Math 583 Exam 2 is on Friday, Oct. 20 and emphasizes homeworks 4-6 and quizzes
4-6. You are allowed 10 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

36) The MLR model is Y; = 31 + zi202 + - + xipBp+ ei =l B+ e fori=1,....n.
This model is also called the full model. In matrix notation, these n equations become
Y = X3 + e. Note that z,; = 1.

37) The ordinary least squares OLS full model estimator Bo s minimizes Qors(B) =
S ri(B) = RSS(B) = (Y — XB)T(Y — X3). In the estimating equations Qors(3),
the vector B is a dummy variable. The minimizer B, ¢ estimates the parameter vector
B for the MLR model Y = X3 + e. Note that B, ~ AN,(8, MSE(XTX)™1).

38) Given an estimate b of 3, the corresponding vector of predicted values or fitted

values is Y = f’(b) = Xb. Thus the ith fitted value

Y; =Yi(b) = 2] b=z;1b1 + - + T by
The vector of residualsis r = r(b) = Y —Y (b). Thus ith residual r; = r;(b) = Y;—Y;(b) =
Y; — 2i1by — - - — 23 yby. A response plot for MLR is a plot of Y; versus Y;. A residual plot
is a plot of Y/Z versus ;. If the e; are iid from a unimodal distribution that is not highly
skewed, the plotted points should scatter about the identity line and the r = 0 line.
39) LS CLT: Consider the MLR model Y; = ac;fpﬁ + e; and assume that the zero mean
errors are iid with E(e;) = 0 and VAR(e;) = 2. Assume p is fixed and n — oo. Also

assume that max h; L0 asn — oo and
XTx
n

-y

as n — oo. Then the least squares (OLS) estimator 3 satisfies v/n(8—3) £ N, (0,02 V).
Equivalently, (X7 X)Y2(3 — 3) 2 N,(0,0% I,).

40) Use Z,, ~ AN, (u,,, X,,) to indicate that a normal approximation is used: Z, =
N, (,,, 25). Let a be a constant, let A be a k x r constant matrix, and let ¢ be a k x 1

constant vector. If \/ﬁ(én —0) A N,(0,V), then aZ,, = al.Z, with A =al,,

aZ, ~ AN, (ap,,a’S,), and AZ,+c~ AN, (Ap, +c, AS,A"),

. . AV AT
6, ~ AN, (O,K) , and A6, +c~ AN, (A0+c, v ) .
n
41) Problems with the OLS full model: i) If n = p, then Y =Y regardless of how
bad the predictors are. ii) If n < p, then Y =Y or the program fails. iii) Need n > Jp
where J > 5, and preferably J > 10 for good estimation. If n < 5p, the OLS full model
overfits.



Label coef SE shorth 95% CI for 3;

42) Constant=intercept= ﬁ:l SE(ﬁ:l) [él, Ql]
To Ba  SE(32) (L2, Uy
Tp Bp SE(B:D) [[A/pa Up]

The classical OLS large sample 95% CI for 3; is f; + 1.965E(BZ-). Consider testing
Hy:B; =0versus Hy : 3; # 0. If 0 € CI for 3;, then fail to reject Hy, and conclude z; is
not needed in the MLR model given the other predictors are in the model. If 0 ¢ CI for
0i, then reject Hy, and conclude z; is needed in the MLR model.

43) Let I = (1 wul). Tt is often convenient to use the centered response Z =Y —Y
where Y = Y1, and the n x (p — 1) matrix of standardized nontrivial predictors W =
(Wij). For j =1,...,p—1, let W;; denote the (j + 1)th variable standardized so that
>y Wiy =0and }°7 , W2 = n. Then the sample correlation matrix of the nontrivial

predictors wu; is
w'w
Ry = .
n

Then regression through the origin is used for the model Z = Wn+ e where the vector of
fitted values Y = Y + Z. Thus the centered response Z; = Y; —Y and )A/Z = ZZ +Y. Then
7 does not depend on the units of measurement of the predictors. Linear combinations
of the u; can be written as linear combinations of the x;, hence 3 can be found from 7.

