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There are several useful asymmetric location-scale families that are one pa-
rameter exponential families when the location parameter is known. In this case
inference is simple and the maximum likelihood estimator (MLE) and uniformly
minimum variance unbiased estimator (UMVUE) are important point estimators.
The Burr, largest extreme value, Pareto, power, Rayleigh, smallest extreme value,
truncated extreme value, and Weibull distributions are obtained by transforming
the exponential distribution. By applying the same transformation to the half nor-
mal distribution, eight new competitors for these distributions are obtained.

Inference for some of these transformed distributions is simple using inference
for the original distributions and the invariance principle. Pewsey [15] studied the
half normal distribution HN (u1,0?) and gave confidence intervals for the parame-
ters, we give a better confidence interval for p.

We also studied the Pareto, Rayleigh, and Weibull distributions and give
confidence intervals for the parameters. In the case of the Pareto distribution
Pareto(o, A), the obtained confidence intervals for o and A seem to be new, while
in the case of the Weibull distribution Weibull(¢, \) our contribution was that we
used robust estimators for ¢ and A which are used in the iteration procedures to

find the MLEs.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

There are several useful asymmetric location-scale families that are one pa-
rameter exponential families when the location parameter is known. In this case
inference is simple and the maximum likelihood estimator (MLE) and uniformly
minimum variance unbiased estimator (UMVUE) are important point estimators.
The Burr, largest extreme value, Pareto, power, Rayleigh, smallest extreme value,
truncated extreme value, and Weibull distributions are obtained by transforming
the exponential distribution. By applying the same transformation to the half nor-
mal distribution, eight new competitors for these distributions are obtained.

Inference for some of these transformed distributions is simple using inference
for the original distributions and the invariance principle. Pewsey [15] studied the
half normal distribution HN (u1,0?) and gave confidence intervals for the parame-
ters, we give a better confidence interval for p.

We also studied the Pareto, Rayleigh, and Weibull distributions and give
confidence intervals for the parameters. In the case of the Pareto distribution
Pareto(o, A) which is studied extensively by Arnold (1983) [1], the obtained con-
fidence intervals for ¢ and A seem to be new, while in the case of the Weibull
distribution Weibull($, \) our contribution was that we used robust estimators for

¢ and A which are used in the iteration procedures to find the MLEs.

Definition 1. The population median is any value MED(Y) such that
P(Y < MED(Y)) > 0.5, and P(Y > MED(Y)) > 0.5.



Definition 2. The population median absolute deviation is MAD(Y) =
MED(]Y — MED(Y)]).

Definition 3. A family of pdf’s (probability density functions) or pmf’s

(probability mass functions) f(x,0) : @ € © is an exponential family if

f(z]0) = 0) exp[ Zwl ti( (1.1)

for x € X where ¢(0) > 0, h(x) > 0 does not depend on @ and t;(z) : X — R
does not depend on @. The family is a k-parameter exponential family if k is the
smallest integer where the above equation holds. If £ = 1 and the exponential family
is regular then it is called one parameter regular exponential family denoted by a
1P-REF.

Suppose that Y = t(W) and W = t~1(Y') where W has a pdf with parameters

0, the transformation ¢ does not depend on any unknown parameters, and the pdf

of Y is
dt~'(y)
= fw(t™ :
fr(y) = fw(t™ ()| a0 |
[4]. If Wy, W, ..., W, are iid with pdf fyy(w), assume that the MLE of 0 is @y (w)
where the w; are the observed values of W; and w = (w1, ws, ..., w,)T.

If Y1,Y5,...,Y, are iid and the y; are the observed values of Y;, then the
likelihood is

0= (T T 00 = T awte 0

=1 =1

Hence the log likelihood is

log(Ly (8)) = d+ > loglfuw (t 1(4:)|6)] = d + > _ logl fur-(w;]8)] = d + log[ L (6)]

i=1 i=1



where w; = t~!(y;). Hence maximizing the log(Ly (0)) is equivalent to maximizing
log(Lw (0)) and

~ ~ ~

Oy (y) = Ow(w) = Ow(t " (y1),t (1), -, 1" (4n))- (1.2)

Compare Meeker and Escobar (1998, p. 175).) [11]

This result is useful since if the MLE based on the W, has simple inference,
then the MLE based on the Y; will also have simple inference. For example, If
Wy, Wa, ..., W, are iid ~ EXP(0 = log(c),\) and Y7,Y5,...,Y, are iid Pareto
(0 =€ )\), then Y = e = ¢t(W) and W = log(Y) = t~1(Y). The MLE of (6, \)
based on the W; is (A, \) = (Way, W — W(1)). Hence by (1.2) and invariance, the

~

MLE of (o, ) based on the Y; is 6 = exp(§) = exp(W(1)) = Y1) and

c 1 &
A=W = Way =~ log(V;) —log(Ypn).
i=1

1.2 DISSERTATION OVERVIEW

The Dissertation is organized as follows. The first introductory chapter intro-
duces the new transformed distributions and gives a review of the literature. Chapter
2 studies inference in both the exponential distribution and the half-normal distri-
bution, we give a modified confidence interval for g in the half-normal distribution
which is better than the confidence interval given by Pewsey [15]. The Burr, largest
extreme value, Pareto, power, Rayleigh, smallest extreme value, truncated extreme
value, and Weibull distributions are obtained by transforming the exponential dis-
tribution. By applying the same transformation to the half normal distribution, new
competitors for these distributions are obtained. We studied each of these sixteen
transformed distributions in this chapter by allocating one section for each distri-
bution. In each section we tried to give the pdf of the distribution, and its graph

for selected values of it’s parameter(s). The MLEs and confidence intervals for the

3



parameter(s) were given for several distributions.

In chapter three, we present the results obtained from simulation studies to
establish the actual coverage of the confidence intervals presented in chapter two.
Sample sizes used in the simulations ranges from 5 to 500 and the number of runs
ranges from 100 to 5000. The results of the simulation studies are found to give

support for the confidence intervals presented in chapter two.

1.3 LITERATURE REVIEW
If Y has a (two parameter) exponential distribution, Y ~ EX P(6, \) then the

probability density function (pdf) of YV is
1 —0
f(y)z—exp(— W ))I[yZQ]

A A
where A > 0 and 6 is real. The cdf of Y is

F(y)zl—eXp(— (yge)),yEG

This is a location—scale family. If X ~ EXP()\), then X ~ EXP(0,\) has a one

parameter exponential distribution and X ~ G(1, ) where G stands for the Gamma
distribution. Inference for this distribution is discussed in Johnson and Kotz (1970,
p. 219)[7], Mann, Schafer, and Singpurwalla (1974, p. 176)[10], Bury|[3], Evans[6],
Lehmann[9], and Krishnamorthy/[8§].

If Y has a half normal distribution, Y ~ HN(u, c?), then the pdf of Y is

2 —(y — p)?
exp (CL—
V2r o 20

where ¢ > 0 and y > p and p is real. This is a location-scale family. Let ®(y)

fly) =

)

denote the standard normal cdf. Then the cdf of Y is

Fy) =20("—F) 1

for y > pand F(y) = 0, otherwise. Inference for the this distribution is discussed

by Pewsey [15].



CHAPTER 2
STATISTICAL DISTRIBUTIONS

2.1 THE (TWO PARAMETER) EXPONENTIAL DISTRIBUTION
If Y has a (two parameter) exponential distribution, Y ~ EX P(6, \) then the

probability density function (pdf) of YV is

fly) = %exp (— @)I[y > 0]

where A > 0 and 6 is real. The cdf of Y is

F(y)zl—eXp(— (yge)),yEG

This is a location—scale family. If X ~ EXP()\), then X ~ EXP(0,\) has a one
parameter exponential distribution and X ~ G(1, ) where G stands for the Gamma
distribution. Inference for this distribution is discussed in Johnson and Kotz (1970,

p. 219) and Mann, Schafer, and Singpurwalla (1974, p. 176).

Exponential Distribution Exp(1) PDF

1.0

0.8

0.6

0.4

0.2

0.0

Figure 2.1. Plot of the pdf of the Exponential Distribution



Let Y1,..., Y, be iid EXP(0, \) random variables. Let Y{;y = min(Y1, ..., ;).
Then the MLE

n

S <Y(1)> % > (Vi Y(l))) = (Y, Y = Y)-
i=1
Let D,, = nA. For n > 1, an exact 100(1 — )% confidence interval (CI) for 6 is

(Yay = All@) V070 =1, Yiyy) (2.1)
while a 100(1 — «)% CI for A is

2D, 2D,
5 =3 . (2.2)
X2(n-1),1—a/2 X2(n—1),a/2

where P(X < x7,) = « if X is chi-square with n degrees of freedom.

Let T, = Y0 (Y — 0) = n(Y — 6). If 0 is known, then

) "y 6
)\GZZZZI( 9) Y_e

n =
is the uniformly minimum variance unbiased estimator (UMVUE) and maximum

likelihood estimator (MLE) of A, and a 100(1 — «)% CI for A is
2T, 2T,
5 =3 : (2.3)
Xon1—-a/2 Xona/2

Let X; =Y, — 0= X;,..., X, are iid EXP(\) random variables. Then

Proof:

Xy, ..., X,, are iid Gamma(1, \)
=U=5",X;=>",Y;—0) ~Gamma(n,\)
=W =2U=2%"(Yi—0) ~ Gamma(n,2\)
=V =W/ ~ Gamma(n,2) ~ x3,

= l-a= P(Xgn,a/2 <V< X%n,l—a/2)

_ 2 230, (Yi—0) 2

= P(in,a/z < 5 < in,1—a/2)
_ 1 A 1

o P(Xgn,lfa/Z < 227:1(Y7’_9) < X%n,a/Z)



— P(2227:1(Yi_9) < )\ < 22%1(3@—9))‘
Xon,1—a/2 Xon, a2

Using x2./v/n ~ V22, + /1, it can be shown that \/n CI length converges
to AM(z1—a/2 — Zay2) for Cls (2.2) and (2.3) (in probability). It can be shown that n
length CI (2.1) converges to —Alog(«) [12]. Proof:

X%n,a/2/v 2n ~ \/§Za/2 + V2. (A)
= X%n,a/2/\/_ = \/§X§n7a/g/ V2n & \/5[\/5204/2 + v 277,]
=222+ 2N = 2(2aj2 + V1) (B)

Now

v/n CI length = \/5(22%1(}/1' —0) _ 22;;:1(3/1' - 9))
Xon,a/2 Xon1-a/2

— 2 22;1 (Yi — 9) 2 22;1 (Yi — 9)

= X%n,a/2/\/ﬁ - X%n,l—a/2/\/ﬁ
2 22;1 (Yi _ 9) 2 22;1 (Yi _ 9)
2(2a2 + V1) 2(z1—aj2 + /1)
_ 22;1 (Y — 9)[zl—a/2 - Za/z] 1/n
(zaj2 + V1) (21-as2 + /1) 1/n

) and by (B) above, this equals:

DL ) [ BV Y R N P

n an

since
a, — 1.

Also
—-1/n—1 __ 1 0
li —-1/n—1 __ 1] = 1i Oéi _ -
imnfa | =lim Tn 5

so by L’Hopital Rule the limit equals

a”/"tlog(a)(—1/n?)
—1/n?

lim

= —log(a)lima™"" = —log(a).



Hence, n length CI (2.1) converges to

limnA[a™/""t — 1] = —Xlog(a).

2.2 THE HALF NORMAL DISTRIBUTION

If Y has a half normal distribution, Y ~ HN(u, 0?), then the pdf of Y is

2 —(y —p)?
f(y)zmaexp( = )

where ¢ > 0 and y > p and p is real. This is a location-scale family. Let ®(y)
denote the standard normal cdf. Then the cdf of YV is

Yy—H

Ply) =20(

)—1

for y > p and F(y) = 0, otherwise.
EY)=p+o0\/2/m =~ u+0.7978850.
VAR(Y) = Z=2) ~ 0.36338002.

