
Math 583 Exam 2 is on Friday, Oct. 20 and emphasizes homeworks 4-6 and quizzes
4-6. You are allowed 10 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

36) The MLR model is Yi = β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei for i = 1, ..., n.

This model is also called the full model. In matrix notation, these n equations become
Y = Xβ + e. Note that xi,1 ≡ 1.

37) The ordinary least squares OLS full model estimator β̂OLS minimizes QOLS(β) =∑n
i=1 r

2
i (β) = RSS(β) = (Y − Xβ)T (Y − Xβ). In the estimating equations QOLS(β),

the vector β is a dummy variable. The minimizer β̂OLS estimates the parameter vector
β for the MLR model Y = Xβ + e. Note that β̂OLS ∼ ANp(β,MSE(XT X)−1).

38) Given an estimate b of β, the corresponding vector of predicted values or fitted

values is Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,1b1 + · · · + xi,pbp.

The vector of residuals is r ≡ r(b) = Y −Ŷ (b). Thus ith residual ri ≡ ri(b) = Yi−Ŷi(b) =
Yi −xi,1b1 − · · ·−xi,pbp. A response plot for MLR is a plot of Ŷi versus Yi. A residual plot

is a plot of Ŷi versus ri. If the ei are iid from a unimodal distribution that is not highly
skewed, the plotted points should scatter about the identity line and the r = 0 line.

39) LS CLT: Consider the MLR model Yi = xT
i β + ei and assume that the zero mean

errors are iid with E(ei) = 0 and VAR(ei) = σ2. Assume p is fixed and n → ∞. Also

assume that maxhi
P→ 0 as n→ ∞ and

XT X

n
→ V −1

as n→ ∞. Then the least squares (OLS) estimator β̂ satisfies
√
n(β̂−β)

D→ Np(0, σ
2 V ).

Equivalently, (XT X)1/2(β̂ − β)
D→ Np(0, σ

2 Ip).
40) Use Zn ∼ ANr (µn,Σn) to indicate that a normal approximation is used: Zn ≈

Nr(µn,Σn). Let a be a constant, let A be a k × r constant matrix, and let c be a k × 1

constant vector. If
√
n(θ̂n − θ)

D→ Nr(0,V ), then aZn = aIrZn with A = aIr,

aZn ∼ ANr

(
aµn, a

2Σn

)
, and AZn + c ∼ ANk

(
Aµn + c,AΣnA

T
)
,

θ̂n ∼ ANr

(
θ,

V

n

)
, and Aθ̂n + c ∼ ANk

(
Aθ + c,

AV AT

n

)
.

41) Problems with the OLS full model: i) If n = p, then Ŷ = Y regardless of how
bad the predictors are. ii) If n < p, then Ŷ = Y or the program fails. iii) Need n > Jp
where J ≥ 5, and preferably J ≥ 10 for good estimation. If n < 5p, the OLS full model
overfits.
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42)

Label coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]
...

xp β̂p SE(β̂p) [L̂p, Ûp]

The classical OLS large sample 95% CI for βi is β̂i ± 1.96SE(β̂i). Consider testing
H0 : βi = 0 versus HA : βi 6= 0. If 0 ∈ CI for βi, then fail to reject H0, and conclude xi is
not needed in the MLR model given the other predictors are in the model. If 0 6∈ CI for
βi, then reject H0, and conclude xi is needed in the MLR model.

43) Let xT
i = (1 uT

i ). It is often convenient to use the centered response Z = Y −Y

where Y = Y 1, and the n × (p− 1) matrix of standardized nontrivial predictors W =
(Wij). For j = 1, ..., p − 1, let Wij denote the (j + 1)th variable standardized so that∑n

i=1Wij = 0 and
∑n

i=1 W
2
ij = n. Then the sample correlation matrix of the nontrivial

predictors ui is

Ru =
W TW

n
.

Then regression through the origin is used for the model Z = W η+e where the vector of
fitted values Ŷ = Y + Ẑ. Thus the centered response Zi = Yi−Y and Ŷi = Ẑi +Y . Then
η̂ does not depend on the units of measurement of the predictors. Linear combinations
of the ui can be written as linear combinations of the xi, hence β̂ can be found from η̂.