44) A model for variable selection is '3 = zLBs + xLBp = xLBs where x =
(xL, 2L)T, xg is an ag x 1 vector, and xp is a (p — ag) x 1 vector. Let x; be the
vector of a terms from a candidate subset indexed by I, and let o be the vector of the
remaining predictors (out of the candidate submodel). If S C I, then 273 = L84 =
zlBs + w}r/sﬁ(l/s) + x50 = & 3, where x5 denotes the predictors in I that are not
in S. Since this is true regardless of the values of the predictors, 8, = 0 if S C I. Note
that 3, = 0. Let kg = as — 1 = the number of population active nontrivial predictors.
Then k = a — 1 is the number of active predictors in the candidate submodel I.

I; model 3y z3 x4 w5 317,70 if B = BI,»
5y 2] : (51,0, 85,0,0)"
I 2 oo (51,0, 35, B1,0)"
1, 3 Kook K (61, B2, B3, B4, 0)"
I 4 * ok kK (B By Ba B, )T = Bors

Model I, is the model, among p candidates, that minimizes C), if n > 10, or EBIC
if n < 10p. Model I; contains j predictors, z7, x3, ..., xj where ] = x1 = 1, the constant.

46) Variable selection is a search for a subset of predictors that can be deleted without
important loss of information if n > 10p and such that model I (containing the remaining
predictors that were not deleted) is good for prediction if n < 10p. Note that the “100%”
shorth CI for a (3; that is a component of 8 is [0,0].

47) Underfitting occurs if S € I so that a; is missing important predictors. Under-



fitting will occur if x; is k x 1 with d = k < ag. Overfitting occurs if S C [ with S # [
or if n < 5k.

48) In 45) sometimes TRUE = * and FALSE = blank. The x; may be replaced by
the variable name or letters likea b ¢ d.

I;  model Ta T3 Ty Ts
I 1 FALSE TRUE FALSE FALSE
2 FALSE TRUE TRUE FALSE
1y 3 TRUE TRUE TRUE FALSE
I 4 TRUE TRUE TRUE TRUE

49) The out$cp line gives Cp(l2), Cp(13), ..., Cp(I,) = p and Ly, is the I; with the
smallest C),.

50) Typical bootstrap output for forward selection, lasso, and elastic net is shown
below. The SE column is usually omitted except possibly for forward selection. The
term “coef” might be replaced by “Estimate.” This column gives B 10 Where I = I,;, for
forward selection, I = L for lasso, and I = EN for elastic net. Note that the SE entry
is omitted if BZ = 0 so variable z; was omitted by the variable selection method. In the
output below, Bg = Bg = 0. The SE column corresponds to the OLS SE obtained by
acting as if the OLS full model contains a constant and the variables not omitted by the
variable selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for 3;
Constant=intercept= Bl SE(Bl) [ﬁl, Ul]
To B2 SE(f32) L2, Us]
Ty 0 (L4, U]
Lp Bp SE(B:D) [f’p> Up]

51) The OLS SE is also accurate for forward selection with C,, if X* X /n — V™~ =
diag(dy, ...,d,) where all d; > 0. The diagonal limit matrix will occur if the predictors
are orthogonal or if the nontrivial predictors are independent with 0 mean and finite
variance.

52) Inference for OLS forward selection. Suppose p is fixed and I,,;, with C, is used.
The probability that I,,;, underfits goes to 0 as n goes to oo, and B I...0 15 & y/n consistent
estimator of 3 under model 44). Hence the PI (3.33) is a large sample 100(1 — )% PI
for Yy under mild conditions that is asymptotically optimal for a large class of iid zero
mean unimodal distributions with finite variance. Consider using the residual bootstrap
with OLS full model residuals and 3 I,...0- 10 simulations, the shorth CIs for 3; and the
prediction region method for testing Hy : B, = 0 appear to be more precise than these
methods for the OLS full model if 5; = 0 or Hy is true if n > 20p and B > 50p are large
enough. For 5000 runs and a 95% CI, if the CI coverage > 0.94, then the shorter the



CI length, the more precise the CI inference. These simulated results have not yet been
proven for forward selection since the forward selection estimator B 1.0 18 generally not
asymptotically normal.