Half-Normal Distribution HN(mu = 0, sigma = 1)

0.8

f(x)
0.4
|

0.2

0.0

Figure 2.2. Plot of the pdf of the Half-Normal Distribution



This is an asymmetric location—scale family that has the same distribution as
u+ o|Z| where Z ~ N(0,1). Note that Z? ~ x?. Hence the formula for the rth
moment of the x? random variable can be used to find the moments of Y [12].

MED(Y) = u+ 0.67450.

MAD(Y) = 0.39909160.

Notice that

fly) =

2
Iy > p)exp [ (==)(y — p)?
o (y > p)exp {(202)(@/ 1) }
is a 1P-REF if y is known. Hence © = (0,00), n = —1/(20?) and Q = (—o0,0).
W= (Y —u)?~G(1/2,20%). If Y1, ..., Y,, are iid HN(u, 0?), then

T, =) (Yi—p)’ ~ G(n/2,20”).

If 1 is known, then the likelihood

Lo = ¢ exp {( LS —u)z] ,

202

and the log likelihood

log(L(0)) = d = log(0?) = 55 > (ui — n)”

Hence

log(L(0%)) = e+ =3 (s — p)? 20,

_d
d(o2) 2(0%) " 2(02)?2

or > (y; — u)? = no? or

Notice that

d? )
a7y ) =
no >y —p)? _n _n&zg_—n<0
2(0?)? (02 Joige 20672 (02)32 267




Thus 62 is the UMVUE and MLE of ¢? if p is known, while i = ¥{3 is the ML

estimate of pfor the case where o is known.

Likelihood Based Confidence Intervals
Let Y ~ HN(p,0%),Y = p+0X,X = |Z|, Z ~N(0,1)

Since 62 = 2= 0 4hen ng? = S (Yi—p)Pr=>" (0X)*=> %2 ~ X2

n

62 is a consistent estimator of o2 if u is known and the 100(1 — )% confidence

interval for o2 is
Ty Ty
2 Ny
Xn,l—% Xn,%

where T,, = >0 (V; — p)?. If p is unknown, let D,, = 37" (Y; — Y{1))?. Then a

( ) (2.4)

100(1 — a)% large sample confidence interval for o2 is

D, D,

2 ) 2
Xn-11-2¢ Xn-1,2

( ) (2.5)

see corollary 2.1 below.

Pewsey [15] states that the limiting distribution of the MLE /i = Y(y) is

(=) [o27 (5+3)] — BEXP(1)

where ®(-) denotes the distribution function of the standard normal distribution.
It follows, therefore, that fi is a consistent estimator for . An approximation to
@‘1(% + %), based on a first order Taylor series expansion of the standard normal
density, is given by (7/2)'/2/n. This approximation is accurate to 2 decimal places
for n = 10, and to 5 decimal places for n = 50 (Ref. [15], p. 1048).

An approximate 100(1 — «)% confidence interval for p is given by

«a 1 1 «Q 1 1
i+ 6olog(=)d ' (= 4+ — ), ai+6log(l— =)' [ =+ — 2.
+oroa@et (o) irorog- 50 (3 L)) e

10



o =Y o
Pllog(§) < 2 < log(1 - )

= P(Y)+ 0@ '3+ ) log(%) <p <Yay+o0d ' i+ LH)log(l—2))~1—oa.

Examining (2.1), we suggest that a new and better CI is

1 13

(i + 6 log(@)@ (5 + 5 ) (1+ ). ) (2.7)

n?
If 0 is known then a large-sample confidence interval for p with the same nominal
confidence level is obtained by substituting o for ¢ in (2.7). Pewsey (2002, p. 1048)

said that

D, 2 2,
This can’t happen as since the righthand limit depends on n, hence we introduce
the following theorem.
Theorem 2.1. Let T, = > | (YV; —p)? and D,, = Y7, (V; — Y1)
Then
D, —1T, D, —02)(3.

Proof.

D =35 (Yi = pt = Yay)

= > (Vi) + 2370 (Y — ) (= Yoy) + 2oy (1 — Y)?

11



=T +n(p—Yn)? = 2(Y) — p) 20, (Yi — p).
then 2 = T + L4 (V) — po))? — 220 B o)

n o2

=
o2 n o o no
Pewsey (2002, p. 1048) showed that
Yo)—n D
creTeeen) B
and since

®'(5+3:) D
272w T,
Vi

Y

then, by Slutsky’s Theorem

Y-n @ (5+5)
Ealer=s) v

Hence

nw-w - Do pyp(l).
\/gg B ()

By the law of large numbers, the third term

where Z; = Yi;“ ~ HN(0,1).

Since

W 2 JFEXPQ),

o

l[n(Y(n—H)]z L0

3

12

(2.8)



Hence

Du-Ty, D, 0—2,/FEXP(1),/2 = —2EXP(1).

o ™

Or
D,—T, 2 —o*2% QED
Let V,, = 0%x3 and T,,—, = >~ F(V; — u)%. Then
Dy=Twp+ > Yi—p)’-V,
i=n—p+1
where
D
B = X
Hence
Dn — 1+ Z?:n—p—l—l(yri - IU“)2 . Vn
Tn—p Tn—p Tn_p
Hence
T’ijp Lo
Since
Toyp <« Yi— 1)\ 2
0-2 - ;( o ) ~ Xn—p>
D,
LN

o2

where p is a nonnegative integer. Pewsey (2002) used p = 1.

Corollary 2.1. If p is known, then a 100(1 — «)% confidence interval for o

T, T,
( ; ) (2.9)
Xi@-g Xi,g

13
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and if p is unknown, then a large sample 100(1 — )% confidence interval for o is

D, D,
( | ) (2.10)
X%—m—g Xi—L%

Using x2,./v/n = V2Z, + /n, it can be shown that \/nCI length converges

in probability to \/ﬁaz[Zl_a/g — Zayo) for Cls (2.4) and (2.5). Also it can be shown
that nC'I length converges to —o log(a)/m/2 for CI (2.7).

Proof:
T, T,
VnCI length = /n(—— — — )
Xn,a/2 Xn,l—a/2
_ (Zyzl(yi — p)? _ > i (Yi— N)z)
Xi,a/z/\/ﬁ X?m—a/z/\/ﬁ
_ > (Vi —p)? _ Do (Yi—p)? (1/n
\/§ZQ/2 +v/n \/521—04/2 +/n"1/n
n — )2 [z —2z
= LR e el Dy 352y oy — zapd
since

a, — 1.

Now nC1 length of (2.7)
1 1
= n[ed =4+ — |1
n[o (2 + Qn) og aj

~ —ologay/7/2

since a Taylor series approximation of @~ (3 + =) is (7/2)"/%/n.

14



2.3 THE BURR DISTRIBUTION

If Y ~ Burr(¢, A), then the cdf of Y is F(y) =1— exp(w) =1—-(1+

A
y‘ﬁ)(_%) for y > 0 and the pdf of Y is
_1_ gy*!
f(y) - A(1+y¢)1+%’y > 0>¢ > 07)\ > 0
Let W = log(1 + Y?), then
P(W <w) = P(log(1+Y?) <w) = P(1+Y? <e¥) = P(Y < (¢¥ —1)¥)
— 11+ (e —1)%)9) T =1—[l+e* — 1] % =1—e%.

Hence W ~ EXP()).

Let Y = (eV — 1)%. Then
Fy(y) = P(Y <y) = P((e" = 1) <y) = P(" —1 <y?) = PV <1+y%) =
P(W < log(1 +y?)) = 1 — exp(—2H0),

Hence Y ~ Burr(¢, A).

Burr Distribution Burr(phi=2, lambda=1)

0.4 0.5 0.6
!

f(x)

0.2 0.3

0.1

0.0

Figure 2.3. Plot of the pdf of the Burr Distribution

15



2.4 THE HBURR DISTRIBUTION
If Y ~ HBurr(¢,\), then

¢—1 _(log(y® 2
F(y) = 75 % exp(REFIE) 1y > 0,6 > 0,0 > 0.

If W has a half normal distribution, W ~ HN (0, \),
letY:(eW—l)%. Then V¢ =eW — 1=V =V?+1
=W =s5(Y)=log(Y?+1).

ds —(log(y® —0)2 _
Then  fy(y) = gw (s(y))| S| = - exp(—HEU LI L gyo-!

_ 2 —(log(y?+1))* \ gy? !
 V2rA ex ( 222 ) yP4+1"

=Y ~ HBurr(¢, \).

y >0,

HBurr Distribution HBurr(phi=2, lambda=1)

f0)
02 03 04 05 06 07
1

0.1

0.0

Figure 2.4. Plot of the pdf of the HBurr Distribution

Let W = log(1 + V%), then Y = (W) = (" — 1)%

= gw(w) = fy(r(w)| | = 2

_w?

= exp(—352)

1
(e —1)F]271 1 1/ w 11 w
(e —=1)?% e
[(ew—1)%]¢+1 |¢( ) |

1 1
_ _2 2\ pev=1)(e¥=1) ¢ 11 (e¥=1)Pe®
— Vam exp(—g5z) (e —1)+1 5=

16



_ 2 w91 |1/, w
_\/%Aexp( 2’\2)(ew_1)%ew|¢(e
2

_w_
- A Fwz0

= W ~ HN(0, \).

Let Yi,Yo, ...,

n

- 1)%_16w|

¢n Hz 1 yz

Y, be iid HBurr(¢, A),and if ¢ is known, then the likelihood

—(log(y?’ +1))°

L) =] fw) = (—

Vo T,

and the log likelihood

log L = nlog(2) — nlog(v2r) —nlog A — Z

2577 (log(yf +1))?

eXp(

1) PP )\ );

(log( yZ +1))

2 +nlog¢

log(y + 1)).

+ Z —1)logy; —
Hence
dlogL —n
a0\
or

Zz l(log(yl _I_ 1

A2 =
n
n "
d’logL| __ n 3301 (log(yf +1))°
Notice that =—5=[{ = 35— 3

A if ¢ is known.

17
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2X3

¢zlm%+m.
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2.5 THE LARGEST EXTREME VALUE DISTRIBUTION
If Y has a Largest Extreme Value, Y ~ LEV (0, 0),
then the pdf of YV is

£(9) = — exp(— (=0 expl - exp(~(2

g

where y and 6 are real and o > 0. This distribution is a location scale family. The

cdf of Y is

F(y) = exp[— exp(—(

LEV Distribution LEV(theta=0, sigma=1)

0.2 0.3

f(x)

0.1

0.0

Figure 2.5. Plot of the pdf of the Largest Extreme Value Distribution

IfW~EXP(1),let Y =—clogW + 6. Then

020, —c0o< y < o0

=Y ~ LEV(0,0).

Let W = exp(—Y%). Then Fy(w) = P(W < w) = P(exp(—(yge)) < w) =

o

18



P(-220 < logw) = P(Y — 0 > —glogw) = P(Y > 0 - ologw) = 1 -
exp(—exp(—w» =1 —exp(—w)

= W ~ EXP(1).

2.6 THE HLEV DISTRIBUTION
If Y ~ HLEV(6,)), then the pdf of Y is

fly) = %%exp(—(y ; 9))eXp(—%[eXp(ﬁ)]z),y €R, 0€R \>0,

HLEV Distribution HLEV(theta=0, lambda=1)

0.5

0.4

f(x)
0.3

0.2

0.1

0.0

Figure 2.6. Plot of the pdf of the HLEV Distribution

If W has a half normal distribution, W ~ HN(0, 1),
then gy (w) = \/%exp(_Twz) for w > 0. Let Y = —Alog(W) + 6, then W = s(Y) =

exp(—157)
2 — exp(24=0) =0\ -1
= fr(y) = gw(sW)| 757 = Z= exp(——F>—) | exp(—=*57) 5|




= 21 exp(— 52 exp(—Jlexp(<452)?),y € R, 6 € R, A >0,

=Y ~ HLEV(0,)).

Let W = exp(= (Y =) then Y = r(W) = —Xlog(W) + 6

= gw(w) = fy(r(w))| 5|

= 2 exp(— MBI ) oy (— [exp(— (CARERHEO2) | 24
= 2 exp(log(w)) exp|— §u?] (2) = —Zswexp(—14)2

— \/__ —wT’ > 0.
= W ~ HN(0,1).

