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ABSTRACT

The aim in writing this paper is to present plots for Ordinary Least Squares

(OLS), Generalized Least Squares (GLS) and Weighted Least Squares (WLS) and to

study GLS and one way analysis of variance (ANOVA) testing under heterogeneity.

In particular, when we have heteroscedastic error, there is no guarantee that

the OLS estimator is the most efficient within the class of linear unbiased (or the

class of unbiased) estimators. Nonconstant error variance affects the properties of

the OLS estimators and resulting test statistics. Recall the Gauss-Markov Theorem:

Under the classical linear regression assumptions, the OLS estimator is the BLUE

(Best Linear Unbiased Estimator).

Moreover, hypothesis testing based on the standard OLS estimator of the

variance covariance matrix becomes invalid, and we need new estimation methods:

GLS, WLS, FGLS (Feasible Generalized Least Squares).

Simulations for one way ANOVA compare the ANOVA F test (F), modified

ANOVA F test (FM), the Welch ANOVA F test (FW ) and ANOVA F rank test

(FR). Power was examined and the Welch test performed well.

KEY WORDS: OLS; GLS; WLS; FGLS; Heterogeneity; Linear Regression.
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INTRODUCTION

For the classical linear regression model:

Yi = β1 + β2 · Xi2 + ... + βp · Xip + ei = xT
i β + ei, where V ar(ei) = σ2. (1)

This is called the homoscedastic (constant variance) model.

However, consider as an example the case consumption and income relation-

ship. The consumption variation of lower income groups is less than that of higher

income groups. Thus, the assumption of constant variance may not be appropriate.

When we do not have constant variance, we have a heteroscedastic model.

Often, the conditional variance is function of explanatory variables.

Then (1) is written:

Yi = β1 + β2 · Xi2 + ... + βp · Xip + ei, and Var(ei) = σ2
i . (2)

When there is heteroscedastic error, Cov(β̂) is no longer a scalar multiple of the

identity matrix, and hence there is no guarantee that the OLS estimator is the most

efficient within the class of linear unbiased (or the class of unbiased) estimators.

The constant variance assumption is important. Recall the Gauss-Markov Theorem:

Under the classical linear regression assumptions, the OLS estimator is the BLUE

(Best Linear Unbiased Estimator).

Moreover, hypothesis testing based on the standard OLS estimator of the

variance covariance matrix becomes invalid, and new estimation methods are needed:

GLS and WLS.

1



The aim in writing this paper is to present plots for OLS, GLS and WLS and to

study GLS and one way analysis of variance (ANOVA) testing under heterogeneity.

The approach will start in Chapter 1 by making some definitions and assump-

tions related to WLS and Generalized Least Squares

Chapter 2 deals with some definitions and examples of fixed effects one way ANOVA

and provides a simulation of the ANOVA F test, modified ANOVA F test, the Welch

ANOVA F test, and ANOVA F rank test. The notation and examples follow Olive

(2007) closely.
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CHAPTER 1

RANDOM VECTORS

1.1 OLS

The concepts of a random vector, the expected value of a random vector

and the covariance of a random vector are needed before covering generalized least

squares. Recall that for random variables Yi and Yj, the covariance of Yi and Yj is

Cov(Yi, Yj) ≡ σi,j = E[(Yi − E(Yi))(Yj − E(Yj)] = E(YiYj) − E(Yi)E(Yj) provided

the second moments of Yi and Yj exist.

Definition 1.1.1. Y = (Y1, ..., Yn)
T is an n × 1 random vector if Yi is a

random variable for i = 1, ..., n. Y is a discrete random vector if each Yi is discrete

and Y is a continuous random vector if each Yi is continuous. A random variable

Y1 is the special case of a random vector with n = 1.

Definition 1.1.2. The population mean of a random n × 1 vector Y =

(Y1, ..., Yn)
T is

E(Y ) = (E(Y1), ..., E(Yn))
T

provided that E(Yi) exists for i = 1, ..., n. Otherwise the expected value does not

exist. The n × n population covariance matrix

Cov(Y ) = E[(Y − E(Y ))(Y − E(Y ))T ] = ((σi,j))

where the ij entry of Cov(Y ) is Cov(Yi, Yj) = σi,j provided that each σi,j exists.

Otherwise Cov(Y ) does not exist.
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Definition 1.1.3. The covariance matrix is also called the variance–

covariance matrix and variance matrix. Sometimes the notation Var(Y ) is used.

Note that Cov(Y ) is a symmetric positive semidefinite matrix. If Z and Y are

n × 1 random vectors, a a conformable constant vector and A and B are con-

formable constant matrices, then

E(a + Y ) = a + E(Y ) and E(Y + Z) = E(Y ) + E(Z) (1.1)

and

E(AY ) = AE(Y ) and E(AY B) = AE(Y )B. (1.2)

So

Cov(a + AY ) = Cov(AY ) = ACov(Y )AT . (1.3)

Example 1.1. Consider the OLS model Y = Xβ + e where the ei are iid

with mean 0 and variance σ2. Then Y and e are random vectors while a = Xβ is

a constant vector. Notice that E(e) = 0. Thus

E(Y ) = Xβ + E(e) = Xβ.

Since the ei are iid,

Cov(Y ) = Cov(e) = σ2In (1.4)

where In is the n × n identity matrix. This result makes sense because the Yi are

independent with Yi = xT
i β + ei. Hence VAR(Yi) = VAR(ei) = σ2.

Recall that β̂OLS = (XT X)−1XTY . Hence

E(β̂OLS) = (XTX)−1XT E(Y ) = (XTX)−1XTXβ = β.
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That is, β̂OLS is an unbiased estimator of β. Using (1.3) and (1.4),

Cov(β̂OLS) = (XTX)−1XTCov(Y )X(XTX)−1

= σ2(XT X)−1XT X(XTX)−1 = σ2(XT X)−1.

Recall that Ŷ OLS = Xβ̂OLS = X(XT X)−1XTY = HY . Hence

E(Ŷ OLS) = X(XTX)−1XT E(Y ) = X(XTX)−1XTXβ = Xβ = E(Y ).

Using (1.3) and (1.4),

Cov(Ŷ OLS) = HCov(Y )HT = σ2H

since HT = H and HH = H.

Recall that the vector of residuals rOLS = (I − H)Y = Y − Ŷ OLS. Hence

E(rOLS) = E(Y ) − E(Ŷ OLS) = E(Y ) − E(Y ) = 0. Using (1.3) and (1.4),

Cov(r̂OLS) = (I −H)Cov(Y )(I − H)T = σ2(I −H)

since I−H is symmetric and idempotent: (I−H)T = I−H and (I−H)(I−H) =

I − H.