44) A model for variable selection is xT β = xT
SβS + xT

EβE = xT
SβS where x =

(xT
S ,x

T
E)T , xS is an aS × 1 vector, and xE is a (p − aS) × 1 vector. Let xI be the

vector of a terms from a candidate subset indexed by I , and let xO be the vector of the
remaining predictors (out of the candidate submodel). If S ⊆ I , then xT β = xT

SβS =
xT

SβS + xT
I/Sβ(I/S) + xT

O0 = xT
I βI where xI/S denotes the predictors in I that are not

in S. Since this is true regardless of the values of the predictors, βO = 0 if S ⊆ I . Note
that βE = 0. Let kS = aS − 1 = the number of population active nontrivial predictors.
Then k = a− 1 is the number of active predictors in the candidate submodel I .

45)

Ij model x2 x3 x4 x5 β̂Ij ,0 if β̂ = β̂Ij

I2 1 * (β̂1, 0, β̂3, 0, 0)
T

I3 2 * * (β̂1, 0, β̂3, β̂4, 0)
T

I4 3 * * * (β̂1, β̂2, β̂3, β̂4, 0)
T

I5 4 * * * * (β̂1, β̂2, β̂3, β̂4, β̂4)
T = β̂OLS

Model Imin is the model, among p candidates, that minimizes Cp if n ≥ 10, or EBIC
if n < 10p. Model Ij contains j predictors, x∗1, x

∗

2, ..., x
∗

j where x∗1 = x1 ≡ 1, the constant.
46) Variable selection is a search for a subset of predictors that can be deleted without

important loss of information if n ≥ 10p and such that model I (containing the remaining
predictors that were not deleted) is good for prediction if n < 10p. Note that the “100%”
shorth CI for a βi that is a component of βO is [0,0].

47) Underfitting occurs if S 6⊆ I so that xI is missing important predictors. Under-
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fitting will occur if xI is k × 1 with d = k < aS. Overfitting occurs if S ⊂ I with S 6= I
or if n < 5k.

48) In 45) sometimes TRUE = * and FALSE = blank. The xi may be replaced by
the variable name or letters like a b c d.

Ij model x2 x3 x4 x5

I2 1 FALSE TRUE FALSE FALSE
I3 2 FALSE TRUE TRUE FALSE
I4 3 TRUE TRUE TRUE FALSE
I5 4 TRUE TRUE TRUE TRUE

49) The out$cp line gives Cp(I2), Cp(I3), ..., Cp(Ip) = p and Imin is the Ij with the
smallest Cp.

50) Typical bootstrap output for forward selection, lasso, and elastic net is shown
below. The SE column is usually omitted except possibly for forward selection. The
term “coef” might be replaced by “Estimate.” This column gives β̂I,0 where I = Imin for
forward selection, I = L for lasso, and I = EN for elastic net. Note that the SE entry
is omitted if β̂i = 0 so variable xi was omitted by the variable selection method. In the
output below, β̂2 = β̂3 = 0. The SE column corresponds to the OLS SE obtained by
acting as if the OLS full model contains a constant and the variables not omitted by the
variable selection method. The OLS SE is incorrect unless the variables were selected
before looking at the data for forward selection.

Label Estimate or coef SE shorth 95% CI for βi

Constant=intercept= x1 β̂1 SE(β̂1) [L̂1, Û1]

x2 β̂2 SE(β̂2) [L̂2, Û2]

x3 0 [L̂3, Û3]

x4 0 [L̂4, Û4]
...

...
...

...

xp β̂p SE(β̂p) [L̂p, Ûp]

51) The OLS SE is also accurate for forward selection with Cp if XT X/n→ V −1 =
diag(d1, ..., dp) where all di > 0. The diagonal limit matrix will occur if the predictors
are orthogonal or if the nontrivial predictors are independent with 0 mean and finite
variance.

52) Inference for OLS forward selection. Suppose p is fixed and Imin with Cp is used.

The probability that Imin underfits goes to 0 as n goes to ∞, and β̂Imin,0 is a
√
n consistent

estimator of β under model 44). Hence the PI (3.33) is a large sample 100(1 − δ)% PI
for Yf under mild conditions that is asymptotically optimal for a large class of iid zero
mean unimodal distributions with finite variance. Consider using the residual bootstrap
with OLS full model residuals and β̂Imin,0. In simulations, the shorth CIs for βi and the
prediction region method for testing H0 : βO = 0 appear to be more precise than these
methods for the OLS full model if βi = 0 or H0 is true if n ≥ 20p and B ≥ 50p are large
enough. For 5000 runs and a 95% CI, if the CI coverage ≥ 0.94, then the shorter the
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CI length, the more precise the CI inference. These simulated results have not yet been
proven for forward selection since the forward selection estimator β̂Imin,0 is generally not
asymptotically normal.