53) Suppose n > 10p and B > 50p are large enough, and that I, is used with
Cp. Assume the residual bootstrap is used with the OLS full model residuals. Consider
testing Hy : Bp = 0 and assume B*OZ =0 for ¢ =1,...,B. Then the “100%” prediction
region method confidence region is {0}. Hence pval = 1 estimates the population pvalue.
Note that the “100%” shorth CI for a f3; that is a component of B, is [0,0]. Conjecture:
If the above conditions hold, then fail to reject Hy and the method can be used after
looking at the data and bootstrap results.

54) In 44) suppose Bg is ag x 1. The population MLR model is sparse if ag is small:
few population coefficients (3; are nonzero. The population model is dense if n/ag < J
where J = 5 or 10, say. The fitted model B is sparse id the crude model degrees of
freedom d is small. Often d is the number of nonzero estimated coefficients. The fitted
model is dense if n/d < J.

55) Forward selection with OLS generates a sequence of M models. Let I} use ] =
21 = 1: the model has a constant but no nontrivial predictors. To form I3, consider
all models I with two predictors including z3. Compute Q2(I) = SSE(I) = RSS(I) =
rT(Dr(1) =30 r2(I) = 7, (Y = Yi(I))?. Let I minimize Q(I) for the p— 1 models
I that contain z] and one other predictor. Denote the predictors in Iy by zj,z5. In
general, to form I; consider all models I with j predictors including variables x7, ..., zj_;.
Compute Q;(I) = vT(I)r(I) = S0, r2(I) = 37 (Y;—Y;(1))?. Let I; minimize Q;(I) for
the p—j+1 models I that contain z7, ..., z;_; and one other predictor not already selected.
Denote the predictors in I; by z7, ..., zj. Continue in this manner for j = 2,..., M to form
I, 1o, ..., Iy Often M = min([n/J],p).

56) Problems with forward selection: i) If n/p is large, the bootstrap inference for
I'min with C, has not yet been proven to work. ii) Forward selection can be slow. If
M = p, then =~ p(p — 1)/2 OLS models are fit. If M = [n/J], then =~ M(2p — M)/2
models are fit. iii) If n/p is not large, there does not seem to be theory, although the PI
(3.33) sometimes performed well with EBIC.

57) Forward selection generates M models Iy, ..., Iy;. Let &; and 3; be a x 1. For a
given data set, p,n, and 62 act as constants, and a criterion below may add a constant or
be divided by a positive constant without changing the subset I,,;, that minimizes the
criterion. Let criteria C'g(/) have the form

Cs(I) = SSE(I) + aK,5>
The criterion C,(I) = AICs(I) uses K,, = 2 while the BICs(I) criterion uses K, =
log(n). Typically 62 is the OLS full model

n 2

MSE =Y 1

— P

when n/p is large. AIC(I) = nlog <SSEU)) +2a and BIC(I) = nlog (SSEU ) +alog(n)

need n/p large. EBIC(I)= BIC(I)+ 2log {(p)] may work when n/p is not large.
a

4



58) Another variable selection model is 73 = :I;Elﬂsi for i =1, ..., J where there are
J > 2 nonnested “true” submodels where 3. is as, x 1. When this model holds, omitting

all predictors x; with a ij = 0 in the bootstrap sample may result in underfitting.

