
Math 583 Exam 3 is on Friday, Dec. 1 and emphasizes homeworks 7-10 and quizzes
7-10. You are allowed 10 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

92) Suppose Y = m(x) + e where x is a random variable (p = 1). There are several
flexible scatterplot smoothers m̂(x) with df d > 2 including loess, lowess, cubic spline,
smoothing splines, and the additive error GAM Y = S(x)+e with S = m. Two more ex-
amples are polynomial regression and regression with basis functions Y =

∑J
i=1 βibi(x)+e

where b1(x) ≡ 1. Then PI (2.7) tends to work well.
93) Four important regression models with x p× 1 are listed below.
i) Additive error regression: Y = SP + e where SP = m(x). Response plots and PIs

are like those for MLR.
ii) Poisson regression: Y |x ∼ Poisson(exp(SP )).

iii) Binary regression: Y |x ∼ bin

(

1,
eSP

1 + eSP

)

.

iv) Binomial regression: Yi|xi ∼ bin

(

mi,
eSPi

1 + eSPi

)

.

94) For Poisson regression, estimate E(Y |x) with eESP . The response plot is a plot of
ESP versus Y with the estimated mean function eESP and lowess added as visual aids.
The lowess curve should track the exponential curve fairly closely except possible for the
largest values of ESP .

95) For binary logistic regression Y = 0 or Y = 1. Estimate E(Y x) = P (Y = 1|x)

with ρ̂(x) = ρ̂(ESP ) =
exp(ESP )

1 + exp(ESP )
. The response plot is a plot of ESP versus Y

with the (estimated mean function) logistic curve ρ̂(ESP ) and a step function added as
visual aids. The step function heights are the sample proportion of cases with Y = 1 in
each slice, and the step function should track the logistic curve fairly closely.

96) The OD plot suggest that overdispersion may be present if the vertical scale is
more than 10 times that of the horizontal scale and is useful for Poisson regression and
for binomial regression with mi not too small, but not for binary regression.

97) Let the constant be α and let the nontrivial predictors be x. In 93) if SP = α+
xTβ, the model tends to be a generalized linear model (GLM). If SP = α+

∑p

j=1
Sj(xj) =

AP = additive predictor, the model tends to be a generalized additive model (GAM).
The GLM is a special case with Sj(xj) = xjβj. A GAM is flexible while a GLM is

inflexible. The estimated additive predictor EAP = ESP = α̂+
∑p

j=1 Ŝj(xj). For a GLM

ESP = α̂+ xT β̂ (the same ESP used for MLR).
98) If n ≥ 10p, AIC is used for forward selection for a GLM. If n < 10p, there are

lasso-elastic net type criteria for binary and Poisson regression, and maybe for binomial
regression. A relaxed lasso GLM fit the GLM to the predictors with nonzero lasso
coefficients. Or do MLR lasso and fit the GLM to the predictors with nonzero MLR
lasso coefficients.

99) In supervised classification, there are G known groups or populations and m test
cases. Each case is assigned to exactly one group based on its measurements wi. Assume
that for each population there is a probability density function (pdf) fj(z) where z is a
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p × 1 vector and j = 1, ..., G. Hence if the random vector x comes from population j,
then x has pdf fj(z). Assume that there is a random sample of nj cases x1,j, ...,xnj ,j for

each group. The n =
∑G

j=1
nj cases make up the training data. Let (xj,Sj) denote the

sample mean and covariance matrix for each group. Let the ith test case wi be a new
p× 1 random vector from one of the G groups, but the group is unknown. Discriminant

analysis = classification attempts to allocate (classify) the wi to the correct groups for
i = 1, ..., m.

100) The maximum likelihood discriminant rule allocates case w to group a if f̂a(w)
maximizes f̂j(w) for j = 1, ..., G. This rule is robust to nonnormality and the assumption
of equal population dispersion matrices, but fj is hard to estimate for p > 2.

101) Given the f̂j(w) or a plot of the f̂j(w), determine the maximum likelihood
discriminant rule.