53) Suppose n ≥ 10p and B ≥ 50p are large enough, and that Imin is used with
Cp. Assume the residual bootstrap is used with the OLS full model residuals. Consider

testing H0 : βO = 0 and assume β̂
∗

O,i = 0 for i = 1, ..., B. Then the “100%” prediction
region method confidence region is {0}. Hence pval = 1 estimates the population pvalue.
Note that the “100%” shorth CI for a βi that is a component of βO is [0,0]. Conjecture:

If the above conditions hold, then fail to reject H0 and the method can be used after
looking at the data and bootstrap results.

54) In 44) suppose βS is aS × 1. The population MLR model is sparse if aS is small:
few population coefficients βi are nonzero. The population model is dense if n/aS < J
where J = 5 or 10, say. The fitted model β̂ is sparse id the crude model degrees of
freedom d is small. Often d is the number of nonzero estimated coefficients. The fitted
model is dense if n/d < J .

55) Forward selection with OLS generates a sequence of M models. Let I1 use x∗1 =
x1 ≡ 1: the model has a constant but no nontrivial predictors. To form I2, consider
all models I with two predictors including x∗1. Compute Q2(I) = SSE(I) = RSS(I) =
rT (I)r(I) =

∑n
i=1 r

2
i (I) =

∑n
i=1(Yi− Ŷi(I))

2. Let I2 minimizeQ2(I) for the p−1 models
I that contain x∗1 and one other predictor. Denote the predictors in I2 by x∗1, x

∗

2. In
general, to form Ij consider all models I with j predictors including variables x∗1, ..., x

∗

j−1.

Compute Qj(I) = rT (I)r(I) =
∑n

i=1 r
2
i (I) =

∑n
i=1(Yi−Ŷi(I))

2. Let Ij minimizeQj(I) for
the p−j+1 models I that contain x∗1, ..., x

∗

j−1 and one other predictor not already selected.
Denote the predictors in Ij by x∗1, ..., x

∗

j. Continue in this manner for j = 2, ...,M to form
I1, I2, ..., IM . Often M = min(dn/Je, p).

56) Problems with forward selection: i) If n/p is large, the bootstrap inference for
Imin with Cp has not yet been proven to work. ii) Forward selection can be slow. If
M = p, then ≈ p(p − 1)/2 OLS models are fit. If M = dn/Je, then ≈ M(2p −M)/2
models are fit. iii) If n/p is not large, there does not seem to be theory, although the PI
(3.33) sometimes performed well with EBIC.

57) Forward selection generates M models I1, ..., IM . Let xI and βI be a× 1. For a
given data set, p, n, and σ̂2 act as constants, and a criterion below may add a constant or
be divided by a positive constant without changing the subset Imin that minimizes the
criterion. Let criteria CS(I) have the form

CS(I) = SSE(I) + aKnσ̂
2.

The criterion Cp(I) = AICS(I) uses Kn = 2 while the BICS(I) criterion uses Kn =
log(n). Typically σ̂2 is the OLS full model

MSE =

n∑

i=1

r2
i

n − p

when n/p is large. AIC(I) = n log
(

SSE(I)
n

)
+2a and BIC(I) = n log

(
SSE(I)

n

)
+a log(n)

need n/p large. EBIC(I) = BIC(I) + 2 log

[(
p

a

)]
may work when n/p is not large.
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58) Another variable selection model is xTβ = xT
Si

βSi
for i = 1, ..., J where there are

J ≥ 2 nonnested “true” submodels where βSi
is aSi

×1. When this model holds, omitting

all predictors xj with a β̂∗

ij = 0 in the bootstrap sample may result in underfitting.
59) In simulations, we used β = (1, 1, ..., 1, 0, ..., 0)T where the first k + 1 coefficients

βi = 1. Hence the population model has k active nontrivial predictors with aS = k + 1.

