

(2.4)

where $T_n = \sum_{i=1}^{n} (Y_i - \mu)^2$. If μ is unknown, let $D_n = \sum_{i=1}^{n} (Y_i - Y(1))^2$. Then a 100(1 - α)% large sample confidence interval for σ^2 is

$$\left(\frac{D_n}{\chi^2_{n-1, 1-\alpha/2}}, \frac{D_n}{\chi^2_{n-1, 1-\alpha/2}} \right)$$

(2.5)

see corollary 2.1 below.

Pewsey [15] states that the limiting distribution of the MLE $\hat{\mu} = Y(1)$ is

$$(\hat{\mu} - \mu) / \left[\sigma \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right) \right] \xrightarrow{D} EXP(1)$$

where $\Phi(\cdot)$ denotes the distribution function of the standard normal distribution. It follows, therefore, that $\hat{\mu}$ is a consistent estimator for μ. An approximation to $\Phi^{-1}(\frac{1}{2} + \frac{1}{2n})$, based on a first order Taylor series expansion of the standard normal density, is given by $(\pi/2)^{1/2}/n$. This approximation is accurate to 2 decimal places for $n = 10$, and to 5 decimal places for $n = 50$ (Ref. [15], p. 1048).

An approximate 100(1 - α)% confidence interval for μ is given by

$$\left(\hat{\mu} + \hat{\sigma} \log(\frac{\alpha}{2}) \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right), \hat{\mu} + \hat{\sigma} \log(1 - \frac{\alpha}{2}) \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right) \right)$$

(2.6)
Proof:

Let \(f(y) = \exp(-y) \), \(y \geq 0 \), and \(F(y) = 1 - \exp(-y) \), \(y \geq 0 \), then

\[
\frac{a}{2} = F(y_{\frac{a}{2}}) = 1 - \exp(-y_{\frac{a}{2}})
\]

\(\Rightarrow \exp(-y_{\frac{a}{2}}) = 1 - \frac{a}{2} \Rightarrow y_{\frac{a}{2}} = -\log(1 - \frac{a}{2}) \), and

\[
1 - \frac{a}{2} = F(y_{1 - \frac{a}{2}}) = 1 - \exp(-y_{1 - \frac{a}{2}})
\]

\(\Rightarrow \frac{a}{2} = \exp(-y_{1 - \frac{a}{2}}) \Rightarrow -y_{1 - \frac{a}{2}} = \log(\frac{a}{2}) \) or \(y_{1 - \frac{a}{2}} = -\log(\frac{a}{2}) \).

\(\Rightarrow 1 - \alpha \approx P\left(y_{\frac{a}{2}} < \frac{Y_{(1)} - \mu}{\sigma \Phi^{-1}\left(\frac{\alpha}{2} + \frac{1}{2n}\right)} < y_{1 - \frac{a}{2}}\right) \)

\(\Rightarrow 1 - \alpha \approx P\left(-\log(1 - \frac{a}{2}) < \frac{Y_{(1)} - \mu}{\sigma \Phi^{-1}\left(\frac{\alpha}{2} + \frac{1}{2n}\right)} < -\log(\frac{a}{2})\right) \approx 1 - \alpha. \)

Examining (2.1), we suggest that a new and better CI is

\[
(\hat{\mu} + \hat{\sigma} \log(\alpha) \Phi^{-1}\left(\frac{1}{2} + \frac{1}{2n}\right)(1 + \frac{13}{n^2}), \hat{\mu}).
\]

(2.7)

If \(\sigma \) is known then a large-sample confidence interval for \(\mu \) with the same nominal confidence level is obtained by substituting \(\sigma \) for \(\hat{\sigma} \) in (2.7). Pewsey (2002, p. 1048) said that

\[
D_n \xrightarrow{D} \chi^2_{n-1}.
\]

This can’t happen as since the righthand limit depends on \(n \), hence we introduce the following theorem.

Theorem 2.1. Let \(T_n = \sum_{i=1}^{n}(Y_i - \mu)^2 \) and \(D_n = \sum_{i=1}^{n}(Y_i - Y_{(1)})^2 \).

Then

\[
D_n - T_n \xrightarrow{D} -\sigma^2 \chi^2_2.
\]

Proof.

\[
D_n = \sum_{i=1}^{n}(Y_i - \mu + \mu - Y_{(1)})^2
\]

\[
= \sum_{i=1}^{n}(Y_i - \mu)^2 + 2 \sum_{i=1}^{n}(Y_i - \mu)(\mu - Y_{(1)}) + \sum_{i=1}^{n}(- \mu - Y_{(1)})^2
\]

(11)
\[T_n + n(\mu - Y_{(1)})^2 - 2(Y_{(1)} - \mu) \sum_{i=1}^{n}(Y_i - \mu). \]

then \(\frac{D_n}{\sigma^2} = \frac{T_n}{\sigma^2} + \frac{1}{n}\frac{1}{\sigma^2}[n(Y_{(1)} - \mu)]^2 - 2\frac{[n(Y_{(1)} - \mu)]}{\sigma}[\sum_{i=1}^{n}(Y_i - \mu)] \]

\[
\Rightarrow \quad \frac{D_n - T_n}{\sigma^2} = \frac{1}{n}\frac{n(Y_{(1)} - \mu)}{\sigma} - 2\frac{[n(Y_{(1)} - \mu)]}{\sigma} \left[\sum_{i=1}^{n}(Y_i - \mu) \right] \tag{2.8}
\]

Pewsey (2002, p. 1048) showed that

\[\frac{Y_{(1)} - \mu}{\sigma \Phi^{-1}\left(\frac{1}{2} + \frac{1}{\pi n}\right)} \xrightarrow{D} EXP(1). \]

and since

\[\Phi^{-1}\left(\frac{1}{2} + \frac{1}{\pi n}\right) \xrightarrow{D} 1, \]

then, by Slutsky’s Theorem

\[\frac{Y_{(1)} - \mu}{\sigma \Phi^{-1}\left(\frac{1}{2} + \frac{1}{\pi n}\right)} \xrightarrow{D} EXP(1). \]

Hence

\[\frac{n(Y_{(1)} - \mu)}{\sqrt{2/\pi}} \xrightarrow{D} EXP(1). \]

By the law of large numbers, the third term

\[Z = \frac{\sum_{i=1}^{n}(Y_i - \mu)}{n\sigma} \xrightarrow{D} E(Z) = \sqrt{\frac{2}{\pi}} \]

where \(Z_i = \frac{Y_i - \mu}{\sigma} \sim HN(0,1). \)

Since

\[\frac{n(Y_{(1)} - \mu)}{\sigma} \xrightarrow{D} \sqrt{\frac{2}{\pi}} EXP(1), \]

\[\frac{1}{n}\left[\frac{n(Y_{(1)} - \mu)}{\sigma}\right]^2 \xrightarrow{D} 0. \]
Hence
\[\frac{D_n - T_n}{\sigma^2} \xrightarrow{D} 0 - 2\sqrt{\frac{\pi}{2}}\text{EXP}(1)\sqrt{\frac{2}{\pi}} = -2\text{EXP}(1). \]

Or
\[D_n - T_n \xrightarrow{D} -\sigma^2 \chi^2_2. QED \]

Let \(V_n = \sigma^2 \chi^2_2 \) and \(T_{n-p} = \sum_{i=1}^{n-p} (Y_i - \mu)^2 \). Then
\[D_n = T_{n-p} + \sum_{i=n-p+1}^{n} (Y_i - \mu)^2 - V_n \]
where
\[\frac{V_n}{\sigma^2} \xrightarrow{D} \chi^2_2. \]

Hence
\[\frac{D_n}{T_{n-p}} = 1 + \frac{\sum_{i=n-p+1}^{n} (Y_i - \mu)^2}{T_{n-p}} - \frac{V_n}{T_{n-p}} \]
Hence
\[\frac{D_n}{T_{n-p}} \xrightarrow{D} 1. \]

Since
\[\frac{T_{n-p}}{\sigma^2} = \sum_{i=1}^{n-p} \left(\frac{Y_i - \mu}{\sigma} \right)^2 \sim \chi^2_{n-p}, \]
\[\frac{D_n}{\sigma^2} \approx \chi^2_{n-p} \]
where \(p \) is a nonnegative integer. Pewsey (2002) used \(p = 1 \).

Corollary 2.1. If \(\mu \) is known, then a \(100(1 - \alpha)\% \) confidence interval for \(\sigma \) is:
\[
\left(\sqrt{\frac{T_n}{\chi^2_{n,1-\alpha/2}}}, \sqrt{\frac{T_n}{\chi^2_{n,\alpha/2}}} \right) \quad (2.9)
\]

13
and if \(\mu \) is unknown, then a large sample 100(1 − \(\alpha \))% confidence interval for \(\sigma \) is

\[
\left(\sqrt{\frac{D_n}{\chi_{n-1,1-\frac{\alpha}{2}}^2}}, \sqrt{\frac{D_n}{\chi_{n-1,\frac{\alpha}{2}}^2}} \right).
\] (2.10)

Using \(\chi_{n,\alpha}^2/\sqrt{n} \approx \sqrt{2}Z_{\alpha} + \sqrt{n} \), it can be shown that \(\sqrt{n}CI \) length converges in probability to \(\sqrt{2}\sigma^2[Z_{1-\alpha/2} - Z_{\alpha/2}] \) for CIs (2.4) and (2.5). Also it can be shown that \(nCI \) length converges to \(-\sigma \log(\alpha)\sqrt{\pi/2}\) for CI (2.7).

Proof:

\[
\sqrt{n}CI \text{ length } = \sqrt{n}\left(\frac{T_n}{\chi_{n,\alpha/2}^2} - \frac{T_n}{\chi_{n,1-\alpha/2}^2} \right)
\]

\[
= \left(\frac{\sum_{i=1}^{n}(Y_i - \mu)^2}{\chi_{n,\alpha/2}^2/\sqrt{n}} - \frac{\sum_{i=1}^{n}(Y_i - \mu)^2}{\chi_{n,1-\alpha/2}^2/\sqrt{n}} \right)
\]

\[
= \left(\frac{\sum_{i=1}^{n}(Y_i - \mu)^2}{\sqrt{2}Z_{\alpha/2} + \sqrt{n}} - \frac{\sum_{i=1}^{n}(Y_i - \mu)^2}{\sqrt{2}Z_{1-\alpha/2} + \sqrt{n}} \right) \frac{1/n}{1/n}
\]

\[
= \frac{1}{n} \frac{\sqrt{2}\sum_{i=1}^{n}(Y_i - \mu)^2[z_{1-\alpha/2} - z_{\alpha/2}]}{a_n} \xrightarrow{D} \sqrt{2}\sigma^2[z_{1-\alpha/2} - z_{\alpha/2}]
\]

since

\[
a_n \xrightarrow{D} 1.
\]

Now \(nCI \) length of (2.7)

\[
= -n[\hat{\sigma}\Phi^{-1}\left(\frac{1}{2} + \frac{1}{2n}\right)] \log(\alpha)
\]

\[
\approx -\sigma \log(\alpha)\sqrt{\pi/2}
\]

since a Taylor series approximation of \(\Phi^{-1}\left(\frac{1}{2} + \frac{1}{2n}\right) \) is \((\pi/2)^{1/2}/n\).
2.3 THE BURR DISTRIBUTION

If \(Y \sim Burr(\phi, \lambda) \), then the cdf of \(Y \) is
\[
F(y) = 1 - \exp\left(-\frac{\log(1+y^\phi)}{\lambda} \right) = 1 - \left(1 + y^\phi \right)^{-\frac{1}{\phi}}
\]
for \(y > 0 \) and the pdf of \(Y \) is
\[
f(y) = \frac{\phi y^{\phi-1}}{\lambda (1+y^\phi)^{1+\frac{1}{\phi}}} \quad y > 0, \quad \phi > 0, \quad \lambda > 0.
\]
Let \(W = \log(1 + Y^\phi) \), then
\[
P(W \leq w) = P(\log(1 + Y^\phi) \leq w) = P(1 + Y^\phi \leq e^w) = P(Y \leq (e^w - 1)^{\frac{1}{\phi}})
\]
\[
= 1 - (1 + ((e^w - 1)^{\frac{1}{\phi}})^{\phi})^{-\frac{1}{\phi}} = 1 - [1 + e^w - 1]^{-\frac{1}{\phi}} = 1 - e^{-\frac{w}{\lambda}}.
\]
Hence \(W \sim EXP(\lambda) \).

Let \(Y = (e^W - 1)^{\frac{1}{\phi}} \). Then
\[
F_Y(y) = P(Y \leq y) = P((e^W - 1)^{\frac{1}{\phi}} \leq y) = P(e^W \leq 1 + y^\phi) = P(W \leq \log(1 + y^\phi) = 1 - \exp\left(-\frac{\log(1+y^\phi)}{\lambda} \right).
\]
Hence \(Y \sim Burr(\phi, \lambda) \).

![Burr Distribution Burr(phi=2, lambda=1)](image)

Figure 2.3. Plot of the pdf of the Burr Distribution
2.4 THE HBURR DISTRIBUTION

If \(Y \sim HBurr(\phi, \lambda) \), then

\[
 f(y) = \frac{2}{\sqrt{2\pi\lambda}} \frac{\phi y^{\phi-1}}{y^{\phi+1}} \exp\left(-\frac{-(\log(y^{\phi}+1))^2}{2\lambda^2}\right), y > 0, \phi > 0, \lambda > 0.
\]

If \(W \) has a half normal distribution, \(W \sim HN(0, \lambda) \), let \(Y = (e^W - 1)^{\frac{1}{\phi}} \). Then \(Y^\phi = e^W - 1 \Rightarrow e^W = Y^\phi + 1 \)

\(\Rightarrow W = s(Y) = \log(Y^\phi + 1) \).

Then

\[
 f_Y(y) = g_W(s(y)) \left| \frac{ds(y)}{dy} \right| = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{-(\log(y^{\phi}+1)-0)^2}{2\lambda^2}\right) \frac{1}{y^{\phi+1}} \phi y^{\phi-1}
\]

\[
 = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{-(\log(y^{\phi}+1))^2}{2\lambda^2}\right) \frac{\phi y^{\phi-1}}{y^{\phi+1}}, y > 0,
\]

\(\Rightarrow Y \sim HBurr(\phi, \lambda) \).

![Plot of the pdf of the HBurr Distribution](image)

Figure 2.4. Plot of the pdf of the HBurr Distribution

Let \(W = \log(1 + Y^\phi) \), then \(Y = r(W) = (e^W - 1)^{\frac{1}{\phi}} \)

\(\Rightarrow g_W(w) = f_Y(r(w)) \left| \frac{dr(w)}{dw} \right| = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{w^2}{2\lambda^2}\right) \left[\frac{1}{(e^w-1)^{\phi+1}} \phi (e^w - 1)^{\frac{1}{\phi} - 1} e^w\right]
\]

\[
 = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{w^2}{2\lambda^2}\right) \phi (e^w - 1)^{\frac{1}{\phi} - 1} e^w \left| \frac{(e^w - 1)^{\frac{1}{\phi}} e^w}{(e^w - 1)\phi + 1} \right|
\]
\[= \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{w^2}{2\lambda^2}\right) \frac{\phi(e^w - 1)}{(e^w - 1)} \frac{\lambda}{\phi} \frac{1}{\phi} - 1 e^w \]

\[= \frac{2}{\sqrt{2\pi}} e^{-\frac{w^2}{2\lambda^2}}, \ w \geq 0.\]

\[\Rightarrow W \sim HN(0, \lambda).\]

Let \(Y_1, Y_2, \ldots, Y_n\) be iid \(HBurr(\phi, \lambda)\), and if \(\phi\) is known, then the likelihood

\[L(\lambda) = \prod_{i=1}^{n} f(y_i) = \left(\frac{2}{\sqrt{2\pi}}\right)^n \phi^n \frac{\prod_{i=1}^{n} y_i^{\phi-1}}{\prod_{i=1}^{n} (y_i^\phi + 1)} \exp\left(\sum_{i=1}^{n} -\frac{(\log(y_i^\phi + 1))^2}{2\lambda^2}\right),\]

and the log likelihood

\[\log L = n \log(2) - n \log(\sqrt{2\pi}) - n \log \lambda - \sum_{i=1}^{n} \frac{(\log(y_i^\phi + 1))^2}{2\lambda^2} + n \log \phi\]

\[+ \sum_{i=1}^{n} ((\phi - 1) \log y_i - \log(y_i^\phi + 1)).\]

Hence

\[\frac{d \log L}{d \lambda} = -\frac{n}{\lambda} + \frac{2 \sum_{i=1}^{n} (\log(y_i^\phi + 1))^2}{2\lambda^3} = 0\]

or

\[\lambda^2 = \frac{\sum_{i=1}^{n} (\log(y_i^\phi + 1))^2}{n}, \ \text{or} \ \hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} (\log(y_i^\phi + 1))^2}{n}}.\]

Notice that \(\frac{d^2 \log L}{d \lambda^2}|_{\hat{\lambda}} = \frac{n}{\lambda^2} - \frac{3 \sum_{i=1}^{n} (\log(y_i^\phi + 1))^2}{\lambda^4} = \frac{n}{\lambda^2} [1 - 3] < 0.\) Hence \(\hat{\lambda}\) is the MLE of \(\lambda\) if \(\phi\) is known.
2.5 THE LARGEST EXTREME VALUE DISTRIBUTION

If Y has a Largest Extreme Value, $Y \sim LEV(\theta, \sigma)$, then the pdf of Y is

$$f(y) = \frac{1}{\sigma} \exp\left(-\left(\frac{y - \theta}{\sigma}\right)\right) \exp[-\exp\left(-\left(\frac{y - \theta}{\sigma}\right)\right)]$$

where y and θ are real and $\sigma > 0$. This distribution is a location scale family. The cdf of Y is

$$F(y) = \exp[-\exp\left(-\left(\frac{y - \theta}{\sigma}\right)\right)].$$

![LEV Distribution LEV(theta=0, sigma=1)](image)

Figure 2.5. Plot of the pdf of the Largest Extreme Value Distribution

If $W \sim EXP(1)$, let $Y = -\sigma \log W + \theta$. Then

$$F_Y(y) = P(Y \leq y) = P(-\sigma \log W + \theta \leq y) = P(\log W \geq -\frac{y - \theta}{\sigma})$$

$$= P(W \geq \exp(-\frac{y - \theta}{\sigma})) = 1 - [1 - \exp(-\exp(-\frac{(y - \theta)}{\sigma}))] = \exp(-\exp(-\frac{(y - \theta)}{\sigma})),$$

$\sigma \geq 0, -\infty < y < \infty$

$\Rightarrow Y \sim LEV(\theta, \sigma)$.