For the following rules, assume that costs of correct and incorrect allocation are
unknown or equal, and assume that the probabilities πj = ρj(wi) that wi is in group j
are unknown or equal: πj = 1/G for j = 1, ..., G. Often it is assumed that the G groups
have the same covariance matrix Σx. Then the pooled covariance matrix estimator is

Spool =
1

n−G

G
∑

j=1

(nj − 1)Sj

where n =
∑G

j=1
nj. Let (µ̂j , Σ̂j) be the estimator of multivariate location and disper-

sion for the jth group, e.g. the sample mean and sample covariance matrix (µ̂j , Σ̂j) =
(xj,Sj).

102) Assume the population dispersion matrices are equal: Σj ≡ Σ for j = 1, ..., G.

Let Σ̂pool be an estimator of Σ. Then the linear discriminant rule is allocate w to the
group with the largest value of

dj(w) = µ̂T
j Σ̂

−1

poolw −
1

2
µ̂T

j Σ̂
−1

poolµ̂j = α̂j + β̂
T

j w

where j = 1, ..., G. Linear discriminant analysis (LDA) uses (µ̂j, Σ̂pool) = (xj ,Spool).
LDA is robust to nonnormality and somewhat robust to the assumption of equal popu-
lation covariance matrices.

103) The quadratic discriminant rule is allocate w to the group with the largest value
of

Qj(w) =
−1

2
log(|Σ̂j|)−

1

2
(w − µ̂j)

T Σ̂
−1

j (w − µ̂j)

where j = 1, ..., G. Quadratic discriminant analysis (QDA) uses (µ̂j , Σ̂j) = (xj,Sj).
QDA has some robustness to nonnormality.

104) The K-nearest neighbors (KNN) method identifies the K cases in the training
data that are closest to w. Suppose mj of the K cases are from group j. The KNN rule

allocates w to group a if ma maximizes mj for j = 1, ..., G. This method is flexible and
relatively fast.

105) Assume that G = 2 and that there is a group 0 and a group 1. Let ρ(w) = P (w ∈
group 1). Let ρ̂(w) be the logistic regression (LR) estimate of ρ(w). Logistic regression
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produces an estimated sufficient predictor ESP = α̂ + β̂
T
w. Then

ρ̂(w) =
eESP

1 + eESP
=

exp(α̂ + β̂
T
w)

1 + exp(α̂ + β̂
T
w)

.

The logistic regression discriminant rule allocates w to group 1 if ρ̂(w) ≥ 0.5 and allocates
w to group 0 if ρ̂(w) < 0.5. Equivalently, the LR rule allocates w to group 1 if ESP ≥ 0
and allocates w to group 0 if ESP < 0. the response plot is as in point 95).

106) Given LR output, as shown below in symbols and for a real data set, and given
x to classify, be able to a) compute ESP, b) classify x in group 0 or group 1, c) compute
ρ̂(x).

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xp β̂p se(β̂p) zo,p = β̂p/se(β̂p) for Ho: βp = 0

Binomial Regression Kernel mean function = Logistic

Response = Status,Terms = (Bottom Left),Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

107) Suppose there is training data xij for i = 1, ..., nj for group j. Hence it is
known that xij came from group j where there are G ≥ 2 groups. Use the discriminant
analysis method to classify the training data. If mj of the nj group j cases are correctly

classified, then the apparent error rate for group j is 1 − mj/nj. If mA =
∑G

j=1
mj of

the n =
∑G

j=1
nj cases were correctly classified, then the apparent error rate AER =

1−mA/n.
108) Assume that the training data x1,1, ...,xnG,G is a random sample from the G

populations so that nj/n
P→ πj as n → ∞ for j = 1, ..., G. Hence nj/n is a consistent

estimator of πj. When K = 1, AER = 0, but the test error rate Ln of KNN method
converges in probability to L where LB ≤ L ≤ 2LB and LB is the test error rate of the
Bayes classifier. If Kn →∞ and Kn/n→ 0 as n→∞, then the KNN method converges

to the Bayes classifier in that the KNN test error rate Ln
P→ LB . Then the leave one out

cross validation error rate L̂n is a good estimator of Ln.
109) Get apparent error rates for LDA and QDA with the following commands.

out2 <- lda(x,group)

1-mean(predict(out2,x)$class==group)
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out3 <- qda(x,group)

1-mean(predict(out3,x)$class==group)

Get the AERs for the methods that use variables x1, x3, and x7 with the following com-
mands.

out <- lda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

out <- qda(x[,c(1,3,7)],group)

1-mean(predict(out,x[,c(1,3,7)])$class==group)

Get the AERs for the methods that leave out variables x1, x4, and x5 with the following
commands.

out <- lda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

out <- qda(x[,-c(1,4,5)],group)

1-mean(predict(out,x[,-c(1,4,5)])$class==group)

110) Expect the apparent error rate to be too low: the method works better on the
training data than on the new test data to be classified.