2.7 THE PARETO DISTRIBUTION

If Y has a Pareto distribution, Y ~ PAR(c, ), then the pdf of YV is

1,51/A
_ A
f(y)—m

where y > 0, 0 > 0, and A > 0. The cdf of Y is F(y) = 1 — (¢/y)"/* for y > 0.

Let W = log(Y'), then
PW <w)=Plog(Y) <w)=PY <e*)=1—(2)x =1—(0e ™) = 1—gre~.

Hence

fw(w) = —U%eTle = %aie
= W ~ EXP(0 =log(o), \).
If W~ EXP(0 =1log(c), ), let Y = e"'. Then

Fy(y) = P(Y < y) = P(e" <y) = P(W < logy) = 1 — exp(—eyloac))

=1 [ Ogy log(crk)] - 1= U%g*ligy —1_ O'Xelog(y )\1) . U%y%

1.3
= fly) =tory 31 =27 y>o0

y X

=Y ~ PAR(o, \).

20



Pareto Distribution PAR(sigma=1, lambda=1)

1.0

0.8

f(x)

0.4

0.2

Figure 2.7. Plot of the pdf of the Pareto Distribution

Let § = log(c). The MLE (8,)) = (Wu), W — W), and by invari-
ance, the MLE (6,\) = (eé,W — Wuy) = ("0, L5 logV; — logYy)) =
(Yay, 5 i (log Vi —log Yuy)) = (Yuy, 5 200 log(Yi/ i)

If 0 is known,

§ _ i, log(¥i/o)
n

is the UMVUE and MLE of .

Inference is simple. If § = log(c) so o = €%, then a 100 (1 — a)% CI for @ is
(2.1). A 100 (1—a)% CI for o is obtained by exponentiating the endpoints of (2.1),
and a 100 (1 —a) % CI for Ais (2.2). Let D, = S0 (W, — W) = nA. For n > 1,
a 100(1 — a)% CI for 0 is

(Way = Alla) ™0 — 1], W),
Exponentiate the endpoints for a 100(1 — «)% CI for o to get
(exp(Wory = Ml(e) ™70 — 1]), exp(Win)))- (2.11)

21



A 100(1 — )% CI for A is

2D, 2D,
(75

X2(n—1),1—a/2’ X%(n—l),a/2

). (2.12)

These two exact Cls seem to be new.

Let Y1,Y5,...,Y, be iid PAR(o, \), then the likelihood
n n  xol/A ni - *\n 1"
L(A) = Hi:l f(yi) = Hi:l ;1+—1/A = G) (U;) Hi:l y1++/A
and the log likelihood
log L = nlog(A) + % log(o) — 221, (14 ) log .

Hence

dlogL __ n nlogo n ) 1Ny _ n nlogcr
A X T2 _Zizllogyl(_)\Z) - TN _l_)\Z Zz 110gyl =0
27:11%(%)

n

= %[2?21 logy; —nlogo] =n = \ =
Notice that

UL I RS VR TP

d*log L n  2nlogo 2 Z log 11

i=1
_ Py g A logo)n® 20050, log s
\2 (i log )3 (321 log £)?
3 n n
n n
= — + n—yi[QZloga — ZZlogyi]
)‘2 (Zi:l log ;)3 i=1 i=1
n 3
n ’yZ n n
A2 " (i log ; o (X log o)
2 2 3
_ o n < 0.

(e log £)* (31, log )
Hence ) is the MLE of ) given o.

If neither ¢ nor A are known, notice that

) = Sy expl-(EL By, > o),

22



Hence the likelihood

n

log(y; l
L(\ o) = c— exp|— Z o(y:) = log(o ))]I(y(l) >0)
i=1

and the log likelihood is

n

log L%, 0) = [d — nlog(x) — (BB > )

i=1

Let w; = log(y;) and 6 = log(o), so o = ¢’. Then the log likelihood is

- 'LUZ—Q)

log L(, o) = [d — nlog(A) = > ( X

i=1

WM (wiy 2> 0),

which has the same form as the log likelihood of the EXP(6, A) distribution.
Hence (X, 0) = (W — Way, W), and by invariance, the MLE

(\,6) = (W = Way, Ya)).

A second equation (corresponding to dlog L/do = 0) can not be obtained in
the usual way since log L is unbounded on the random variable Y, log . must be

maximized subject to the constraint:

o < minY;.

By inspection, the value of ¢ which maximizes L is
o =minY; =Yy

S0,

n v;
Zi:1 log( Yo, )

n

X:

23



2.8 THE HPARETO DISTRIBUTION
IfY ~HPAR(O,)\), then

F(y) = 5 exp(~l8esll) 4 > 9, ) > 0, and 0 > 0.
This distribution is unimodal with the mode at y = § and f(§) = —=2

V270

HPareto Distribution HPAR(theta=1, lambda=1)

0.6 0.8
!

f(x)
0.4

0.2

Figure 2.8. Plot of the pdf of the HPareto Distribution

Proof:

From the graph , the mode occurs at Y{;y = 0. Also from the formula of the pdf of

Y we want to maximize \/2_%/\!/ exp(%}}ogw)

In addition, dfd—;y) has no zeros on (6, 00). Proof:

and that happens at Y{y).
log(f(y)) = ¢ — logy — (oL os0)”

So flog f(y) =0~ — yz(logy —log0); = ;[~1 — 35(log(§))] := 0

or

1=57log(4), ory = 0e—*" which is not in support of V.

If W has a half normal distribution, W ~ HN(u, o),

)2
then g (w) = -2 exp(4#5), w > p.

24



Let Y = e, then W = s(Y) = log(Y)

=

ds(y) _ 2 —(log(y)—u)2)|1|

i) = gu(s())| T P = o exp( o

(w=p=logly) 2p=y=e">0=[y=y)

2 —(log(y) — p)?
y\/%o' exp( 20’2

)

log(y) > u, soy > et = 0.

Let # = e, X\ =o,then f(y) = \/%/\y exp(_(log(yz);og(e))z), y >0,

=Y ~ HPAR(9,\).

Let W =1log(Y), then Y = r(W) = eV

dr(w —(log(e®)—log(9))21 w
= g(w) = fy(r(w))| 2] = 22— exp|~REoEO ]

= 2 _exp —(w—p)® ,where p = log(f).
V21 2\

(w)

So g(w) = & exp(— Jyw>p, A=0

= W ~ HN(u,o).

Let Y1,Y5,...,Y, beiid HPAR(0, \), then the likelihood
n n n —(log(y;)—lo 2
L(6,0) =TTy f (i) = ()" s exp(oi, (FHE s 1y > ),
and the log likelihood

log L = nlog(2) — nlog(v/2mA) + 30, —log(y;) + >, —Uoslos0)?

n  (logy;—log6)?
P it

=c—nlogh—>" logy, —
In order to maximize log L, we need to minimize >, (logy; —log #)? subject to the
constraint y(;y > 6. This occurs when ¢ = yy. Hence MLE 6 = Ye)-

For this choice of 6,

dlogL n i —2(log y; — log 6)?
DY 2\3

>/

=1

25



-n 1 & 9
N e pa (log y; —log y())” := 0

or

\2 _ 2iza(logyi —logy)®
n )

or

5 _ \/ > i (log y; — log )

n

Notice that

d*log L n 3

- n
VIV = 3 ;;(IOgyi —logym)? = ;[1 —3] <0

Hence ) is the MLE of \.

Likelihood Based Confidence Intervals
Let c = A\, W =logY then W ~ HN(u = log(0),0 = \),
so (2.4) is a CI for ¢ = ); that is, a large sample 100(1 — a)%CI for A\? if 6 is

unknown is

( nA2 nA\? )
2 742
Xn-11-2 Xn-1,2
or

(Z?zl(log yi —logy))® i, (logy; — log y(l))z) (2.13)

X%—m—% ’ Xi—lv%
If 6 is known, then a large sample 100(1 — o) %CT for A\? is
i (logy; —log0)® Y21 (log y; — log )?
(Zz:l( ogy 0g ) ’Zzzl( ogy o8 ) ) (214)

X?L,l—% X?L%
Taking square roots of the endpoints gives a large sample 100(1 — a))% CI for A.

A CT for p = log(f) is given by (2.7), that is, a large sample 100(1 — «)% CT for
log(0) is

1 13

A 1 R
—1 - T -
(log 6 + Nlog(a)® (2 + Zn)(l + nz),loge)

26



so exponentiate the endpoints of (2.7) for a CI for 6 :

(B exp(Mog(@)2™ (5 + 5 )1+ 2)).6)

2n n?

or
1 13

. 1
-1
(Vi exp(Alog(a)® (5 + ) (14 3)), Vo). (2.15)
2.9 THE POWER DISTRIBUTION

If Y has a Power distribution, Y ~ POW (), then the cdf Fy(y) = y%, 0<
y < 1, and the probability density function

fly) =13 0<y<1,A>0

POWER Distribution POW(lambda=0.2)

f(x)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.9. Plot of the pdf of the Power Distribution

Let W = —log(Y'), then

IN

Fy(w) = PW < w) = P(—log(Y) < w) = P(log(1/Y) < w) = P(+
) =

>

ey =PY >e")=1—-—PY <e™) =1-Fy(le™) = 1— (exp(—w))

1~ exp(52).w > 0

27



= W ~ EXP(\).
If W~ EXP()\), let Y =e ", Then

Fy(y) = P(Y <y) = P(e™" <y) = P(=W <log(y)) = P(W > —log(y))
—1— P(W < —log(y)) = 1 — Fiw(—log(y)) = 1 — (1 — exp(——52))
= exp(*8Y) = exp(log(y*)) =y*,0 <y <1, A > 0.

= Y ~ POW()).

Let Y7,Y5,...,Y, be iid POW ()), then the likelihood
LN = [T, f:) = ()" T, %> ", and the log likelihood

log L = —nlog A+ > 1 (5 — 1) log y;.

Hence
dlogL:—_n . —_110gyi —0
dA A — A2

or

oo _—1 y log yi,

A A2 —
or

A= — D logyi.

n

Notice that

WA :A——I—Q

?log L 2 © " logy: " logy;
Tlogby 1 2N gy, = Dqp 2zt 08l _ 1y 208y gy
2 a2 € a2 nA? a2

Hence ) is the MLE of \.

By (2.3), an exact 100(1 — a)% confidence interval for A is given by

2T, 2T,
5 y , (2.16)
Xon1—-a/2 Xona/2
where T, = >0 (W; —0) = —>""  log¥;. Hence, a 100(1 — a)% CI for A is
=237 log¥; =237 logV;
22: =1 , 22 L . (2.17)
Xon1-a/2 Xon,a/2
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2.10 THE HPOWER DISTRIBUTION
If Y ~ HPOW (M), then
F(y) = sk exp(28WE) [0 <y < 1], A > 0.

222

HPOWER Distribution HPOW/(lambda=0.08)

f(x)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.10. Plot of the pdf of the HPower Distribution

_)\2) _

This distribution is unimodal with mode at y = e and f(e

e
[v)
>t

Proof:

oo )2
log(f(y)) =c—logy — %‘

So f1og f(y) =0+ — — 5z(logy)y = {[~1— = (log(y)] =0

or

1= Ftlog(y), ory = e,

or

—\o ? - —(lo 2 _
L f(y) = 2 exp(“UEEE) (52 log(y) L) + exp(ZUBWE) (=)

= \/ﬁ?\yz exp(_(l‘;%\(f))z)[%log(y) + 1] := 0, but the first two terms can’t be zero,

29



hence /\—12 log(y) + 1 =0 or =A% = log(y) or y = e~**. Notice that

P f(y) —2 —(log(y))?,, 1

e = e )
(5 Tosly) + D (o exp( 1B

N iy Vg P M=

since the first term is less than zero and the second term is zero because (53 log(y)+1)

)\2

at y = e is equal to %log(e_’\z) +1=—-1+1=0. Hence y = e is a local

maximum for f(y). So the mode is at y = e,

If W has a half normal distribution, W ~ HN (0, \),

then gy (w) = \/22—7”\ exp(_(;"/\_zo)z),w >0, \>0.