Let $W = \exp(-\frac{(Y - \theta)}{\sigma})$. Then

$$F_W(w) = P(W \leq w) = P(\exp(-\frac{(Y - \theta)}{\sigma}) \leq w) =$$
\[
P\left(\frac{Y - \theta}{\sigma} \leq \log w\right) = P(Y - \theta \geq -\sigma \log w) = P(Y \geq \theta - \sigma \log w) = 1 - \exp\left(-\exp\left(\frac{(\theta - \sigma \log w) - \theta}{\sigma}\right)\right) = 1 - \exp(-w) \\
\Rightarrow W \sim EXP(1).
\]

2.6 THE HLEV DISTRIBUTION

If \(Y \sim HLEV(\theta, \lambda) \), then the pdf of \(Y \) is

\[
f(y) = \frac{2}{\sqrt{2\pi}} \frac{1}{\lambda} \exp\left(-\frac{(y - \theta)}{\lambda}\right) \exp\left(-\frac{1}{2}[\exp\left(\frac{-(y - \theta)}{\lambda}\right)]^2\right), \quad y \in \mathbb{R}, \ \theta \in \mathbb{R}, \ \lambda > 0.
\]

![Figure 2.6. Plot of the pdf of the HLEV Distribution](image)

Figure 2.6. Plot of the pdf of the HLEV Distribution

If \(W \) has a half normal distribution, \(W \sim HN(0, 1) \),

then \(g_W(w) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{w^2}{2}\right) \) for \(w \geq 0 \). Let \(Y = -\lambda \log(W) + \theta \), then \(W = s(Y) = \exp\left(-\frac{Y - \theta}{\lambda}\right) \)

\[
\Rightarrow f_Y(y) = g_W(s(y)) \left| \frac{ds(y)}{dy} \right| = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{2(y - \theta)}{\lambda}\right) \left| \exp\left(-\frac{y - \theta}{\lambda}\right)\frac{1}{\lambda}\right|
\]
If $W \Rightarrow Y \Rightarrow g f - 1 = F \Rightarrow f$, where $y = 2 = 2 = 2 \Rightarrow W$

\[2.7 \text{ THE PARETO DISTRIBUTION}\]

If Y has a Pareto distribution, $Y \sim PAR(\sigma, \lambda)$, then the pdf of Y is

\[f(y) = \frac{1}{\lambda} \sigma^{1/\lambda} \frac{y^{1-\lambda}}{y^{1+1/\lambda}}\]

where $y \geq \sigma$, $\sigma > 0$, and $\lambda > 0$. The cdf of Y is $F(y) = 1 - (\sigma/y)^{1/\lambda}$ for $y > \sigma$.

Let $W = \log(Y)$, then

\[P(W \leq w) = P(\log(Y) \leq w) = P(Y \leq e^w) = 1 - (\frac{\sigma}{e^w})^{1/\lambda} = 1 - (\sigma e^{-w})^{1/\lambda} = 1 - \sigma^{1/\lambda} e^{-\frac{w}{\lambda}}.\]

Hence

\[f_W(w) = -\sigma^{1/\lambda} e^{-\frac{w}{\lambda}} = \frac{1}{\lambda} \sigma^{1/\lambda} e^{-\frac{w}{\lambda}} = \frac{1}{\lambda} e^{-\sigma^{1/\lambda} e^{-\frac{w}{\lambda}}}, w \geq \log \sigma\]

\[\Rightarrow W \sim EXP(\theta = \log(\sigma), \lambda).\]

If $W \sim EXP(\theta = \log(\sigma), \lambda)$, let $Y = e^W$. Then

\[F_Y(y) = P(Y \leq y) = P(e^W \leq y) = P(W \leq \log y) = 1 - \exp(-\frac{(\log y - \log \sigma)}{\lambda})\]

\[= 1 - \left[e^{-\frac{\log y}{\lambda}} e^{\log(\sigma^{1/\lambda})} \right] = 1 - \sigma^{1/\lambda} e^{-\frac{\log y}{\lambda}} = 1 - \sigma^{1/\lambda} e^{\log(\frac{y}{\lambda})} = 1 - \sigma^{1/\lambda} \frac{y}{\lambda}\]

\[\Rightarrow f(y) = \frac{1}{\lambda} \sigma^{1/\lambda} \frac{y^{-\frac{1}{\lambda}} - 1}{y^{1+1/\lambda}}, y \geq \sigma\]

\[\Rightarrow Y \sim PAR(\sigma, \lambda).\]
Figure 2.7. Plot of the pdf of the Pareto Distribution

Let $\theta = \log(\sigma)$. The MLE $(\hat{\theta}, \hat{\lambda}) = (W(1), \bar{W} - W(1))$, and by invariance, the MLE $(\hat{\sigma}, \hat{\lambda}) = (e^{\hat{\theta}}, \bar{W} - W(1)) = (e^{W(1)}, \frac{1}{n} \sum_{i=1}^{n} \log Y_i - \log Y(1)) = (Y(1), \frac{1}{n} \sum_{i=1}^{n} (\log Y_i - \log Y(1))) = (Y(1), \frac{1}{n} \sum_{i=1}^{n} \log(Y_i/Y(1)))$.

If σ is known, $$\hat{\lambda} = \frac{\sum_{i=1}^{n} \log(Y_i/\sigma)}{n}$$ is the UMVUE and MLE of λ.

Inference is simple. If $\theta = \log(\sigma)$ so $\sigma = e^{\theta}$, then a 100 $(1 - \alpha)\%$ CI for θ is (2.1). A 100 $(1 - \alpha)\%$ CI for σ is obtained by exponentiating the endpoints of (2.1), and a 100 $(1 - \alpha)\%$ CI for λ is (2.2). Let $D_n = \sum_{i=1}^{n} (W_i - W(1)) = n\hat{\lambda}$. For $n > 1$, a 100$(1 - \alpha)\%$ CI for θ is

$$(W(1) - \hat{\lambda}[(\alpha)^{-1/(n-1)} - 1], W(1)).$$

Exponentiate the endpoints for a 100$(1 - \alpha)\%$ CI for σ to get

$$(\exp(W(1) - \hat{\lambda}[(\alpha)^{-1/(n-1)} - 1]), \exp(W(1))).$$

(2.11)
A 100(1 - α)% CI for λ is
\[
\left(\frac{2D_n}{\chi^2_{2(n-1),1-\alpha/2}}, \frac{2D_n}{\chi^2_{2(n-1),\alpha/2}} \right).
\]
(2.12)

These two exact CIs seem to be new.

Let \(Y_1, Y_2, \ldots, Y_n \) be iid \(PAR(\sigma, \lambda) \), then the likelihood
\[
L(\lambda) = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} \frac{1}{y_i^{\lambda+1} \alpha^{\lambda}} = \left(\frac{1}{\lambda} \right)^n (\sigma^\lambda)^n \prod_{i=1}^{n} \frac{1}{y_i^{\lambda+1} \alpha}
\]
and the log likelihood
\[
\log L = n \log(\lambda) + \frac{n}{\lambda} \log(\sigma) - \sum_{i=1}^{n} \left(1 + \frac{1}{\lambda} \right) \log y_i.
\]

Hence
\[
\frac{d \log L}{d \lambda} = -\frac{n}{\lambda} - \frac{n \log \sigma}{\lambda^2} - \sum_{i=1}^{n} \log y_i \left(-\frac{1}{\lambda^2} \right) = -\frac{n}{\lambda} - \frac{n \log \sigma}{\lambda^2} + \frac{1}{\lambda^3} \sum_{i=1}^{n} \log y_i := 0
\]
\[
\Rightarrow \frac{1}{\lambda} \left[\sum_{i=1}^{n} \log y_i - n \log \sigma \right] = n \Rightarrow \hat{\lambda} = \frac{\sum_{i=1}^{n} \log \frac{y_i}{\sigma}}{n}.
\]

Notice that
\[
\frac{d^2 \log L}{d \lambda^2} \bigg|_{\hat{\lambda}} = \frac{n}{\lambda^2} + \frac{2n \log \sigma}{\lambda^3} - \frac{2}{\lambda^3} \sum_{i=1}^{n} \log y_i
\]
\[
= \frac{n}{\lambda^2} \left(1 + \frac{2(\sum_{i=1}^{n} \log \sigma) n^3}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^3} \right) - \frac{2n^3 \sum_{i=1}^{n} \log y_i}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^3}
\]
\[
= \frac{n}{\lambda^2} + \frac{n^3}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^3} \left[2 \sum_{i=1}^{n} \log \sigma - 2 \sum_{i=1}^{n} \log y_i \right]
\]
\[
= \frac{n}{\lambda^2} + \frac{2n^3}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^3} \left(- \sum_{i=1}^{n} \log \frac{y_i}{\sigma} \right) = \frac{n}{\lambda^2} - 2 \frac{n^3}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^2}
\]
\[
= \frac{n^2}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^2} - \frac{2n^3}{(\sum_{i=1}^{n} \log \frac{y_i}{\sigma})^2} < 0.
\]

Hence \(\hat{\lambda} \) is the MLE of \(\lambda \) given \(\sigma \).

If neither \(\sigma \) nor \(\lambda \) are known, notice that
\[
f(y) = \frac{1}{y} \frac{1}{\lambda} \exp \left[-\frac{(\log(y) - \log(\sigma))}{\lambda} \right] I(y(1) \geq \sigma),
\]
Hence the likelihood

\[L(\lambda, \sigma) = c \frac{1}{\lambda^n} \exp\left[-\sum_{i=1}^{n} \left(\frac{\log(y_i) - \log(\sigma)}{\lambda} \right) \right] I(y(1) \geq \sigma) \]

and the log likelihood is

\[\log L(\lambda, \sigma) = [d - n \log(\lambda) - \sum_{i=1}^{n} \left(\frac{\log(y_i) - \log(\sigma)}{\lambda} \right)] I(y(1) \geq \sigma) \]

Let \(w_i = \log(y_i) \) and \(\theta = \log(\sigma) \), so \(\sigma = e^\theta \). Then the log likelihood is

\[\log L(\lambda, \sigma) = [d - n \log(\lambda) - \sum_{i=1}^{n} \left(\frac{w_i - \theta}{\lambda} \right)] I(w(1) \geq \theta), \]

which has the same form as the log likelihood of the \(\text{EXP}(\theta, \lambda) \) distribution. Hence \((\hat{\lambda}, \hat{\sigma}) = (\overline{W} - W(1), W(1)) \), and by invariance, the MLE

\[(\hat{\lambda}, \hat{\sigma}) = (\overline{W} - W(1), Y(1)). \]

A second equation (corresponding to \(d \log L / d\sigma = 0 \)) cannot be obtained in the usual way since \(\log L \) is unbounded on the random variable \(Y \), \(\log L \) must be maximized subject to the constraint:

\[\hat{\sigma} \leq \min Y_i. \]

By inspection, the value of \(\hat{\sigma} \) which maximizes \(L \) is

\[\hat{\sigma} = \min Y_i = Y(1) \]

so,

\[\hat{\lambda} = \frac{\sum_{i=1}^{n} \log \left(\frac{Y_i}{Y(1)} \right)}{n}. \]
2.8 THE HPARETO DISTRIBUTION

If $Y \sim HPAR(\theta, \lambda)$, then

$$f(y) = \frac{2}{\sqrt{2\pi \lambda y}} \exp\left(-\frac{(\log(y) - \log(\theta))^2}{2\lambda^2}\right), \, y \geq \theta, \, \lambda > 0, \, \text{and} \, \theta > 0.$$

This distribution is unimodal with the mode at $y = \theta$ and $f(\theta) = \frac{2}{\sqrt{2\pi \lambda \theta}}$.

![HPareto Distribution HPAR(theta=1, lambda=1)](image)

Figure 2.8. Plot of the pdf of the HPareto Distribution

Proof:

From the graph, the mode occurs at $Y_{(1)} = \theta$. Also from the formula of the pdf of Y we want to maximize $\frac{2}{\sqrt{2\pi \lambda y}} \exp\left(-\frac{(\log(y) - \log(\theta))^2}{2\lambda^2}\right)$ and that happens at $Y_{(1)}$.

In addition, $\frac{d}{dy} f(y)$ has no zeros on (θ, ∞). Proof:

$$\log(f(y)) = c - \log y - \frac{(\log y - \log \theta)^2}{2\lambda^2}$$

So $\frac{d}{dy} \log f(y) = 0 - \frac{1}{y} - \frac{1}{2\lambda^2}(\log y - \log \theta) \frac{1}{y} = \frac{1}{y}[\log \theta - 1 - \frac{1}{2\lambda^2}(\log(y/\theta))]$, or

$$1 = \frac{1}{\lambda^2} \log(y/\theta), \, \text{or} \, y = \theta e^{-\lambda^2} \text{ which is not in support of } Y.$$

If W has a half normal distribution, $W \sim HN(\mu, \sigma)$, then $g_W(w) = \frac{2}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(w-\mu)^2}{2\sigma^2}\right), \, w \geq \mu.$
Let \(Y = e^W \), then \(W = s(Y) = \log(Y) \)

\[
\Rightarrow f_Y(y) = g_W(s(y)) \left| \frac{ds(y)}{dy} \right| = \frac{2}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(\log(y) - \mu)^2}{2\sigma^2}\right) |\frac{1}{y}|
\]

\((w \geq \mu \Rightarrow \log(y) \geq \mu \Rightarrow y \geq e^\mu \geq 0 \Rightarrow |y| = y)\)

\[
= \frac{2}{y\sqrt{2\pi}\sigma} \exp\left(-\frac{(\log(y) - \mu)^2}{2\sigma^2}\right)
\]

\(\log(y) > \mu, \text{ so } y > e^\mu = \theta.\)

Let \(\theta = e^\mu, \lambda = \sigma \), then \(f(y) = \frac{2}{\sqrt{2\pi}\lambda y} \exp\left(-\frac{(\log(y) - \log(\theta))^2}{2\lambda^2}\right), y > \theta, \)

\[
\Rightarrow Y \sim HPAR(\theta, \lambda).
\]

Let \(W = \log(Y) \), then \(Y = r(W) = e^W \)

\[
\Rightarrow g(w) = f_Y(r(w)) \left| \frac{dr(w)}{dw} \right| = \frac{2}{\sqrt{2\pi}\lambda e^w} \exp\left[-\frac{(\log(e^w) - \log(\theta))^2}{2\lambda^2}\right] e^w
\]

\[
= \frac{2}{\sqrt{2\pi}\lambda} \exp\left(-\frac{(w-\mu)^2}{2\lambda^2}\right), \text{ where } \mu = \log(\theta).
\]

So \(g(w) = \frac{2}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(w-\mu)^2}{2\sigma^2}\right), w \geq \mu, \lambda = \sigma \)

\[
\Rightarrow W \sim HN(\mu, \sigma).
\]

Let \(Y_1, Y_2, \ldots, Y_n \) be iid \(HPAR(\theta, \lambda) \), then the likelihood

\[
L(\theta, \lambda) = \prod_{i=1}^n f(y_i) = \left(\frac{2}{\sqrt{2\pi}\lambda}\right)^n \prod_{i=1}^n \frac{1}{y_i} \exp\left(\sum_{i=1}^n \left(-\frac{(\log(y_i) - \log(\theta))^2}{2\lambda^2}\right)\right) I(y_{(1)} > \theta),
\]

and the log likelihood

\[
\log L = n \log(2) - n \log(\sqrt{2\pi}\lambda) + \sum_{i=1}^n - \log(y_i) + \sum_{i=1}^n \left(-\frac{(\log y_i - \log \theta)^2}{2\lambda^2}\right)
\]

\[
= c - n \log \lambda - \sum_{i=1}^n \log y_i - \sum_{i=1}^n \left(\frac{(\log y_i - \log \theta)^2}{2\lambda^2}\right).
\]

In order to maximize \(\log L \), we need to minimize \(\sum_{i=1}^n (\log y_i - \log \theta)^2 \) subject to the constraint \(y_{(1)} \geq \theta. \) This occurs when \(\theta = y_{(1)}. \) Hence MLE \(\hat{\theta} = y_{(1)}. \)

For this choice of \(\theta, \)

\[
\frac{d \log L}{d \lambda} = -\frac{n}{\lambda} - \sum_{i=1}^n \frac{-2(\log y_i - \log \theta)^2}{2\lambda^3}
\]

25
\[-\frac{n}{\lambda} + \frac{1}{\lambda^2} \sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2 := 0\]

or

\[\lambda^2 = \frac{\sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2}{n},\]

or

\[\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2}{n}}.\]

Notice that

\[\frac{d^2 \log L}{d \lambda^2} \bigg|_{\hat{\lambda}} = -\frac{n}{\lambda^2} - \frac{3}{\lambda^4} \sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2 = \frac{n}{\lambda^2}[1 - 3] < 0\]

Hence \(\hat{\lambda}\) is the MLE of \(\lambda\).