111) Cross validation (CV): for i = 1, ..., n where the training data has n cases,
compute the discriminant rule with case i left out and see if the rule correctly classifies
case i. Let mC be the number of cases correctly classified. Then the CV error rate is
1−mC/n.

112) Suppose the training data has n cases. Randomly select a subset L of nv cases
to be left out when computing the discriminant rule. Hence n − nv cases are used to
compute the discriminant rule. Let mL be the number of cases from subset L that are
correctly classified. Then the “leave a subset out” error rate is 1−mL/nv. Here nv should
be large enough to get a good rate. Often use nv between 0.1n and 0.5n.

113) The k-fold CV is similar to that for MLR. Let Let mk be the number of cases
that are correctly classified. Then the k-fold CV error rate is 1−mk/n.

114) Let W i be the random vector and wi be the observed random vector. Let Y = j
if wi comes from the jth group for j = 1, ..., G. Then πj = P (Y = j) and the posterior

probability that Y = k or that wi belongs to group k is pk(wi) = P (Y = k|W i = wi) =
πkfk(wi)

∑G

j=1 πjfj(wi)
.

The Bayesian discriminant rule allocates case wi to group a if p̂a(wi) maximizes

p̂k(wi) =
π̂kf̂k(wi)

∑G

j=1
π̂j f̂j(wi)

for k = 1, ..., G.

4



The (population) Bayes classifier allocates case wi to group a if pa(wi) maximizes
pk(wi) for k = 1, ..., G.

115) A regularized estimator attempts to use degrees of freedom d such that the
estimator is useful and n/d is large. The pooled covariance matrix used in LDA is
regularized compared to the G sample covariance matrices Si used by QDA.

116) Variable selection is the search for a subset of variables that does a good job of
classification.

117) Forward selection: suppose X1, ..., Xp are variables.
Step 1) Choose variable W1 = X1 that minimizes the AER.
Step 2) Keep W1 in the model, and add variable W2 that minimizes the AER. So W1

and W2 are in the model at the end of Step 2).
Step k) Have W1, ...,Wk−1 in the model. Add variable Wk that minimizes the AER.

So W1, ...,Wk are in the model at the end of Step k).
Step p) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
118) Backward elimination: suppose X1, ..., Xp are variables.
Step 1) W1, ...,Wp = X1, ..., Xp, so all p variables are in the model.
Step 2) Delete variable Wp = Xj such that the model with p−1 variables W1, ...,Wp−1

minimizes the AER.
Step 3) Delete variableWp−1 = Xj such that the model with p−2 variablesW1, ...,Wp−2

minimizes the AER.
Step k) W1, ...,Wp−k+2 are in the model. Delete variable Wp−k+2 = Xj such that the

model with p− k + 1 variables W1, ...,Wp−k+1 minimizes the AER.
Step p) Have W1 and W2 in the model. Delete variable W2 such that the model with

1 variable W1 minimizes the AER.
119) Other criterion can be used and proc stepdisc in SAS does variable selection.
120) In R, using LDA, leave one variable out at a time as long as the AER does not

increase much, to find a good subset quickly.
121) KNN suffers from the “curse of dimensionality” in that if w is p×1, the method

works worse as p increases. KNN in R uses random numbers to break a tie.
122) A regularized correlation or cavariance matrix attempts to reduce the degrees of

freedom and to produce a well conditioned matrix.
123) The usual sample correlation matrix R and sample covariance matrix S need

n ≥ 10p to start working well, and are overfitting if n < 5p. The two matrices are
singular if n ≤ p.

124) A common technique is to use Sd = diag(S) or Rd = diag(R). This technique
uses too much regularization.