Let Y =W, then W = s(Y) = —log(Y)

ds —(=1o 2
= ) = gw (sW)IGH = Z exp(=58) | -

—(log(y))2
— \/%/\ly exp(i(lf\(zy)) [0 <y <1]

=Y ~ HPOW ().

1
n

Let W = —log(Y),then Y = r(W) = eV

dr(w —(log(e~))2 —w —w
= g(w) = f (r(w))| S| = 2oL exp[-1EE 70 < e < 1]je )|
]

— ﬁexp(%)[[0§w<
— W ~ HN(0,\).

Let Y7, Y5, ...,Y, be iid HPOW (), then the likelihood
n n n —(log?(y;
L) =TT fy) = (7Z5)" e P i (FU52 ) Ty > 0)] (ymy < 1),
and the log likelihood

logL =c—nlogA—> " logy;+> i\ — [lgg(zyi)]z‘

Hence
n

dlogL  —n Z —2[log y;)?

TN &
_ o, 2inllogyl®
== + e =0
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or
n_ > [logyil®

A A3 ’

or

i [Tyl

n

Notice that

d*log L n o Y. 3llogyl*  n
e b= T o5y =513 <0

A2 M A2
Hence ) is the MLE of \.

Likelihood Based Confidence Intervals

Let W = —logY then W ~ HN(0,)\), then W = 0+ AX = AX, X =
|Z|, where Z ~ N(0,1). Since A\ = \/w, then n\> = Y7 [logVi]*> =

Yo [logle™ )2 = S0 WE = N X2 = "/\%2 ~ Xn. Hence a large sample
100(1 — a)% CI for A\? is

( nA?  n\?

X?L 1_a ’ X?L a

T3 2

(Z?ﬂg‘)g(yi)]z’ > iy [log(Y7)]?

2
Xn,l—% Xn,%

) =

). (2.18)
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2.11 THE RAYLEIGH DISTRIBUTION

If Y has a Rayleigh distribution, Y ~ R(u, o), then the pdf of Y is

fl) =L e [—% (& “)]

where 0 > 0, p is real, and y > p. The cdf of YV is

F(y)=1—exp [_% (y;M)zl

for y > u, and F(y) = 0, otherwise.

Rayleigh Distribution RAY (theta=0, sigma=1)

f0)
04 05
1

0.3

0.2
|

0.1

0.0

Figure 2.11. Plot of the pdf of the Rayleigh Distribution

Let W= (Y —p)?, then Y = r(W) = p+ VW, and

Fyy(w) = gw (r(w))| 5l | = SR exp(—

— L exp(54) = W ~ EXP(202).

If W~ EXP(20?), let Y = /W 4 p. Then
Fy(y) = P(Y <y) = P(WW +p) <y) = PWW <y —p) = P(W < (y — p)?) =
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1 —exp(= (y “) Yoy >, 0>0
=Y ~ R(u,0).
Let Y7,Y5,...,Y, beiid R(u, o), then the likelihood
L(o) = TTiZ fyi) =TT, (454 exp 320, —5(424)?,
and the log likelihood

log L(o) = 32i; log(*

#) + 2~ ()

Hence
dlogL <~ 0% (n—y)20 I~ Yi— iy =Y
> 1 522 ()
do Y — o 2 — o o
N2 N 3#) _0
i=1 i=1 g
or
2n _ Z?:l (yi — ,U)z
o o3 ’
or
2 2im i =)
2n ’
or
~_ Z?:l(yz
U_\/ 2
Notice that
d?logL "2 K3y —w)? 20 3(2n)  2n

Hence ¢ is the MLE of o if 1 is known.
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The confidence interval for 2 when p is known will be derived next.
If p1 is known, let W = (Y — p)?, then W ~ EX P(20?%). By (2.3), an approximate

100(1 — @)% confidence interval for A is given by

27, 27,
n - . (2.19)
Xon1—-a/2 X2na/2

where T, = >0 (W, —0) = S0, (W) = S0 (Vi — )2 Set A = 202 then, a

100(1 — a)% CI for o2 is

<Z?:1(Yi -1 Y- Wz) . (2.20)

Y

2 2
Xon1—a/2 Xon,a/2

Likelihood Based Confidence Intervals

If both x4 and ¢ are unknown, then the M LE(ji,5) must be found before ob-
taining Cls. The log likelihood
log L(j1, ) = Yoo log(Ut) + Y0, —3(tst)?

=—2nlog(o) + Y1 log(yi — 1) — 5oz Yoy (i — 11)°

Hence
dlogL  2n 1< -
7o 2—74';2(%—,“) =0
i=1
gives
n 0 2
G52 = W (2.21)

Also
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gives

IR Sy np
Z(yi—ﬂ)lzg (?Jz’—,u):il——
=1 =1

or

p— T D wi—mw.

n-  o? —
One way to find the MLE is by iteration using Newton’s method, where start-

ing values can be found using the method of moments. Newton’s method is used to

solve g(@) = 0 for @, where the solution is called 8, and uses

Op+1 =0 — [Dg(ek)]_lg(ek)

where
201(0) ... £a(0)

Dy =

a%lgp(e) nggp(e)
If the MLE is the solution of the likelihood equations, then use g(0) =

(g1(0), ..., g,(0))T where
0

~ 06,

Let Oy be an initial estimator, such as the method of moments estimator of 6. Let

9:(0) log(L(8)).

D = Dg(O)' Then
0 02 n 02
D;; = a—ejgi(e) = m log(L(0)) = 2 89i89j log(f(xx|@)),
and
Loy = 552 erxien 2 B[ -2t (x 1))
n v n 1 8918@ o8 F 8918@ o8 ’

Newton’s method converges if the initial estimator is sufficiently close, but
may diverge otherwise. Hence /n consistent initial estimators are recommended.
Newton’s method is also popular because if the partial derivative and integration
operations can be interchanged, then

1 D
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For example, the regularity conditions hold for a kP-REF. Then a 100 (1 — a)%

large sample CI for 6; is

0; + 2100\ — D'

where

This result follows because

Next, apply the above results to the Rayleigh (u, o) distribution (although no
check has been made on whether the regularity conditions hold for the Rayleigh
distribution which is not a 2P-REF).

2n0) = (TT5" ) exp |- 50 Sl - 7).

Notice that for fixed o, L(Y{1),0) = 0. Hence the MLE i < Y{;). Now the log

likelihood

g

los(L(11.0) = > logy — ) — 2nlog(o) — £ 3~ I

Hence g1 (p, o) =

n

Solog(Llna) = =30 4~

2
;— o
- Ji T H i=1

and gs(p, 0) =

n

0 _ —2n 1 o set
%bg(L(M,U))—T*'g;(yZ—M) =0,

which has solution



To obtain initial estimators, let &) = /52/0.429204 and fip = Y —

1.2533146,. These would be the method of moments estimators if 53, = 2=1s2

s
was used instead of the sample variance S?. Then use yo = min(fiar, Y1) — fiar) and
= /2 (Y; — 110)2/(2n). Now 6 = (u,0)" and
20:0)  Z2q(6)
Dge) =

20,8)  Z:(0)
> ict (yl 02 o2 _% > i (Wi — )
—ZY i) B (- w)?
So

- Z?:l m - % _% Z?:1(?/i - ,Uk)
0141 =0, — g(0y)
—f—z Z?:l(yi — k) i—g - f_i Z? 1(?/ ,Uk)

Q(Ok) _ < 91(9k) ) _ < a%lOgL(ek) ) _ _ZZ 1W_ 2 ZZ 1( )

o Tt o i (v — )’
This formula was iterated for 100 steps resulting in 8191 = (1101, 0101)7 . Then

we took fi = min(p01,2Y{1) — p101) and

2n

Then @ = (4,6)7 and D = D _ , . Then (assuming regularity conditions hold) a

9
100 (1 — a)% large sample CI for p is

fi £ 21 a2\ — D17 (2.22)

and a 100 (1 — a)% large sample CI for o is
6+ 21-a/2\/ — D3 - (2.23)

37



2.12 THE HRAYLEIGH DISTRIBUTION

y—0 exp_(yi_f)4 for6 > 0, A >
2

If Y ~ HRAY(0,)), then f(y) = -

0,y >0.

HRayleigh Distribution HRAY (theta=0, sigma=1)

1.0

f0)
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1
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|
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0.0

0.0 0.5 1.0 15 2.0 25 3.0

Figure 2.12. Plot of the pdf of the HRayleigh Distribution

If W has a half normal distribution, W ~ HN(0,)), then gw(w) =

\/22—“ exp(_(;”/\_zo)z),w >0.Let Y = VW +0, then W =s(Y) = (Y —0)*

=
) = (s 52 = e = )
4 (-0

= o = Oexp(— )
for >0, A\ >0,y >0,
=Y ~ HRAY (0, )\).

Let W= (Y —0)? then Y = r(W) = vW +6
= g(w) = f(r(w))| L] = —A- (v + 0 — 0) exp[ )| 1|

—w?
= —ﬁ—m \/z_uexp(w)ﬁ
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- \/227,\ eXp(ETw;% w =0
— W ~ HN(0,\).

2.13 THE SMALLEST EXTREME VALUE DISTRIBUTION

If Y has a smallest extreme value distribution, Y ~ SEV (0, 0), then the pdf

of Y is
£ = - exp( ") expl - exp(L=0)

where y and 6 are real and o > 0. This distribution is a location scale family.
The cdf of YV is

F(y) =1~ expl-exp(20)).

SEV Distribution SEV(theta=0, sigma=1)
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|

f(x)
0.2

0.1

0.0

Figure 2.13. Plot of the pdf of the Smallest Extreme Value Distribution

Let W = exp(®=%). Then Fy(w) = P(W < w) = Plexp(¥:?)
w) = P2 < logw) = P(Y — 0 < ologw) = P(Y < 60+ ologw)
1 — exp(— exp((BH1E0=0)) — 1 exp(—w)

= W ~ EXP(1).
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IfW~EXP(1),let Y =0clogW + 6. Then
Fy(y)=P(Y <y)=P(oclogW+0 <y)=P(loghV < L& 9) P(W < exp(y—)) =

1 —exp(— exp((y ), 0 >0, —00 < y < 0.

=Y ~SEV(0,0).

2.14 THE HSEV DISTRIBUTION
If Y ~ HSEV(6,)), then the pdf of Y is

.y .y
fly) = \/22_7m exp(Z A )eXp(—%[eXp(yT)]QLy €ER R X>0

HSEV Distribution HSEV(theta=0, lambda=1)
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0.0

Figure 2.14. Plot of the pdf of the HSEV Distribution

If W has a half normal distribution, W ~ HN(0,1), then gw(w) =
\/—exp( ;” ) for w > 0. Let Y = Alog(W) + 6, then W = s(Y) = exp(¥52)
exp( 4 2 _
= F(y) = g (s(y)| B2 = 2 exp(ZEUT ) e (150 1|

— 2 exp(2) exp(~Lexp(5L)]2),y € R, 6 € R, A > 0

=Y ~ HSEV(0,\).
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Let W = exp(*52) then Y = Mog(W) +0 = g(w) = f(r(w))| G|

Alog(w)+0—0 A log(w)+6—6
= 2 oxp[ M oxp[ L (exp( M0 ))2)1 2

w2 w2
= V%WGXP(T)% = \/%GXP(T% w >0

=W ~ HN(0,1).

2.15 THE TRUNCATED EXTREME VALUE DISTRIBUTION
If Y has a Truncated Extreme Value distribution, Y ~ T EV()), then

Fy(y) =1 —exp(Z5=) 4y > 0, and f(y) = Lexp(y — <L),y > 0, A > 0,

TEV Distribution TEV(lambda=1)
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f(x)
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0.0 0.5 1.0 15 2.0 25 3.0

Figure 2.15. Plot of the pdf of the Truncated Extreme Value Distribution

Let W = QY_l, then Fw('w) = P(W S 'LU) — P(€Y—1 S 'LU) _ P(6Y S 1—|—’LU)
= P(Y S log(l + ’Uj)) =1 (exp(_%)) =1 (exp(_(l—l-l)l\))—l))
=1—ew/A

= W ~ EXP(\).
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If W~ EXP()), let Y =log(1+w). Then
Fy(y) = P(Y <y)=P(log(1+ W) <y)=P(1+W < e¥) = P(W <e¥ — 1)
=1—exp(—51),y>0
=Y ~TEV()).