1.2 THE NO INTERCEPT OLS MODEL

The following results hold for the model Y = Xβ + e, but output tends to

give this result if the “no intercept” option is selected. The no intercept model is

also know as regression through the origin, and assumes that X does not contain a

column of ones. For the no intercept model, the assumption E(e) = 0 is important,

and this assumption is rather strong.
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Many of the multiple linear regression (MLR) results still hold: β̂OLS =

(XT X)−1XTY , the vector of predicted fitted values Ŷ = Xβ̂OLS = HY where

the hat matrix H = X(XT X)−1XT provided the inverse exists, and the vector of

residuals is r = Y − Ŷ . The forward response plot of Ŷ vs Y and residual plot of

Ŷ vs r are made in the same way and should be made before performing inference.

The main difference in the output is the ANOVA table. The ANOVA F tests

Ho : β2 = · · · = βp = 0. The test in this section tests Ho : β1 = · · · = βp = 0 ≡ Ho :

β = 0. The following definition and test follows Guttman (1982, p. 147) closely.

Definition 1.2.1. Assume that Y = Xβ + e where the ei are iid. Assume

that it is desired to test Ho : β = 0 versus Ha : β 6= 0.

a) The uncorrected total sum of squares

SST =
n∑

i=1

Y 2
i . (1.5)

b) The model sum of squares

SSM =
n∑

i=1

Ŷ 2
i . (1.6)

c) The residual sum of squares or error sum of squares is

SSE =
n∑

i=1

(Yi − Ŷi)
2 =

n∑

i=1

r2
i . (1.7)

d) The degrees of freedom (df) for SST is p, the df for SSM is n − p and the

df for SST is n. The mean squares are MSE = SSE/(n − p) and MSE = SSE/p.
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The ANOVA table given for the “no intercept” or “intercept = F” option is

below.

Summary Analysis of Variance Table

Source df SS MS F p-value

Model p SSM MSM Fo=MSM/MSE for Ho:

Residual n-p SSE MSE β = 0

The 4 step ANOVA F test for β = 0:

i) State the hypotheses Ho: β = 0, Ha: β 6= 0.

ii) Find the test statistic Fo = MSM/MSE or obtain it from output.

iii) Find the p–value from output or use the F–table: p–value =

P (Fp,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude

that there is an MLR relationship between Y and the predictors x1, ..., xp. If you

fail to reject Ho, conclude that there is not a MLR relationship between Y and the

predictors x1, ..., xp.

Warning: Several important models can be cast in the no intercept OLS

form, but often a different test than Ho : β = 0 is desired. For example, when the

generalized or weighted least squares models are transformed into no intercept OLS

form, the test of interest is Ho: β2 = · · · = βp = 0. The one way ANOVA model is

equivalent to the cell means model, which is in no intercept OLS form, but the test

of interest is Ho : β1 = · · · = βp.
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Proposition 1.2.2. Suppose Y = Xβ + e where X may or may not contain

a column of ones. Then the change in Sum of Squares (SS) test can be used for

inference. See section 1.4.

Example 1.2.1. Consider the Gladstone (1905-6) data described in Olive

(2007). If the file of datasets robdata is down loaded into R/Splus, then the ANOVA

F statistic for testing β2 = · · · = β4 = 0 can be found with the following commands.

The command lsfit adds a column of ones to x which contains the variables size,

sex, breadth and circumference. Three of these predictor variables are head mea-

surements. Then response Y is brain weight.

> y <- cbrainy

> x <- cbrainx[,c(11,10,3,6)]

> ls.print(lsfit(x,y))

F-statistic (df=4, 262)=196.2433

The ANOVA F test can also be found with the no intercept model by adding

a column of ones to x and then performing the change in SS test with the full

model and the reduced model that only uses the column of ones. Notice that the

“intercept=F” option needs to be used to fit both models. The residual standard

error = RSE =
√

MSE. Thus SSE = (n−k)(RSE)2 where n−k is the denominator

degrees of freedom for the F test and k is the numerator degrees of freedom = number

of variables in the model. The column of ones xone is counted as a variable. The

last line of output computes the change in SS F statistic and is again ≈ 196.24.
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> xone <- 1 + 0*1:267

> x <- cbind(xone,x)

> ls.print(lsfit(x,y,intercept=F))

Residual Standard Error=82.9175

F-statistic (df=5, 262)=12551.02

Estimate Std.Err t-value Pr(>|t|)

xone 99.8495 171.6189 0.5818 0.5612

size 0.2209 0.0358 6.1733 0.0000

sex 22.5491 11.2372 2.0066 0.0458

breadth -1.2464 1.5139 -0.8233 0.4111

circum 1.0255 0.4719 2.1733 0.0307

> ls.print(lsfit(x[,1],y,intercept=F))

Residual Standard Error=164.5028

F-statistic (df=1, 266)=15744.48

Estimate Std.Err t-value Pr(>|t|)

X 1263.228 10.0674 125.477 0

> ((266*(164.5028)^2 - 262*(82.9175)^2)/4)/(82.9175)^2

[1] 196.2435
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1.3 GLS, WLS AND FGLS

Definition 1.3.1. Suppose that the response variable and at least one of the

predictor variables is quantitative. Then the generalized least squares (GLS) model

is

Y = Xβ + e, (1.8)

where Y is an n×1 vector of dependent variables, X is an n×p matrix of predictors,

β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown

errors. Also E(e) = 0 and Cov(e) = σ2V where V is a known n×n positive definite

matrix.

Definition 1.3.2. The GLS estimator

β̂GLS = (XTV X)−1XT V −1Y . (1.9)

The fitted values are Ŷ GLS = Xβ̂GLS .

Definition 1.3.3. Suppose that the response variable and at least one of the

predictor variables is quantitative. Then the weighted least squares (WLS) model

with weights w1, ..., wn is the special case of the GLS model where V is diagonal:

V = diag(v1, ..., vn) and wi = 1/vi. Hence

Y = Xβ + e, (1.10)

E(e) = 0 and Cov(e) = σ2diag(v1, ..., vn) = σ2diag(1/w1, ..., 1/wn).

Definition 1.3.4. The WLS estimator

β̂WLS = (XT V X)−1XT V −1Y . (1.11)
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The fitted values are Ŷ WLS = Xβ̂WLS .