125) The population and sample correlation are measures of the strength of a linear

relationship between two random variables, satisfying −1 ≤ ρij ≤ 1 and −1 ≤ rij ≤ 1.
Let the p × p sample standard deviation matrix D = diag(

√
S11, ...,

√

Spp). Then S =
DRD, and R = D−1SD−1.

126) Let S−1 = (Sij) and let the inverse correlation matirix = precision matrix
R−1 = DS−1D = (rij).

127) For δ ≥ 0, a simple way to regularize a p× p correlation matrix R = (rij) is to
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use

Rδ =
1

1 + δ
(R + δIp) = (tij) (1)

where tii = 1 and

tij =
rij

1 + δ

for i 6= j. If λi is the ith eigenvalue of R, then (λi + δ)/(1 + δ) is the ith eigenvalue of
Rδ since if R x = λi x, then

Rδ x =
1

1 + δ
(R + δIp) x =

1

1 + δ
(λi + δ) x.

Note that Rδ = κR + (1− κ)Ip where κ = 1/(1 + δ) ∈ (0, 1].
128) The condition number of a symmetric positive definite p×pmatrix A is cond(A) =

λ1(A)/λp(A) where λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A) are the eigenvalues of A. Note that
cond(A) ≥ 1. A well conditioned matrix has condition number cond(A) ≤ c for some
number c such as 50 or 500. Hence Rδ is nonsingular for δ > 0 and well conditioned if

cond(Rδ) =
λ1 + δ

λp + δ
≤ c, or δ = max

(

0,
λ1 − cλp

c− 1

)

if 1 < c ≤ 500.
129) The matrix can be further regularized by setting tij = 0 if |tij| ≤ τ where

τ ∈ [0, 1) should be less than 0.5. Denote the resulting matrix by R(δ, τ ). We suggest
using τ = 0.05. Note that Rδ = R(δ, 0). We recommend computing Ip,R(δ, 0) and
R(δ, 0.05) for c = 50, 100, 200, 300, 400, and 500. Compute R if it is nonsingular. Note
that a regularized covariance matrix can be found using S(δ, τ ) = D R(δ, τ ) D. Given
R, be able to find, for example, Rδ=1 and R(δ = 1, τ = 0.3).

130) For the simplest version of k-means clustering, there are 4 steps.
i) Partition the n cases into k initial groups and find the means of each group. Alter-

natively, choose k initial seed points. These are groups of size 1 so the mean is equal to
the seed point.

ii) Compute distances between each case and each mean. Assign each case to the
cluster whose mean is the nearest.

iii) Recalculate the mean of each cluster.
iv) Go to ii) and repeat until no more reassignments occur.
131) Hierarchical clustering also has several steps. A distance is needed. Single linkage

(or nearest neighbor) is the minimum distance between cases in cluster i and cases in
cluster j. Complete linkage is the maximum distance between cases in cluster i and cases
in cluster j. The average distance between clusters is also sometimes used.

a) Start with m = n clusters. Each case forms a cluster. Compute the distance matrix
for the n clusters. Let dU,V be the smallest distance. Combine clusters U and V into a
single cluster and set m = n − 1.

b) Repeat step a) with the new m. Continue until there is a single cluster.
c) Plot the resulting clusters as a dendrogram. Use the dendrogram to select k

reasonable clusters of cases. Vertical distances (the hieght of the fusion) determines the
similarity of clusters.
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132) A regression tree is a flexible method for Y = m(x) + e or for Yi = m(xi)+ σiei.
A classification tree is a flexible method for classification. Both methods produce graphs
called trees that look like dendrograms. Each branch has a label like Xi > 7.56 or
Xi < 3.45 where Xi is quantitative or a label like Xj = a, c or Xj 6= d, g if Xj is
quantitative with levels a, b, ..., g, h. Unless told otherwise, go to the left of the branch
if the condition is true, and go to the right of the branch if the condition is false. A split

is a rule for creating new branches. The bottom of the tree has leaves = terminal nodes

that give Ŷ = Ŷ |x where Ŷ is a number for a regression tree and Ŷ is a label for the
classification group for a classification tree. The tree is binary so a tree with d ≥ 1 splits
(rules) has d+ 1 terminal nodes.