The nontrivial predictors were such that ρ = cor(xi, xj) =
2ψ + (m− 2)ψ2

1 + (m− 1)ψ2
where m =

p − 1, and xi 6= xj are nontrivial predictors. If ψ = 0, then ρ = 0. If ψ is close to 1 or
ψ > 0 and p is large, then ρ gets close to 1. If ψ = 1/

√
cp, then ρ→ 1/(c+ 1) as p → ∞

for c > 0. We expect ρ close to 1 to be favorable for PCR and PLS. The simulation used
ψ = 0, 1/

√
p, and 0.9. Hence ρ gets close to 0, 0.5, and 1. The shorth 95% CIs for βi

were obtained. The prediction region method for testing H0 : (βk+2, ..., βp)
T = 0 was also

tested where H0 was true. The output gives the proportion of times the prediction region
method bootstrap test fails to reject H0. The nominal proportion is 0.95. The average
length of the interval [0, D(UB)] = D(UB) is given where the test rejects H0 if D0 > D(UB).
If the statistic T is r × 1 and asymptotically normal, and if n and B are large enough,

we expect the average length to be near
√
χ2

r,0.95 where r = p− k− 1 for the simulation.

This result occurred for the OLS full model. For the CIs, the lengths of the CIs give a
measure of precision provided the coverage is not much less than the nominal coverage.
For the test, D(UB) does not indicate the volume of the confidence region, so the test
“lengths” are not useful for measuring precision.

60) Principal components regression (PCR) uses Z = Wη +e. PCR uses orthogonal
predictor variables that are projections on the axes of a hyperellipsoid determined by the
eigenvalues and eigenvector of the correlation matrix Ru. The first principal component
V1 is the projection on the longest axis, and the ith principal component is the projection
on the ith longest axis. Model Ji does the OLS regression of Z on V1, ..., Vi for i = 1, ...,M
where M ≤ min(p− 1, n). If n > p then using all p− 1 principal components is the same
as using the OLS full model to get η̂ and β̂. PCR is sometimes useful if there are just
a few dominant principal components: e.g.

∑d
i=1 λ̂i/

∑p−1
i=1 λ̂i ≥ 0.9 where d is small and

the λ̂i are the eigenvalues of Ru with λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p−1 ≥ 0.

61) Problems with PCR: i) In general β̂PCR is an inconsistent estimator of β unless
P (β̂PCR = β̂OLS) → 1 as n → ∞. ii) There is no reason why V1, V2, ..., VM should
decrease in importance for predicting Z or Y .

62) Partial least squares (PLS) uses PLS components V1, ..., VM that are linear com-
binations of the nontrivial predictors. Unlike PCR, the PLS components Vi are chosen
using the response variable Y : want components highly correlated with Y . Let model Ji

use V1, ..., Vi for i = 1, ...,M . If n > p then using all p− 1 PLS components is the same
as using the OLS full model to get η̂ and β̂.

63) Problem: β̂PLS is not a consistent estimator of β unless p/n → 0 as n→ ∞.
64) The matrix A has eigenvalue λ with eigenvector x 6= 0 if Ax = λx. Let e

be an eigenvector of A with unit length: ‖e‖2 = 1. If the corresponding eigenvalue
is unique, then e and −e are the only such eigenvectors. Suppose A is p × p and
symmetric. Then the eigenvalues of A are real. Then A is positive definite, A > 0, if
λ1 ≥ λ2 ≥ · · · ≥ λp > 0, and A is positive semidefinite, A ≥ 0, then λp ≥ 0. A positive
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definite matrix is nonsingular: A−1 exists.
65) Consider choosing η̂ to minimize the criterion

Q(η) =
1

a
(Z −W η)T (Z − Wη) +

λ1,n

a

p−1∑

i=1

|ηi|j

where λ1,n ≥ 0, a > 0, and j > 0 are known constants. Then j = 2 corresponds to ridge
regression, j = 1 corresponds to lasso, and a = 1, 2, n, and 2n are common. The residual
sum of squares RSSW (η) = (Z−Wη)T (Z−Wη), and λ1,n = 0 corresponds to the OLS
estimator η̂OLS = (W T W )−1W TZ. Usually a grid of M values 0 ≤ λ1 < λ2 < · · · < λM

is used where λi = λ1,n,i. 10-fold CV is often used to select λS = λ̂1,n.
66) Let Y = Xβ + e, and let Z = W η + e be used to fit ridge regression. Then

Ẑ, η̂R, and Y are used to find β̂R and Ŷ .
67) The ridge regression estimator η̂R minimizes the criterion in 65) with j = 2, and

the criterion can be written as

QR(η) =
1

a
RSSW (η) +

λ1,n

a
‖η‖2

2.