Definition 1.3.5. The feasible generalized least squares (FGLS) model is the

same as the GLS estimator except that V = V (θ) is a function of an unknown

q×1 vector of parameters θ. Let the estimator of V be V̂ = V (θ̂). Then the FGLS

estimator

β̂FGLS = (XT V̂ X)−1XT V̂
−1

Y . (1.12)

The fitted values are Ŷ FGLS = Xβ̂FGLS . The feasible weighted least squares

(FWGLS) estimator is the special case of the FGLS estimator where V = V (θ)

is diagonal. Hence the estimated weights ŵi = 1/v̂i = 1/vi(θ̂). The FWLS estima-

tor and fitted values will be denoted by β̂FWLS and Ŷ FWLS , respectively.

Notice that the ordinary least squares (OLS) model is a special case of GLS

with V = In, the n × n identity matrix. It can be shown that the GLS estimator

minimizes the GLS criterion

QGLS(η) = (Y − Xη)T V −1(Y −Xη).

Notice that the FGLS and FWLS estimators have p + q + 1 unknown parameters.

These estimators can perform very poorly if n < 10(p + q + 1).

The GLS and WLS estimators can be found from the OLS regression (without

an intercept) of a transformed model. Typically there will be a constant in the

model: the first column of X is a vector of ones. Following Seber and Lee (2003, p.

66-68), there is a nonsingular n×n matrix K such that V = KKT . Let Z = K−1Y ,

U = K−1X and ε = K−1e.
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Proposition 1.3.1. a)

Z = Uβ + ε (1.13)

follows the OLS model since E(ε) = 0 and Var(ε) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression (without

an intercept) of Z on U .

c) For WLS, Yi = xT
i β + ei. The corresponding OLS model Z = Uβ + ε is

equivalent to Zi = uT
i β + εi for i = 1, ..., n where uT

i is the ith row of U . Then

Zi =
√

wi Yi and ui =
√

wi xi. Hence β̂GLS can be obtained from the OLS regression

(without an intercept) of Z i =
√

wi Yi on ui =
√

wi xi.

Proof. a) E(ε) = K−1E(e) = 0 and

Cov(ε) = K−1Cov(e)(K−1)T = σ2K−1V (K−1)T

= σ2K−1KKT (K−1)T = σ2In.

Notice that OLS without an intercept needs to be used since U does not contain a

vector of ones. The first column of U is K−11 6= 1.

b) Let β̂ZU denote the OLS estimator obtained by regressing Z on U . Then

β̂ZU = (UT U)−1UTZ = (XT (K−1)T K−1X)−1XT (K−1)TK−1Y

and the result follows since V −1 = (KKT )−1 = (KT )−1K−1 = (K−1)TK−1.

c) The result follows from b) if Zi =
√

wi Yi and ui =
√

wi xi. But for WLS,

V = diag(v1, ..., vn) and hence K = KT = diag(
√

v1, ...,
√

vn). Hence

K−1 = diag(1/
√

v1, ..., 1/
√

vn) = diag(
√

w1, ...,
√

wn)
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and Z = K−1Y has ith element Zi =
√

wi Yi. Similarly, U = K−1X has ith row

uT
i =

√
wi xT

i . QED

Remark 1.3.1. Standard software produces WLS output and the ANOVA F

test and Wald t tests are performed using this output.

Remark 1.3.2. The FGLS estimator can also be found from the OLS regres-

sion (without an intercept) of Z on U . Similarly the FWLS estimator can be found

from the OLS regression (without an intercept) of Zi =
√

ŵiYi on ui =
√

ŵixi. But

now U is a random matrix instead of a constant matrix. Hence these estimators

are highly nonlinear. OLS output can be used for exploratory purposes, but the

p–values are generally not correct.

Under regularity conditions, the OLS estimator β̂OLS is a consistent estimator

of β when the GLS model holds, but β̂GLS should be used because it generally has

higher efficiency.

Definition 1.3.6. Let β̂ZU be the OLS estimator from regressing Z on U .

The vector of fitted values is Ẑ = Uβ̂ZU and the vector of residuals is rZU = Z−Ẑ.

Then β̂ZU = β̂GLS for GLS, β̂ZU = β̂FGLS for FGLS, β̂ZU = β̂WLS for WLS and

β̂ZU = β̂FWLS for FWLS. For GLS, FGLS, WLS and FWLS, a forward response

plot is a plot of Ẑi versus Zi and a residual plot is a plot of Ẑi versus rZU,i.

Notice that the residual and forward response plots are based on the OLS

output from the OLS regression without intercept of Y on U . If the model is good,

then the plotted points in the forward response plot should follow the identity line

13
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d) WLS Residual Plot

Figure 1.1. Plots for Draper and Smith Data

in an evenly populated band while the plotted points in the residual plot should

follow the line rZU,i = 0 in an evenly populated band.

Plots based on Ŷ = Xβ̂ZU and on ri = Yi − Ŷi should not be used for several

reasons. First, often V depends on X . Although the plot of Ŷi versus Yi should

be linear, the plotted points will not scatter about the identity line in an evenly

populated band. Hence this plot can not be used to check whether the GLS model

with V is a good approximation to the data. Moreover, the ri and Ŷi may be

correlated and usually do not scatter about the r = 0 line in an evenly populated

band. The plots in Definition 1.3.6 are both a check on linearity and on whether

the model using V (or V̂ ) gives a good approximation of the data, provided that

n > k(p + q + 1) where k ≥ 5 and preferably k ≥ 10.

For GLS and WLS (and for exploratory purposes for FGLS and FWLS), plots
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and model building and variable selection should be based on Z and U . Form

Z and U and then use OLS software for model selection and variable selection.

If the columns of X are v1, ...,vp, then the columns of U are U1, ...,Up where

U j = K−1vj corresponds to the jth predictor xj. For example, the analog of the

OLS residual plot of jth predictor versus the residuals is the plot of the jth predictor

uj versus rZU,i. The notation is confusing but the idea is simple: form Z and U ,

then use OLS software and the OLS techniques to build the model.

Example 1.3.2. Draper and Smith (1981, p. 112-114) presents a FWLS

example with n = 35 and p = 2. Hence Y = β1 + β2x + e. Let v̂i = vi(θ̂) =

1.5329− 0.7334xi + 0.0883x2
i . Thus θ̂ = (1.5329,−0.7334, 0.0883)T . Figure 1.1a and

b show the forward response and residual plots based on the OLS regression on Y

on x. The residual plot has the shape of the right opening megaphone, suggesting

that the variance is not constant. Figure 1.1c and d show the forward response and

residual plots based on FWLS with weights ŵi = 1/v̂i.. Software meant for WLS

needs the weights. Hence FWLS can be computed using WLS software with the

estimated weights, but the software may print WLS instead of FWLS, as in Figure

1.1c and d.

1.4 INFERENCE FOR GLS

Inference for the GLS model Y = Xβ + e can be performed by using the

change in SS F test for the equivalent no intercept OLS model Z = Uβ + ε.