Likelihood Based Confidence Intervals

Let \(\sigma = \lambda, W = \log Y\) then \(W \sim HN(\mu = \log(\theta), \sigma = \lambda)\), so (2.4) is a CI for \(\sigma = \lambda\); that is, a large sample 100(1 - \(\alpha\))%CI for \(\lambda^2\) if \(\theta\) is unknown is

\[
\left(\frac{n\hat{\lambda}^2}{\chi^2_{n-1, 1-\frac{\alpha}{2}}} \frac{n\hat{\lambda}^2}{\chi^2_{n-1, \frac{\alpha}{2}}}, \right)
\]

or

\[
\left(\frac{\sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2}{\chi^2_{n-1, 1-\frac{\alpha}{2}}} \frac{\sum_{i=1}^{n} (\log y_i - \log y_{(1)})^2}{\chi^2_{n-1, \frac{\alpha}{2}}} \right).
\] (2.13)

If \(\theta\) is known, then a large sample 100(1 - \(\alpha\))%CI for \(\lambda^2\) is

\[
\left(\frac{\sum_{i=1}^{n} (\log y_i - \log \theta)^2}{\chi^2_{n-1, 1-\frac{\alpha}{2}}} \frac{\sum_{i=1}^{n} (\log y_i - \log \theta)^2}{\chi^2_{n-1, \frac{\alpha}{2}}} \right).
\] (2.14)

Taking square roots of the endpoints gives a large sample 100(1 - \(\alpha\))% CI for \(\lambda\).

A CI for \(\mu = \log(\theta)\) is given by (2.7), that is, a large sample 100(1 - \(\alpha\))% CI for \(\log(\theta)\) is

\[
\left(\log \hat{\theta} + \hat{\lambda} \log(\alpha) \Phi^{-1}(\frac{1}{2} + \frac{1}{2n})(1 + \frac{13}{n^2}), \log \hat{\theta} \right).
\]
so exponentiate the endpoints of (2.7) for a CI for θ:

$$
(\hat{\theta} \exp(\hat{\lambda} \log(\alpha) \Phi^{-1}(\frac{1}{2} + \frac{1}{2n}(1 + \frac{13}{n^2})), \hat{\theta})
$$

or

$$
(Y(1) \exp(\hat{\lambda} \log(\alpha) \Phi^{-1}(\frac{1}{2} + \frac{1}{2n}(1 + \frac{13}{n^2})), Y(1)).
$$ \hfill (2.15)

2.9 THE POWER DISTRIBUTION

If Y has a Power distribution, $Y \sim POW(\lambda)$, then the cdf $F_Y(y) = y^\lambda$, $0 \leq y \leq 1$, and the probability density function

$$
f(y) = \frac{1}{\lambda} y^{\lambda - 1}, \quad 0 \leq y \leq 1, \quad \lambda > 0.
$$

![POWER Distribution POW(lambda=0.2)](image)

Figure 2.9. Plot of the pdf of the Power Distribution

Let $W = -\log(Y)$, then

$$
F_W(w) = P(W \leq w) = P(-\log(Y) \leq w) = P(\log(1/Y) \leq w) = P(\frac{1}{Y} \leq e^w) = P(Y \geq e^{-w}) = 1 - P(Y \leq e^{-w}) = 1 - F_Y(e^{-w}) = 1 - (\exp(-w))^\lambda) = 1 - \exp(-\frac{w}{\lambda}), w \geq 0
$$
$\Rightarrow W \sim EXP(\lambda).

If $W \sim EXP(\lambda)$, let $Y = e^{-W}$. Then

$F_Y(y) = P(Y \leq y) = P(e^{-W} \leq y) = P(-W \leq \log(y)) = P(W \geq -\log(y))$

$= 1 - P(W \leq -\log(y)) = 1 - F_W(-\log(y)) = 1 - (1 - \exp(-\frac{\log(y)}{\lambda}))$

$= \exp\left(\frac{\log(y)}{\lambda}\right) = \exp(\log(y^{\frac{1}{\lambda}})) = y^{\frac{1}{\lambda}}, 0 \leq y \leq 1, \lambda > 0.$

$\Rightarrow Y \sim POW(\lambda).$

Let Y_1, Y_2, \ldots, Y_n be iid $POW(\lambda)$, then the likelihood

$L(\lambda) = \prod_{i=1}^{n} f(y_i) = \left(\frac{1}{\lambda}\right)^n \prod_{i=1}^{n} y_i^{-\frac{1}{\lambda}-1},$ and the log likelihood

$log L = -n \log \lambda + \sum_{i=1}^{n} (\frac{1}{\lambda} - 1) \log y_i.$

Hence

$$\frac{d \log L}{d\lambda} = -\frac{n}{\lambda} + \frac{-1}{\lambda^2} \sum_{i=1}^{n} \log y_i = 0$$

or

$$\frac{n}{\lambda} = \frac{-1}{\lambda^2} \sum_{i=1}^{n} \log y_i,$$

or

$$\hat{\lambda} = -\frac{\sum_{i=1}^{n} \log y_i}{n}.$$

Notice that

$$\frac{d^2 \log L}{d\lambda^2} \bigg|_{\hat{\lambda}} = \frac{n}{\lambda^2} + \frac{2}{\lambda^3} \sum_{i=1}^{n} 2 \log y_i = \frac{n}{\lambda^2} + \frac{2 \sum_{i=1}^{n} \log y_i}{\lambda^3} = \frac{n}{\lambda^2} - \frac{2n \sum_{i=1}^{n} \log y_i}{n \lambda^3} = \frac{n}{\lambda^2} \left[1 - 2\right] < 0.$$

Hence $\hat{\lambda}$ is the MLE of λ.

By (2.3), an exact $100(1 - \alpha)\%$ confidence interval for λ is given by

$$\left(\frac{2T_n}{\chi_{2n,1-\alpha/2}^2}, \frac{2T_n}{\chi_{2n,\alpha/2}^2}\right),$$ \hspace{1cm} (2.16)

where $T_n = \sum_{i=1}^{n} (W_i - 0) = -\sum_{i=1}^{n} \log Y_i$. Hence, a $100(1 - \alpha)\%$ CI for λ is

$$\left(\frac{-2 \sum_{i=1}^{n} \log Y_i}{\chi_{2n,1-\alpha/2}^2}, \frac{-2 \sum_{i=1}^{n} \log Y_i}{\chi_{2n,\alpha/2}^2}\right).$$ \hspace{1cm} (2.17)
2.10 THE HPOWER DISTRIBUTION

If $Y \sim HPOW(\lambda)$, then

$$f(y) = \frac{2}{\sqrt{2\pi}} \frac{1}{\lambda y} \exp\left(-\frac{(\log(y))^2}{2\lambda^2}\right)I[0 \leq y \leq 1], \ \lambda > 0.$$

![Figure 2.10. Plot of the pdf of the HPower Distribution](image)

This distribution is unimodal with mode at $y = e^{-\lambda^2}$ and $f(e^{-\lambda^2}) = \sqrt{\frac{2}{\pi}} \frac{e^{\lambda^2}}{\lambda}.

Proof:

\[
\log(f(y)) = c - \log y - \frac{(\log(y))^2}{2\lambda^2}.
\]

So
\[
\frac{d}{dy} \log f(y) = 0 + \frac{1}{y} - \frac{1}{\lambda^2} (\log(y)) \frac{1}{y} = \frac{1}{y} [1 - \frac{1}{\lambda^2} \log(y)] := 0
\]

or
\[
y = e^{-\lambda^2},
\]

or
\[
\frac{d}{dy} f(y) = \frac{2}{\sqrt{2\pi \lambda y}} \exp\left(-\frac{(\log(y))^2}{2\lambda^2}\right)\left(\frac{2}{2\lambda^2} \log(y) \frac{1}{y}\right) + \exp\left(-\frac{(\log(y))^2}{2\lambda^2}\right)\left(\frac{-2}{\sqrt{2\pi \lambda y^2}}\right)
\]

\[
= \frac{-2}{\sqrt{2\pi \lambda y^2}} \exp\left(-\frac{(\log(y))^2}{2\lambda^2}\right)\left[\frac{1}{\lambda^2} \log(y) + 1\right] := 0, \text{ but the first two terms can't be zero,}
\]
Let $Y = 1$ since the first term is less than zero and the second term is zero because $(\frac{1}{\lambda^2} \log(y) + 1)$ at $y = e^{-\lambda^2}$ is equal to $\frac{1}{\lambda^2} \log(e^{-\lambda^2}) + 1 = -1 + 1 = 0$. Hence $y = e^{-\lambda^2}$ is a local maximum for $f(y)$. So the mode is at $y = e^{-\lambda^2}$.

If W has a half normal distribution, $W \sim HN(0, \lambda)$,
then $g_W(w) = \frac{2}{\sqrt{2\pi \lambda}} \exp(-\frac{(w-0)^2}{2\lambda^2}), w \geq 0, \lambda > 0$.
Let $Y = e^{-W}$, then $W = s(Y) = -\log(Y)$
\[\Rightarrow f(y) = g_W(s(y))|\frac{ds(y)}{dy}| = \frac{2}{\sqrt{2\pi \lambda}} \exp(-\frac{(-\log y)^2}{2\lambda^2})| - \frac{1}{y}| \]
\[= \frac{2}{\sqrt{2\pi \lambda}} \exp(-\frac{(\log(y))^2}{2\lambda^2}) I[0 \leq y \leq 1] \]
\[\Rightarrow Y \sim HPOW(\lambda). \]
Let $W = -\log(Y)$, then $Y = r(W) = e^{-W}$
\[\Rightarrow g(w) = f_Y(r(w))|\frac{dr(w)}{dw}| = \frac{2}{\sqrt{2\pi \lambda}} e^{-w} \exp(-\frac{(\log(-w))^2}{2\lambda^2})|I[0 \leq e^{-w} \leq 1]| e^{-w} |\]
\[= \frac{2}{\sqrt{2\pi \lambda}} \exp(-\frac{w^2}{2\lambda^2}) I[0 \leq w < \infty] \]
\[\Rightarrow W \sim HN(0, \lambda). \]

Let Y_1, Y_2, \ldots, Y_n be iid $HPOW(\lambda)$, then the likelihood
\[L(\lambda) = \prod_{i=1}^{n} f(y_i) = (\frac{2}{\sqrt{2\pi \lambda}})^n \prod_{i=1}^{n} \frac{1}{y_i} \exp\left(\sum_{i=1}^{n} (-\frac{(\log^2(y_i))}{2\lambda^2}) I(y_{i1} \geq 0) I(y_{i\leq n} \leq 1)\right), \]
and the log likelihood
\[\log L = c - n \log \lambda - \sum_{i=1}^{n} \log y_i + \sum_{i=1}^{n} -\frac{[\log(y_i)]^2}{2\lambda^2}. \]
Hence
\[\frac{d \log L}{d \lambda} = \frac{-n}{\lambda} - \sum_{i=1}^{n} -\frac{2[\log y_i]^2}{2\lambda^3} \]
\[= \frac{-n}{\lambda} + \sum_{i=1}^{n} \frac{[\log y_i]^2}{\lambda^3} := 0 \]
or

\[
\frac{n}{\lambda} = \sum_{i=1}^{n} \frac{[\log y_i]^2}{\lambda^3},
\]

or

\[
\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} [\log y_i]^2}{n}}.
\]

Notice that

\[
\frac{d^2 \log L}{d\lambda^2}|_{\hat{\lambda}} = \frac{n}{\lambda^2} - \frac{\sum_{i=1}^{n} 3[\log y_i]^2}{\lambda^4} = \frac{n}{\lambda^2} [1 - 3] < 0.
\]

Hence \(\hat{\lambda} \) is the MLE of \(\lambda \).

Likelihood Based Confidence Intervals

Let \(W = -\log Y \) then \(W \sim HN(0, \lambda) \), then \(W = 0 + \lambda X = \lambda X, X = |Z|, \) where \(Z \sim N(0, 1) \). Since \(\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} [\log Y_i]^2}{n}} \), then \(n\hat{\lambda}^2 = \sum_{i=1}^{n} [\log Y_i]^2 = \sum_{i=1}^{n} [\log(e^{-W_i})]^2 = \sum_{i=1}^{n} W_i^2 = \lambda^2 \sum_{i=1}^{n} X_i^2 \Rightarrow \frac{n\hat{\lambda}^2}{\lambda^2} \sim \chi_n^2 \). Hence a large sample \(100(1 - \alpha)\% \) CI for \(\lambda^2 \) is

\[
\left(\frac{\sum_{i=1}^{n} [\log(Y_i)]^2}{\lambda^2}, \frac{\sum_{i=1}^{n} [\log(Y_i)]^2}{\lambda^2} \right) = \left(\frac{\sum_{i=1}^{n} [\log(Y_i)]^2}{\chi_{n, 1-\frac{\alpha}{2}}^2}, \frac{\sum_{i=1}^{n} [\log(Y_i)]^2}{\chi_{n, \frac{\alpha}{2}}^2} \right). \quad (2.18)
\]
2.11 THE RAYLEIGH DISTRIBUTION

If Y has a Rayleigh distribution, $Y \sim R(\mu, \sigma)$, then the pdf of Y is

$$f(y) = \frac{y - \mu}{\sigma^2} \exp \left[-\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right]$$

where $\sigma > 0$, μ is real, and $y \geq \mu$. The cdf of Y is

$$F(y) = 1 - \exp \left[-\frac{1}{2} \left(\frac{y - \mu}{\sigma} \right)^2 \right]$$

for $y \geq \mu$, and $F(y) = 0$, otherwise.

Figure 2.11. Plot of the pdf of the Rayleigh Distribution

Let $W = (Y - \mu)^2$, then $Y = r(W) = \mu + \sqrt{W}$, and

$$F_W(w) = g_W(r(w)) \left| \frac{dr(w)}{dw} \right| = \frac{\mu + \sqrt{w} - \mu}{\sigma^2} \exp\left(-\frac{1}{2} \left(\frac{\mu + \sqrt{w} - \mu}{\sigma} \right)^2 \right) \left| \frac{1}{2\sqrt{w}} \right|$$

$$= \frac{1}{2\sigma^2} \exp \left(\frac{-w}{2\sigma^2} \right) \Rightarrow W \sim EXP(2\sigma^2).$$

If $W \sim EXP(2\sigma^2)$, let $Y = \sqrt{W} + \mu$. Then

$$F_Y(y) = P(Y \leq y) = P((\sqrt{W} + \mu) \leq y) = P(\sqrt{W} \leq y - \mu) = P(W \leq (y - \mu)^2) =$$

32
\[1 - \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right), y \geq \mu, \sigma > 0\]

\[\Rightarrow Y \sim R(\mu, \sigma).\]

Let \(Y_1, Y_2, \ldots, Y_n\) be iid \(R(\mu, \sigma)\), then the likelihood

\[L(\sigma) = \prod_{i=1}^{n} f(y_i) = \prod_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma}\right) \exp \left[-\frac{1}{2} \left(\frac{y_i - \mu}{\sigma}\right)^2\right],\]

and the log likelihood

\[\log L(\sigma) = \sum_{i=1}^{n} \log \left(\frac{y_i - \mu}{\sigma}\right) + \sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - \mu}{\sigma}\right)^2.\]

Hence

\[
\frac{d \log L}{d \sigma} = \sum_{i=1}^{n} \frac{\sigma^2}{y_i - \mu} \frac{\left(\mu - y_i\right)2\sigma}{\sigma^4} - \frac{1}{2} \sum_{i=1}^{n} 2\left(\frac{y_i - \mu}{\sigma}\right)\left(\frac{\mu - y_i}{2\sigma}\right)
\]

\[= \sum_{i=1}^{n} -\frac{2}{\sigma} + \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma}\right)^2 := 0\]

or

\[\frac{2n}{\sigma} = \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma^3},\]

or

\[\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \mu)^2}{2n},\]

or

\[\hat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \mu)^2}{2n}}.\]

Notice that

\[
\frac{d^2 \log L}{d \sigma^2} = \sum_{i=1}^{n} \frac{2}{\sigma^2} - \sum_{i=1}^{n} \frac{3(y_i - \mu)^2}{\sigma^4} = \frac{2n}{\hat{\sigma}^2} - \frac{3(2n)}{\sigma^4} = \frac{2n}{\hat{\sigma}^2} [1 - 3] < 0.
\]

Hence \(\hat{\sigma}\) is the MLE of \(\sigma\) if \(\mu\) is known.
The confidence interval for \(\sigma^2 \) when \(\mu \) is known will be derived next.