If λ1,n = 0, then η̂R = η̂OLS. If λ̂1,n → ∞, then η̂R → 0 and Ŷ → Y . Hence ridge
regression is a shrinkage estimator and is regularized if λ1,n > 0. Also,

η̂R = (W TW + λ1,nIp−1)
−1W T Z = W T (WW T + λ1,nIn)−1Z

where the inverse matrices exist for any λ1,n > 0. If n > p and (W T W )−1 exists, then
η̂R = Anη̂R = Bnη̂R where

An = (W T W + λ1,nIp−1)
−1W T W and Bn = [Ip−1 − λ1,n(W

TW + λ1,nIp−1)
−1].

68) RR CLT. Assume p is fixed and that the conditions of the LS CLT Theorem 3.1
hold for the model Z = W η + e.

a) If λ̂1,n/
√
n

P→ 0, then
√
n(η̂R − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 then
√
n(η̂R − η)

D→ Np−1(−τV η, σ2V ).
69) Let the augmented matrix W A and the augmented response vector ZA be defined

by

W A =

(
W√

λ1,n Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1) × 1 zero vector. For λ1,n > 0, the OLS estimator from regressing
ZA on W A is

η̂A = (W T
AW A)−1W T

AZA = η̂R.

70) Ridge regression can beat OLS if n/p is small or if XTX is ill conditioned (nearly
singular). Ridge regression can beat lasso if aS > n.

71) Ridge regression with 10-fold CV tends to underfit if both as > 18 and the
predictors are highly correlated.
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72) Let Y = Xβ + e, and let Z = Wη + e be used to fit lasso. Then Ẑ, η̂L, and Y

are used to find β̂L and Ŷ .
73) The lasso estimator η̂L minimizes the criterion in 65) with j = 1, and the criterion

can be written as

QR(η) =
1

a
RSSW (η) +

λ1,n

a
‖η‖1.

If λ1,n = 0, then η̂L = η̂OLS. If λ̂1,n → ∞, then η̂L → 0 and Ŷ → Y . Hence lasso
is a shrinkage estimator and is regularized if λ1,n > 0. Usually a grid of M values
0 ≤ λ1 < λ2 < · · · < λM is used where λi = λ1,n,i and λM is the smallest value of λ such

that η̂λ = 0. Hence η̂λi
6= 0 for i < M . 10-fold CV is often used to select λS = λ̂1,n.

74) By the KKT conditions for convex optimality, η̂L = η̂OLS −n(W T W )−1λ̂1,nsn/n
where si,n ∈ [−1, 1].

75) Lasso CLT. Assume p is fixed and that the conditions of the LS CLT Theorem
3.1 hold for the model Z = Wη + e.

a) If λ̂1,n/
√
n

P→ 0, then
√
n(η̂L − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0 and sn
P→ s = sη , then

√
n(η̂L−η)

D→ Np−1

(−τ
2

V s, σ2V

)
.

76) Lasso can beat OLS if n/p is small or if XT X is ill conditioned (nearly singular).
At most n of the η̂iL 6= 0 even if p > n. This property can be useful if the population
model is sparse. Lasso and ridge regression can be much faster than forward selection if
both n and p are large.

77) Lasso with 10-fold CV tends to underfit if both as > 18 and the predictors are
highly correlated. Ridge regression can beat lasso if aS > n.

78) The relaxed lasso estimator β̂RL is OLS fit to the j variables, including a constant,
that have η̂iL 6= 0. Hence relaxed lasso is a variable selection method that is a competitor
of forward selection.