Following Section 1.3, create Z and U , fit the full and reduced model using the “no
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intercept” or “intercept = F” option.

The 4 step change in SS F test of hypotheses: i) State the hypotheses

Ho: the reduced model is good Ha: use the full model

ii) Find the test statistic FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the p–value = P(FdfR−dfF ,dfF
> FR). (Here dfR − dfF = p − q = number of

parameters set to 0, and dfF = n − p.)

iv) State whether you reject Ho or fail to reject Ho. Reject Ho if the p–value < δ

and conclude that the full model should be used. Otherwise, fail to reject Ho and

conclude that the reduced model is good.

Assume that the GLS model contains a constant β1. The GLS ANOVA F test

of Ho : β2 = · · · = βp versus Ha: not Ho uses the reduced model that contains the

first column of U . The GLS ANOVA F test of Ho : βi = 0 versus Ho : βi 6= 0 uses

the reduced model with the ith column of U deleted. For the special case of WLS,

the software will often have a weights option that will also give correct output for

inference.

Example 1.4.1. Suppose that the data from Example 1.3.2 has valid weights,

so that WLS can be used instead of FWLS. The R/Splus commands below perform

WLS.

> ls.print(lsfit(dsx,dsy,wt=dsw))

Residual Standard Error=1.137
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R-Square=0.9209

F-statistic (df=1, 33)=384.4139

p-value=0

Estimate Std.Err t-value Pr(>|t|)

Intercept -0.8891 0.3004 -2.9602 0.0057

X 1.1648 0.0594 19.6065 0.0000

The F statistic 886.4982 tests Ho : β = 0 and is not of interest. The WLS

ANOVA F test for Ho : β2 = 0 can also be found with the no intercept model by

adding a column of ones to x, form U and Z and compute the change in SS F test

where the reduced model uses the first column of U . Notice that the “intercept=F”

option needs to be used to fit both models. The residual standard error = RSE

=
√

MSE. Thus SSE = (n − k)(RSE)2 where n − k is the denominator degrees

of freedom for the F test and k is the numerator degrees of freedom = number of

variables in the model. The column of ones xone is counted as a variable. The last

line of output computes the change in SS F statistic and is again ≈ 384.4.

> xone <- 1 + 0*1:35

> x <- cbind(xone,dsx)

> z <- as.vector(diag(sqrt(dsw))%*%dsy)

> u <- diag(sqrt(dsw))%*%x

> ls.print(lsfit(u,z,intercept=F))

Residual Standard Error=1.137
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R-Square=0.9817

F-statistic (df=2, 33)=886.4982

p-value=0

Estimate Std.Err t-value Pr(>|t|)

xone -0.8891 0.3004 -2.9602 0.0057

dsx 1.1648 0.0594 19.6065 0.0000

> ls.print(lsfit(u[,1],z,intercept=F))

Residual Standard Error=3.9838

R-Square=0.7689

F-statistic (df=1, 34)=113.1055

p-value=0

Estimate Std.Err t-value Pr(>|t|)

X 4.5024 0.4234 10.6351 0

> ((34*(3.9838)^2-33*(1.137)^2)/1)/(1.137)^2

[1] 384.4006

The WLS t-test for this data has t = 19.6065 which corresponds to F = t2 =

384.4 since this test is equivalent to the WLS ANOVA F test when there is only one

predictor. The WLS t-test for the intercept has F = t2 = 8.76. This test statistic

can be found from the no intercept OLS model by leaving the first column of U out
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of the model, then perform the change in SS F test as shown below.

> ls.print(lsfit(u[,2],z,intercept=F))

Residual Standard Error=1.2601

F-statistic (df=1, 34)=1436.300

Estimate Std.Err t-value Pr(>|t|)

X 1.0038 0.0265 37.8985 0

> ((34*(1.2601)^2-33*(1.137)^2)/1)/(1.137)^2

[1] 8.760723

A problem with GLS and FGLS is that the weigths can cause outliers.

Weighted least squares (WLS) regression compensates for violation of the ho-

moscedasticity assumption by weighting cases differentially: cases with large vari-

ances count less and those with small variances count more in estimating the regres-

sion coefficients. The result is that the estimated coefficients are usually very close

to what they would be in OLS regression, but under WLS regression their standard

errors are much smaller. Weighted predicted/residual plots can be used to assess

the goodness of fit of the weighted model. That is, the WLS fit is plotted on the x

axis and the WLS residual on the y axis. When there is good fit, the residuals will

no longer form a funnel shape but instead be uniformly distributed around the 0.0

line of the y axis.

Figures 1.2 and 1.3 provides evidence of a Good Plot (Figure 1.2), and a Bad
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plot (Figure 1.3) for FWLS. Observe that for Figure 1.2a and b the residual plot

has the shape of the right opening megaphone, suggesting that the variance is not

constant. Figure 1.2.c and d show the forward response and residual plots based

on FWLS, and the plots looks good. Software meant for WLS needs the weights.

Hence FWLS was computed using WLS software with the stimated weights. In

Figure 1.3.a the OLS plots look better than the FWLS plots. Notice the FWLS plot

has a left opening megaphone shape with one outlier.
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d) FWLS Residual Plot

Figure 1.2. Good Plots for WLS
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Figure 1.3. Bad Plots for WLS
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CHAPTER 2

ONE WAY ANOVA

2.1 FIXED EFFECTS ONE WAY ANOVA

Definition 2.1.1. Models in which the response variable Y is quantitative,

but all of the predictor variables are qualitative are called analysis of variance

(ANOVA) models. Each combination of the levels of the predictors gives a dif-

ferent distribution for Y . A predictor variable W is often called a factor and a

factor level ai is one of the categories W can take.

Definition 2.1.2. Let fZ(z) be the pdf of Z. Then the family of pdf’s

fY (y) = fZ(y − µ) indexed by the location parameter µ, −∞ < µ < ∞, is the

location family for the random variable Y = µ + Z with standard pdf fZ(z).

Definition 2.1.3. A one way fixed effects ANOVA model has a single qual-

itative predictor variable W with p categories a1, ..., ap. There are p different

distributions for Y , one for each category ai. The distribution of

Y |W = aj ∼ fZ(y − µj)

where the location family has second moments. Hence all p distributions come from

the same location family with different location parameter µj and the same variance

σ2.

Definition 2.1.4. The one way fixed effects normal ANOVA model is the
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special case where

Y |W = aj ∼ N(µj, σ
2).

Example 2.1.1. The pooled 2 sample t–test is a special case of a one way

ANOVA model with p = 2. For example, one population could be ACT scores for

men and the second population ACT scores for women. Then W = gender and Y

= score.