59) In simulations, we used 8 = (1,1, ..., 1,0, ...,0)T where the first k& + 1 coefficients
0B; = 1. Hence the population model has k active nontrivial predictors with ag = k + 1.
20 + (m — 2)y?
1+ (m— 1)y?
p — 1, and x; # z; are nontrivial predictors. If ¢ = 0, then p = 0. If ¢ is close to 1 or
1 > 0 and p is large, then p gets close to 1. If ) = 1/,/¢p, then p — 1/(c+1) as p — o0
for ¢ > 0. We expect p close to 1 to be favorable for PCR and PLS. The simulation used
Y =0,1/\/p, and 0.9. Hence p gets close to 0, 0.5, and 1. The shorth 95% CIs for j;
were obtained. The prediction region method for testing Hy : (Bj12, ..., 8,)7 = 0 was also
tested where Hy was true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject Hy. The nominal proportion is 0.95. The average
length of the interval [0, D(y,,)] = D) is given where the test rejects Hy if Dg > D(y,,).
If the statistic T" is r x 1 and asymptotically normal, and if n and B are large enough,

The nontrivial predictors were such that p = cor(z;, z;) = where m =

we expect the average length to be near 4 /sz«,o.gs where » = p — k — 1 for the simulation.

This result occurred for the OLS full model. For the Cls, the lengths of the Cls give a
measure of precision provided the coverage is not much less than the nominal coverage.
For the test, D(y,) does not indicate the volume of the confidence region, so the test
“lengths” are not useful for measuring precision.

60) Principal components regression (PCR) uses Z = Wn+e. PCR uses orthogonal
predictor variables that are projections on the axes of a hyperellipsoid determined by the
eigenvalues and eigenvector of the correlation matrix Rq,. The first principal component
V1 is the projection on the longest axis, and the ¢th principal component is the projection
on the ¢th longest axis. Model J; does the OLS regression of Z on Vi, ...,V fort =1,.... M
where M < min(p—1,n). If n > p then using all p— 1 principal components is the same
as using the OLS full model to get n and B PCR is sometimes useful if there are just
a few dominant principal components: e.g. Zle \i / Z‘Z’:—ll i > 0.9 where d is small and
the 5\1 are the eigenvalues of Rq, with 5\1 > 5\2 > > jxp_l > 0.

61) Problems with PCR: i) In general Jé; pcr 18 an inconsistent estimator of 3 unless
P(Bper = Bors) — 1 as n — oco. ii) There is no reason why Vi, V4, ..., Vas should
decrease in importance for predicting Z or Y.

62) Partial least squares (PLS) uses PLS components V7, ..., Vj, that are linear com-
binations of the nontrivial predictors. Unlike PCR, the PLS components V; are chosen
using the response variable Y: want components highly correlated with Y. Let model J;
use Vi, ...,V fori=1,..., M. If n > p then using all p — 1 PLS components is the same
as using the OLS full model to get 1 and B.

63) Problem: BPLS is not a consistent estimator of 3 unless p/n — 0 as n — oo.

64) The matrix A has eigenvalue A\ with eigenvector * # 0 if Ax = A x. Let e
be an eigenvector of A with unit length: |e|ls = 1. If the corresponding eigenvalue
is unique, then e and —e are the only such eigenvectors. Suppose A is p x p and
symmetric. Then the eigenvalues of A are real. Then A is positive definite, A > 0, if
A > Ay > > ), >0, and A is positive semidefinite, A > 0, then A\, > 0. A positive



definite matrix is nonsingular: A~ exists.
65) Consider choosing 7 to minimize the criterion

Q)= (2~ W) (Z — W) + l"Zw

where A1, >0, a > 0, and 7 > 0 are known constants. Then j = 2 corresponds to ridge
regression, j = 1 corresponds to lasso, and a = 1,2, n, and 2n are common. The residual
sum of squares RSSw (n) = (Z—-Wn)T(Z-Wmn), and \;,, = 0 corresponds to the OLS
estimator 7 ,¢ = (WTW)_1WTZ. Usually a grid of M values 0 < A\j < A < -+ < Ay
is used where \; = Aq,,;. 10-fold CV is often used to select A\g = 5\1 -

66) Let Y = X3+ e, and let Z = Wn + e be used to fit ridge regression. Then
Z, 7, and Y are used to find B and Y.