133) Know how to find Ŷ given a tree and x values. If x = (X1, ..., Xp)
T , often not

all of the Xi values are needed to find Ŷ = Ŷ |x.
134) Trees that use recursive partitioning for classification and regression trees use

the CART algorithm. In growing the tree the binary CART algorithm recursively splits
the data in each node until either the terminal node is homogeneous (the region Rm

corresponding to the node has all cases from the same group for classification and Y ≈
constant for regression), or until the terminal node has ≤ 5 observations. The region Rm

corresponding to the mth terminal node is a hyper-box: a p-dimensional set if x is p× 1.
Hence trees suffer from the curse of dimensionality.

135) If Y = m(x) + e where m(x) = g(α + βTx) or m(x) = α +
∑p

j=1 Sj(Xj)

(an additive error GAM), then ESP = α̂ + β̂
T
x or ESP = α̂ +

∑p
j=1 Ŝj(Xj) reduces

the dimension from p to 1, and slicing the ESP is more efficient than partitioning the
p-dimensional predictor space into p-dimensional hyper-boxes.

136) The tree divides the p-dimensional predictor space into J distinct and nonover-
lapping regions (p-dimensional hyper-boxes) R1, ..., RJ. For each observation that falls
in region Rj make the same prediction ŶRj

. For example, ŶRj
= Y j, the sample mean of

the training data Y in Rj for regression, and ŶRj
= modej for classification where modej

is the training data group that occurred most often for the training data Y in Rj (a lot
like KNN where the region is a p-dimensional hypersphere that contains K training data
Y ’s). For a regression tree, the response plot is a plot of Ŷ versus Y . Then there are J
dot plots, one for each value of ŶRj

, with nj values Y1,1, ..., Y1,nj
where the Yi,j are the

training data in Rj. These J dot plots scatter about the identity line. The residuals

corresponding to Rj are ri,j = Yi,j −Y j. The residual plot of Ŷ versus r consists of J dot

plots of the residuals, one for each value of ŶRj
= Y j. These dot plots scatter about the

r = 0 line.
137) If Y = m(x) + e, prediction intervals for Yf using trees can be made with (2.7)

where d = J = number of terminal nodes.
138) If J is too large, the tree overfits. Grow a large tree T0 with J0 regions where

each terminal node has ≤ 5 observations. Let T ⊆ T0, α ≥ 0, and |T | = number of
terminal nodes of tree T . Each terminal node corresponds to a region Ri. For each value
of α > 0 there corresponds a subtree T ⊆ T0 such that

|T |
∑

m=1

∑

i:xi∈Rm

(Yi − ŶRm)2 + α|T | = RSS(T ) + α|T |
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is as small as possible. Much like lasso, as α increases, a sequence of nested subtrees is
produced: TαM

⊆ TαM−1
⊆ · · · ⊆ Tα2

⊆ Tα1
⊆ T0. Then k-fold CV is used to select the

final tree Tα∗

j
.

139) Let Ŷ |x = f̂(x). For a regression tree, draw a sample of size n with replacement
from x1, ...,xn. Fit a tree and find f̂∗

1 (x). Repeat B times to get f̂∗
1 (x), ..., f̂∗

B(x). then

the bagging estimator f̂∗
bag(x) =

1

B

B
∑

i=1

f̂∗
i (x). For classification take samples of size ni

with replacement from each group. Let f̂∗
i (x) = ji(x) ∈ {1, ..., G} be the estimated level

(group) of Y given x. Let mk = number of ji(x) = k for k = 1, ..., G. Take f̂∗
bag(x) = d

where md = max(m1, ..., mG), so d is the “mode level group.” For both regression and
classification, the trees are not pruned, so terminate when each terminal node has 5 or
fewer observations. Bagging a tree typically gives more accuracy than a single tree.