Notation. It is convenient to relabel the response variable Y1, ..., Yn as the

vector Y = (Y11, ..., Y1,n1, Y21, ..., Y2,n2, ..., Yp1, ..., Yp,np)
T where the Yij are indepen-

dent and Yi1, ..., Yi,ni are iid. Here j = 1, ..., ni where ni is the number of cases

from the ith level where i = 1, ..., p. Thus n1 + · · · + np = n. Similarly use double

subscripts on the errors. Then there will be many equivalent parameterizations of

the one way fixed effects ANOVA model.

Definition 2.1.5. The cell means model is the parameterization of the one

way fixed effects ANOVA model such that

Yij = µi + eij

where Yij is the value of the response variable for the jth trial of the ith factor level.

The µi are the unknown means and E(Yij) = µj . The eij are iid from the location

family with pdf fZ(z) and unknown variance σ2 = VAR(Yij) = VAR(eij). For the

normal cell means model, the eij are iid N(0, σ2) for i = 1, ..., p and j = 1, ..., ni.

The cell means model is an OLS model (without intercept) of the form:
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Y = Xcβc + e =



Y11

...

Y1,n1

Y21

...

Y2,n2

...

Yp,1

...

Yp,np




=




1 0 0 . . . 0

...
...

...
...

1 0 0 . . . 0

0 1 0 . . . 0

...
...

...
...

0 1 0 . . . 0

...
...

...
...

0 0 0 . . . 1

...
...

...
...

0 0 0 . . . 1







µ1

µ2

...

µp




+




e11

...

e1,n1

e21

...

e2,n2

...

ep,1

...

ep,np




. (2.1)

Notation. Let Yi0 =
∑ni

j=1 Yij and let

µ̂i = Y io = Yi0/ni =
1

ni

ni∑

j=1

Yij. (2.2)

Hence the “dot notation” means sum over the subscript corresponding to the 0, eg

j. Similarly, Y00 =
∑p

i=1

∑ni

j=1 Yij is the sum of all of the Yij.

Notice that the indicator variables used in the OLS cell means model (2.1)

are xi = 1 if W = ai, and xi = 0, otherwise, for j = 1, ..., p. The model can use

p indicator variables for the factor instead of p − 1 indicator variables because the

model does not contain an intercept. Also notice that

E(Y ) = Xcβc = (µ1, ..., µ1, µ2, ..., µ2, ..., µp, ..., µp)
T ,

(XT
c Xc) = diag(n1, ...,np) and XT

c Y = (Y10, ..., Y10, Y20, ..., Y20, ..., Yp0, ..., Yp0)
T .
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Hence (XT
c X c)

−1 = diag(1/n1, ..., 1/np) and

β̂c = (XT
c Xc)

−1XT
c Y = (Y 10, ..., Y p0)

T = (µ̂1, ..., µ̂p)
T .

Thus Ŷ = Xcβ̂c = (Y 10, ..., Y 10, ...Y p0, ..., Y p0)
T . Hence the ijth fitted value is

Ŷij = Y i0 = µ̂i (2.3)

and the ijth residual is

rij = Yij − Ŷij = Yij − µ̂i. (2.4)

Since the cell means model is an OLS model, there is an associated forward

response plot and residual plot and ANOVA F test. However, many of the inter-

pretations of the OLS quantities for ANOVA models differ from the interpretations

for multiple linear regresion (MLR) models. First, for MLR models with continuous

predictors x, the conditional distribution Y |x makes sense even if x is not one of

the observed xi if x is not far from the xi. This fact makes MLR very powerful.

But for the one way fixed effects ANOVA model, the only distributions that make

sense are Y |xi where xi corresponds to observed combinations of levels. Hence for

one way fixed effects ANOVA, there are p xi that make sense where xi corresponds

to level ai.

All of the parameterizations of the one way fixed effects ANOVA model yield

the same predicted values, residuals and ANOVA F test, but the interpretations of

the parameters differ.

Definition 2.1.6. Consider the one way fixed effects ANOVA model. The

forward response plot is a plot of µ̂i versus Yij and the residual plot is a plot of µ̂i
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versus rij.
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Figure 2.1. Plots for Crab Data

The points in the forward response plot scatter about the identity line and

the points in the residual plot scatter about the r = 0 line, but the scatter need not

be in an evenly populated band. A dot plot of Z1, ..., Zm consists of an axis and m

points each corresponding to the value of Zi. The forward response plot consists of

p dot plots, one for each value of µ̂i. The dot plot corresponding to µ̂i is the dot

plot of Yi1, ..., Yi,ni. Similarly, the residual plot consists of p dot plots, and the plot

corresponding to µ̂i is the dot plot of ri1, ..., ri,ni. Assume that each nij ≥ 10. Under

the assumption that the Yij are from the same location scale family with different

parameters µi, each of the p dot plots should have roughly the same shape and

spread. This assumption is easier to judge with the residual plot. If the forward

response plot looks like the residual plot, then a horizontal line fits the p dot plots
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about as well as the identity line, and there is not much difference in the µi. If

the identity line is clearly superior to any horizontal line, then at least some of the

means differ.

The assumption of the Yij coming from the same location scale family with

different location parameters µi and the same constant variance σ2 is a big assump-

tion and often does not hold. Another way to check this assumption is to make a

box plot of the Yij for each i. The box in the box plot corresponds to the lower,

middle and upper quartiles of the Yij. The middle quartile is just the sample median

of the data mij: at least half of the Yij ≥ mij and at least half of the Yij ≤ mij. The

p boxes should be roughly the same length and the median should occur in roughly

the same position. The “whiskers” in each plot should also be roughly similar. His-

tograms for each of the p samples could also be made. All of the histograms should

look similar in shape.

Example 2.1.2. Kuehl (1994, p. 128) gives data for counts of hermit crabs

on 25 different transects in each of six different coastline habitats. Let Z be the

count. Then the response variable Y = log10(Z + 1/6). Although the counts Z

varied greatly, each habitat had several counts of 0 and often there were several

counts of 1, 2 or 3. Hence Y is not continuous. The cell means model was fit with

nj = 25 for j = 1, ..., 6. Each of the six habitats was a level. Figure 2.1a and b

shows the forward response plot and residual plot. There are 6 dot plots in each

plot. Because several of the smallest values in each plot are identical, it does not

always look like the identity line is passing through the six sample means Y i0 for
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i = 1, ..., 6. In particular, examine the dot plot for the smallest mean (look at the

25 dots furthest to the left that fall on the vertical line FIT ≈ 0.36). Random noise

(jitter) has been added to the response and residuals in Figure 2.1c and d. Now it

is easier to compare the six dot plots. They seem to have roughly the same spread.