If \(\mu \) is known, let
\[
W = (Y - \mu)^2,
\]
then
\[
W \sim EXP(2 \sigma^2).
\]
By (2.3), an approximate 100(1 - \(\alpha \))% confidence interval for \(\lambda \) is given by
\[
\left(\frac{2T_n}{\chi^2_{2n,1-\alpha/2}}, \frac{2T_n}{\chi^2_{2n,\alpha/2}} \right).
\]
(2.19)

where \(T_n = \sum_{i=1}^{n} (W_i - 0) = \sum_{i=1}^{n} (W_i) = \sum_{i=1}^{n} (Y_i - \mu)^2 \). Set \(\lambda = 2 \sigma^2 \) then, a 100(1 - \(\alpha \))% CI for \(\sigma^2 \) is
\[
\left(\frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{\chi^2_{2n,1-\alpha/2}}, \frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{\chi^2_{2n,\alpha/2}} \right).
\]
(2.20)

Likelihood Based Confidence Intervals

If both \(\mu \) and \(\sigma \) are unknown, then the MLE(\(\hat{\mu}, \hat{\sigma} \)) must be found before obtaining CIs. The log likelihood
\[
\log L(\mu, \sigma) = \sum_{i=1}^{n} \log \left(\frac{y_i - \mu}{\sigma^2} \right) + \sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - \mu}{\sigma} \right)^2
\]
\[= -2n \log(\sigma) + \sum_{i=1}^{n} \log(y_i - \mu) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2.\]

Hence
\[
\frac{d \log L}{d\sigma} = -\frac{2n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (y_i - \mu)^2 := 0
\]
gives
\[
\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{\mu})^2}{2n}.
\]
(2.21)

Also
\[
\frac{d \log L}{d\mu} = -\sum_{i=1}^{n} (y_i - \mu)^{-1} + \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu) := 0
\]
gives
\[
\sum_{i=1}^{n} (y_i - \mu)^{-1} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu) = \frac{\sum_{i=1}^{n} y_i}{\sigma^2} - \frac{n\mu}{\sigma^2}
\]
or
\[
\mu = \frac{\sigma^2}{n} \left(\sum_{i=1}^{n} y_i - \frac{n}{\sum_{i=1}^{n} (y_i - \mu)^{-1}} \right).
\]

One way to find the MLE is by iteration using Newton’s method, where starting values can be found using the method of moments. Newton’s method is used to solve \(g(\theta) = 0 \) for \(\theta \), where the solution is called \(\hat{\theta} \), and uses
\[
\theta_{k+1} = \theta_k - [D g(\theta_k)]^{-1} g(\theta_k)
\]
where
\[
D g(\theta) = \begin{bmatrix}
\frac{\partial}{\partial \theta_1} g_1(\theta) & \ldots & \frac{\partial}{\partial \theta_p} g_1(\theta) \\
\vdots & \ddots & \vdots \\
\frac{\partial}{\partial \theta_1} g_p(\theta) & \ldots & \frac{\partial}{\partial \theta_p} g_p(\theta)
\end{bmatrix}.
\]
If the MLE is the solution of the likelihood equations, then use \(g(\theta) = (g_1(\theta), ..., g_p(\theta))^T \) where
\[
g_i(\theta) = \frac{\partial}{\partial \theta_i} \log(L(\theta)).
\]
Let \(\theta_0 \) be an initial estimator, such as the method of moments estimator of \(\theta \). Let \(D = D g(\theta) \). Then
\[
D_{ij} = \frac{\partial}{\partial \theta_j} g_i(\theta) = \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log(L(\theta)) = \sum_{k=1}^{n} \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log(f(x_k|\theta)),
\]
and
\[
\frac{1}{n} D_{ij} = \frac{1}{n} \sum_{k=1}^{n} \frac{\partial^2}{\partial \theta_i \partial \theta_j} \log(f(X_k|\theta)) \overset{D}{\rightarrow} E \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log(f(X|\theta)) \right].
\]
Newton’s method converges if the initial estimator is sufficiently close, but may diverge otherwise. Hence \(\sqrt{n} \) consistent initial estimators are recommended. Newton’s method is also popular because if the partial derivative and integration operations can be interchanged, then
\[
\frac{1}{n} D g(\theta) \overset{D}{\rightarrow} -I(\theta).
\]
For example, the regularity conditions hold for a kP-REF. Then a 100 \((1 - \alpha)\)% large sample CI for \(\theta_i\) is

\[
\hat{\theta}_i \pm z_{1-\alpha/2} \sqrt{-D_{ii}^{-1}}
\]

where

\[
D^{-1} = \left[D_{g_i(\theta)} \right]^{-1}.
\]

This result follows because

\[
\sqrt{-D_{ii}^{-1}} \approx \sqrt{[I^{-1}(\hat{\theta})]_{ii}/n}.
\]

Next, apply the above results to the Rayleigh \((\mu, \sigma)\) distribution (although no check has been made on whether the regularity conditions hold for the Rayleigh distribution which is not a 2P-REF).

\[
L(\mu, \sigma) = \left(\prod y_i^{y_i - \mu} \sigma^2 \right) \exp \left[-\frac{1}{2\sigma^2} \sum (y_i - \mu)^2 \right].
\]

Notice that for fixed \(\sigma\), \(L(Y(1), \sigma) = 0\). Hence the MLE \(\hat{\mu} < Y(1)\). Now the log likelihood

\[
\log(L(\mu, \sigma)) = \sum_{i=1}^{n} \log(y_i - \mu) - 2n \log(\sigma) - \frac{1}{2} \sum \frac{(y_i - \mu)^2}{\sigma^2}.
\]

Hence \(g_1(\mu, \sigma) = \)

\[
\frac{\partial}{\partial \mu} \log(L(\mu, \sigma)) = -n \sum \frac{1}{y_i - \mu} + \frac{1}{\sigma^2} \sum (y_i - \mu) \stackrel{set}{=} 0,
\]

and \(g_2(\mu, \sigma) = \)

\[
\frac{\partial}{\partial \sigma} \log(L(\mu, \sigma)) = \frac{-2n}{\sigma} + \frac{1}{\sigma^3} \sum (y_i - \mu)^2 \stackrel{set}{=} 0,
\]

which has solution

\[
\hat{\sigma}^2 = \frac{1}{2n} \sum_{i=1}^{n} (Y_i - \hat{\mu})^2.
\]
To obtain initial estimators, let \(\hat{\sigma}_M = \sqrt{S^2/0.429204} \) and \(\hat{\mu}_M = \bar{Y} - 1.253314\hat{\sigma}_M \). These would be the method of moments estimators if \(S^2_M = \frac{n-1}{n} s^2 \) was used instead of the sample variance \(S^2 \). Then use \(\mu_0 = \min(\hat{\mu}_M, Y_1 - \hat{\mu}_M) \) and \(\sigma_0 = \sqrt{\sum(Y_i - \mu_0)^2/(2n)} \). Now \(\theta = (\mu, \sigma)^T \) and

\[
D = D_g(\theta) = \begin{bmatrix}
\frac{\partial}{\partial \mu} g_1(\theta) & \frac{\partial}{\partial \sigma} g_1(\theta) \\
\frac{\partial}{\partial \mu} g_2(\theta) & \frac{\partial}{\partial \sigma} g_2(\theta)
\end{bmatrix} = \\
\begin{bmatrix}
-\sum_{i=1}^n \frac{1}{(y_i - \mu)^2} - \frac{n}{\sigma^2} & -\frac{2}{\sigma^4} \sum_{i=1}^n (y_i - \mu) \\
-\frac{2}{\sigma^4} \sum_{i=1}^n (y_i - \mu) & \frac{2n}{\sigma^4} - \frac{3}{\sigma^4} \sum_{i=1}^n (y_i - \mu)^2
\end{bmatrix}.
\]

So

\[
\theta_{k+1} = \theta_k - \begin{bmatrix}
-\sum_{i=1}^n \frac{1}{(y_i - \mu_k)^2} - \frac{n}{\sigma_k^2} & -\frac{2}{\sigma_k^4} \sum_{i=1}^n (y_i - \mu_k) \\
-\frac{2}{\sigma_k^4} \sum_{i=1}^n (y_i - \mu_k) & \frac{2n}{\sigma_k^4} - \frac{3}{\sigma_k^4} \sum_{i=1}^n (y_i - \mu_k)^2
\end{bmatrix}^{-1} g(\theta_k)
\]

where

\[
g(\theta_k) = \begin{pmatrix}
g_1(\theta_k) \\
g_2(\theta_k)
\end{pmatrix} = \begin{pmatrix}
\frac{\partial}{\partial \mu} \log(L(\theta_k)) \\
\frac{\partial}{\partial \sigma} \log(L(\theta_k))
\end{pmatrix} = \begin{pmatrix}
-\sum_{i=1}^n \frac{1}{(y_i - \mu_k)} - \frac{1}{\sigma_k^2} \sum_{i=1}^n (y_i - \mu_k) \\
-\frac{2n}{\sigma_k^4} + \frac{1}{\sigma_k^4} \sum_{i=1}^n (y_i - \mu_k)^2
\end{pmatrix}.
\]

This formula was iterated for 100 steps resulting in \(\theta_{101} = (\mu_{101}, \sigma_{101})^T \). Then we took \(\hat{\mu} = \min(\mu_{101}, 2\bar{Y}_1 - \mu_{101}) \) and

\[
\hat{\sigma} = \sqrt{\frac{1}{2n} \sum_{i=1}^n (Y_i - \hat{\mu})^2}.
\]

Then \(\hat{\theta} = (\hat{\mu}, \hat{\sigma})^T \) and \(D = D_g(\hat{\theta}) \). Then (assuming regularity conditions hold) a 100 \((1 - \alpha)\)% large sample CI for \(\mu \) is

\[
\hat{\mu} \pm z_{1-\alpha/2} \sqrt{D^{-1}_{11}}
\]

and a 100 \((1 - \alpha)\)% large sample CI for \(\sigma \) is

\[
\hat{\sigma} \pm z_{1-\alpha/2} \sqrt{D^{-1}_{22}}.
\]

37
2.12 THE HRAYLEIGH DISTRIBUTION

If $Y \sim HRAY(\theta, \lambda)$, then $f(y) = \frac{4}{\sqrt{2\pi\lambda}} (y - \theta) \exp\left(-\frac{(y-\theta)^2}{2\lambda^2}\right)$ for $\theta > 0$, $\lambda > 0$, $y \geq \theta$.

![HRayleigh Distribution](image)

Figure 2.12. Plot of the pdf of the HRayleigh Distribution

If W has a half normal distribution, $W \sim HN(0, \lambda)$, then $g_W(w) = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{(w-0)^2}{2\lambda^2}\right)$, $w \geq 0$. Let $Y = \sqrt{W} + \theta$, then $W = s(Y) = (Y - \theta)^2$.

\[
\Rightarrow f(y) = g_W(s(y))\left|\frac{ds(y)}{dy}\right| = \frac{2}{\sqrt{2\pi\lambda}} \exp\left(-\frac{(y-\theta)^2}{2\lambda^2}\right)|2(y - \theta)|
\]

\[
= \frac{4}{\sqrt{2\pi\lambda}} (y - \theta) \exp\left(-\frac{(y-\theta)^2}{2\lambda^2}\right)
\]

for $\theta > 0$, $\lambda > 0$, $y \geq \theta$.

\[
\Rightarrow Y \sim HRAY(\theta, \lambda).
\]

Let $W = (Y - \theta)^2$, then $Y = r(W) = \sqrt{W} + \theta$.

\[
\Rightarrow g(w) = f(r(w))\left|\frac{dr(w)}{dw}\right| = \frac{4}{\sqrt{2\pi\lambda}} \exp\left(-\frac{(\sqrt{w}+\theta-\theta)^2}{2\lambda^2}\right)|1/2\sqrt{w}|
\]

\[
= \frac{4}{\sqrt{2\pi\lambda}} \sqrt{w} \exp\left(-\frac{w^2}{2\lambda^2}\right)\frac{1}{2\sqrt{w}}
\]
\[
\frac{2}{\sqrt{2\pi}\lambda} \exp\left(\frac{-w^2}{2\lambda}\right), \ w \geq 0
\]

\[\Rightarrow W \sim HN(0, \lambda).\]

2.13 THE SMALLEST EXTREME VALUE DISTRIBUTION

If \(Y \) has a smallest extreme value distribution, \(Y \sim SEV(\theta, \sigma) \), then the pdf of \(Y \) is

\[
f(y) = \frac{1}{\sigma} \exp\left(\frac{y - \theta}{\sigma}\right) \exp[- \exp\left(\frac{y - \theta}{\sigma}\right)]
\]

where \(y \) and \(\theta \) are real and \(\sigma > 0 \). This distribution is a location scale family.

The cdf of \(Y \) is

\[
F(y) = 1 - \exp[- \exp\left(\frac{y - \theta}{\sigma}\right)].
\]

Figure 2.13. Plot of the pdf of the Smallest Extreme Value Distribution

Let \(W = \exp(\frac{Y - \theta}{\sigma}) \). Then \(F_W(w) = P(W \leq w) = P(\exp(\frac{Y - \theta}{\sigma}) \leq w) = P(\frac{Y - \theta}{\sigma} \leq \log w) = P(Y - \theta \leq \sigma \log w) = P(Y \leq \theta + \sigma \log w) = 1 - \exp(- \exp(\frac{(\theta + \sigma \log w) - \theta}{\sigma})) = 1 - \exp(-w) \]

\[\Rightarrow W \sim EXP(1).\]
If $W \sim EXP(1)$, let $Y = \sigma \log W + \theta$. Then

$$F_Y(y) = P(Y \leq y) = P(\sigma \log W + \theta \leq y) = P(\log W \leq \frac{y-\theta}{\sigma}) = P(W \leq \exp(\frac{y-\theta}{\sigma})) = 1 - \exp(-\exp(\frac{(y-\theta)}{\sigma})),$$

$\sigma \geq 0$, $-\infty < y < \infty$.

$\Rightarrow Y \sim SEV(\theta, \sigma)$.

2.14 THE HSEV DISTRIBUTION

If $Y \sim HSEV(\theta, \lambda)$, then the pdf of Y is

$$f(y) = \frac{2}{\sqrt{2\pi} \lambda} \exp\left(\frac{y-\theta}{\lambda}\right) \exp\left(-\frac{1}{2}\left[\exp\left(\frac{y-\theta}{\lambda}\right)\right]^2\right), y \in \mathbb{R}, \theta \in \mathbb{R}, \lambda > 0$$

Figure 2.14. Plot of the pdf of the HSEV Distribution

If W has a half normal distribution, $W \sim HN(0,1)$, then $g_W(w) = \frac{2}{\sqrt{2\pi} \lambda} \exp\left(-\frac{w^2}{2}\right)$ for $w \geq 0$. Let $Y = \lambda \log(W) + \theta$, then $W = s(Y) = \exp\left(\frac{Y-\theta}{\lambda}\right)$

$\Rightarrow f(y) = g_W(s(y)) \left| \frac{ds(y)}{dy} \right| = \frac{2}{\sqrt{2\pi} \lambda} \exp\left(-\frac{\left[\exp\left(\frac{y-\theta}{\lambda}\right)\right]^2}{2}\right) \exp\left(\frac{y-\theta}{\lambda}\right) \frac{1}{\lambda}$

$= \frac{2}{\sqrt{2\pi} \lambda} \exp\left(\frac{(y-\theta)}{\lambda}\right) \exp\left(-\frac{1}{2}\left[\exp\left(\frac{y-\theta}{\lambda}\right)\right]^2\right), y \in \mathbb{R}, \theta \in \mathbb{R}, \lambda > 0$

$\Rightarrow Y \sim HSEV(\theta, \lambda)$.