67) The ridge regression estimator 7 minimizes the criterion in 65) with j = 2, and
the criterion can be written as

1 An
Qr(n) = ~RSSw(n) + = |n3.

If Ay, = 0, then 7} = Aopg. If Aiy — 00, then 7}, — 0 and Y — Y. Hence ridge
regression is a shrinkage estimator and is regularized if A;, > 0. Also,

Np=WIW + A\ I, )" W'Z=WIWW" 4\ ,I,)'Z

-1

where the inverse matrices exist for any A\, > 0. If n > p and (W?W)~! exists, then

Nr = AN = BNy where
Ay = (WIW + \oI, )" " WIW and B, = [I,-1 — MWW + X\ I,-1)7Y.

68) RR CLT. Assume p is fixed and that the conditions of the LS CLT Theorem 3.1
hold for the model Z = Wn + e.
a) If Ain/v/n 2 0, then vi(fp — 1) 2 N,_1(0,02V).

b) If A/ 2 7> 0 then va(fig — 1) 2 Nyt (—7VR, o2V).
69) Let the augmented matrix W 4 and the augmented response vector Z 4 be defined

by
w Z
WA—( . Ip_l), and ZA—(O),

where 0 is the (p — 1) x 1 zero vector. For Ay, > 0, the OLS estimator from regressing
Zson Wy,is
g = (WIWa) ' WLZ 4 =7y
70) Ridge regression can beat OLS if n/p is small or if X X is ill conditioned (nearly
singular). Ridge regression can beat lasso if ag > n.

71) Ridge regression with 10-fold CV tends to underfit if both as > 18 and the
predictors are highly correlated.



72) Let Y = X8+ e, and let Z = Wn + e be used to fit lasso. Then Z,ﬁL, and Y
are used to find 3, and Y.

73) The lasso estimator 7, minimizes the criterion in 65) with j = 1, and the criterion
can be written as \

1,n
[71l:-
a

Qnln) = RS Sw () +

If \y,, =0, then n;, = 1org. If S\M — o0, then 1, — 0 and Y — Y. Hence lasso
is a shrinkage estimator and is regularized if A\, > 0. Usually a grid of M values
0< A <A <--- <Ay isused where \; = A ,,; and Ay is the smallest value of A such
that 7, = 0. Hence 7,, # 0 for i < M. 10-fold CV is often used to select Ag = S\M.

74) By the KKT conditions for convex optimality, i, = f)opg — n(WT W)™ A s, /n
where s;,, € [—1,1].

75) Lasso CLT. Assume p is fixed and that the conditions of the LS CLT Theorem
3.1 hold for the model Z = Wn + e.

D

a) If Ain/v/n 2 0, then va(f, — n) 2 N,_1(0,0%V).
b) If Ay /0 L r>0ands, 5 s= sn, then \/n(n, —n) 2 -1 (%Vs,an) .

76) Lasso can beat OLS if n/p is small or if X X is ill conditioned (nearly singular).
At most n of the 7;; # 0 even if p > n. This property can be useful if the population
model is sparse. Lasso and ridge regression can be much faster than forward selection if
both n and p are large.

77) Lasso with 10-fold CV tends to underfit if both a; > 18 and the predictors are
highly correlated. Ridge regression can beat lasso if ag > n.

78) The relaxed lasso estimator BRL is OLS fit to the j variables, including a constant,
that have n;;, # 0. Hence relaxed lasso is a variable selection method that is a competitor
of forward selection.