Definition 2.1.7. a) The total sum of squares

SSTO =

p∑

i=1

ni∑

j=1

(Yij − Y 00)
2.

b) The treatment sum of squares

SSTR =

p∑

i=1

ni(Y i0 − Y 00)
2.

c) The residual sum of squares or error sum of squares

SSE =

p∑

i=1

ni∑

j=1

(Yij − Y io)
2.

Definition 2.1.8. Associated with each SS in Definition 2.1.7 is a degrees of

freedom (df) and a mean square = SS/df. For SSTO, df = n − 1 and MSTO =

SSTO/(n−1). For SSTR, df = p−1 and MSTR = SSR/(p−1). For SSE, df = n−p

and MSE = SSE/(n − p).

Let S2
i =

∑ni

j=1(Yij − Y i0)
2/(ni − 1) be the sample variance of the ith group.

Then the MSE is a weighted sum of the S2
i :

σ̂2 = MSE =
1

n − p

p∑

i=1

ni∑

j=1

e2
ij =

1

n − p

p∑

i=1

ni∑

j=1

(Yij − Y i0)
2 =
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1

n − p

p∑

i=1

(ni − 1)S2
i = S2

pool

where S2
pool is known as the pooled variance estimator.

The ANOVA table is the same as that for MLR, except that SSTR replaces

the regression sum of squares. The MSE is again an estimator of σ2. The ANOVA

F test tests whether all p means µi are equal. Shown below is an ANOVA table

given in symbols. Sometimes “Treatment” is replaced by “Between treatments,”

“Between Groups,” “Model,” “Factor” or “Groups.” Sometimes “Error” is replaced

by “Residual,” or “Within Groups.”

Summary Analysis of Variance Table

Source df SS MS F p-value

Treatment p-1 SSTR MSTR Fo=MSTR/MSE for Ho:

Error n-p SSE MSE µ1 = · · · = µp

The 4 step fixed effects one way ANOVA F test of hypotheses:

i) State the hypotheses Ho: µ1 = µ2 = · · · = µp and Ha: not Ho.

ii) Find the test statistic Fo = MSTR/MSE or obtain it from output.

iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If the p–value < δ, reject Ho and

conclude that the mean response depends on the factor. Otherwise fail to reject Ho

and conclude that the response does not depend on the factor. Give a nontechnical
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sentence.

Rule of thumb 2.1.2. Moore (1999, p. 512). If

max(S1, ..., Sp) ≤ 2min(S1, ..., Sp),

then the one way ANOVA F test results will be approximately correct.

Remark 2.1.1. When the assumption that the p groups come from the same

location family with finite variance σ2 is violated, the one way ANOVA F test may

not make much sense because unequal means may not imply the superiority of one

category over another. Suppose Y is the time in minutes until relief from a headache

and that Y1j ∼ N(60, 1) while Y2j ∼ N(65, σ2). If σ2 = 1, then the type 1 medicine

gives headache relief 5 minutes faster, on average, and is superior, all other things

being equal. But if σ2 = 100, then many patients taking medicine 2 experience much

faster pain relief than those taking medicine 1, and many experience much longer

time until pain relief. In this situation, predictor variables that would identify which

medicine is faster for a given patient would be very useful.

fat1 fat2 fat3 fat4 One way Anova for Fat1 Fat2 Fat3 Fat4

64 78 75 55 Source DF SS MS F P

72 91 93 66 treatment 3 1636.5 545.5 5.41 0.0069

68 97 78 49 error 20 2018.0 100.9

77 82 71 64

56 85 63 70

95 77 76 68
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Example 2.1.3. The output above represents grams of fat (minus 100 grams)

absorbed by doughnuts using 4 types of fat. See Snedecor and Cochran (1967, p.

259). Let µi denote the mean amount of fat i absorbed by doughnuts, i = 1, 2, 3

and 4. a) Find µ̂1. b) Perform a 4 step Anova F test.

Solution: a) β̂1c = µ̂1 = Y 10 = Y10/n1 =
∑n1

j=1 Y1j/n1 =

(64 + 72 + 68 + 77 + 56 + 95)/6 = 432/6 = 72.

b) i) H0 : µ1 = µ2 = µ3 = µ4 Ha: not H0

ii) F = 5.41

iii) pvalue = 0.0069

iv) Reject H0, the mean amount of fat absorbed by doughnuts depends on the

type of fat.

Three tests for Ho : µ1 = · · · = µp can be used if Rule of Thumb

2.1.2: max(S1, ..., Sp) ≤ 2min(S1, ..., Sp) fails. Let Y = (Y1, ..., Yn)
T , and let

Y(1) ≤ Y(2) · · · ≤ Y(n) be the order statistics. Then the rank transformation of

the response is Z = rank(Y ) where Zi = j if Yi = Y(j) is the jth largest order

statistic. For example, if Y = (7.7, 4.9, 33.3, 6.6)T , then Z = (3, 1, 4, 2)T . The first

test performs the one way ANOVA F test with Z replacing Y . See Montgomery

(1984, p. 117-118). The remaining two tests are described in Brown and Forsythe

(1974b). Let dxe be the smallest integer ≥ x, eg d7.7e = 8. Then the Welch ANOVA

F test uses test statistic

FW =

∑p
i=1 wi(Y i0 − Ỹ00)

2/(p − 1)

1 + 2(p−2)
p2−1

∑p
i=1(1 −

wi

u
)2/(ni − 1)
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where wi = ni/S
2
i , u =

∑p
i=1 wi and Ỹ00 =

∑p
i=1 wiY i0/u. The test statistic is

compared to an Fp−1,dW
distribution where dW = dfe and

1/f =
3

p2 − 1

p∑

i=1

(1 − wi

u
)2/(ni − 1).

The modified ANOVA F test uses test statistic

FM =

∑p
i=1 ni(Y i0 − Y 00)

2

∑p
i=1(1 −

ni

n
)S2

i

The test statistic is compared to an Fp−1,dM
distribution where dM = dfe and

1/f =

p∑

i=1

c2
i /(ni − 1)

where

ci = (1 − ni

n
)S2

i /[

p∑

i=1

(1 − ni

n
)S2

i ].

The regpack function anovasim can be used to compare the four test statistics.

Simulation.

Simulations were done in R. The simulation used different values of sample size (ni),

populations means (µi) , and standard deviation (σi), 5,000 runs were used at the

nominal 5% level for the ANOVA F (F )test, modified ANOVA F (FM) test, the

Welch ANOVA F (FW )test and ANOVA F residual (FR) test. For Table 2.1, want

level near .05 and for Table 2.3 want level near 1 unless µ1 = µ2 = µ3 = µ4 where

power=level=0.05 is wanted. If σ1 = σ2 = σ3 = σ4 the classical ANOVA F test

should work.