40
Let \(W = \exp(Y - \theta/\lambda) \), then \(Y = \lambda \log(W) + \theta \Rightarrow g(w) = f(r(w))|\frac{dr(w)}{dw}| \)

\[
= \frac{2}{\sqrt{2\pi}\lambda} \exp\left[\frac{\lambda \log(w) + \theta - \theta}{\lambda}\right] \exp\left[-\frac{1}{2}(\exp(\frac{\lambda \log(w) + \theta - \theta}{\lambda}))^2\right] \frac{1}{w} \\
= \frac{2}{\sqrt{2\pi}} w \exp\left(-\frac{w^2}{2}\right) \frac{1}{w} = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{w^2}{2}\right), ~ w \geq 0
\]

\(\Rightarrow W \sim HN(0, 1). \)

2.15 THE TRUNCATED EXTREME VALUE DISTRIBUTION

If \(Y \) has a Truncated Extreme Value distribution, \(Y \sim TEV(\lambda) \), then

\[
F_Y(y) = 1 - \exp\left(-\frac{(e^y - 1)}{\lambda}\right), y > 0, \text{ and } f(y) = \frac{1}{\lambda} \exp\left(y - \frac{e^y - 1}{\lambda}\right), y > 0, \lambda > 0.
\]

![Figure 2.15. Plot of the pdf of the Truncated Extreme Value Distribution](image)

Let \(W = e^Y - 1 \), then \(F_W(w) = P(W \leq w) = P(e^Y - 1 \leq w) = P(e^Y \leq 1 + w) \)

\[
= P(Y \leq \log(1 + w)) = 1 - (\exp(-\frac{\log(1 + w) - 1}{\lambda})) = 1 - (\exp(-\frac{(1+w) - 1}{\lambda})) \\
= 1 - e^{-w/\lambda}
\]

\(\Rightarrow W \sim EXP(\lambda). \)
If $W \sim EXP(\lambda)$, let $Y = \log(1 + w)$. Then

$$F_Y(y) = P(Y \leq y) = P(\log(1 + W) \leq y) = P(1 + W \leq e^y) = P(W \leq e^y - 1) = 1 - \exp(-\frac{e^y - 1}{\lambda}), \ y > 0$$

$\Rightarrow Y \sim TEV(\lambda)$.

Let Y_1, Y_2, \ldots, Y_n be iid $TEV(\lambda)$, then the likelihood

$$L(\lambda) = \prod_{i=1}^n f(y_i) = \left(\frac{1}{\lambda}\right)^n \exp \sum_{i=1}^n (y_i - \frac{e^{y_i} - 1}{\lambda}),$$

and the log likelihood

$$\log L = -n \log \lambda + \sum_{i=1}^n (y_i - \frac{e^{y_i} - 1}{\lambda}).$$

Hence

$$\frac{d \log L}{d \lambda} = -\frac{n}{\lambda} + \sum_{i=1}^n \frac{e^{y_i} - 1}{\lambda},$$

or

$$\hat{\lambda} = \frac{\sum_{i=1}^n (e^{y_i} - 1)}{n}.$$

Notice that

$$\frac{d^2 \log L}{d \lambda^2} \bigg|_{\hat{\lambda}} = \frac{n}{\lambda^2} - \sum_{i=1}^n \frac{2(e^{y_i} - 1)}{\lambda^3} = \frac{n}{\lambda^2} - \frac{2n}{\lambda^3} \hat{\lambda} = \frac{n}{\lambda^2}[1 - 2] < 0.$$

Hence $\hat{\lambda}$ is the MLE of λ.

Likelihood Based Confidence Intervals

Let $W = e^Y - 1$, then $W \sim EXP(\lambda)$. By (2.3), an exact $100(1 - \alpha)$% confidence interval for λ is given by

$$\left(\frac{2T_n}{\chi^2_{2n,1-\alpha/2}}, \frac{2T_n}{\chi^2_{2n,\alpha/2}}\right).$$

(2.24)

where $T_n = \sum_{i=1}^n (W_i - 0) = \sum_{i=1}^n W_i = \sum_{i=1}^n (e^{Y_i} - 1)$

Hence, a $100(1 - \alpha)$% CI for λ is

$$\left(\frac{2\sum_{i=1}^n (e^{Y_i} - 1)}{\chi^2_{2n,1-\alpha/2}}, \frac{2\sum_{i=1}^n (e^{Y_i} - 1)}{\chi^2_{2n,\alpha/2}}\right).$$

(2.25)
2.16 THE HTEV DISTRIBUTION

If $Y \sim HTEV(\lambda)$, then $f(y) = \frac{2}{\sqrt{2\pi\lambda}}e^{y} \exp\left(\frac{(e^{y}-1)^2}{2\lambda^2}\right)I(y \geq 0)$, $\lambda > 0$.

This distribution is unimodal and the mode at y_m is found by solving the following equation:

$$\lambda^2 = e^{y_m}(e^{y_m} - 1).$$

Proof:

$$\log(f(y)) = \log\left(\frac{2}{\sqrt{2\pi\lambda}}\right) + y - \frac{(e^{y}-1)^2}{2\lambda^2}$$

So

$$\frac{d}{dy} \log f(y) = 0 + 1 - \frac{2(e^{y}-1)(e^{y}-1)}{2\lambda^2} = 0$$

or

$$1 = \frac{2e^{y}(e^{y}-1)}{2\lambda^2} \Rightarrow \lambda^2 = e^{y}(e^{y} - 1).$$

Figure 2.16. Plot of the pdf of the HTEV Distribution

If W has a half normal distribution, $W \sim HN(0, \lambda)$, then $g_{W}(w) = \frac{2}{\sqrt{2\pi\lambda}}\exp\left(\frac{-(w-0)^2}{2\lambda^2}\right)$, for $w \geq 0$. Let $Y = \log(W + 1)$, then $W = s(Y) = e^{Y} - 1$

$$f(y) = g_{W}(s(y))\left|\frac{ds(y)}{dy}\right| = \frac{2}{\sqrt{2\pi\lambda}}\exp\left(\frac{-(e^{y}-1)^2}{2\lambda^2}\right)|e^{y}|$$

$$= \frac{2}{\sqrt{2\pi\lambda}}e^{y}\exp\left(\frac{-(e^{y}-1)^2}{2\lambda^2}\right)I(y \geq 0)$$

43
⇒ $Y \sim HTEV(\lambda)$.

Let $W = e^Y - 1$, then $Y = r(W) = \log(W + 1)$

⇒ $g(w) = f(r(w)) | \frac{dr(w)}{dw} |$

$= \frac{2}{\sqrt{2\pi}\lambda} e^{\log(w+1)} \exp[-\frac{(e^{\log(w+1)}-1)^2}{2\lambda^2}] w+1 I[\log(w + 1) \geq 0]$ $= \frac{2}{\sqrt{2\pi}\lambda} (w + 1) \frac{1}{w+1} I[w \geq 0] = \frac{2}{\sqrt{2\pi}\lambda} \exp(\frac{w^2}{2\lambda^2})$

⇒ $W \sim HN(0, \lambda)$.

Let Y_1, Y_2, \ldots, Y_n be iid $HTEV(\lambda)$, then the likelihood

$L(\lambda) = \prod_{i=1}^{n} f(y_i) = \left(\frac{2}{\sqrt{2\pi}\lambda}\right)^n \exp(\sum_{i=1}^{n} y_i) \exp(\sum_{i=1}^{n} \frac{(e^{y_i}-1)^2}{2\lambda^2}) I(y_{(1)} \geq 0)$,

and the log likelihood

$log L = n \log(2) - n \log(\sqrt{2\pi}) - n \log \lambda + \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \frac{(e^{y_i}-1)^2}{2\lambda^2}$.

Hence

$\frac{d \log L}{d \lambda} = -\frac{n}{\lambda} - \sum_{i=1}^{n} \frac{-2(e^{y_i}-1)^2}{2\lambda^3} = -\frac{n}{\lambda} + \frac{\sum_{i=1}^{n} (e^{y_i}-1)^2}{\lambda^3}$

or

$\lambda^2 = \frac{\sum_{i=1}^{n} (e^{y_i}-1)^2}{n}$,

or

$\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} (e^{y_i}-1)^2}{n}}$.

Notice that

$\frac{d^2 \log L}{d \lambda^2} |_{\hat{\lambda}} = \frac{n}{\lambda^2} - \sum_{i=1}^{n} \frac{3(e^{y_i}-1)^2}{\lambda^4} = \frac{n}{\lambda^2} [1 - 3] < 0$.

Hence $\hat{\lambda}$ is the MLE of λ.

Likelihood Based Confidence Intervals

Let $W = (e^Y - 1)$ then $W \sim HN(0, \lambda)$, and $W = 0 + \lambda X = \lambda X, X = |Z|,$
Since $\hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n}(e^{y_i} - 1)^2}{n}}$, we have $n\hat{\lambda}^2 = \sum_{i=1}^{n}(e^{y_i} - 1)^2 = \sum_{i=1}^{n} w_i^2$

$\Rightarrow \frac{n\hat{\lambda}^2}{\lambda^2} \sim \chi^2_n$.

Hence a large sample $100(1 - \alpha)\%$ CI for λ^2 is

$$
\left(\frac{n\hat{\lambda}^2}{\chi^2_{n,1-\frac{\alpha}{2}}}, \frac{n\hat{\lambda}^2}{\chi^2_{n,\frac{\alpha}{2}}} \right)
$$

or

$$
\left(\frac{\sum_{i=1}^{n}(e^{Y_i} - 1)^2}{\chi^2_{n,1-\frac{\alpha}{2}}}, \frac{\sum_{i=1}^{n}(e^{Y_i} - 1)^2}{\chi^2_{n,\frac{\alpha}{2}}} \right).
$$

2.17 THE WEIBULL DISTRIBUTION

If Y has a Weibull distribution, $Y \sim W(\phi, \lambda)$, then $F_Y(y) = 1 - \exp\left(-\frac{y^\phi}{\lambda}\right)$, $y > 0$, and

$$
f(y) = \frac{\phi}{\lambda} y^{\phi-1} \exp\left(-\frac{y^\phi}{\lambda}\right), \quad y > 0, \quad \phi \geq 0, \quad \lambda > 0.
$$

![Weibull Distribution W(phi=2, lambda=1)](image)

Figure 2.17. Plot of the pdf of the Weibull Distribution
Let $W = Y^\phi$, then

\[F_W(w) = P(W \leq w) = P(Y^\phi \leq w) = F_Y(w^\phi) = 1 - \exp(-w^\phi/\lambda) = 1 - \exp(-w/\lambda) \]

\[\Rightarrow W \sim EXP(\lambda). \]

If $W \sim EXP(\lambda)$, let $Y = W^\phi$. Then

\[F_Y(y) = P(Y \leq y) = P(W^\phi \leq y) = P(W \leq y^\phi) = F_W(y^\phi) = 1 - e^{-y^\phi} \]

\[\Rightarrow f(y) = \frac{\phi}{\lambda} y^{\phi - 1} \exp(-\frac{y^\phi}{\lambda}) \]

\[\Rightarrow Y \sim W(\phi, \lambda). \]

Theorem 2.17.1: the Multivariate Central Limit Theorem (MCLT). If X_1, \ldots, X_n are iid $k \times 1$ random vectors with $E(X) = \mu$ and $\text{Cov}(X) = \Sigma$, then

\[\sqrt{n}(\bar{X} - \mu) \xrightarrow{D} N_k(0, \Sigma) \]

where the sample mean

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

see [12, 13].

Theorem 2.17.2: the Multivariate Delta Method. If

\[\sqrt{n}(T_n - \theta) \xrightarrow{D} N_k(0, \Sigma), \]

then

\[\sqrt{n}(g(T_n) - g(\theta)) \xrightarrow{D} N_d(0, Dg(\theta) \Sigma D^T g(\theta)) \]

where the $d \times k$ Jacobian matrix of partial derivatives

\[Dg(\theta) = \begin{bmatrix} \frac{\partial g_1(\theta)}{\partial \theta_1} & \cdots & \frac{\partial g_1(\theta)}{\partial \theta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_d(\theta)}{\partial \theta_1} & \cdots & \frac{\partial g_d(\theta)}{\partial \theta_k} \end{bmatrix}. \]

Here the mapping $g : \mathbb{R}^k \to \mathbb{R}^d$ needs to be differentiable in a neighborhood of $\theta \in \mathbb{R}^k$.

46
If \(Y_1, \ldots, Y_n \) are iid Weibull \((\phi, \lambda)\), then the MLE \((\hat{\phi}, \hat{\lambda})\) must be found before obtaining CIs. The likelihood

\[
L(\phi, \lambda) = \frac{\phi^n}{\lambda^n} \prod_{i=1}^{n} y_i^{\phi-1} \exp \left[-\frac{1}{\lambda} \sum_{i=1}^{n} y_i^{\phi} \right],
\]

and the log likelihood

\[
\log(L(\phi, \lambda)) = n \log(\phi) - n \log(\lambda) + (\phi - 1) \sum_{i=1}^{n} \log(y_i) - \frac{1}{\lambda} \sum_{i=1}^{n} y_i^{\phi}.\]

Hence

\[
\frac{\partial}{\partial \lambda} \log(L(\phi, \lambda)) = -\frac{n}{\lambda} + \frac{\sum_{i=1}^{n} y_i^{\phi}}{\lambda^2} = 0,
\]

or \(\sum_{i=1}^{n} y_i^{\phi} = n\lambda \), or

\[
\hat{\lambda} = \frac{\sum_{i=1}^{n} y_i^{\phi}}{n}.
\]

Notice that

\[
\frac{\partial}{\partial \phi} \log(L(\phi, \lambda)) = \frac{n}{\phi} + \sum_{i=1}^{n} \log(y_i) - \frac{1}{\lambda} \sum_{i=1}^{n} y_i^{\phi} \log(y_i) = 0,
\]

so

\[
n + \phi \sum_{i=1}^{n} \log(y_i) - \frac{1}{\lambda} \sum_{i=1}^{n} y_i^{\phi} \log(y_i) = 0,
\]

or

\[
\hat{\phi} = \frac{n}{\frac{1}{\lambda} \sum_{i=1}^{n} y_i^{\phi} \log(y_i) - \sum_{i=1}^{n} \log(y_i)}.
\]

One way to find the MLE is to use iteration \([5]\)

\[
\hat{\lambda}_k = \frac{\sum_{i=1}^{n} y_i^{\phi_{k-1}}}{n}
\]

and

\[
\hat{\phi}_k = \frac{n}{\frac{1}{\hat{\lambda}_k} \sum_{i=1}^{n} y_i^{\phi_{k-1}} \log(y_i) - \sum_{i=1}^{n} \log(y_i)}.
\]
Since $W = \log(Y) \sim SEV(\theta = \log(\lambda^{1/\phi}), \sigma = 1/\phi)$, Olive [14] gave the following robust estimators for σ and ϕ:

$$\hat{\sigma}_R = \frac{\text{MAD}(W_1, \ldots, W_n)}{0.767049}$$

and

$$\hat{\theta}_R = \text{MED}(W_1, \ldots, W_n) - \log(\log(2))\hat{\sigma}_R.$$

Then $\hat{\phi}_0 = 1/\hat{\sigma}_R$ and $\hat{\lambda}_0 = \exp(\hat{\theta}_R/\hat{\sigma}_R)$. The iteration might be run until both $|\hat{\phi}_k - \hat{\phi}_{k-1}| < 10^{-6}$ and $|\hat{\lambda}_k - \hat{\lambda}_{k-1}| < 10^{-6}$. Then take $\hat{\phi} = (\hat{\phi}_k, \hat{\lambda}_k)$. If $\mu = \lambda^{1/\phi}$ so $\mu^\phi = \lambda$, and $Y \sim \text{Weibull}(\phi, \mu)$ then the Weibull pdf

$$f(y) = \frac{\phi}{\mu} \left(\frac{y}{\mu}\right)^{\phi-1} \exp\left[-\left(\frac{y}{\mu}\right)^\phi\right].$$

Let $(\hat{\mu}, \hat{\phi})$ be the MLE of (μ, ϕ). According to Bain (1978, p. 215) [2],

$$\sqrt{n}\left(\begin{pmatrix} \hat{\mu} \\ \hat{\phi} \end{pmatrix} - \begin{pmatrix} \mu \\ \phi \end{pmatrix}\right) \xrightarrow{D} N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1.109\mu^2 & 0.257\mu \\ 0.257\mu & 0.608\phi^2 \end{pmatrix}\right).$$

Let column vectors $\theta = (\mu, \phi)^T$ and $\eta = (\lambda, \phi)^T$. Then

$$\eta = g(\theta) = \begin{pmatrix} \lambda \\ \phi \end{pmatrix} = \begin{pmatrix} \mu^\phi \\ \phi \end{pmatrix} = \begin{pmatrix} g_1(\theta) \\ g_2(\theta) \end{pmatrix}.$$

So

$$D_{g(\theta)} = \begin{bmatrix} \frac{\partial}{\partial \theta_1} g_1(\theta) & \frac{\partial}{\partial \theta_2} g_1(\theta) \\ \frac{\partial}{\partial \theta_1} g_2(\theta) & \frac{\partial}{\partial \theta_2} g_2(\theta) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial \theta_1} \mu^\phi & \frac{\partial}{\partial \theta_2} \mu^\phi \\ \frac{\partial}{\partial \theta_1} \phi & \frac{\partial}{\partial \theta_2} \phi \end{bmatrix} = \begin{bmatrix} \phi \mu^{\phi-1} & \mu^\phi \log(\mu) \\ 0 & 1 \end{bmatrix}.$$

Thus by the multivariate delta method (Theorem 2.17.2),

$$\sqrt{n}\left(\begin{pmatrix} \hat{\lambda} \\ \hat{\phi} \end{pmatrix} - \begin{pmatrix} \lambda \\ \phi \end{pmatrix}\right) \xrightarrow{D} N_2(\mathbf{0}, \Sigma),$$

where

$$\Sigma = I^{-1}(\eta) = [I(g(\theta))]^{-1} = D_{g(\theta)} I^{-1}(\theta) D_{g(\theta)}^T.$$
\[
\begin{align*}
&= \begin{bmatrix}
\phi \mu^{\phi-1} & \mu^{\phi} \log \mu \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1.109 \frac{\mu^2}{\phi^2} & 0.257 \mu \\
0.257 \mu & 0.608 \phi^2
\end{bmatrix}
\begin{bmatrix}
\phi \mu^{\phi-1} \\
\mu \log \mu \\
1
\end{bmatrix}
\end{align*}
\]

Hence the asymptotic variances of \(\hat{\phi} \) and \(\hat{\lambda} \) are given by

\[
AV(\hat{\phi}) = .608 \hat{\phi}^2
\]
and

\[
AV(\hat{\lambda}) = 1.109 \hat{\lambda}^2(1 + .4635 \log \hat{\lambda} + .5482(\log \hat{\lambda})^2).
\]

Hence

\[
\sqrt{n}(\hat{\phi} - \phi) \xrightarrow{D} N(0, .608 \phi^2).
\]
Thus \(1 - \alpha \approx P(-z_{1-\alpha/2} \sqrt{0.608} \hat{\phi} < \sqrt{n}(\hat{\phi} - \phi) < z_{1-\alpha/2} \sqrt{0.608} \hat{\phi}) \) and a large sample 100(1 - \alpha)% CI for \(\phi \) is

\[
\hat{\phi} \pm z_{1-\alpha/2} \frac{\hat{\phi}}{\sqrt{0.608/n}}.
\]

Similarly,

\[
\sqrt{n}(\hat{\lambda} - \lambda) \xrightarrow{D} N(0, 1.109 \lambda^2(1 + .4635 \log \lambda + .5482(\log \lambda)^2)),
\]
and a large sample 100(1 - \alpha)% CI for \(\lambda \) is

\[
\hat{\lambda} \pm \frac{z_{1-\alpha/2}}{\sqrt{n}} \sqrt{1.109 \lambda^2[1 + 0.4635 \log(\hat{\lambda}) + 0.5824(\log(\hat{\lambda}))^2]}.
\]
In simulations, for small \(n \) the number of iterations for the MLE to converge could be in the thousands, and the coverage of the large sample CIs is poor for \(n < 50 \).

