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Abstract

Multivariate linear correlation analysis is important in statistical analysis and

applications. This paper defines a one number summary γ
2 of the population

correlation matrix that behaves like a squared correlation. The squared Pearson’s

correlation coefficient is a special case of γ
2 for two variables. Unlike the coefficient

of multiple determination, also known as the multiple correlation coefficient, γ
2

does not depend on the choice of the dependent variable.
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1 INTRODUCTION

This paper defines a one number summary γ2 of the population correlation matrix that
acts like a squared correlation. The following notation will be useful. Let x = (X1..., Xp)

T

and Cov(x) = Σx = (σij) be the covariance matrix of x where σij = Cov(Xi, Xj) is the
covariance of Xi and Xj. Let Cor(x) = ρx = (ρij) be the correlation matrix of x where

ρij =
Cov(Xi, Xj)

σiσj

is the correlation of Xi and Xj, and σ2
i = σii is the variance of Xi. Let det(ρx) be the

determinant of Cor(x), and let ‖A‖F denote the Frobenius norm of a matrix A. Let Ip

be the p× p identity matrix.
Let the p× p population standard deviation matrix

∆ = diag(
√
σ11, ...,

√
σpp).

Then
Σx = ∆ρx∆, (1.1)
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and
ρx = ∆−1Σx∆−1. (1.2)

The correlation or Pearson correlation coefficient ρ12 is used to measure the linear
relationship between two variables X1 and X2, and we define a one number summary of
the correlations between p random variablesX1, ..., Xp that acts like a squared correlation.
When there are p = 2 random variables, the squared Pearson correlation coefficient is
the special case of our squared coefficient.

The squared correlation coefficient of the correlation matrix

γ2 =
‖ρx − Ip‖2

F

2det(ρx) + ‖ρx − Ip‖2
F

=

∑

i<j
ρ2

ij

det(ρx) +
∑

i<j ρ
2
ij

. (1.3)

Here
‖ρx − Ip‖2

F = 2
∑

i<j

ρ2
ij = trace[(ρx − Ip)

2]

is used to measure the discrepancy between ρx and Ip.

2 PROPERTIES OF γ
2

The following theorem gives properties of γ2. The random variable Xk is a linear combi-
nation of the other p− 1 random variables if

Xk = a0 + a1X1 + · · · + ak−1Xk−1 + ak+1Xk+1 + · · · + apXp = a0 +
∑

j 6=k

ajXj

where the constants a1, ..., ak−1, ak+1, ..., ap are not all zero.

Theorem 1. Assume all pairwise covariances and correlations exist.
i) 0 ≤ γ2 ≤ 1.
ii) If X1, ..., Xp are pairwise uncorrelated (ρij = 0 for i 6= j), then γ2 = 0.
iii) If Xk is a linear combination of the other p− 1 random variables, then γ2 = 1.
iv) Conversely, if γ2 = 1, then with probability 1, Xk is a linear combination of the other
p− 1 random variables for some k.
v) If n = 2, then γ2 = ρ2

12, the squared Pearson correlation coefficient.
vi) If n = 3, then γ2 = ρ2

13 + ρ2
23 if ρ12 = 0, γ2 = ρ2

12 + ρ2
23 if ρ13 = 0, γ2 = ρ2

12 + ρ2
13 if

ρ23 = 0, γ2 = ρ2
12 if ρ12 = ρ23 = 0, γ2 = ρ2

13 if ρ12 = ρ23 = 0, and γ2 = ρ2
23 if ρ12 = ρ13 = 0.

vii) If ρij = 1, for some i 6= j, then γ2 = 1 with probability 1.

Proof. i) First, det(ρx) + ‖ρx − Ip‖2
F ≥ 0 and 2det(ρx) + ‖ρx − Ip‖2

F ≥ 0, since
the squared norm ≥ 0 and the symmetric covariance and correlation matrices of x are
positive-semidefinite, i.e. det(Cor(x)) = det(ρx) ≥ 0 and det(Cov(x)) ≥ 0.

Second, let’s show 2det(ρx) + ‖ρx − Ip‖2
F 6= 0. This result is true unless both

det(ρx) = 0 and ‖ρx − Ip‖2
F = 0. If det(ρx) = 0, then det(ρx − Ip) 6= 0, and the

squared norm ‖ρx − Ip‖2
F 6= 0. If ‖ρx − Ip‖2

F = 0 then ρx = Ip, and det(ρx) = 1 6= 0.
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Thus γ2 is well defined and

0 ≤ ‖ρx − Ip‖2
F

2det(ρx) + ‖ρx − Ip‖2
F

≤ 1.

ii) If X1, ..., Xp are pairwise uncorrelated, then ρx = Ip, and γ2 = 0.
iii) Without loss of generality, suppose there exist constants a1, ..., ap−1 not all zero,

and constant a0 such that Xp = a0 + a1X1 + · · · + ap−1Xp−1. Then Cov(Xi, Xp) =
Cov(Xi,

∑p−1
j=1 ajXj) =

∑p

j=1 ajCov(Xi, Xj). This implies that the last column of Cov(x)
is a linear combination of the first p − 1 columns. Thus det(Cov(x)) = 0. Since the
pairwise correlations exist, each σ2

i > 0, and we have

det(ρx) = det(∆−1Σx∆−1) = det(∆−1)det(Σx)det(∆−1) = 0.