Let Y7,Y5,...,Y, be iid TEV()), then the likelihood
L) =TTy F) = (2 exp Y0 (v — 50,
and the log likelihood

log L = —nlog A+ 3" (i — <20).

Hence
dlogL —n =¢e’/—1
= — ! =0
) A+Z;A2

or

A= Z:L 1(6 —1)

n
Notice that
dzlogL - 2(ef = 1) —1 n  2n.

Hence ) is the MLE of \.

Likelihood Based Confidence Intervals
Let W = e¢¥ — 1, then W ~ EXP()\). By (2.3), an exact 100(1 — )%

confidence interval for A is given by

27, 27,
5 =3 ) (2.24)
Xon1—-a/2 X2na/2

where T, = >0 (W; = 0) = 3701, Wi = 300 (¥ = 1)
Hence, a 100(1 — a)% CI for A is

<2Z£AJ“4)2ZZN' », (2.25)

X%n,l—a/2 X2n a/2
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2.16 THE HTEV DISTRIBUTION
If Y ~ HTEV()), then f(y) = —Zev exp(=552)1(y > 0), A > 0.
This distribution is unimodal and the mode at y,, is found by solving the following
equation:
A2 = e¥m(e¥m —1).
Proof:
log(f(y)) = log(-Z) +y — Szt
So g-log f(y) = 0+1— (2(e? — 1)(532) := 0

or

1= 2071 22 = ev(ev — 1),

HTEV Distribution HTEV(lambda=1)
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Figure 2.16. Plot of the pdf of the HTEV Distribution

If W has a half normal distribution, W ~ HN(0,)), then gw(w) =

\/22_“ exp(_(;"/\_zo)z). for w > 0. Let Y = log(W + 1), then W = s(Y) =¥ — 1

S e¥—1)2
= f(y) = gw (s()| S| = & exp(<55)|e|

= —Zeevexp(Z5) I (y > 0)

43



=Y ~ HTEV ().

Let W =¢Y — 1, then Y = r(W) = log(W + 1)

dr(w
= g(w) = f(r(w))| G|
2 log(w+1)

—(elog(w+1) _1)2

Vo exp[ =5 | yp llog(w + 1) > 0]

w—+1

—w? o
s w0+ 1) exp(3) 5 T = 0] = 5 exp(55)
= W ~ HN(0, \).

Let Y7,Y5,...,Y, be iid HTEV (), then the likelihood

n n n n —(e¥%i—1)2
L) =1Tim f(wi) = (\/22?,\) exp(D iy ¥i) exp(Di, %)I(y(l) > 0),
and the log likelihood

log L = nlog(2) — nlog(v2m) —nlog A+ > " yi — >0y %

Hence
dlogL — —n B "L 9(e¥ —1)? _-n N o (e¥ —1)? -
dx A — 23 D\ A3 o
or
)\2 — Z?:l(eyl B 1)2
n )
or
5 _ \/Z? (e —1)2
n

Notice that

d*logL, n 31 3% -1)° =n
T TR TN %

Hence ) is the MLE of \.

Likelihood Based Confidence Intervals
Let W = (e¥ — 1) then W ~ HN(0,)\), and W =0+ \X = \X, X = |Z],
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Z ~N(0,1), then

. 2 n (e¥i—1)2 3 n ) n
Since \ = #, we have nA? =37 (e¥ —1)2 =" w?
=N T
= %2 ~ X2

Hence a large sample 100(1 — )% CI for \? is

( n\2  nA\? )
X?LJ_Q ’ X?L%

or

T 1 T -1y (2.26)

( 2 ’ 2

2.17 THE WEIBULL DISTRIBUTION
If Y has a Weibull distribution, Y ~ W (¢, A), then Fy(y) =1 —exp(_Tw), y >
0, and

_ _
fly) =2y Lexp(=2) ,y >0, $ >0, A> 0.

Weibul Distribution W(phi=2, lambda=1)
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Figure 2.17. Plot of the pdf of the Weibull Distribution
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Let W = Y?, then
Fy(w) = P(W < w) = P(Y® < w) = P(Y < w?) = Fy(w?)
= 1~ exp(—(w?)?/A) = 1 — exp(52)
= W ~ EXP()).

It W ~ EXP()), let Y = W%. Then

Theorem 2.17.1: the Multivariate Central Limit Theorem (MCLT). If
X1,..., X, are iid k x 1 random vectors with F(X) = pu and Cov(X) = X, then

V(X — p) 5 N (0, 3)

where the sample mean

X =

S|

> X
i=1
see [12, 13].

Theorem 2.17.2: the Multivariate Delta Method. If
Vi(T, — 6) 2 Ni(0,%),

then
D
Vn(g(T,) — g(8)) = Na(0, Dg(O)EDg(O))
where the d x k Jacobian matrix of partial derivatives

a5 91(0) .. 55-91()
Dy, = : :
55794(0) .. 55-94(6)
Here the mapping g : ®¥ — 3¢ needs to be differentiable in a neighborhood of

0 c R*.
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If Y1, ..., Y, are iid Weibull (¢, \), then the MLE (¢, A) must be found before
obtaining Cls. The likelihood

1 -1
7 n H y¢ 1_ eXp Z y? ’
o By
and the log likelihood

log(L(6, X)) = nlog(é) — nlog(X) + (6~ 1) Y log(y:) ~ 1 Y v/

Hence
0 Z y(z) set
—1 = =0
Slog(L(6,) = -+ &2,
or S yf =n\, or
A é
G XY
n
Notice that
0
a—¢log( ——+Zlog (i) Zy log(y;) =
SO
n+ @[> log(y:) — + > yilog(y:)] =0
or

QAS: 1 <Z> n ’
3 > y; log(yi) — > i, log(yi)
One way to find the MLE is to use iteration [5]

Ak*l

n

and
n n

O = - .
LSy log(y:) — i, log(y,)
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Since W = log(Y) ~ SEV (0 = log(AY?),0 = 1/¢), Olive [14] gave the following

robust estimators for o and ¢:
or = MAD(Wy,...,W,)/0.767049

and

0r = MED(W4, ..., W,) — log(log(2))d&.

Then QASO = 1/6r and Ao = exp(éR/&R). The iteration might be run until both
|6k — dr1| < 1076 and [ Ay — Ap_1| < 1075, Then take (¢, \) = (dp, Ag). If o= A/?
so pu® =\, and Y ~ Weibull(¢, i) then the Weibull pdf

| =2 (%f exp [_ (%)1 |

Let (f1,¢) be the MLE of (i, ¢). According to Bain (1978, p. 215) [2],

fi [ D 0 1.1094  0.257u
a(2)-(2)) = () (i 6a) )

Let column vectors 8 = (1 ¢)T and n = (A ¢)T. Then
— _ (A _ pe _ 91(0)
moo-(3)-(%)-(00)

a-91(0)  75-91(8) o’ s’ out p?log(p)

So

Dy =

595:92(0)  55:92(0) 20 B30 0 1

Thus by the multivariate delta method (Theorem 2.17.2),

A A D
a((2)- (3)) 2o

S=1"(n)=[I(g(0)) "= Dg<9)1_1(9)D§<9>

where
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ou®~t  p®logp 1.109;—2 25T ou®~t 0

0 1 257u  .608¢? pllogp 1
o=t u?log L1092 + 257u% log 257y
0 1 257¢u® + .608¢%u? log . .608¢?

1.10942¢ 4 514> log ju + .608¢%1*? log? 11 257 u® + .608¢%u? log 1

257pu® + .608¢%u® log 1 .608¢2

1.109X2 + HLAGN? B2 4 6082 A2 152 257 + .608pAlog A |

257N + .608p\ log A 608¢” |

1.109A2(1 + .46351og A + .5482(log \)2) 2576\ + .608¢Alog A |

257pN + 608\ log A 608¢° |

Hence the asymptotic variances of QAS and \ are given by
AV () = .608¢2 and
AV(X) = 1.109A2(1 + .4635log A + .5482(log \)2).
Hence
V(g — ¢) = N(0,.608¢°).
Thus 1—a ~ P(—zl_a/g\/mqg < \/H(QAS—QS) < zl_a/g\/mqg) and a large sample
100(1 — a)% CI for ¢ is
G+ 2102 ¢ 1/0.608/n. (2.27)

Similarly,
V(A = A) 2 N(0,1.10902(1 + .4635 log A + .5482(log A)?)),

and a large sample 100(1 — )% CI for A is

Z1-a/2

NG

\ =+

\/ 1.109A2[1 + 0.4635log(A) + 0.5824(log()))?]. (2.28)

49



In simulations, for small n the number of iterations for the MLE to converge could

be in the thousands, and the coverage of the large sample Cls is poor for n < 50.

2.18 THE HWEIBULL DISTRIBUTION

IfY ~ HW (¢, \), then f(y) = \/22—7r/\¢y¢_1 exp(_zy—;ﬁ),y >0A>0 and ¢ > 0.

HWeibul Distribution HW(phi=2, lambda=1)
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Figure 2.18. Plot of the pdf of the HWeibull Distribution

If W has a half normal distribution, W ~ HN(0, \), then

gw(w) = \/22—7”\ exp(_(;"/\_zo)z),w >0.Let Y = W%, then W = s(Y) =Y?

S —29 _
= f(y) = 9w (s(9)| 52| = &5 exp(4= ) oy’
_ _q2¢
= = 0y" exp(F7 ),y > 0,

=Y ~ HW($,\).

=

Let W =Y? then Y =r(W) =W

= g(w) = f(r(w))| 5]
_(w%)%] 1 L=

\/22_M¢(wa)¢—1exp[ 5w ?
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— A exp(3E) w0
=W ~ HN(0,\).
Let Y1,Y5,...,Y, be iid HW (¢, \),and if ¢ is known, then the likelihood

@

—y?
LA) =TT f(y) = (\/22_7r)\)n¢n | B y?_l exp(doi, ;/#)’
and the log likelihood

@

2
log L = nlog(2) — nlog(v2m) —nlog A+ nlogp+ 31" (¢ — 1) logy; — 1" | 255

Hence

dlogL _ —n ~—4w _—n By
v A : AN A B

or

Notice that

Hence ) is the MLE of X if ¢ is known.
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CHAPTER 3
SIMULATIONS COVERAGE OF CONFIDENCE INTERVALS

3.1 HALF-NORMAL DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for p and o? with
nominal 90% and 95% confidence levels respectively and sample sizes ranging from
5 to 500. Two types of confidence intervals for p are used; the Pewsey interval is

given by

a 1 1 a 11
Y, 5log(=)P ' =+ — ) .Y 5log(l— =)P~ ' [ =+ — 1
Yoy +o Og(2) (2+2n)> (1) + & log( 2) (2+2n)) (3.1)

and our new modified confidence interval

(Y1) + 6 log(a) @™ (% + %) (1 + g) Yy). (3.2)
The confidence interval used for o when p is known is given by
() (5.3
Xpi-s Xns
where T, = > 0" (Vi — p)?.
and when 4 is unknown is given by
D, D,

( ) (3.4)

2 ) 2
Xn-1,1-2 Xp-1,2

where D,, = """ (Vi — Y{1))? Each quoted coverage percentage was obtained from
5000 pseudo-random samples of size n from the (standard) half-normal distribution.
The standard error of any entry is thus, at most, 0.004. Comparing the coverage of
Pewsey interval and the modified Pewsey interval for p we notice that the modified
Pewsey interval has higher coverage for small sample sizes (n < 10) and similar
coverage to that of Pewsey interval for other sample sizes, also, we note that it has

a shorter length except when n =5 where the coverage is better.
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Table 3.1. Actual Coverage Levels for Nominal 90% Confidence
Interval for 02 when p is unknown for sample sizes ranging from
5 to 500

d = (n-1) Coverage Slen

) 4 0.8914  9.83
10 9 0.8856  6.30
25 24 0.8964  5.15
50 49 0.8948  4.89
100 99 0.8980  4.76
500 499 0.8984  4.68
00 00 9 4.65

The confidence interval formula used is (3.4).