2.18 THE HWEIBULL DISTRIBUTION

If \(Y \sim HW(\phi, \lambda) \), then \[f(y) = \frac{2}{\sqrt{2\pi}\lambda}\phi y^{\phi-1} \exp\left(\frac{-y^{2\phi}}{2\lambda^2}\right), y > 0, \lambda > 0, \text{ and } \phi > 0. \]

![HWeibull Distribution HW(\phi=2, \lambda=1)](image)

Figure 2.18. Plot of the pdf of the HWeibull Distribution

If \(W \) has a half normal distribution, \(W \sim HN(0, \lambda) \), then

\[
\begin{align*}
g_W(w) &= \frac{2}{\sqrt{2\pi}\lambda} \exp\left(\frac{-w^2}{2\lambda^2}\right), w \geq 0. \text{ Let } Y = W^{\frac{1}{\phi}}, \text{ then } W = s(Y) = Y^\phi \\
\Rightarrow f(y) &= g_W(s(y)) \left| \frac{ds(y)}{dy} \right| = \frac{2}{\sqrt{2\pi}\lambda} \exp\left(\frac{-y^{2\phi}}{2\lambda^2}\right) |\phi y^{\phi-1}| \\
&= \frac{2}{\sqrt{2\pi}\lambda}\phi y^{\phi-1} \exp\left(\frac{-y^{2\phi}}{2\lambda^2}\right), y > 0, \\
\Rightarrow Y &\sim HW(\phi, \lambda). \\
\text{Let } W = Y^\phi, \text{ then } Y = r(W) = W^{\frac{1}{\phi}} \\
\Rightarrow g(w) &= f(r(w)) \left| \frac{dr(w)}{dw} \right| \\
&= \frac{2}{\sqrt{2\pi}\lambda}\phi (w^{\frac{1}{\phi}})^{\phi-1} \exp\left[\frac{-(w^{\frac{1}{\phi}})^{2\phi}}{2\lambda^2}\right] \frac{1}{\phi} w^{\frac{1-\phi}{\phi}}
\end{align*}
\]
\[
\frac{2}{\sqrt{2\pi \lambda}} \exp \left(-\frac{w^2}{2\lambda^2} \right) I[w \geq 0]
\]

\[\Rightarrow W \sim HN(0, \lambda).\]

Let \(Y_1, Y_2, \ldots, Y_n\) be iid \(HW(\phi, \lambda)\), and if \(\phi\) is known, then the likelihood

\[
L(\lambda) = \prod_{i=1}^{n} f(y_i) = \left(\frac{2}{\sqrt{2\pi \lambda}} \right)^n \phi^n \prod_{i=1}^{n} y_i^{\phi-1} \exp \left(\sum_{i=1}^{n} \frac{-y_i^{2\phi}}{2\lambda^2} \right),
\]

and the log likelihood

\[
\log L = n \log(2) - n \log(\sqrt{2\pi}) - n \log \lambda + n \log \phi + \sum_{i=1}^{n} (\phi - 1) \log y_i - \sum_{i=1}^{n} \frac{y_i^{2\phi}}{2\lambda^2}.
\]

Hence

\[
\frac{d \log L}{d \lambda} = \frac{-n}{\lambda} - \sum_{i=1}^{n} \frac{-4\lambda y_i^{2\phi}}{4\lambda^4} = \frac{-n}{\lambda} + \sum_{i=1}^{n} \frac{y_i^{2\phi}}{\lambda^3} := 0
\]

or

\[
\lambda^2 = \frac{\sum_{i=1}^{n} y_i^{2\phi}}{n}, \text{ or } \hat{\lambda} = \sqrt{\frac{\sum_{i=1}^{n} y_i^{2\phi}}{n}}.
\]

Notice that

\[
\frac{d^2 \log L}{d \lambda^2} \bigg|_{\hat{\lambda}} = \frac{n}{\lambda^2} - \frac{\sum_{i=1}^{n} 3 y_i^{2\phi}}{\lambda^4} = \frac{n}{\lambda^2} [1 - 3] < 0.
\]

Hence \(\hat{\lambda}\) is the MLE of \(\lambda\) if \(\phi\) is known.
CHAPTER 3
SIMULATIONS COVERAGE OF CONFIDENCE INTERVALS

3.1 HALF-NORMAL DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for \(\mu \) and \(\sigma^2 \) with nominal 90\% and 95\% confidence levels respectively and sample sizes ranging from 5 to 500. Two types of confidence intervals for \(\mu \) are used; the Pewsey interval is given by

\[
(Y_{(1)} + \hat{\sigma} \log(\frac{\alpha}{2}) \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right), Y_{(1)} - \hat{\sigma} \log(1 - \frac{\alpha}{2}) \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right))
\]

(3.1)

and our new modified confidence interval

\[
(Y_{(1)} + \hat{\sigma} \log(\alpha) \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2n} \right) \left(1 + \frac{13}{n^2} \right), Y_{(1)}).
\]

(3.2)

The confidence interval used for \(\sigma^2 \) when \(\mu \) is known is given by

\[
\left(\frac{T_n}{\chi^2_{n-1,\frac{\alpha}{2}}}, \frac{T_n}{\chi^2_{n,\frac{\alpha}{2}}} \right)
\]

(3.3)

where \(T_n = \sum_{i=1}^{n} (Y_i - \mu)^2 \).

and when \(\mu \) is unknown is given by

\[
\left(\frac{D_n}{\chi^2_{n-1,\frac{\alpha}{2}}}, \frac{D_n}{\chi^2_{n-1,\frac{\alpha}{2}}} \right)
\]

(3.4)

where \(D_n = \sum_{i=1}^{n} (Y_i - Y_{(1)})^2 \) Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size \(n \) from the (standard) half-normal distribution. The standard error of any entry is thus, at most, 0.004. Comparing the coverage of Pewsey interval and the modified Pewsey interval for \(\mu \) we notice that the modified Pewsey interval has higher coverage for small sample sizes \((n < 10) \) and similar coverage to that of Pewsey interval for other sample sizes, also, we note that it has a shorter length except when \(n = 5 \) where the coverage is better.
Table 3.1. Actual Coverage Levels for Nominal 90% Confidence Interval for σ^2 when μ is unknown for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.8914</td>
<td>9.83</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.8856</td>
<td>6.30</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.8964</td>
<td>5.15</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.8948</td>
<td>4.89</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.8980</td>
<td>4.76</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.8984</td>
<td>4.68</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>0.9</td>
<td>4.65</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (3.4).

Table 3.2. Actual Coverage Levels for Nominal 90% Confidence Interval for σ^2 when μ is known for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9000</td>
<td>8.73</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.8998</td>
<td>6.28</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9010</td>
<td>5.22</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.8992</td>
<td>4.94</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.8990</td>
<td>4.79</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.8978</td>
<td>4.68</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>0.9</td>
<td>4.65</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (3.3).
Table 3.3. Actual Coverage Levels for Nominal 90% Confidence Interval for μ for sample sizes ranging from 5 to 500 - Modified and Pewsey intervals

<table>
<thead>
<tr>
<th>n</th>
<th>$d = (n-1)$</th>
<th>modified Coverage</th>
<th>Slen</th>
<th>Pewsey Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9158</td>
<td>3.40</td>
<td>0.8410</td>
<td>2.86</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.8948</td>
<td>2.88</td>
<td>0.8694</td>
<td>3.26</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.8930</td>
<td>2.80</td>
<td>0.9000</td>
<td>3.51</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.8920</td>
<td>2.83</td>
<td>0.8898</td>
<td>3.60</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9000</td>
<td>2.85</td>
<td>0.9026</td>
<td>3.64</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9020</td>
<td>2.88</td>
<td>0.9052</td>
<td>3.68</td>
</tr>
</tbody>
</table>

∞ ∞ .9 2.89 .9 3.69

The confidence interval formulas used are (3.1) and (3.2).

Table 3.4. Actual Coverage Levels for Nominal 95% Confidence Interval for σ^2 when μ is unknown for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$d = (n-1)$</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9438</td>
<td>15.46</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9470</td>
<td>8.16</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9450</td>
<td>6.37</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9488</td>
<td>5.95</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9478</td>
<td>5.71</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9448</td>
<td>5.58</td>
</tr>
</tbody>
</table>

∞ ∞ .95 5.54

The confidence interval formula used is (3.4).
Table 3.5. Actual Coverage Levels for Nominal 95% Confidence Interval for σ^2 when μ is known for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9508</td>
<td>12.52</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9528</td>
<td>9.92</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9476</td>
<td>6.89</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9476</td>
<td>6.19</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9500</td>
<td>5.82</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9458</td>
<td>5.60</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>5.54</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (3.3).

Table 3.6. Actual Coverage Levels for Nominal 95% Confidence Interval for μ for sample sizes ranging from 5 to 500 - Modified and Pewsey intervals

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
<th>modified Coverage</th>
<th>Slen</th>
<th>Pewsey Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9474</td>
<td>4.44</td>
<td>0.9004</td>
<td>3.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9404</td>
<td>3.75</td>
<td>0.9320</td>
<td>4.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9438</td>
<td>3.64</td>
<td>0.9438</td>
<td>4.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9478</td>
<td>3.69</td>
<td>0.9480</td>
<td>4.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9482</td>
<td>3.71</td>
<td>0.9496</td>
<td>4.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9456</td>
<td>3.74</td>
<td>0.9474</td>
<td>4.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.76</td>
<td>.95</td>
<td>4.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (3.1) and (3.2).
3.2 HPARETO DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for θ and λ^2 with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the (standard) half-normal distribution. The standard error of any entry is thus, at most, 0.004.

Table 3.7. Actual Coverage Levels for Nominal 95% Confidence Interval for θ for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.8920</td>
<td>3.54</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9220</td>
<td>4.09</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.944</td>
<td>4.38</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9496</td>
<td>4.47</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9504</td>
<td>4.53</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9590</td>
<td>4.58</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>4.59</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.15).
Table 3.8. Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 when θ is unknown for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9414</td>
<td>14.76</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9460</td>
<td>8.42</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9468</td>
<td>6.42</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9460</td>
<td>5.90</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9498</td>
<td>5.73</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9522</td>
<td>5.67</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>0.95</td>
<td>5.54</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.13).

Table 3.9. Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 when θ is known for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9458</td>
<td>21.95</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9458</td>
<td>10.20</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9500</td>
<td>6.94</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9494</td>
<td>6.13</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9508</td>
<td>5.85</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9532</td>
<td>5.59</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>0.95</td>
<td>5.54</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.14).
3.3 HPOWER DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for λ^2 with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the (standard) half-normal distribution. The standard error of any entry is thus, at most, 0.004. The confidence interval formula used is (2.18).

Table 3.10. Actual Coverage Levels for Nominal 95% Confidence Interval for λ^2 for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9510</td>
<td>21.90</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9500</td>
<td>10.07</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9556</td>
<td>6.90</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9538</td>
<td>6.17</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9482</td>
<td>5.85</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9475</td>
<td>5.61</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>5.54</td>
</tr>
</tbody>
</table>
3.4 HTEV DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for λ^2 with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the (standard) half-normal distribution. The standard error of any entry is thus, at most, 0.004. The confidence interval formula used is (2.26).

<table>
<thead>
<tr>
<th>n</th>
<th>d</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9426</td>
<td>22.30</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9438</td>
<td>10.10</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9496</td>
<td>6.91</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9490</td>
<td>6.17</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9510</td>
<td>5.84</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9494</td>
<td>5.60</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>5.54</td>
</tr>
</tbody>
</table>
3.5 TWO PARAMETER EXPONENTIAL DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for θ and λ² with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the exponential distribution. The standard error of any entry is thus, at most, 0.004. The confidence interval formula used is (2.2).

Table 3.12. Actual Coverage Levels for Nominal 95% Confidence Interval for λ when θ is unknown for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = 2(n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9520</td>
<td>7.11</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9452</td>
<td>5.08</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9518</td>
<td>4.34</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9470</td>
<td>4.11</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9484</td>
<td>4.02</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9496</td>
<td>3.93</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.92</td>
</tr>
</tbody>
</table>
Table 3.13. Actual Coverage Levels for Nominal 95% Confidence Interval for λ when θ is known for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = 2n</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9536</td>
<td>5.74</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9480</td>
<td>4.72</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9518</td>
<td>4.24</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9464</td>
<td>4.07</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9482</td>
<td>4.00</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9496</td>
<td>3.93</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.92</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.3).

Table 3.14. Actual Coverage Levels for Nominal 95% Confidence Interval for θ for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = (n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9494</td>
<td>4.41</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9460</td>
<td>3.53</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9466</td>
<td>3.20</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9466</td>
<td>3.09</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9496</td>
<td>3.04</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9514</td>
<td>3.00</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.00</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.1).
3.6 THE PARETO DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for σ and λ with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the pareto distribution. The standard error of any entry is thus, at most, 0.004.

The confidence interval formula used is (2.12).

Table 3.15. Actual Coverage Levels for Nominal 95% Confidence Interval for λ when σ is unknown for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = 2(n-1)</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9490</td>
<td>7.28</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9464</td>
<td>5.12</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9522</td>
<td>4.34</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9474</td>
<td>4.11</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9486</td>
<td>4.01</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9466</td>
<td>3.94</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.92</td>
</tr>
</tbody>
</table>
Table 3.16. Actual Coverage Levels for Nominal 95% Confidence Interval for \(\sigma \) for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = n-1</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9496</td>
<td>3.48</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9432</td>
<td>3.28</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9510</td>
<td>3.12</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9482</td>
<td>3.06</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9546</td>
<td>3.02</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9518</td>
<td>3.00</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(\infty)</td>
<td>.95</td>
<td>3.00</td>
</tr>
</tbody>
</table>

The confidence interval formula used is (2.11).
3.7 THE POWER DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for λ with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the Power distribution. The standard error of any entry is thus, at most, 0.004.

The confidence interval formula used is (2.17).

Table 3.17. Actual Coverage Levels for Nominal 95% Confidence Interval for λ for sample sizes ranging from 5 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>d = 2n</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9464</td>
<td>5.80</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9540</td>
<td>4.75</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9506</td>
<td>4.23</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9500</td>
<td>4.06</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9458</td>
<td>4.00</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9442</td>
<td>3.93</td>
</tr>
<tr>
<td>∞</td>
<td>∞</td>
<td>.95</td>
<td>3.92</td>
</tr>
</tbody>
</table>
3.8 THE TRUNCATED EXTREME VALUE DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for λ with nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage percentage was obtained from 5000 pseudo-random samples of size n from the truncated extreme value distribution. The standard error of any entry is thus, at most, 0.004. The confidence interval formula used is (2.25).

<table>
<thead>
<tr>
<th>n</th>
<th>$d = 2n$</th>
<th>Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>0.9454</td>
<td>5.83</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>0.9474</td>
<td>4.73</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.9526</td>
<td>4.22</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.9574</td>
<td>4.08</td>
</tr>
<tr>
<td>100</td>
<td>99</td>
<td>0.9552</td>
<td>4.00</td>
</tr>
<tr>
<td>500</td>
<td>499</td>
<td>0.9496</td>
<td>3.93</td>
</tr>
</tbody>
</table>

| ∞ | ∞ | .95 | 3.92 |

Table 3.18. Actual Coverage Levels for Nominal 95% Confidence Interval for λ for sample sizes ranging from 5 to 500
3.9 THE WEIBULL DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for ϕ and λ with nominal 95% confidence level and sample sizes ranging from 25 to 500. Each quoted coverage percentage was obtained from 100 pseudo-random samples of size n from the Weibull distribution. The standard error of any entry is thus, at most, 0.043. The confidence interval formulas used are (2.27) and (2.28).