Thus

γ2 =
‖ρx − Ip‖2

F

2det(ρx) + ‖ρx − Ip‖2
F

= 1.

iv) If γ2 = 1, then det(ρx) = 0 and there exists a = (a1, ..., ap)
T 6= 0, the zero vector,

such that aTCov(x)a = 0. Let Y = aTx. Then V (Y ) = E(Y − E(Y ))2 = E[(aT (x −
E(x)))2] = E[aT (x − E(x))(aT (x − E(x))T ] = aTE[(x − E(x))(x − E(x))T ]a =
aTCov(x)a = 0. V (Y ) = 0 implies that P (Y − E(Y ) = 0) = 1, i.e. 1 = P (Y =
E(Y )) = P (a1X1 + · · · + apXp = E(Y )) = 1. Hence Xk is a linear combination of the
other p− 1 random variables for some k.

v) If x = (X1, X2)
T , then

det(Cor(x)) =

∣

∣

∣

∣

1 ρ12

ρ12 1

∣

∣

∣

∣

= 1 − ρ2
12.

Thus

γ2 =
ρ2

12

1 + ρ2
12 − ρ2

12

= ρ2
12.

vi) If x = (X1, X2, X3)
T , then

det(Cor(x)) =

∣

∣

∣

∣

∣

∣

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

∣

∣

∣

∣

∣

∣

= 1 + 2ρ12ρ13ρ23 − (ρ2
12 + ρ2

13 + ρ2
23).

Thus

γ2 =
ρ2

12 + ρ2
13 + ρ2

23

1 + 2ρ12ρ13ρ23

,

and the result follows.
vii) Without loss of generality, suppose ρ12 = 1. Then X1 = aX2 + b, with prob-

ability 1, where a > 0. Then V (X1) = a2V (X2) and Cov(X1, Xi) = Cov(aX2 +
b,Xi) = aCov(X2, Xi) for i = 1, ..., p. Thus ρ1i = ρ2i for i = 1, ..., p. Then det(ρx) =
det(Cor(x)) = 0, and γ2 = 1 with probability 1. �
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Let R = Rx = (rij) be the sample correlation matrix where rij is the sample corre-
lation of Xi and Xj. Then the sample squared correlation coefficient of the correlation

matrix

γ̂2 =
‖R − Ip‖2

F

2det(R) + ‖R − Ip‖2
F

=

∑

i<j r
2
ij

det(R) +
∑

i<j
r2
ij

,

and γ̂2 has the same properties as γ2 except γ̂2 > 0 unless R = Ip. If R is a consistent
estimator of ρx, then γ̂2 is a consistent estimator of γ2 since γ2 is a continuous function
of ρx.

3 EXAMPLE AND SIMULATIONS

The nonparametric bootstrap takes a bootstrap sample of size n with replacement from
the n cases xi. Compute the sample correlation matrix from the bootstrap sample and
obtain γ̂2∗

1 . Then repeat B times to get γ̂2∗
1 , ..., γ̂

2∗
B .

The shorth confidence intervals (CIs) are useful. Let T be a statistic and T ∗ the
statistic computed from a bootstrap sample. Let T ∗

(1), ..., T
∗
(B) be the order statistics of

T ∗
1 , ..., T

∗
B. Consider intervals that contain c cases: (T ∗

(1), T
∗
(c)), (T

∗
(2), T

∗
(c+1)), ..., (T

∗
(B−c+1),

T ∗
(B)). Compute T ∗

(c) − T ∗
(1), T

∗
(c+1) − T ∗

(2), ..., T
∗
(B) − T ∗

(B−c+1). Then let the shortest closed
interval containing at least c of the T ∗

i be

shorth(c) = [T∗
(s),T

∗
(s+c−1)]. (2.1)

Let
kB = dB(1 − δ)e (2.2)

where dxe is the smallest integer ≥ x, e.g., d7.7e = 8. Frey (2013) showed that for large
Bδ and iid data, the shorth(kB) prediction interval (PI) has undercoverage that depends
on the distribution of the data with maximum undercoverage ≈ 1.12

√

δ/B, and used the
shorth(c) estimator as the large sample 100(1 − δ)% PI where

c = min(B, dB[1− δ + 1.12
√

δ/B ] e). (2.3)

Olive (2014, p. 283) suggested using the shorth as a bootstrap confidence interval.
Hall (1988) discussed the shortest bootstrap interval based on all bootstrap samples. We
will use the shorth(c) interval applied to the bootstrap sample T ∗

i = γ̂2∗
i as a large sample

confidence interval for γ2 ∈ (0, 1). One sided confidence intervals are used when a lower
or upper bound on the parameter γ2 is desired, and can be useful if γ2 = 0 or 1 is on the
boundary of [0,1] of the parameter space of γ2. The large sample 100(1 − δ)% lower CI
for γ2 is [0, γ̂2∗

(c)], while the large sample 100(1 − δ)% upper CI for γ2 is [γ̂2∗
(B−c+1), 1].