Table 3.2. Actual Coverage Levels for Nominal 90% Confidence
Interval for 02 when p is known for sample sizes ranging from 5
to 500

d = (n-1) Coverage Slen

) 4 0.9000  8.73
10 9 0.8998  6.28
25 24 0.9010  5.22
50 49 0.8992 494
100 99 0.8990  4.79
500 499 0.8978  4.68
00 00 9 4.65

The confidence interval formula used is (3.3).
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Table 3.3. Actual Coverage Levels for Nominal 90% Confidence
Interval for p for sample sizes ranging from 5 to 500 - Modified
and Pewsey intervals

modified Pewsey

d = (n-1) Coverage Slen Coverage Slen

) 4 0.9158  3.40 0.8410 2.86

10 9 0.8948  2.88 0.8694  3.26
25 24 0.8930  2.80  0.9000  3.51
50 49 0.8920 2.83 0.8898  3.60
100 99 0.9000 2.85 0.9026 3.64
500 499 0.9020 2.88 09052  3.68
00 00 9 2.89 .9 3.69

The confidence interval formulas used are (3.1) and (3.2).

Table 3.4. Actual Coverage Levels for Nominal 95% Confidence
Interval for 02 when p is unknown for sample sizes ranging from
5 to 500

n d=(n-1) Coverage Slen

) 4 0.9438  15.46
10 9 0.9470 8.16
25 24 0.9450 6.37
50 49 0.9488 5.95
100 99 0.9478 5.71
500 499 0.9448 5.58
00 00 95 5.54

The confidence interval formula used is (3.4).
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Table 3.5. Actual Coverage Levels for Nominal 95% Confidence
Interval for o2 when p is known for sample sizes ranging from 5
to 500

d = (n-1) Coverage Slen

) 4 0.9508  12.52
10 9 0.9528 9.92
25 24 0.9476 6.89
50 49 0.9476 6.19
100 99 0.9500 5.82
500 499 0.9458 5.60
00 00 95 5.54

The confidence interval formula used is (3.3).

Table 3.6. Actual Coverage Levels for Nominal 95% Confidence
Interval for p for sample sizes ranging from 5 to 500 - Modified
and Pewsey intervals

modified Pewsey

d = (n-1) Coverage Slen Coverage Slen

) 4 0.9474 444 09004  3.57

10 9 0.9404  3.75 0.9320 4.03
25 24 0.9438 3.64 0.9438 4.36
50 49 0.9478  3.69 0.9480  4.48
100 99 0.9482  3.71 0.9496  4.53
500 499 0.9456  3.74  0.9474  4.58
00 00 .95 3.76 .95 4.59

The confidence interval formulas used are (3.1) and (3.2).
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3.2 HPARETO DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for § and \? with
nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted
coverage percentage was obtained from 5000 pseudo-random samples of size n from
the (standard) half-normal distribution. The standard error of any entry is thus, at

most, 0.004.

Table 3.7. Actual Coverage Levels for Nominal 95% Confidence
Interval for 6 for sample sizes ranging from 5 to 500

d = (n-1) Coverage Slen
4
9

) 0.8920 3.54
10 0.9220  4.09
25 24 0.944 4.38
50 49 0.9496  4.47
100 99 0.9504  4.53

500 499 0.9590  4.58
00 00 .95 4.59

The confidence interval formula used is (2.15).

56



Table 3.8. Actual Coverage Levels for Nominal 95% Confidence
Interval for A when @ is unknown for sample sizes ranging from
5 to 500

d = (n-1) Coverage Slen

) 4 0.9414  14.76
10 9 0.9460 8.42
25 24 0.9468 6.42
50 49 0.9460 5.90
100 99 0.9498 5.73
500 499 0.9522 5.67
00 00 95 5.54

The confidence interval formula used is (2.13).

Table 3.9. Actual Coverage Levels for Nominal 95% Confidence
Interval for A2 when 6 is known for sample sizes ranging from 5
to 500

d = (n-1) Coverage Slen

) 4 0.9458  21.95
10 9 0.9458  10.20
25 24 0.9500  6.940
50 49 0.9494 6.13
100 99 0.9508 5.8
500 499 0.9532 5.59
00 00 95 5.54

The confidence interval formula used is (2.14).
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3.3 HPOWER DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for A\? with nominal
95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage
percentage was obtained from 5000 pseudo-random samples of size n from the (stan-
dard) half-normal distribution. The standard error of any entry is thus, at most,

0.004. The confidence interval formula used is (2.18).

Table 3.10. Actual Coverage Levels for Nominal 95% Confidence
Interval for A\? for sample sizes ranging from 5 to 500

d = (n-1) Coverage Slen
4
9

) 0.9510  21.90
10 0.9500  10.07
25 24 0.9556 6.90
50 49 0.9538 6.17
100 99 0.9482 5.85
500 499 0.9475 5.61
00 00 .95 5.54
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3.4 HTEV DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for A\? with nominal
95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage
percentage was obtained from 5000 pseudo-random samples of size n from the (stan-

dard) half-normal distribution. The standard error of any entry is thus, at most,

0.004. The confidence interval formula used is (2.26).

Table 3.11. Actual Coverage Levels for Nominal 95% Confidence
Interval for A\? for sample sizes ranging from 5 to 500

d = (n-1) Coverage Slen
4
9

) 0.9426  22.30
10 0.9438  10.10
25 24 0.9496 6.91
50 49 0.9490 6.17
100 99 0.9510 5.84
500 499 0.9494 5.60
00 00 .95 5.54
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3.5 TWO PARAMETER EXPONENTIAL DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for § and \? with
nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted
coverage percentage was obtained from 5000 pseudo-random samples of size n from
the exponential distribution. The standard error of any entry is thus, at most, 0.004.

The confidence interval formula used is (2.2).

Table 3.12. Actual Coverage Levels for Nominal 95% Confidence
Interval for A when 6 is unknown for sample sizes ranging from
5 to 500

d = 2(n-1) Coverage Slen

) 4 0.9520 7.11
10 9 0.9452  5.08
25 24 0.9518  4.34
50 49 0.9470 4.11

100 99 0.9484  4.02
500 499 0.9496  3.93
00 00 .95 3.92

60



Table 3.13. Actual Coverage Levels for Nominal 95% Confidence
Interval for A when 6 is known for sample sizes ranging from 5
to 500

n d=2n Coverage Slen
5 4 0.9536  5.74
10 9 0.9480  4.72
25 24 0.9518 4.24
50 49 0.9464  4.07
100 99 0.9482  4.00
500 499 0.9496  3.93
00 00 .95 3.92

The confidence interval formula used is (2.3).

Table 3.14. Actual Coverage Levels for Nominal 95% Confidence
Interval for 6 for sample sizes ranging from 5 to 500

n d=(n-1) Coverage Slen
4
9

) 0.9494 441
10 0.9460  3.53
25 24 0.9466  3.20
50 49 0.9466  3.09

100 99 0.9496  3.04
500 499 0.9514  3.00
00 00 .95 3.00

The confidence interval formula used is (2.1).
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3.6 THE PARETO DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for ¢ and A with
nominal 95% confidence level and sample sizes ranging from 5 to 500. Each quoted
coverage percentage was obtained from 5000 pseudo-random samples of size n from
the pareto distribution. The standard error of any entry is thus, at most, 0.004.

The confidence interval formula used is (2.12).

Table 3.15. Actual Coverage Levels for Nominal 95% Confidence
Interval for A when ¢ is unknown for sample sizes ranging from
5 to 500

d = 2(n-1) Coverage Slen

) 4 0.9490  7.28
10 9 0.9464  5.12
25 24 0.9522  4.34
50 49 0.9474  4.11

100 99 0.9486  4.01
500 499 0.9466  3.94
00 00 .95 3.92
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Table 3.16. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ for sample sizes ranging from 5 to 500

d =n-1 Coverage Slen

) 4 0.9496  3.48
10 9 0.9432  3.28
25 24 0.9510  3.12
50 49 0.9482  3.06
100 99 0.9546  3.02
500 499 0.9518  3.00
00 00 .95 3.00

The confidence interval formula used is (2.11).
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3.7 THE POWER DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for A with nominal
95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage
percentage was obtained from 5000 pseudo-random samples of size n from the Power
distribution. The standard error of any entry is thus, at most, 0.004.

The confidence interval formula used is (2.17).

Table 3.17. Actual Coverage Levels for Nominal 95% Confidence
Interval for A for sample sizes ranging from 5 to 500

n d=2n Coverage Slen
5 4 0.9464  5.80
10 9 0.9540  4.75
25 24 0.9506  4.23
50 49 0.9500  4.06
100 99 0.9458  4.00
500 499 0.9442  3.93
00 00 .95 3.92
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3.8 THE TRUNCATED EXTREME VALUE DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for A with nominal
95% confidence level and sample sizes ranging from 5 to 500. Each quoted coverage
percentage was obtained from 5000 pseudo-random samples of size n from the trun-
cated extreme value distribution. The standard error of any entry is thus, at most,
0.004. The confidence interval formula used is (2.25).

Table 3.18. Actual Coverage Levels for Nominal 95% Confidence
Interval for A for sample sizes ranging from 5 to 500

n d=2n Coverage Slen
5 4 0.9454  5.83
10 9 0.9474  4.73
25 24 0.9526 4.22
50 49 0.9574  4.08
100 99 0.9552  4.00
500 499 0.9496  3.93
00 00 .95 3.92
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3.9 THE WEIBULL DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for ¢ and A with
nominal 95% confidence level and sample sizes ranging from 25 to 500. Each quoted
coverage percentage was obtained from 100 pseudo-random samples of size n from
the Weibull distribution. The standard error of any entry is thus, at most, 0.043.

The confidence interval formulas used are (2.27) and (2.28).

Table 3.19. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

¢=1 A=1
n Coverage Slen Coverage Slen
25 .95 3.29 .94 4.35
50 91 3.12 .94 4.23

100 94 3.05 92 4.18
500 .96 3.07 94 4.15
00 .95 3.06 .95 4.13
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Table 3.20. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

p=1 A=5
n Coverage Slen Coverage Slen
25 .95 3.23 .93 48.56
50 .92 3.16 .94 43.44

100 93 3.07 90 38.99
500 94 3.06 .95 37.65
00 .95 3.06 .95 36.73

The confidence interval formulas used are (2.27) and (2.28).

Table 3.21. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

p=1 A=10
n Coverage Slen Coverage Slen
25 .95 3.22 97 133.83
50 97 3.16 97 115.44

100 95 3.12 .96 107.08
500 94 3.07 .96 94.45
00 .95 3.06 95 92.07

The confidence interval formulas used are (2.27) and (2.28).
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Table 3.22. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

p=1 A =20
n Coverage Slen Coverage Slen
25 .94 3.05 91 332.56
50 .96 3.12 .92 273.23

100 95 3.14 .95 270.37
500 97 3.06 .96 231.96
00 .95 3.06 .95 223.20

The confidence interval formulas used are (2.27) and (2.28).

Table 3.23. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

¢ =20 A=1
n Coverage Slen Coverage Slen
25 .98 63.63 .95 4.14
50 .90 62.93 91 4.23
100 94 62.20 .93 4.22
500 .96 61.51 .98 4.16
00 .95 61.13 .95 4.13

The confidence interval formulas used are (2.27) and (2.28).
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Table 3.24. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

¢ =20 A=5H
n Coverage Slen Coverage Slen
25 .99 65.17 97 47.18
50 97 62.56 .94 43.34

100 93 62.69 94 41.11
500 98 61.53 1.00 37.80
00 .95 61.13 .95 36.73

The confidence interval formulas used are (2.27) and (2.28).