Table 3.19. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\phi = 1$ Coverage</th>
<th>Slen</th>
<th>$\lambda = 1$ Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.95</td>
<td>3.29</td>
<td>.94</td>
<td>4.35</td>
</tr>
<tr>
<td>50</td>
<td>.91</td>
<td>3.12</td>
<td>.94</td>
<td>4.23</td>
</tr>
<tr>
<td>100</td>
<td>.94</td>
<td>3.05</td>
<td>.92</td>
<td>4.18</td>
</tr>
<tr>
<td>500</td>
<td>.96</td>
<td>3.07</td>
<td>.94</td>
<td>4.15</td>
</tr>
<tr>
<td>∞</td>
<td>.95</td>
<td>3.06</td>
<td>.95</td>
<td>4.13</td>
</tr>
</tbody>
</table>
Table 3.20. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\phi = 1$ Coverage</th>
<th>Slen</th>
<th>$\lambda = 5$ Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.95</td>
<td>3.23</td>
<td>.93</td>
<td>48.56</td>
</tr>
<tr>
<td>50</td>
<td>.92</td>
<td>3.16</td>
<td>.94</td>
<td>43.44</td>
</tr>
<tr>
<td>100</td>
<td>.93</td>
<td>3.07</td>
<td>.90</td>
<td>38.99</td>
</tr>
<tr>
<td>500</td>
<td>.94</td>
<td>3.06</td>
<td>.95</td>
<td>37.65</td>
</tr>
<tr>
<td>∞</td>
<td>.95</td>
<td>3.06</td>
<td>.95</td>
<td>36.73</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).

Table 3.21. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\phi = 1$ Coverage</th>
<th>Slen</th>
<th>$\lambda = 10$ Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.95</td>
<td>3.22</td>
<td>.97</td>
<td>133.83</td>
</tr>
<tr>
<td>50</td>
<td>.97</td>
<td>3.16</td>
<td>.97</td>
<td>115.44</td>
</tr>
<tr>
<td>100</td>
<td>.95</td>
<td>3.12</td>
<td>.96</td>
<td>107.08</td>
</tr>
<tr>
<td>500</td>
<td>.94</td>
<td>3.07</td>
<td>.96</td>
<td>94.45</td>
</tr>
<tr>
<td>∞</td>
<td>.95</td>
<td>3.06</td>
<td>.95</td>
<td>92.07</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).
Table 3.22. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>Coverage $\phi = 1$</th>
<th>Slen $\lambda = 20$</th>
<th>Coverage $\phi = 1$</th>
<th>Slen $\lambda = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.94</td>
<td>3.05</td>
<td>0.91</td>
<td>332.56</td>
</tr>
<tr>
<td>50</td>
<td>0.96</td>
<td>3.12</td>
<td>0.92</td>
<td>273.23</td>
</tr>
<tr>
<td>100</td>
<td>0.95</td>
<td>3.14</td>
<td>0.95</td>
<td>270.37</td>
</tr>
<tr>
<td>500</td>
<td>0.97</td>
<td>3.06</td>
<td>0.96</td>
<td>231.96</td>
</tr>
<tr>
<td>∞</td>
<td>0.95</td>
<td>3.06</td>
<td>0.95</td>
<td>223.20</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).

Table 3.23. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>Coverage $\phi = 20$</th>
<th>Slen $\lambda = 1$</th>
<th>Coverage $\phi = 20$</th>
<th>Slen $\lambda = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.98</td>
<td>63.63</td>
<td>0.95</td>
<td>4.14</td>
</tr>
<tr>
<td>50</td>
<td>0.90</td>
<td>62.93</td>
<td>0.91</td>
<td>4.23</td>
</tr>
<tr>
<td>100</td>
<td>0.94</td>
<td>62.20</td>
<td>0.93</td>
<td>4.22</td>
</tr>
<tr>
<td>500</td>
<td>0.96</td>
<td>61.51</td>
<td>0.98</td>
<td>4.16</td>
</tr>
<tr>
<td>∞</td>
<td>0.95</td>
<td>61.13</td>
<td>0.95</td>
<td>4.13</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).
Table 3.24. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\phi = 20$</th>
<th>$\lambda = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.99</td>
</tr>
<tr>
<td>50</td>
<td>.97</td>
</tr>
<tr>
<td>100</td>
<td>.93</td>
</tr>
<tr>
<td>500</td>
<td>.98</td>
</tr>
<tr>
<td>∞</td>
<td>.95</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).

Table 3.25. Actual Coverage Levels for Nominal 95% Confidence Interval for ϕ and λ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\phi = 20$</th>
<th>$\lambda = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.94</td>
</tr>
<tr>
<td>50</td>
<td>.94</td>
</tr>
<tr>
<td>100</td>
<td>.97</td>
</tr>
<tr>
<td>500</td>
<td>.96</td>
</tr>
<tr>
<td>∞</td>
<td>.95</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).
Table 3.26. Actual Coverage Levels for Nominal 95% Confidence Interval for \(\phi \) and \(\lambda \) for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\phi = 20) Coverage</th>
<th>Slen</th>
<th>(\lambda = 20) Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>.92</td>
<td>61.61</td>
<td>.91</td>
<td>261.31</td>
</tr>
<tr>
<td>100</td>
<td>.94</td>
<td>61.56</td>
<td>.95</td>
<td>248.74</td>
</tr>
<tr>
<td>500</td>
<td>.94</td>
<td>61.51</td>
<td>.95</td>
<td>237.89</td>
</tr>
<tr>
<td>(\infty)</td>
<td>.95</td>
<td>61.13</td>
<td>.95</td>
<td>223.20</td>
</tr>
</tbody>
</table>

The confidence interval formulas used are (2.27) and (2.28).
3.10 THE RAYLEIGH DISTRIBUTION

The following tables show the results obtained from a simulation study designed to establish the actual coverage of confidence intervals for μ and σ with nominal 95% confidence level and sample sizes ranging from 25 to 500. Each quoted coverage percentage was obtained from 100 pseudo-random samples of size n from the Rayleigh distribution. The standard error of any entry is thus, at most, 0.043. The confidence interval formulas used are (2.22) and (2.23).

Table 3.27. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\mu = 1$ Coverage</th>
<th>Slen</th>
<th>$\sigma = 1$ Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.91</td>
<td>2.84</td>
<td>.94</td>
<td>2.81</td>
</tr>
<tr>
<td>50</td>
<td>.98</td>
<td>2.35</td>
<td>.96</td>
<td>2.47</td>
</tr>
<tr>
<td>100</td>
<td>.93</td>
<td>2.22</td>
<td>.93</td>
<td>3.04</td>
</tr>
<tr>
<td>500</td>
<td>.92</td>
<td>2.32</td>
<td>.94</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Table 3.28. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\mu = 2$ Coverage</th>
<th>Slen</th>
<th>$\sigma = 5$ Coverage</th>
<th>Slen</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>.92</td>
<td>13.58</td>
<td>.92</td>
<td>11.82</td>
</tr>
<tr>
<td>50</td>
<td>.93</td>
<td>12.06</td>
<td>.94</td>
<td>12.24</td>
</tr>
<tr>
<td>100</td>
<td>.92</td>
<td>12.06</td>
<td>.96</td>
<td>12.42</td>
</tr>
<tr>
<td>500</td>
<td>.94</td>
<td>9.99</td>
<td>.94</td>
<td>12.97</td>
</tr>
</tbody>
</table>
Table 3.29. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 2$</th>
<th>$\sigma = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n Coverage</td>
<td>Slen Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.91</td>
</tr>
<tr>
<td>50</td>
<td>.93</td>
</tr>
<tr>
<td>100</td>
<td>.92</td>
</tr>
<tr>
<td>500</td>
<td>.93</td>
</tr>
</tbody>
</table>

Table 3.30. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 5$</th>
<th>$\sigma = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n Coverage</td>
<td>Slen Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.86</td>
</tr>
<tr>
<td>50</td>
<td>.91</td>
</tr>
<tr>
<td>100</td>
<td>.92</td>
</tr>
<tr>
<td>500</td>
<td>.92</td>
</tr>
</tbody>
</table>
Table 3.31. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 10$</th>
<th>$\sigma = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.92</td>
</tr>
<tr>
<td>50</td>
<td>.92</td>
</tr>
<tr>
<td>100</td>
<td>.95</td>
</tr>
<tr>
<td>500</td>
<td>.92</td>
</tr>
</tbody>
</table>

Table 3.32. Actual Coverage Levels for Nominal 95% Confidence Interval for μ and σ for sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 20$</th>
<th>$\sigma = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Coverage</td>
</tr>
<tr>
<td>25</td>
<td>.92</td>
</tr>
<tr>
<td>50</td>
<td>.87</td>
</tr>
<tr>
<td>100</td>
<td>.93</td>
</tr>
<tr>
<td>500</td>
<td>.93</td>
</tr>
</tbody>
</table>
The following tables show the results obtained from a simulation study designed to find the sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500. Each quoted mean and standard deviation was obtained from 100 pseudo-random samples of size n from the Rayleigh distribution. The MLEs were found by iteration using Newton’s method, and the number of iterations used were 100.

Table 3.33. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 1$</th>
<th>$\sigma = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$\hat{\mu}$</td>
</tr>
<tr>
<td>25</td>
<td>1.08</td>
</tr>
<tr>
<td>50</td>
<td>1.03</td>
</tr>
<tr>
<td>100</td>
<td>1.02</td>
</tr>
<tr>
<td>500</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table 3.34. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>$\mu = 2$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$\hat{\mu}$</td>
</tr>
<tr>
<td>25</td>
<td>2.34</td>
</tr>
<tr>
<td>50</td>
<td>2.23</td>
</tr>
<tr>
<td>100</td>
<td>2.14</td>
</tr>
<tr>
<td>500</td>
<td>2.02</td>
</tr>
</tbody>
</table>
Table 3.35. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\mu}$</th>
<th>$SD(\hat{\mu})$</th>
<th>$\hat{\sigma}$</th>
<th>$SD(\hat{\sigma})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3.01</td>
<td>1.49</td>
<td>9.27</td>
<td>1.36</td>
</tr>
<tr>
<td>50</td>
<td>2.39</td>
<td>0.82</td>
<td>9.72</td>
<td>0.89</td>
</tr>
<tr>
<td>100</td>
<td>2.19</td>
<td>0.57</td>
<td>9.78</td>
<td>0.59</td>
</tr>
<tr>
<td>500</td>
<td>2.05</td>
<td>0.27</td>
<td>10.00</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 3.36. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\mu}$</th>
<th>$SD(\hat{\mu})$</th>
<th>$\hat{\sigma}$</th>
<th>$SD(\hat{\sigma})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5.19</td>
<td>0.25</td>
<td>1.83</td>
<td>0.24</td>
</tr>
<tr>
<td>50</td>
<td>5.03</td>
<td>0.17</td>
<td>1.96</td>
<td>0.16</td>
</tr>
<tr>
<td>100</td>
<td>5.04</td>
<td>0.12</td>
<td>1.97</td>
<td>0.13</td>
</tr>
<tr>
<td>500</td>
<td>5.02</td>
<td>0.05</td>
<td>1.99</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table 3.37. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

\[\mu = 10 \quad \sigma = 2 \]

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\mu}$</th>
<th>$SD(\hat{\mu})$</th>
<th>$\hat{\sigma}$</th>
<th>$SD(\hat{\sigma})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10.10</td>
<td>0.27</td>
<td>1.94</td>
<td>0.27</td>
</tr>
<tr>
<td>50</td>
<td>10.07</td>
<td>0.16</td>
<td>1.93</td>
<td>0.18</td>
</tr>
<tr>
<td>100</td>
<td>10.03</td>
<td>0.13</td>
<td>1.99</td>
<td>0.12</td>
</tr>
<tr>
<td>500</td>
<td>10.02</td>
<td>0.05</td>
<td>1.99</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 3.38. Sample means and standard deviations of the MLEs for μ and σ using sample sizes ranging from 25 to 500

\[\mu = 20 \quad \sigma = 20 \]

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\mu}$</th>
<th>$SD(\hat{\mu})$</th>
<th>$\hat{\sigma}$</th>
<th>$SD(\hat{\sigma})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>21.57</td>
<td>2.93</td>
<td>19.13</td>
<td>2.51</td>
</tr>
<tr>
<td>50</td>
<td>20.93</td>
<td>1.82</td>
<td>19.27</td>
<td>1.82</td>
</tr>
<tr>
<td>100</td>
<td>20.44</td>
<td>1.07</td>
<td>19.68</td>
<td>1.18</td>
</tr>
<tr>
<td>500</td>
<td>20.13</td>
<td>0.43</td>
<td>19.94</td>
<td>0.46</td>
</tr>
</tbody>
</table>
REFERENCES

APPENDIX
R CODE FOR THE SIMULATIONS, the Statistical package is available from (http://www.r-project.org/).

```r
# simulates exp 100(1-alpha)% CI for lambda and CI for theta,
expsim<-function(n = 10, nruns = 5000, theta = 0, lambda = 1,
alpha = 0.05, p = 1)
{
    scov <- 0
    ccov <- 0
    mcov <- 0
    slow <- 1:nruns
    sup <- slow
    mlow <- slow
    mup <- slow
    clow <- slow
    cup <- slow
    ucut <- alpha/2
    lcut <- 1 - ucut
    d <- 2 * (n - p)
    d2 <- 2 * n
    lval <- log(alpha/2)/n
    uval <- log(1 - alpha/2)/n
    mlval <- alpha^(-1/(n - 1)) - 1
    for(i in 1:nruns) {
        y <- theta + lambda * rexp(n)
        miny <- min(y)
        dn <- sum((y - miny))
```
#get CI for lambda

lamhat <- dn/n
num <- 2 * dn
slow[i] <- num/qchisq(lcut, df = d)
sup[i] <- num/qchisq(ucut, df = d)
if(slow[i] < lambda && sup[i] > lambda) scov <- scov + 1

#get CI for lambda when theta is known

tn <- sum((y - theta))
num <- 2 * tn
clow[i] <- num/qchisq(lcut, df = d2)
cup[i] <- num/qchisq(ucut, df = d2)
if(clow[i] < lambda && cup[i] > lambda) ccov <- ccov + 1

#get CI for theta

mlow[i] <- miny - lamhat * mlval
mup[i] <- miny
if(mlow[i] < theta) mcov <- mcov + 1
}

scov <- scov/nruns
slen <- sqrt(n) * mean(sup - slow)
mcov <- mcov/nruns
mlen <- n * mean(mup - mlow)
ccov <- ccov/nruns
clen <- sqrt(n) * mean(cup - clow)
list(d = d, scov = scov, slen = slen, ccov = ccov, clen = clen, mcov = mcov, mlen = mlen)
#simulates Pewsey HN 100(1-alpha)% CI for sigma^2 and one for mu,
The CI for mu should work better than the Pewsey interval.

hnsim<- function(n = 10, nruns = 5000, mu = 0, sigma = 1, alpha = 0.05, p = 1) {
 scov <- 0
 lcov <- 0
 lcov2 <- 0
 ccov <- 0
 slow <- 1:nruns
 sup <- slow
 llow <- slow
 lup <- slow
 llow2 <- slow
 lup2 <- slow
 clow <- slow
 cup <- sup
 ucut <- alpha/2
 lcut <- 1 - ucut
 sigsq <- sigma^2
 d <- n - p
 phiinv <- qnorm((0.5 + 1/(2 * n)))
 lval <- log(alpha) * phiinv * (1 + 13/n^2)
 lval2 <- log(alpha/2) * phiinv
 lval3 <- log(1-alpha/2) * phiinv
 for(i in 1:nruns) {
 y <- mu + sigma * abs(rnorm(n))
miny <- min(y)
dn <- sum((y - miny)^2)

get CI for sigma^2 when mu is unknown
slow[i] <- dn/qchisq(lcut, df = d)
sup[i] <- dn/qchisq(ucut, df = d)
if(slow[i] < sigsq && sup[i] > sigsq)
 scov <- scov + 1

get CI for sigma^2 if mu is known
tn <- sum((y - mu)^2)
clow[i] <- tn/qchisq(lcut, df = n)
cup[i] <- tn/qchisq(ucut, df = n)
if(clow[i] < sigsq && cup[i] > sigsq)
 ccov <- ccov + 1

get CI for mu (modified Pewsey type interval)
shat <- sqrt(dn/n)
llow[i] <- miny + shat * lval
lup[i] <- miny
if(llow[i] < mu)
 lcov <- lcov + 1

get CI for mu (Pewsey type interval)
shat <- sqrt(dn/n)
llow2[i] <- miny + shat * lval2
lup2[i] <- miny + shat * lval3
if(llow2[i] < mu && lup2[i] > mu)
 lcov2 <- lcov2 + 1
}
scov <- scov/nruns
slen <- sqrt(n) * mean(sup - slow)
lcov <- lcov/nruns
llen <- n * mean(lup - llow)
lcov2 <- lcov2/nruns
llen2 <- n * mean(lup2 - llow2)
ccov <- ccov/nruns
clen <- sqrt(n) * mean(cup - clow)
list(d = d, scov = scov, slen = slen, ccov =
ccov, clen = clen, lcov = lcov, llen = llen, lcov2 = lcov2, llen2 = llen2,)
#simulates HPareto 100(1-alpha)% CI for sigma^2 and one for mu,
"hparsim1"<- function(n = 10, nruns = 5000, mu = 0, sigma = 1, alpha = 0.05, p = 1) {
 scov <- 0
 lcov <- 0
 ccov <- 0
 slow <- 1:nruns
 sup <- slow
 llow <- slow
 lup <- slow
 clow <- slow
 cup <- sup
 ucut <- alpha/2
 lcut <- 1 - ucut
 sigsq <- sigma^2
 d <- n - p
 phiinv <- qnorm((0.5 + 1/(2 * n)))
 lval <- log(alpha/2) * phiinv
 uval <- log(1 - alpha/2) * phiinv
 for(i in 1:nruns) {
 w <- mu + sigma * abs(rnorm(n))
 y<-exp(w)
 minw <- min(w)
 miny <- min(y)
 dn <- sum((log(y) - log(miny))^2)
 dn1 <- sum((log(y) - mu)^2)
#get CI for \(\sigma^2 \)
slow[i] <- dn/qchisq(lcut, df = d)
sup[i] <- dn/qchisq(ucut, df = d)
if(slow[i] < sigsq && sup[i] > sigsq) scov <- scov + 1