79) If n/p is large, the program should include A\; = 0 and a value like Ay =
Vi log(n). A

80) Let Y = X3+ e, and let Z = Wn + e be used to fit elastic net. Then Z, gy,
and Y are used to find 3,y and Y. The elastic net estimator 7y minimizes the criterion
Qrn(n) = RSSw(n) + A||nl|3+ Xa2||n|j where Ay = (1 —a)A1, and Ay = 2a\;,. Let the
(n+p—1) x (p—1) augmented matrix W4 and the (n+p— 1) x 1 augmented response
vector Z 4 be defined by

w Z
WA—(\/)\—IIP_I), and ZA—(O),

where 0 is the (p — 1) x 1 zero vector. Let RSSa(n) = || Z4 — W 4n||3. Then 7y can
be obtained from the lasso of Z4 on W 4: that is, 1px minimizes

Qr(n) = RSSa(n) + A2llnlly = Qen(n).
81) By the KKT conditions for convex optimality, 7, =

Np — n(WTW + Ale_l)_lj\msn/n where s;, € [—1,1]. If j\m/\/ﬁ A randa S ),

then A /v/n i (1 — )7 and \o//n il 2.
82) EN CLT. Assume p is fixed and that the conditions of the LS CLT Theorem 3.1
hold for the model Z = Wn + e.



a) If A/ 2 0, then vy — 1) = Npo1(0,0°V).

b) If A/ 57 >0, a5 ¢ e0,1, and s, 5> s = sy, then Va(ijgy — ) =
Np-1 (=VI[(1 =)+ ¢7s],0*V).

83) The function enet does elastic net using 10-fold CV and a grid of « values
{0,1/am,2/am,...,am/am = 1}. The default uses am = 10.

84) The large sample 100(1—§)% PI for Y; given &y and the training data (x1,Y7), ..., (2, Y5)
is the PI in 34) with r(a;) = Y7

DA/f + bng(ﬁa Y/f + bngl—ég]

where

1 2 1
bn:(1+—5) ”*; if d<8n/9, and bn=5(1+§),

n n —

otherwise. Here d is a crude estimate of the model degrees of freedom (df). Also,
Yf = w?,[mm/ﬁfmm‘

85) If n > 10p, using d = p works ok for OLS, FS, PCR, PLS, RR, L, RL, and EN.
OLS, FS, PCR, PLS, L, and RL use variables z7, ..., 2}, and a better value for d is d =
number of variables used (including a constant) = number of BZ # 0. FS, L, and RL have
x} = z; for some j while PCR and PLS have 2} = v; = 4 @, some linear combination of
the predictors.

86) If n/p is large, in the simulations the PI had coverage near the nominal coverage.
The length was near the asymptotically optimal length for n > 100p. If n/p is small and
the population model is sparse, the PIs can work well under strong regularity conditions
for forward selection with EBIC and for lasso and relaxed lasso.

87) The program for forward selection used C,, if n > 10p and EBIC if n < 10p.

88) For k-fold cross validation (k-fold CV), randomly divide the training data into k
groups (folds) of approximately equal size n; ~ n/k for j = 1,..., k. Leave out the 1st
fold, fit the method to the £ — 1 remaining folds, then compute some criterion for the 1st
fold. Repeat for folds 2, ..., k.

89) For the MLR model Y = X3 + e, compute Y;(j) for each Y; in the fold j left

n; k
1 - 1
out. Then MSE; = — Z(Yi—Yi(j))z, and the overall criterion is C'Vjy,) = T Z MSE;.
[ et j=1
1 -
Note that if each n; = n/k, then C'V{y,) = — Z(Yz —Y;(5))% Then CVjy,y = CVipy(L) is
n
i=1

computed for i = 1,..., M, and the model I, with the smallest C'V{)([;) is selected.

90) Could modify the k-fold CV criterion by making Pls.

91) Output like that below means cases 7, 12, 14, 18, 21, and 23 are in fold 1 while
cases 1, 16, 22, 24, and 25 are in fold 4.

folds: 4 2353315225121342155141443