Table 3.25. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

¢ =20 A =10
n Coverage Slen Coverage Slen
25 .94 61.78 .92 135.83
50 94 61.75 91 106.16

100 97 61.34 97 97.01
500 .96 61.15 .95 94.72
00 .95 61.13 .95 92.07

The confidence interval formulas used are (2.27) and (2.28).
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Table 3.26. Actual Coverage Levels for Nominal 95% Confidence
Interval for ¢ and A for sample sizes ranging from 25 to 500

¢ =20 A =20
n Coverage Slen Coverage Slen
50 .92 61.61 91 261.31

100 94 61.56 95 248.74
500 94 61.51 .95 237.89
00 .95 61.13 .95 223.20

The confidence interval formulas used are (2.27) and (2.28).
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3.10 THE RAYLEIGH DISTRIBUTION

The following tables show the results obtained from a simulation study de-
signed to establish the actual coverage of confidence intervals for p and o with
nominal 95% confidence level and sample sizes ranging from 25 to 500. Each quoted
coverage percentage was obtained from 100 pseudo-random samples of size n from
the Rayleigh distribution. The standard error of any entry is thus, at most, 0.043.

The confidence interval formulas used are (2.22) and (2.23).

Table 3.27. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

pw=1 o=1
n Coverage Slen Coverage Slen
25 91 2.84 94 2.81
50 .98 2.35 .96 2.47

100 93 2.22 93 3.04
500 92 2.32 94 2.24

Table 3.28. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

=2 oc=25
n Coverage Slen Coverage Slen
25 .92 13.58 .92 11.82
50 .93 12.06 .94 12.24
100 .92 12.06 .96 12.42
500 .94 9.99 .94 12.97
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Table 3.29. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

=2 o =10
n Coverage Slen Coverage Slen
25 91 29.29 94 26.71
50 .93 22.78 .94 24.74
100 .92 22.31 .96 23.16

500 93 23.31 .95 23.63

Table 3.30. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

Hn=> o=2
n Coverage Slen Coverage Slen
25 .86 4.97 .99 24.82
50 91 4.65 .95 4.46

100 92 4.54 92 5.25
500 92 4.22 .96 4.65
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Table 3.31. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

w =10 o=2
n Coverage Slen Coverage Slen
25 .92 5.43 .96 5.22
50 .92 4.30 .93 4.91

100 .95 4.89 .95 4.79
500 92 4.21 97 4.43

Table 3.32. Actual Coverage Levels for Nominal 95% Confidence
Interval for p and o for sample sizes ranging from 25 to 500

w =20 o =20
n Coverage Slen Coverage Slen
25 .92 57.34 .93 49.13
50 .87 44.79 94 50.50

100 93 42.22 .96 46.10
500 93 37.55 .96 40.07
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The following tables show the results obtained from a simulation study de-
signed to find the sample means and standard deviations of the MLEs for y and o
using sample sizes ranging from 25 to 500. Each quoted mean and standard devi-
ation was obtained from 100 pseudo-random samples of size n from the Rayleigh
distribution. The MLEs were found by iteration using Newton’s method, and the

number of iterations used were 100.

Table 3.33. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

pw=1 oc=1
n i SD(f1) o SD(c)
25 1.08 0.14 0.95 0.14
50  1.03 0.09 0.98 0.09
100 1.02 0.07 1.02 0.07
500 1.01 0.03 1.02 0.03

Table 3.34. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

100 2.14 0.31 4.90 0.32
500  2.02 0.11 5.00 0.15
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Table 3.35. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

100  2.19 0.57 9.78 0.59
500  2.05 0.27 10.00 0.27

Table 3.36. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

Hn=> o=2
n i SD(f1) o SD(c)
25 5.19 0.25 1.83 0.24
50  5.03 0.17 1.96 0.16
100  5.04 0.12 1.97 0.13
500  5.02 0.05 1.99 0.05
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Table 3.37. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

100 10.03 0.13 1.99 0.12
500 10.02 0.05 1.99 0.05

Table 3.38. Sample means and standard deviations of the MLEs
for p and o using sample sizes ranging from 25 to 500

w =20 o =20
n i SD(f1) o SD(c)
25 21.57 2.93 19.13 2.51
50  20.93 1.82 19.27 1.82
100 20.44 1.07 19.68 1.18
500  20.13 0.43 19.94 0.46
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APPENDIX



R CODE FOR THE SIMULATIONS, the Statistical package is

available from (http://www.r-project.org/).

#simulates exp 100(1-alpha)’ CI for lambda and CI for theta,
expsim<-function(n = 10, nruns = 5000, theta = 0, lambda = 1,
alpha = 0.05, p = 1)
{ scov <=0
ccov <= 0
mcov <- 0
slow <- 1:nruns
sup <- slow
mlow <- slow
mup <- slow
clow <- slow
cup <- slow
ucut <- alpha/2
lcut <- 1 - ucut
d <-2x* (n-p)
d2 <- 2 xn
lval <- log(alpha/2)/n
uval <- log(l - alpha/2)/n
mlval <- alpha”(-1/(n - 1)) - 1
for(i in 1:nruns) {
y <- theta + lambda * rexp(n)
miny <- min(y)

dn <- sum((y - miny))
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#get CI for lambda
lamhat <- dn/n
num <- 2 * dn
slow[i] <- num/qchisq(lcut, df = d)
sup[i] <- num/qchisq(ucut, df = d)
if(slow[i] < lambda && sup[i] > lambda) scov <- scov + 1
#get CI for lambda when theta is known
tn <- sum((y - theta))
num <- 2 * tn
clow[i] <- num/qchisq(lcut, df = d2)
cup[i] <- num/qchisq(ucut, df = d2)
if(clow[i] < lambda && cup[i] > lambda)
ccov <- ccov + 1
#get CI for theta
mlow[i] <- miny - lamhat * mlval
mup[i] <- miny
if (mlow[i] < theta) mcov <- mcov + 1
}
scov <- scov/nruns
slen <- sqrt(n) * mean(sup - slow)
mcov <- mcov/nruns
mlen <- n * mean(mup - mlow)
ccov <- ccov/nruns
clen <- sqrt(n) * mean(cup - clow)
list(d = d, scov = scov, slen = slen,
ccov = ccov, clen = clen, mcov = mcov, mlen = mlen)

3

80



#simulates Pewsey HN 100(1-alpha)’% CI for sigma”2 and one for mu,

#The CI for mu should work better than the Pewsey interval.

hnsim<-

function(n = 10, nruns = 5000, mu = 0, sigma = 1, alpha = 0.05, p = 1)
{

scov <- 0
lcov <= 0
lcov2 <- 0
ccov <- 0

slow <- l:nruns

sup <- slow

llow <- slow

lup <- slow

llow2 <- slow

lup2 <- slow

clow <- slow

cup <- sup

ucut <- alpha/2

lcut <- 1 - ucut

sigsq <- sigma”?2

d<-n-p

phiinv <- gnorm((0.5 + 1/(2 * n)))
lval <- log(alpha) * phiinv * (1 + 13/n"2)
lval2 <- log(alpha/2) * phiinv
lval3 <- log(l-alpha/2) * phiinv
for(i in 1:nruns) {

y <- mu + sigma * abs(rnorm(n))
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miny <- min(y)

dn <- sum((y - miny)~2)

#get CI for sigma”2 when mu is unknown
slow[i] <- dn/qchisq(lcut, df = d)
sup[i] <- dn/qchisq(ucut, df = d)

if (slow[i] < sigsq && supl[i] > sigsq)
scov <- scov + 1

#get CI for sigma”2 if mu is known
tn <- sumn((y - mu)~2)

clow[i] <- tn/qchisq(lcut, df = n)
cup[i] <- tn/qchisq(ucut, df = n)
if(clow[i] < sigsq && cupl[i] > sigsq)
ccov <- ccov + 1

#get CI for mu (modified Pewsey type interval)
shat <- sqrt(dn/n)

1llow[i] <- miny + shat * lval

lup[i] <- miny

if (11low[i] < mu)

lcov <- lcov + 1

#get CI for mu (Pewsey type interval)
shat <- sqrt(dn/n)

1llow2[i] <- miny + shat * lval2
lup2[i] <- miny + shat * 1lval3

if (1low2[i] < mu && lup2[i] > mu)
lcov2 <- lcov2 + 1

3

scov <- scov/nruns
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slen <- sqrt(n) * mean(sup - slow)

lcov <- lcov/nruns

llen <- n * mean(lup - llow)

lcov2 <- lcov2/nruns

1llen2 <- n * mean(lup2 - 1llow2)

ccov <- ccov/nruns

clen <- sqrt(n) * mean(cup - clow)

list(d = d, scov = scov, slen = slen, ccov =

ccov, clen = clen,lcov = lcov, llen = llen, lcov2 = lcov2, llen2 = llen2,)

}
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#simulates HPareto 100(1-alpha)’% CI for sigma”2 and one for mu,
"hparsiml"<-

function(n = 10, nruns = 5000, mu = 0, sigma = 1, alpha = 0.05, p = 1)

{

scov <- 0
lcov <= 0
ccov <- 0

slow <- l:nruns
sup <- slow
llow <- slow
lup <- slow
clow <- slow
cup <- sup
ucut <- alpha/2
lcut <- 1 - ucut
sigsq <- sigma”?2
d<-n-p
phiinv <- gnorm((0.5 + 1/(2 * n)))
lval <- log(alpha/2) * phiinv
uval <- log(l - alpha/2) * phiinv
for(i in 1:nruns) {
w <- mu + sigma * abs(rnorm(n))
y<-exp (w)
minw<- min(w)
miny <- min(y)
dn <- sum((log(y) - log(miny))~2)

dnl <- sum((log(y) - mu)~2)
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#get CI for sigma™2

slow[i] <- dn/qchisq(lcut, df = d)

sup[i] <- dn/qchisq(ucut, df = d)

if(slow[i] < sigsq && supl[i] > sigsq) scov <- scov + 1
#get CI for mu

shat <- sqrt(dn/n)

llow[i] <- minw + shat * lval

lup[i] <- minw + shat * uval

if(1low[i] < mu && lup[i] > mu) lcov <- lcov + 1
#get CI for sigma”2 if mu is known

clow[i] <- dnl/qchisq(lcut, df = d)

cup[i] <- dnl1/qchisq(ucut, df = d)

if(clow[i] < sigsq && cupl[i] > sigsq)

ccov <- ccov + 1

}

scov <- scov/nruns

slen <- sqrt(n) * mean(sup - slow)

lcov <- lcov/nruns

llen <- n * mean(lup - llow)

ccov <- ccov/nruns

clen <- sqrt(n) * mean(cup - clow)

list(d = d, scov = scov, slen = slen, lcov = lcov, llen = llen,
ccov = ccov, clen = clen, )