#get CI for \(\mu \)
shat <- sqrt(dn/n)
llow[i] <- minw + shat * lval
lup[i] <- minw + shat * uval
if(llow[i] < mu && lup[i] > mu) lcov <- lcov + 1

#get CI for \(\sigma^2 \) if \(\mu \) is known
clow[i] <- dn1/qchisq(lcut, df = d)
cup[i] <- dn1/qchisq(ucut, df = d)
if(clow[i] < sigsq && cup[i] > sigsq) cccov <- cccov + 1

}

scov <- scov/nruns
slen <- sqrt(n) * mean(sup - slow)
lcov <- lcov/nruns
llen <- n * mean(lup - llow)
ccov <- cccov/nruns
clen <- sqrt(n) * mean(cup - clow)
list(d = d, scov = scov, slen = slen, lco = lcov, llen = llen,
 cco = cccov, clen = clen,)
}
#Simulates HPower 100(1-alpha)% CI for sigma^2,

```r
hpowsim <- function(n, nrunc = 5000, mu = 0, sigma = 1, alpha = 0.05, d = n - 1) {
  cov <- 0
  low <- 1:nrunc
  up <- low
  ucut <- alpha/2
  lcut <- 1 - ucut
  sigsq <- sigma^2
  for (i in 1:nrunc) {
    w <- mu + sigma * abs(rnorm(n))
    y <- exp(-w)
    miny <- min(y)
    wn <- sum((log(y))^2)
    low[i] <- wn / qchisq(lcut, df = d)
    up[i] <- wn / qchisq(ucut, df = d)
    if (low[i] < sigsq && up[i] > sigsq)
      cov <- cov + 1
  }
  cov <- cov / nrunc
  slen <- sqrt(n) * mean(up - low)
  list(d = d, cov = cov, slen = slen)
}
```

86
#Simulates HTEV 100(1-alpha)% CI for sigma^2,
htevsim<-function(n, nruns=5000, mu=0, sigma=1, alpha=0.05, d=n-1)
{

cov <- 0
low <- 1:nruns
up <- low
ucut <- alpha/2
lcut <- 1-ucut
sigsq <-sigma^2
for(i in 1:nruns){
 w<-mu + sigma * abs(rnorm(n))
 y<-log(w+1)
 wn<- sum((exp(y)-1)^2)
 low[i] <- wn/qchisq(lcut,df=d)
 up[i] <- wn/qchisq(ucut, df= d)
 if(low[i] < sigsq && up[i] > sigsq)
 cov <- cov + 1
}

cov <- cov / nruns
slen <- sqrt(n) * mean(up - low)
list(d = d, cov = cov, slen = slen)
}
#simulates Pareto 100(1-alpha)% CI for lambda and CI for theta,

csimp<-function(n = 10, nruns = 5000, theta = 0, lambda = 1, alpha = 0.05, p = 1)
{
 scov <- 0
 ccov <- 0
 mcov <- 0
 slow <- 1:nruns
 sup <- slow
 mlow <- slow
 mup <- slow
 clow <- slow
 cup <- slow
 ucut <- alpha/2
 lcut <- 1 - ucut
 d <- 2 * (n - p)
 d2 <- 2 * n
 lval <- log(alpha/2)/n
 uval <- log(1 - alpha/2)/n
 mlval <- alpha^(-1/(n - 1)) - 1
 sigma <- exp(theta)
 for(i in 1:nruns) {
 w <- theta + lambda * rexp(n)
 y <- exp(w)
 minw <- min(w)
 dn <- sum((w - minw))
 lamhat <- dn/n
 #get CI for lambda
 }
}
num <- 2 * dn
slow[i] <- num/qchisq(lcut, df = d)
sup[i] <- num/qchisq(ucut, df = d)
if(slow[i] < lambda && sup[i] > lambda) scov <- scov + 1
get CI for theta
mlow[i] <- exp(minw - lamhat * mlval)
mup[i] <- exp(minw)
if(mlow[i] < sigma) mcov <- mcov + 1
}
scov <- scov/nruns
slen <- sqrt(n) * mean(sup - slow)
mcov <- mcov/nruns
mlen <- n * mean(mup - mlow)
ccov <- ccov/nruns
clen <- sqrt(n) * mean(cup - clow)
list(d = d, scov = scov, slen = slen, mcov = mcov, mlen = mlen)
}
#Simulates POW 100(1-alpha)% CI for lambda^2,
powsim<-function(n, nruns=5000, mu=0, lam=1, alpha=0.05, d=2*n)
{
 theta = 0
 cov <- 0
 low <- 1:nruns
 up <- low
 ucut <- alpha/2
 lcut <- 1-ucut
 lamsq <-lam^2
 for(i in 1:nruns){
 w<-theta + lam * rexp(n)
 y<-exp(-w)
 wn<- 2 * sum(log(1/y))
 low[i] <- wn/qchisq(lcut,df=d)
 up[i] <- wn/qchisq(ucut, df= d)
 if(low[i] < lamsq && up[i] > lamsq)
 cov <- cov + 1
 }
 cov <- cov / nruns
 slen <- sqrt(n) * mean(up - low)
 list(d = d, cov = cov, slen = slen)
}
simulates MLEs and CIs for mu and sigma in the Rayleigh distribution
raysim <- function(n = 100, mu = 1, sigma = 1, runs = 100, iter = 100)
{
 countm <- 0
 counts <- 0
 count2s <- 0
 munew <- 1:runs
 sigmanew <- munew
 sigmanew2 <- munew
 muo <- 1:runs
 sigmao <- 1:runs
 meanw <- 1:runs
 meany <- 1:runs
 mnew <- 0
 snew <- 0
 muold <- 0
 sigmaold <- 0
 muvold <- 0
 sigmavold <- 0
 vec <- 1:6
 mcov <- 0
 scov <- 0
 mlow <- 0
 mup <- 0
 slow <- 0
 sup <- 0
 for(i in 1:runs) {
 w <- 2 * sigma^2 * rexp(n)
\[y \leftarrow \sqrt{w} + \mu \]

\[\text{sigmaold} \leftarrow \sqrt{\text{var}(y)/0.429204} \]

\[\text{muold} \leftarrow \text{mean}(y) - 1.25331 \times \text{sigmaold} \]

\[\text{muold} \leftarrow \text{min}(\text{muold}, 2 \times \text{min}(y) - \text{muold}) \]

\[\text{mvvold} \leftarrow \text{muold} \]

\[\text{sigmaold} \leftarrow \sqrt{\text{sum}((y - \text{muold})^2)/(2 \times n)} \]

\[\text{svvold} \leftarrow \text{sigmaold} \]

\begin{verbatim}
for(j in 1:iter) {
 D <- -2*n/sigmaold^2*sum((y-muold)^-2)+3/sigmaold^4*sum((y-muold)^-2)
 *sum((y-muold)^2) - 2*n^2/sigmaold^4 + 3*n/sigmaold^6*sum((y-muold)^2)
 -4/sigmaold^6*(sum(y-muold))^2
 a1 <- -2*n/sigmaold^2*sum((y-muold)^-1) + 2*n/sigmaold^4*sum(y-muold)
 + 3*sum((y-muold)^2)*sum((y-muold)^-1)/sigmaold^4 - 3*sum((y-muold)^2)
 *sum(y-muold)/sigmaold^6 - 4*n*sum(y-muold)/sigmaold^4 + 2*sum(y-muold)
 *sum((y-muold)^2)/sigmaold^6
 a2 <- -2/sigmaold^3*sum(y-muold)*sum((y-muold)^-1) + 2/sigmaold^5
 *(sum(y-muold))^2 + 2*n^2/sigmaold^3 - n*sum((y-muold)^2)/sigmaold^5
 + 2*n/sigmaold*sum((y-muold)^-2) - 1/sigmaold^3*sum((y-muold)^-2)
 *sum((y-muold)^2)
 snew <- sigmaold - (a2/D)
 mnew <- muold - (a1/D)
 mnew <- min(mnew, 2*min(y)-mnew)
 if(mnew < min(y)/100){countm <- countm +1}
 if(snew < 0){counts <- counts +1}
 if(snew > 10*sigma){count2s <- count2s +1}
 if(mnew < min(y)/100){mnew <- min(y)-.01}
 if(snew < 0){snew <- sigmaold}
}
\end{verbatim}
if(snew > 10*sigma){snew <- sigmaold}
muvold <- muold
muold <- mnew
sigmavold <- sigmaold
sigmaold <- snew
}
muo[i] <- muvold
sigmao[i] <- sigmavold
munew[i] <- mnew
sigmanew[i] <- snew # Iteration formula
sigmanew2[i] <- sqrt(sum((y-munew[i])^2)/(2 * n))#Exact formula
Sig11 <- (1/D)*[2*n/sigmanew[i]^2 -3/sigmanew[i]^4 * sum((y-munew[i])^2)]
Sig22 <- (-1/D)*[sum((y-munew[i])^-2)+ n/sigmanew[i]^2]
SDmuI <- sqrt(Sig11)
SDsigI <- sqrt(Sig22)
#get CI for mu
mlow[i] <- munew[i] - 1.96 * sqrt(Sig11)
mup[i] <- munew[i] + 1.96 * sqrt(Sig11)
if(mlow[i] < mu && mup[i] > mu) {mcov <- mcov + 1}
#get CI for sigma
slow[i] <- sigmanew[i] - 1.96 * sqrt(Sig22)
sup [i] <- sigmanew[i] + 1.96 * sqrt(Sig22)
if(slow[i] < sigma && sup[i] > sigma) {scov <- scov + 1}
}
mcov <- mcov/runs
scov <- scov/runs
slenm <- sqrt(n) * mean(mup - mlow)
slens <- sqrt(n) * mean(sup - slow)
vec[1] <- mean(munew)
vec[2] <- sqrt(var(munew))
vec[3] <- mean(sigmanew)
vec[4] <- sqrt(var(sigmanew))
vec[5] <- mean(sigmanew2)
vec[6] <- sqrt(var(sigmanew2))
mconv <- max(abs(munew - muo))
sconv <- max(abs(sigmanew - sigmao))
list(y=y,mvvold=mvvold,svvold=svvold,mu = mu, mumle = munew,sigma = sigma,
sigmamle = sigmanew,sigmaEX = sigmanew2, meanmuN = vec[1],SDmuN = vec[2],
SDmuI = SDmuI, meansigmaN = vec[3],SDsigN = vec[4], SDsigI = SDsigI,
meansigmaEx = vec[5],SDsigEx = vec[6],
muconv = mconv,CILengthmu=slenm,CILengthsig=slens,sigmaconv = sconv,countm =countm,counts=counts,count2s=count2s,mucoverage=mcov, sigmacoverage=scov)
#Simulates TEV 100(1-alpha) CI for lambda^2,

tevsim<-function(n, nruns=5000, mu=0, lam=1, alpha=0.05, d=2*n)
{
 theta = 0
 cov <- 0
 low <- 1:nruns
 up <- low
 ucut <- alpha/2
 lcut <- 1-ucut
 lamsq <- lam^2
 for(i in 1:nruns){
 w<-theta + lam * rexp(n)
 y<-log(w+1)
 wn<- 2 * sum(exp(y)-1)
 low[i] <- wn/qchisq(lcut, df=d)
 up[i] <- wn/qchisq(ucut, df= d)
 if(low[i] < lamsq && up[i] > lamsq)
 cov <- cov + 1
 }
 cov <- cov / nruns
 slen <- sqrt(n) * mean(up - low)
 list(d = d, cov = cov, slen = slen)
}
Simulates Weibull 100(1-alpha) CI for Phi and lambda

"weibsim"<-

function(n = 100, phi = 1, lam = 1, runs = 100, iter = 100)
{
 phihat <- 1:runs
 lamhat <- phihat
 phinew <- 1:runs
 lamnew <- phinew
 phio <- 1:runs
 lamo <- 1:runs
 lnew <- 0
 pnew <- 0
 lamold <- 0
 lamvold <- 0
 phiold <- 0
 phivold <- 0
 pcov <- 0
 lcov <- 0
 pcov2 <- 0
 lcov2 <- 0
 plow <- 1:runs
 pup <- plow
 llow <- plow
 lup <- plow
 AssSDphi <- 0
 AssSDlam <- 0
 vec <- 1:4
 for(i in 1:runs)
Generating a Weibull R.V

weib <- (lam * rexp(n))^(1/phi)

lw <- log(weib)

tem <- mad(lw, constant = 1)

phihat[i] <- 0.767049/tem

ahat <- median(lw) - log(log(2))/phihat[i]

lamhat[i] <- exp(ahat * phihat[i])

Starting values from Olive Robust Estimators: lambda0, Phi0

phiold <- phihat[i]
lamold <- lamhat[i]

Calculating MLEs by Iteration

for(j in 1:iter)
{

 pnew <- n/((1/lamold) * sum(weib^phiold * log(weib)) - sum(log(weib)))

 phivold <- phioold # = phi[iter-1]

 phiold <- pnew

 lnew <- (1/n)*sum(weib^phiold)

 lamvold <- lamvold # = lam[iter-1]

 lamold <- lnew

}

phio[i] <- phivold

lamo[i] <- lamvold

phinew[i] <- pnew # MLE

lamnew[i] <- lnew # MLE

get CI for phi
plow[i] <- phinew[i] - 1.96 * .7797 * phinew[i]/sqrt(n)
pup[i] <- phinew[i] + 1.96 * .7797 * phinew[i]/sqrt(n)
if(plow[i] < phi && pup[i] > phi) {pcov <- pcov + 1}

get CI for lambda
llow[i] <- lamnew[i] - 1.96 * sqrt(1.109*lamnew[i]^2 * (1+.4635*log(lamnew[i])+.5824*(log(lamnew[i]))^2))/sqrt(n)
lup[i] <- lamnew[i] + 1.96 * sqrt(1.109*lamnew[i]^2 * (1+.4635*log(lamnew[i])+.5824*(log(lamnew[i]))^2))/sqrt(n)
if(llow[i] < lam && lup[i] > lam) {lcov <- lcov + 1}
}

vec[1] <- mean(phinew)
AsSDphi <- sqrt(.608 * phi/n)
vec[2] <- sqrt(var(phinew))
vec[3] <- mean(lamnew)
AsSDlam <- sqrt((.514*lam^2*log(lam)+1.109*lam^2+.608*lam^2 * (log(lam))^2)/n)
vec[4] <- sqrt(var(lamnew))

pcov <- pcov / runs
lcov <- lcov / runs
slenp <- sqrt(n) * mean(pup - plow)
slenl <- sqrt(n) * mean(lup - llow)
pconv <- max(abs(phinew - phio))
lconv <- max(abs(lamnew - lamo))

list(phi = phi, phi0 = phihat, phio = phio, phimle = phinew, lamda = lam, lam0 = lamhat, lamo = lamo, lammle = lamnew, phicov = pcov, slen = slenp, lamcov = lcov, slenl = slenl, meanphiMLE = vec[1], SDphiMLE = vec[2], phisDfromI = AsSDphi, meanlamMLE= vec[3], SDlamMLE = vec[4],
lamSDfromI=AsSDlam, phiconv = pconv, lamconv = lconv)

}
VITA

Graduate School
Southern Illinois University

Hassan Abuhassan Date of Birth: April 22, 1966

2025 Evergreen Terrace Apt. 6, CARBONDALE, ILLINOIS 62901

Yarmouk University Bachelor of Science, Mathematics, May 1989

The Jordanian University Master of Science, Mathematics, August 1991

Research Paper Title:
Some Transformed Distributions

Major Professor: Dr. David. Olive