140) The probability of a case not being selected for the ith bootstrap sample is
about e−1 ≈ 1/3. These are called out of bag (OOB) observations. Predict Ŷ for
each OOB observation. Doing this for all B bootstrap samples produces about B/3
predictors Ŷi for each xi. Let the OOB predictor Ŷio = average Ŷi for regression and

mode level for classification. Then the OOB MSE =
1

n

n
∑

i=1

(Yi − Ŷio)
2 for regression and

1

n

n
∑

i=1

I(Yi 6= Ŷio) for classification. The OOB MSE is “virtually” equivalent to the leave

one out CV estimate for sufficiently large B.
141) Random forests use the bootstrap, but at each split, a random sample of m ≈√
p predictors is used as split candidates. Random forests produce trees that are less

correlated than bagged trees, and tend to have better test error than bagging.
142) Boosting has f̂ (x) =

∑B

b=1
λf̂b(x). First set f̂(x) ≡ 0 and ri = Yi. For b =

1, ..., B fit a tree f̂b with d splits (often d = 1 where the tree is a stump or d = 2) to
the training data (X, r). Update the tree and the residuals f̂ (x) ← f̂(x) + λf̂b(x) and
ri ← ri−λf̂b(x). Using stumps (d = 1) leads to an additive model: f̂(x) =

∑p

j=1
f̂j(Xj)

where x = (X1, ..., Xp). So boosting with d = 1 is a competitor of the additive error

GAM Ŷ = α̂+
∑p

j=1
Ŝj(Xj). Typically λ = 0.01 or 0.001.

143) For a binary classification tree with Y = 0 or 1, for a fixed value of x, the
bootstrap produces B estimates P̂ ∗

i (Y = 1|x) of P (Y = 1|x). Let Ŷ ∗
i = 1 if P̂ ∗

i (Y =
1|x) ≥ 0.5 and Ŷ ∗

i = 0 if P̂ ∗
i (Y = 1|x) < 0.5. Two common methods to get Ŷ |x

are a) Ŷ |x = mode class of 0 or 1, or b) Ŷ |x = 1 if
1

B

B
∑

i=1

P̂∗
i (Y = 1|x) ≥ 0.5 and

Ŷ |x = 0 if
1

B

B
∑

i=1

P̂∗
i (Y = 1|x) < 0.5.

Projects: i) give something you have done (like an MS thesis) related to this class.
ii) Analyze a data set with some of the class methods. Send me the data set and the R

code to get the data into R and the R code used to analyze the data set. iii) Bootstrap
OLS and forward selection with Cp as in Table 2.2, but use more values of n, p, k, ψ,
and error distributions. See some R code for Problem 3.12. iv) Same as iii) but use BIC.
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144) For two groups with Y = 1 or Y = −1, let SP = β0+βT x. Classify x in group 1
if ESP > 0 and classify x in group −1 if ESP < 0. So the classifier Ĉ(x) = sign(ESP ).

145) Suppose the two groups of training data in 144) are separable by a hyperplane.
The estimated optimal separating hyperplane ESP has the largest margin on the training
data. The hyperplanes parallel to the ESP that form the boundaries of the margin are
called fences. The fences pass through as least 2 training data set cases forming the
support set S of support vectors. The margin M is the distance between the fences. A
separating hyperplane has SP > 0 if x ∈ group 1 and SP < 0 if x ∈ group −1. Hence
Yi SPi = Yi(β0 +βTxi) > 0 for i = 1, ..., n. Think of the hyperplane β0 +βTx as dividing
R

P into two halves. The SVM split tries to make the halves homogeneous.
146) Wide data has p >> n. If n ≤ p+1 then there is a separating hyperplane unless

there are “exact predictor ties across the class barrier.”
147) The optimal margin classifier (β̂0M , β̂M) solves max

β0∈R,β∈RP

M subject to (*):

Yi SPi = Yi(β0 + βTxi) ≥ M for all i = 1, ..., n. Equivalently, solve min
β0,β
‖β‖2 sub-

ject to (*). This classifier is called a hard margin classifier since no training data cases
from either group can pass the fences of the classifier. It turns out that β̂M =

∑

i∈S α̂ixi.
148) A soft margin classifier allows training data cases from either group to pass the

fences or to be misclassified. Let the εi ≥ 0 be slack variables. This classifier solves
min
β0,β
‖β‖2 subject to Yi SPi = Yi(β0 + βTxi) ≥ 1 − εi for i = 1, ..., n and

∑n
i=1 εi ≤

B. Equivalently min
β0,β

n
∑

i=1

[1 − Yi(β0 + βT xi)]+ + λ‖β‖22, a criterion similar to that of

ridge regression. Here [w]+ = w if w ≥ 0 and [w]+ = 0 if w ≤ 0. The hinge loss

[1− Yi(β0 + βTxi)]+ is the cost of xi being on the wrong side of the margin (which is 0
if xi is on the correct side of the margin).