As expected, in Table 2.1, the ANOVA F statistic shows marked deviations

from from its nominal size when the variances of the groups are unequal. In the ex-

amples given at the nominal 5% size, the simulated size varies from 0.1428 (14.28%)
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when the sample has larger variances to 0.031 (3.1%) when the same sample has

smaller variances. Also in this case, the other three statistics show relatively little

fluctuation in size. FW had size closest to .05 except for small sample sixes where

FM had a slight advantage. FR was not as good as FW or FM . FW performed well

and FR was OK, but FM was often worse than the classical test.
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Table 2.1. µ1 = µ2 = µ3 = µ4= 0 F is the proportion of times
the ANOVA F test rejected Ho with nominal level 0.05, 5000
runs

n1, n2, n3, n4 σ1, σ2, σ3, σ4 F FM FW FR

4, 4, 4, 4 1, 1, 1, 1 0.0516 0.0412 0.0554 0.0642

1, 2, 2, 3 0.0656 0.0506 0.0606 0.0734

3, 2, 2, 1 0.0628 0.0472 0.0628 0.064

4, 8, 10, 12 1, 1, 1, 1 0.0464 0.0474 0.0604 0.0494

1, 2, 2, 3 0.0246 0.0482 0.047 0.0304

3, 2, 2, 1 0.133 0.0604 0.0604 0.0888

8, 16, 20, 24 1, 1, 1, 1 0.0568 0.0548 0.0584 0.055

1, 2, 2, 3 0.031 0.065 0.057 0.04

3, 2, 2, 1 0.1428 0.064 0.0568 0.0972

11, 11, 11, 11 1, 1, 1, 1 0.0518 0.051 0.0534 0.0526

1, 2, 2, 3 0.0622 0.0576 0.0496 0.0582

11, 16, 16, 21 1, 1, 1, 1 0.054 0.0546 0.051 0.0518

1, 2, 2, 3 0.038 0.06 0.0484 0.0416

3, 2, 2, 1 0.0988 0.057 0.043 0.0752

22, 32, 32, 42 1, 1, 1, 1 0.0518 0.0504 0.0542 0.0494

1, 2, 2, 3 0.0344 0.0592 0.0516 0.0426

3, 2, 2, 1 0.0986 0.054 0.0492 0.0764

5, 5, 5, 5 1, 1, 1, 1 0.0532 0.0438 0.048 0.0556

1, 2, 2, 3 0.0684 0.054 0.0596 0.0684

3, 2, 2, 1 0.0644 0.0488 0.0592 0.0674

10, 10, 10, 10 1, 1, 1, 1 0.0542 0.051 0.053 0.0548

1, 2, 2, 3 0.068 0.0614 0.0588 0.0632

3, 2, 2, 1 0.067 0.0612 0.0546 0.0632

20, 20, 20, 20 1, 1, 1, 1 0.0498 0.0498 0.0478 0.0532

1, 2, 2, 3 0.0688 0.0642 0.0558 0.0666

3, 2, 2, 1 0.063 0.0612 0.0506 0.0616
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Table 2.2. (Table 2.1 continued)

n1, n2, n3, n4 σ1, σ2, σ3, σ4 F FM FW FR

50, 50, 50, 50 1, 1, 1, 1 0.0506 0.0502 0.0488 0.0496

1, 2, 2, 3 0.0612 0.0602 0.0472 0.0536

3, 2, 2, 1 0.0636 0.0626 0.0488 0.0586

100, 100, 100, 100 1, 1, 1, 1 0.0438 0.0438 0.046 0.045

1, 2, 2, 3 0.0638 0.063 0.0458 0.061

3, 2, 2, 1 0.0592 0.0586 0.0518 0.0564
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Table 2.3. F is the proportion of times the ANOVA F test
rejected Ho with nominal level 0.05, 5000 runs

n1, n2, n3, n4 σ1, σ2, σ3, σ4 µ1, µ2, µ3, µ4 F FM FW FR

4, 4, 4, 4 1, 1, 1, 1 0, 0, 0, 0 0.0544 0.0416 0.0624 0.0634

1, 0, 0, 0 0.2078 0.1696 0.178 0.2088

1, 0, 0, 0.7 0.211 0.1738 0.1882 0.2222

5, 0, 0, 0.5 1 1 0.9982 1

5, 5, 5, 5 1, 1, 1, 1 0, 0, 0, 0 0.0532 0.0444 0.0532 0.0584

1, 0, 0, 0 0.2656 0.241 0.2344 0.2656

1, 0, 0, 0.7 0.1502 0.1388 0.1424 0.1572

5, 0, 0, 0.5 1 1 1 1

10, 10, 10, 10 1, 1, 1, 1 0, 0, 0, 0 0.0512 0.0492 0.0538 0.0544

1, 0, 0, 0 0.5736 0.5656 0.533 0.5524

1, 0, 0, 0.7 0.2992 0.2914 0.2732 0.2912

5, 0, 0, 0.5 1 1 1 1

20, 20, 20, 20 1, 1, 1, 1 0, 0, 0, 0 0.052 0.0514 0.0544 0.0544

1, 0, 0, 0 0.8998 0.8996 0.8856 0.884

1, 0, 0, 0.7 0.5786 0.5774 0.561 0.557

5, 0, 0, 0.5 1 1 1 1

100, 100, 100, 100 1, 1, 1, 1 0, 0, 0, 0 0.0446 0.0444 0.045 0.048

1, 0, 0, 0 1 1 1 1

1, 0, 0, 0.7 1 1 1 0.9998

5, 0, 0, 0.5 1 1 1 1
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Table 2.4. (Table 2.3 continued)