3
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#Simulates HPower 100(1-alpha)’, CI for sigma“2,
hpowsim<-function(n, nruns=5000, mu=0, sigma=1, alpha=0.05, d=n-1)
{ cov <- 0
low <- l:nruns
up <- low
ucut <- alpha/2
lcut <- 1-ucut
sigsq <-sigma”?2
for(i in 1:nruns){
w<-mu + sigma * abs(rnorm(n))
y<- exp(-w)
miny<-min(y)
wn<- sum((log(y))~2)
low[i] <- wn/qchisq(lcut,df=d)
up[i] <- wn/qchisq(ucut, df= d)
if (low[i] < sigsq && upli] > sigsq)
cov <- cov + 1
}
cov <- cov / nruns
slen <- sqrt(n) * mean(up - low)

list(d = d, cov = cov, slen = slen)
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#Simulates HTEV 100(1-alpha)’% CI for sigma”2,
htevsim<-function(n, nruns=5000, mu=0, sigma=1, alpha=0.05, d=n-1)
{

cov <= 0
low <- l:nruns
up <- low
ucut <- alpha/2
lcut <- 1-ucut
sigsq <-sigma”?2
for(i in 1:nruns){
w<-mu + sigma * abs(rnorm(n))
y<-log(w+1)
wn<- sum((exp(y)-1)"2)
low[i] <- wn/qchisq(lcut,df=d)
up[i] <- wn/qchisq(ucut, df= d)
if (low[i] < sigsq && upli] > sigsq)
cov <- cov + 1
}
cov <- cov / nruns
slen <- sqrt(n) * mean(up - low)

list(d = d, cov = cov, slen = slen)
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#simulates Pareto 100(1-alpha)’% CI for lambda and CI for theta,
parsim<-function(n = 10, nruns = 5000, theta = 0, lambda = 1, alpha = 0.05, p
= 1)
{ scov <=0
ccov <= 0
mcov <- 0
slow <- 1:nruns
sup <- slow
mlow <- slow
mup <- slow
clow <- slow
cup <- slow
ucut <- alpha/2
lcut <- 1 - ucut
d<-2x* (n-p)
d2 <- 2 xn
lval <- log(alpha/2)/n
uval <- log(l - alpha/2)/n
mlval <- alpha”(-1/(n - 1)) - 1
sigma <- exp(theta)
for(i in 1:nruns) {
w <- theta + lambda * rexp(n)
y <- exp(w)
minw <- min(w)
dn <- sum((w - minw))
#get CI for lambda

lamhat <- dn/n
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num <- 2 * dn

slow[i] <- num/qchisq(lcut, df = d)
sup[i] <- num/qchisq(ucut, df = d)
if(slow[i] < lambda && sup[i] > lambda) scov <- scov + 1
#get CI for theta

mlow[i] <- exp(minw - lamhat * mlval)
mup[i] <- exp(minw)

if (mlow([i] < sigma) mcov <- mcov + 1
}

scov <- scov/nruns

slen <- sqrt(n) * mean(sup - slow)
mcov <- mcov/nruns

mlen <- n * mean(mup - mlow)

ccov <- ccov/nruns

clen <- sqrt(n) * mean(cup - clow)

list(d = d, scov = scov, slen = slen, mcov = mcov, mlen = mlen)

}
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#Simulates POW 100(1-alpha)’ CI for lambda”2,
powsim<-function(n, nruns=5000, mu=0, lam=1, alpha=0.05, d=2%*n)
{ theta = 0
cov <= 0
low <- l:nruns
up <- low
ucut <- alpha/2
lcut <- 1-ucut
lamsq <-lam”2
for(i in 1:nruns){
w<-theta + lam * rexp(n)
y<-exp(-w)
wn<- 2 * sum(log(1/y))
low[i] <- wn/qchisq(lcut,df=d)
up[i] <- wn/qchisq(ucut, df= d)
if (low[i] < lamsq && upl[i] > lamsq)
cov <- cov + 1
}
cov <- cov / nruns
slen <- sqrt(n) * mean(up - low)

list(d = d, cov = cov, slen = slen)
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#simulates MLEs and CIs for mu and sigma in the Rayleigh distribution
raysim <- function(n = 100, mu = 1, sigma = 1, runs = 100, iter = 100)
{ countm <- 0

counts <- 0

count2s <- 0

munew <- 1l:runs

sigmanew <- munew

sigmanew2 <- munew

muo <- l:runs

sigmao <- 1l:runs

meanw <- 1l:runs

meany <- l:runs

mnew <- 0
snew <- 0
muold <- 0

sigmaold <- 0O
muvold <- 0
sigmavold <- 0O

vec <- 1:6

mcov <- 0
scov <- O
mlow <- O
mup <- O
slow <- O
sup <- 0

for(i in 1:runs) {

w <- 2 * sigma”2 * rexp(n)
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y <= sqrt(w) + mu
sigmaold <- sqrt(var(y)/0.429204)
muold <- mean(y)-1.25331 * sigmaold
muold <- min(muold,2*min(y)-muold)
mvvold <- muold
sigmaold <- sqrt(sum((y-muold)~2)/(2 * n))
svvold <- sigmaold
for(j in 1:iter) {
D <- -2*n/sigmaold”2*sum((y-muold) "-2)+3/sigmaold”4*sum((y-muold) "-2)
*xsum( (y-muold) "2)- 2*n~2/sigmaold”4+3*n/sigmaold”6*sum((y-muold) "2)
-4/sigmaold” 6+ (sum(y-muold)) "2
al <- -2*n/sigmaold”~2*sum((y-muold) ~-1)+2*n/sigmaold”~4*sum(y-muold)
+3*sum ( (y-muold) “2)* sum((y-muold) "-1)/sigmaold”~4-3*sum((y-muold) "2)
*sum(y-muold)/sigmaold”~6- 4*n*sum(y-muold)/sigmaold”~4+2*sum(y-muold)
*xsum ( (y-muold) "2)/sigmaold”6
a2 <- - 2/sigmaold”3*sum(y-muold)*sum((y-muold) "-1)+2/sigmaold~5
* (sum(y-muold)) "2+ 2*n~2/sigmaold”3-n*sum((y-muold)"2)/sigmaold"5
+2*n/sigmaold*sum((y-muold) "-2)- 1/sigmaold”3*sum((y-muold)~-2)
xsum ( (y-muold) "2)
snew <- sigmaold - (a2/D)
mnew <- muold - (al/D)

mnew <- min(mnew, 2*min(y)-mnew)

N

if (mnew < min(y)/100){countm <- countm +1}

N

if (snew < 0){counts <- counts +1}

\4

if (snew > 10*sigma){count2s <- count2s +1}

N

if (mnew < min(y)/100){mnew <- min(y)-.01}

N

if (snew < 0){snew <- sigmaold}
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if (snew > 10*sigma){snew <- sigmaold}

muvold <- muold

muold <- mnew

sigmavold <- sigmaold

sigmaold <- snew

}

muo[i] <- muvold

sigmao[i] <- sigmavold

munew[i] <- mnew

sigmanew[i] <- snew # Iteration formula

sigmanew2[i] <- sqrt(sum((y-munew[i])~2)/(2 * n))#Exact formula

Sigll <- (1/D)*[2*n/sigmanew[i] "2 -3/sigmanew[i] "4 * sum((y-munew([i])~2)]

Sig22 <- (-1/D)*[sum((y-munew[i])"-2)+ n/sigmanew[i] ~2]

SDmul <- sqrt(Sigll)

SDsigl <- sqrt(8ig22)

#get CI for mu

mlow[i] <- munew[i] - 1.96 * sqrt(Sigll)

mup [i] <- munew[i] + 1.96 * sqrt(Sigll)

if (mlow[i] < mu && mup[i] > mu) {mcov <- mcov + 1}

#get CI for sigma

slow[i] <- sigmanew[i] - 1.96 * sqrt(Sig22)

sup [i] <- sigmanew[i] + 1.96 * sqrt(Sig22)

if(slow[i] < sigma && sup[i] > sigma) {scov <- scov + 1}
}

mcov <- mcov/runs

scov <- scov/runs

slenm <- sqrt(n) * mean(mup - mlow)
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slens <- sqrt(n) * mean(sup - slow)

vec[1] <- mean(munew)

vec[2] <- sqrt(var(munew))

vec[3] <- mean(sigmanew)

vec[4] <- sqrt(var(sigmanew))

vec[5] <- mean(sigmanew2)

vec[6] <- sqrt(var(sigmanew2))
mconv <- max(abs(munew - muo))

sconv <- max(abs(sigmanew - sigmao))

list (y=y,mvvold=mvvold,svvold=svvold,mu = mu, mumle = munew,sigma = sigma,
sigmamle = sigmanew,sigmaEX = sigmanew2, meanmuN = vec[1],SDmuN = vec[2],
SDmul = SDmul, meansigmaN = vec[3],SDsigN = vec[4], SDsigl = SDsigI,
meansigmaEx = vec[5],SDsigEx = vec[6],
muconv = mconv,CIlengthmu=slenm,CILengthsig=slens,sigmaconv = sconv,countm

=countm, counts=counts, count2s=count2s,mucoverage=mcov, sigmacoverage=scov)

3
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#Simulates TEV 100(1-alpha) CI for lambda“2,
tevsim<-function(n, nruns=5000, mu=0, lam=1, alpha=0.05, d=2%*n)
{ theta = 0
cov <= 0
low <- l:nruns
up <- low
ucut <- alpha/2
lcut <- 1-ucut
lamsq <-lam”2
for(i in 1:nruns){
w<-theta + lam * rexp(n)
y<-log(w+1)
wn<- 2 * sum(exp(y)-1)
low[i] <- wn/qchisq(lcut,df=d)
up[i] <- wn/qchisq(ucut, df= d)
if (low[i] < lamsq && upl[i] > lamsq)
cov <- cov + 1
}
cov <- cov / nruns
slen <- sqrt(n) * mean(up - low)

list(d = d, cov = cov, slen = slen)
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# Simulates Weibull 100(1-alpha) CI for Phi and lambda

"weibsim"<-

function(n = 100, phi = 1, lam = 1, runs

{ phihat <- 1:runs
lamhat <- phihat
phinew <- 1l:runs

lamnew <- phinew
phio <- 1l:runs

lamo <- 1:runs

lnew <- 0
pnew <- 0
lamold <- O

lamvold <- 0

phiold <- 0
phivold <- 0

pcov <= 0

lcov <= 0

pcov2 <= 0

lcov2 <= 0

plow <- 1:runs

pup <- plow
llow <- plow
lup <- plow

AssSDphi <- 0
AssSDlam <- 0
vec <- 1:4

for(i in 1:runs)
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# Generating a Weibull R.V
weib <= (lam * rexp(n))~(1/phi)
lw <- log(weib)
tem <- mad(lw, constant = 1)
phihat[i] <- 0.767049/tem
ahat <- median(lw) - log(log(2))/phihat[i]

lamhat [i] <- exp(ahat * phihat[i])

# Starting values from Olive Robust Estimators: lambdaO, PhiO
phiold <- phihat[i]
lamold <- lamhat[i]
# Calculating MLEs by Iteration
for(j in 1:iter)
{
pnew <- n/((1/lamold) * sum(weib“phiold * log(weib))-sum(log(weib)))
phivold <- phiold # = phil[iter-1]
phiold <- pnew
lnew <- (1/n)*sum(weib”phiold)
lamvold <- lamold # = lam[iter-1]
lamold <- lnew
}
phio[i] <- phivold
lamo[i] <- lamvold
phinew[i] <- pnew # MLE
lamnew[i] <- lnew # MLE

#get CI for phi
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plow[i] <- phinew[i] - 1.96 * .7797 * phinew[i]/sqrt(n)
pup [i] <- phinew[i] + 1.96 * .7797 * phinew[i]/sqrt(n)
if (plow[i] < phi && pup[i] > phi) {pcov <- pcov + 1}
#get CI for lambda
1llow[i] <- lamnew[i] - 1.96 * sqrt(1.109*lamnew[i] "2
*(1+.4635x1log(lamnew[i])+.5824* (log(lamnew[i]))~2))/sqrt(n)
lup [i] <- lamnew[i] + 1.96 * sqrt(1.109*lamnew[i] "2
*(1+.4635x1log(lamnew[i])+.5824* (log(lamnew[i]))~2))/sqrt(n)
if (1low([i] < lam && lup[i] > lam) {lcov <- lcov + 1}
}
vec[1] <- mean(phinew)
AsSDphi <- sqrt(.608 * phi/n)
vec[2] <- sqrt(var(phinew))
vec[3] <- mean(lamnew)
AsSDlam <- sqrt((.514*lam"2xlog(lam)+1.109*1lam"2+.608%1lam"2
*(log(lam))~2)/n)
vec[4] <- sqrt(var(lamnew))
pcov <- pcov / runs
lcov <- lcov / runs
slenp <- sqrt(n) * mean(pup - plow)
slenl <- sqrt(n) * mean(lup - llow)
pconv <- max(abs(phinew - phio))

lconv <- max(abs(lamnew - lamo))

list(phi = phi, phiO = phihat,phio = phio, phimle = phinew,lamda = lam,

lam0 = lamhat,lamo = lamo,lammle = lamnew, phicov = pcov,slen = slenp,
lamcov = lcov, slenl = slenl, meanphiMLE =vec[1], SDphiMLE = vec[2],

phiSDfromI = AsSDphi, meanlamMLE= vec[3], SDlamMLE = vec[4],
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lamSDfromI=AsSDlam, phiconv = pconv, lamconv = lconv)

3
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