149) A support vector machine (SVM) that uses xi minimizes the above loss criterion.
For separable training data, (β̂0,SV M , β̂SV M)→ (β̂0,M , β̂M) as λ→ 0. The SVM also has

fences and a support set S of support vectors with β̂SV M =
∑

i∈S γ̂ixi. The ESP =

β̂0,SV M + β̂
T

SV Mx = β̂0,SV M +
∑

i∈S γ̂ix
T
i x. The SVM can be computed with O(n2p)

complexity using the Gram matrix XXT or with O(np2) complexity using XTX. Ridge
regression could also be computed this way.

150) A lasso-SVM solves min
β0,β

n
∑

i=1

[1 − Yi(β0 + βTxi)]+ + λ‖β‖1 and does variable

selection. For Y ∈ {−1, 1}, a “ridged logistic regression” solves

min
β0,β

n
∑

i=1

log[1+exp(−Yi(β0 +βTxi))]+λ‖β‖22. A “lasso logistic regression” would change

the squared norm ‖β‖22 to ‖β‖1.
151) A ROC curve is used to evaluate binary classifiers, and the overall performance

is summarized by the area under the ROC curve (AUC). An ideal ROC curve is close
to the top left corner (left and top sides of the rectangle) of the plot. The larger the
AUC, the better the classifier. The ROC curve plots the false positive rate versus the
true positive rate, so 0 ≤ AUC ≤ 1. A classifier with AUC = 0.5 does no better than

9



chance. A ROC from test data or validation data is better than a ROC from training
data.

152) A truth table = confusion matrix.

truth total
predict −1 1
−1 true negative (TN) false negative (FN) N∗

1 false positive (FP) true positive (TP) P ∗

total N P

The error rate is (FP + FN)/(FP + FN + TN + TP ). This rate is the AER if
training data was used and VER if a validation set was used.

The false positive rate = FP/N = 1− specifity ≈ type I error.
The true positive rate = TP/P = 1− sensitivity ≈ 1− type II error ≈ power ≈ recall.

153) A SVM uses a kernel function K(xi,xj). The SVM in 149) uses a linear kernel

K(xi,xj) = xT
i xj . A polynomial kernel of degree d is K(xi,xj) = [1 + xT

i xj]
d. A radial

kernel is K(xi,xj) = exp[−γ‖xi − xj‖22). The SVM with a linear kernel is a competitor
of LDA and logistic regression. The SVM with a nonlinear kernel is a competitor of QDA
and KNN. The SVM uses f(x) = β̂0 +

∑n

i=1 α̂iK(x,xi) = β̂0 +
∑

i∈S α̂iK(x,xi) = ESP

with Ĉ(x) = sign(ESP ). The n(n− 1)/2 distinct pairs (xi,xj) are needed to estimate

β̂0 and the α̂i.
154) Let Z = 1 if Y = 1 and Z = 0 if Y = −1. Then Z|x ∼ binomial(m = 1, ρ(x))

where ρ(x) = ρ(SP ) = P (Z = 1|x) and ρ(0) = 0.5. This is a binary regression with
ρ unspecified. A response plot is ESP versus Z with lowess added as a visual aid.

If ESP = β̂0 + β̂
T
x and ni ≥ 20p, then the bootstrap with ni cases selected with

replacement from each group is likely useful. Use the prediction region method.
155) If there are G ≥ 2 classes, the one versus one or all pairs classifier constructs

(

G

2

)

binary classifiers, one for each distinct pair of groups. Classify x with fij(x), and

let mi = number of times x is predicted to be in class i. Then Ŷ (x) = Ĉ(x) = d where
md = max(m1, ..., mG). The one versus all classifier fits G binary classifiers: group
i = 1 versus the G− 1 other classes with −1 with fi(x). Then Ŷ (x) = Ĉ(x) = d where
fd(x) = max(f1(x), ..., fG(x)).

156) The two classifiers in 155) can be applied to other binary classifiers, and the
labels Y ∈ {a, b} can be used. For example a = 0 and b = 1.
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