n1, n2, n3, n4 σ1, σ2, σ3, σ4 µ1, µ2, µ3, µ4 F FM FW FR

4, 4, 4, 4 3, 2, 2, 1 0, 0, 0, 0 0.0718 0.0544 0.0636 0.076

1.5, 0, 0, 0 0.1476 0.11138 0.1046 0.1412

0, 0, 0, 1 0.092 0.0662 0.1202 0.1046

1.3, 0, 0, 1.3 0.131 0.098 0.1534 0.1476

5, 5, 5, 5 3, 2, 2, 1 0, 0, 0, 0 0.0692 0.0544 0.0566 0.0704

1.5, 0, 0, 0 0.1818 0.1508 0.1172 0.151

0, 0, 0, 1 0.104 0.0838 0.1366 0.1214

1.3, 0, 0, 1.3 0.166 0.1352 0.1988 0.183

10, 10, 10, 10 3, 2, 2, 1 0, 0, 0, 0 0.066 0.0598 0.0558 0.0634

1.5, 0, 0, 0 0.3126 0.2928 0.1946 0.2502

0, 0, 0, 1 0.1464 0.132 0.279 0.1938

1.3, 0, 0, 1.3 0.2946 0.2772 0.3542 0.4176

20, 20, 20, 20 3, 2, 2, 1 0, 0, 0, 0 0.0606 0.0578 0.0506 0.0572

1.5, 0, 0, 0 0.5312 0.524 0.3676 0.4394

0, 0, 0, 1 0.2718 0.2592 0.5774 0.3998

1.3, 0, 0, 1.3 0.592 0.5792 0.7866 0.6852

100, 100, 100, 100 3, 2, 2, 1 0, 0, 0, 0 0.058 0.0566 0.0464 0.057

1.5, 0, 0, 0 0.9976 0.9976 0.9862 0.9888

0, 0, 0, 1 0.9834 0.9832 1 0.997

1.3, 0, 0, 1.3 1 1 1 1
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Table 2.5. (Table 2.3 continued)

n1, n2, n3, n4 σ1, σ2, σ3, σ4 µ1, µ2, µ3, µ4 F FM FW FR

4, 4, 4, 4 1, 2, 2, 3 0, 0, 0, 0 0.0704 0.0526 0.0678 0.0714

1.3, 0, 0, 0 0.1166 0.0828 0.1652 0.1398

0, 0, 0, 1 0.1026 0.077 0.0802 0.1038

1, 0, 0, 1 0.1108 0.085 0.1176 0.1228

5, 5, 5, 5 1, 2, 2, 3 0, 0, 0, 0 0.0574 0.0452 0.055 0.058

1.3, 0, 0, 0 0.2214 0.1058 0.2012 0.1614

0, 0, 0, 1 0.1232 0.1006 0.0856 0.1104

1, 0, 0, 1 0.1252 0.1016 0.1376 0.1374

10, 10, 10, 10 1, 2, 2, 3 0, 0, 0, 0 0.059 0.052 0.0522 0.0564

1.3, 0, 0, 0 0.2214 0.2024 0.4548 0.3158

0, 0, 0, 1 0.1732 0.1606 0.106 0.1466

1, 0, 0, 1 0.1878 0.1712 0.2486 0.2116

20, 20, 20, 20 1, 2, 2, 3 0, 0, 0, 0 0.0662 0.0626 0.0492 0.059

1.3, 0, 0, 0 0.4904 0.4756 0.8282 0.6628

0, 0, 0, 1 0.281 0.2738 0.175 0.2268

1, 0, 0, 1 0.3658 0.3562 0.5376 0.434

100, 100, 100, 100 1, 2, 2, 3 0, 0, 0, 0 0.0618 0.061 0.0516 0.0578

1.3, 0, 0, 0 1 1 1 1

0, 0, 0, 1 0.8758 0.8756 0.7636 0.7926

1, 0, 0, 1 0.9904 0.9904 0.9992 0.9972
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Table 2.6. (Table 2.3 continued)

n1, n2, n3, n4 σ1, σ2, σ3, σ4 µ1, µ2, µ3, µ4 F FM FW FR

4, 4, 4, 4 1, 1, 1, 9 0, 0, 0, 0 0.1486 0.0744 0.0588 0.1072

1.3, 0, 0, 0 0.1586 0.0848 0.2478 0.11602

0, 0, 0, 1 0.1566 0.0858 0.0626 0.1138

1, 0, 0, 1 0.1384 0.078 0.1706 0.126

5, 5, 5, 5 1, 1, 1, 9 0, 0, 0, 0 0.1396 0.0764 0.0584 0.081

1.3, 0, 0, 0 0.1596 0.088 0.3278 0.2076

0, 0, 0, 1 0.1524 0.0902 0.059 0.0892

1, 0, 0, 1 0.1422 0.0778 0.2142 0.1532

10, 10, 10, 10 1, 1, 1, 9 0, 0, 0, 0 0.122 0.08 0.0504 0.089

1.3, 0, 0, 0 0.1378 0.0988 0.7194 0.489

0, 0, 0, 1 0.132 0.0938 0.059 0.1024

1, 0, 0, 1 0.1332 0.0956 0.475 0.3086

20, 20, 20, 20 1, 1, 1, 9 0, 0, 0, 0 0.1102 0.0924 0.048 0.0834

1.3, 0, 0, 0 0.1642 0.1362 0.9784 0.9014

0, 0, 0, 1 0.1536 0.1284 0.0642 0.1076

1, 0, 0, 1 0.1516 0.1226 0.8568 0.6634

100, 100, 100, 100 1, 1, 1, 9 0, 0, 0, 0 0.1064 0.1034 0.054 0.0868

1.3, 0, 0, 0 0.4568 0.4372 1 1

0, 0, 0, 1 0.303 0.2984 0.1292 0.1928

1, 0, 0, 1 0.3328 0.323 1 1

39



REFERENCES

[1] Brown, M. B. and Forsythe, A. B. (1974), “The Small Sample Behavior of Some

Statistics Which Test the Equality of Several Means,” Biometrika, 27, 129-132.

[2] Draper, N.R., and Smith, H. (1981), Applied Regression Analysis, 2nd ed., Wi-

ley, NY. p.112-114.

[3] Gladstone, R.J. (1905-1906), “A study of the Relation of the Brain to the Size

of the Head,” Biometrika, 4, 105-123.

[4] Guttman, I. (1982), Linear Models: an Introduction, Wiley, NY.

[5] Kachigan, S. (1982), Multivariate Statistical Analysis. A Conceptual introduc-

tion, Radius, NY.

[6] Kuehl, R. (1994), Statistical Principles of Research Design and Analysis,

Duxbury Press, Belmont, California.

[7] Montgomery, D.C. (1984), Design and Analysis of Experiments, 2nd ed., Wiley,

NY.

[8] Moore, D.S. (2000), The Basic Practice of Statistics, 2nd ed., W.H. Freeman,

NY.

[9] Olive. D.J. (2007), Multiple Linear and 1D Regression Models, Unpublished

Online Text available from (www.math.siu.edu/olive/regbk.htm).

[10] Seber, G.A.F., and Lee, A.J. (2003), Linear Regression Analysis, 2nd ed., Wiley,

NY.

[11] Snedecor, G.W. and Cochran, W.G. (1967), Statistical Methods, Iowa State

University Press, Ames, IA.

40



VITA

Graduate School
Southern Illinois University
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