79) If n/p is large, the program should include λ1 = 0 and a value like λ2 ≈√
n/ log(n).
80) Let Y = Xβ + e, and let Z = W η + e be used to fit elastic net. Then Ẑ, η̂EN ,

and Y are used to find β̂EN and Ŷ . The elastic net estimator η̂EN minimizes the criterion
QEN(η) = RSSW (η)+λ1‖η‖2

2 +λ2‖η‖1 where λ1 = (1−α)λ1,n and λ2 = 2αλ1,n. Let the
(n+ p− 1)× (p− 1) augmented matrix W A and the (n+ p− 1)× 1 augmented response
vector ZA be defined by

W A =

(
W√

λ1 Ip−1

)
, and ZA =

(
Z

0

)
,

where 0 is the (p− 1) × 1 zero vector. Let RSSA(η) = ‖ZA − W Aη‖2
2. Then η̂EN can

be obtained from the lasso of ZA on W A: that is, η̂EN minimizes
QL(η) = RSSA(η) + λ2‖η‖1 = QEN(η).

81) By the KKT conditions for convex optimality, η̂L =

η̂R − n(W TW + λ1Ip−1)
−1λ̂1,nsn/n where si,n ∈ [−1, 1]. If λ̂1,n/

√
n

P→ τ and α̂
P→ ψ,

then λ̂1/
√
n

P→ (1 − ψ)τ and λ̂2/
√
n

P→ 2ψτ.
82) EN CLT. Assume p is fixed and that the conditions of the LS CLT Theorem 3.1

hold for the model Z = W η + e.
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a) If λ̂1,n/
√
n

P→ 0, then
√
n(η̂EN − η)

D→ Np−1(0, σ
2V ).

b) If λ̂1,n/
√
n

P→ τ ≥ 0, α̂
P→ ψ ∈ [0, 1], and sn

P→ s = sη, then
√
n(η̂EN − η)

D→
Np−1

(
−V [(1 − ψ)τη + ψτs], σ2V

)
.

83) The function enet does elastic net using 10-fold CV and a grid of α values
{0, 1/am, 2/am, ..., am/am= 1}. The default uses am = 10.

84) The large sample 100(1−δ)% PI for Yf given xf and the training data (x1, Y1), ..., (xn, Yn)

is the PI in 34) with m̂(xf) = Ŷf :

[Ŷf + bnξ̃δ1
, Ŷf + bnξ̃1−δ2

]

where

bn =

(
1 +

15

n

) √
n + 2d

n− d
if d ≤ 8n/9, and bn = 5

(
1 +

15

n

)
,

otherwise. Here d is a crude estimate of the model degrees of freedom (df). Also,
Ŷf = xT

f,Imin
β̂Imin

.
85) If n ≥ 10p, using d = p works ok for OLS, FS, PCR, PLS, RR, L, RL, and EN.

OLS, FS, PCR, PLS, L, and RL use variables x∗1, ..., x
∗

d, and a better value for d is d =

number of variables used (including a constant) = number of β̂i 6= 0. FS, L, and RL have
x∗i = xj for some j while PCR and PLS have x∗i = vi = γT

i x, some linear combination of
the predictors.

86) If n/p is large, in the simulations the PI had coverage near the nominal coverage.
The length was near the asymptotically optimal length for n ≥ 100p. If n/p is small and
the population model is sparse, the PIs can work well under strong regularity conditions
for forward selection with EBIC and for lasso and relaxed lasso.

87) The program for forward selection used Cp if n ≥ 10p and EBIC if n < 10p.
88) For k-fold cross validation (k-fold CV), randomly divide the training data into k

groups (folds) of approximately equal size nj ≈ n/k for j = 1, ..., k. Leave out the 1st
fold, fit the method to the k−1 remaining folds, then compute some criterion for the 1st
fold. Repeat for folds 2, ..., k.

89) For the MLR model Y = Xβ + e, compute Ŷi(j) for each Yi in the fold j left

out. Then MSEj =
1

nj

nj∑

i=1

(Yi− Ŷi(j))
2, and the overall criterion is CV(k) =

1

k

k∑

j=1

MSEj.

Note that if each nj = n/k, then CV(k) =
1

n

n∑

i=1

(Yi − Ŷi(j))
2. Then CV(k) ≡ CV(k)(Ii) is

computed for i = 1, ...,M , and the model Ic with the smallest CV(k)(Ii) is selected.
90) Could modify the k-fold CV criterion by making PIs.
91) Output like that below means cases 7, 12, 14, 18, 21, and 23 are in fold 1 while

cases 1, 16, 22, 24, and 25 are in fold 4.

folds: 4 2 3 5 3 3 1 5 2 2 5 1 2 1 3 4 2 1 5 5 1 4 1 4 4 3
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