For the simulation, suppose that ρx = (ρij) where ρij = ρ for i 6= j and ρij = 1 for
i = j. Then det(ρx) = (1 − ρ)p−1[1 + (p− 1)ρ]. See Graybill (1969, p. 204). Hence

γ2 =
p(p− 1)ρ2

2(1 − ρ)p−1[1 + (p− 1)ρ] + p(p− 1)ρ2
. (2.4)

The simulation simulated iid data w with x = Aw and Aij = ψ for i 6= j and
Aii = 1. Hence cor(Xi, Xj) = ρ = [2ψ+(p−2)ψ2]/[1+(p−1)ψ2].We used w ∼ Np(0, Ip),
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w ∼ (1− τ )Nm(0, I)+ τNm(0, 25I) with 0 < τ < 1 and τ = 0.25 in the simulation, w ∼
LN(0, Ip) where the marginals are iid lognormal(0,1), or w ∼ MV Tp(d), a multivariate
t distribution with d = 7 degree of freedom.

Example 1. This example used the SASHELP.CARS data set available from the
SASHELP library, and this example is useful for illustrating that γ̂2 can be used to
quickly determine that the variables have a strong linear relationship. This data set has
428 observations and 15 variables. It contains data for make and models of cars, such
as miles per gallon, number of cylinders, cost, etc. Four variables, number of cylinders
of the car (Cylinders), weight (Weight), length (Length) and gas mileage in the city
(MPG City), are used to check for the possible relationships among them. The squared
correlation coefficient γ̂2 = 0.9640 suggests that the four variables are highly correlated
in some way. The coefficient of determination R2 = 0.5893 implies a moderate linear
relationship among the variables when gas mileage in the city is the response variable.

Then we checked the linear association between 7 variable invoice, Horsepower, num-
ber of cylinders, gas per mile on highway (MPG Highway), Weight, Wheelbase, and
Engine Size. Then γ̂2 = 0.9999. If we took invoice, the number of cylinders, engine
size, horsepower, weight, gas per mile on highway (MPG Highway), wheelbase, as the
dependent variable respectively, then we got corresponding coefficients of determination
R2 = 0.7394, R2 = 0.8828, R2 = 0.8517, R2 = 0.848, R2 = 0.8332, R2 = 0.6881, and
R2 = 0.6566. Note that the R2 varied widely based on the different choice of dependent
variable.

4 CONCLUSIONS

This paper has given a one number summary of the correlation matrix that acts like a
squared correlation. Olive (2016abc) showed that applying certain prediction regions to
a bootstrap sample results in confidence regions. Note that H0 : γ2 = 0 is equivalent to
H0 : ρij = 0 for all i < j. There are r = p(p − 1)/2 such correlations. Olive (2016a,
section 5.3.5; 2016c) gives a bootstrap test for H0, but the test needs n ≥ 50r and is
computationally intensive.

Olive (2016a, Remark 5.8) suggests the following graphical diagnostic. Let x1, ...,xn

be iid with sample covariance matrix Sx where n ≥ 10p. Let z1, ..., zn be the stan-
dardized data that has sample mean z = 0 and sample covariance matrix equal to the
sample correlation matrix of the x: Sz = Rx. Let the squared sample Mahalanobis
distance D2

i (0,A) = (zi − z)TA−1(zi − z) = zT
i A−1zi for i = 1, ..., n. Plot Di(0, Ip) on

the horizontal axis versus Di(0,Rx) on the vertical axis. Add the identity line with unit
slope and zero intercept as a visual aid. If H0 : ρx = Ip is true, then as n → ∞, the
plotted points should cluster tightly about the identity line.

Some tests for independence when p/n → θ as n → ∞ are given in Mao (2014),
Schott (2005), Srivastava (2005), and Srivastava, Kollo, and von Rosen (2005).

Simulations were done in R. See R Core Team (2016). Functions for the simulation are
in the collection of functions mpack.txt available from (http://lagrange.math.siu.edu/Olive
/mpack.txt). The function shorthLU gets the shorth(c) CI, the lower CI, and the up-
per CI. The function gsqboot bootstraps λ̂2, while the function gsqbootsim does the
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simulation.
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