
Math 583 Exam 1 is on Friday, Sept. 22 and covers homeworks 1-3 and quizzes
1-3. You are allowed 7 sheets of notes and a calculator. Any needed tables will be
provided. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS ON
THIS HANDOUT!

1) Statistical Learning techniques extract information from multivariate data. A case

or observation consists of k random variables measured for one person or thing. The
ith case zi = (zi1, ..., zik)

T . The training data consists of z1, ..., zn. A statistical model
or method is fit (trained) on the training data. The test data consists of zn+1, ..., zn+m,
and the test data is often used to evaluate the quality of the fitted model.

2) The focus of supervised learning is predicting a future value of the response variable
Yf given xf and the training data (Y1, x1), ..., (Yn, xn). The focus of unsupervised learning

is to group x1, ..., xn into clusters. Data mining is looking for relationships in large data
sets.

3) For classical regression and multivariate analysis, we often want n ≥ 10p, and
a model with n < 5p is overfitting: the model does not have enough data to estimate
parameters accurately if x is p× 1. Statistical Learning methods often use a model with
a crude degrees of freedom d, where n ≥ Jd with J ≥ 5 and preferably J ≥ 10. A model
is underfitting if it omits important predictors. Fix p, if the probability that a model
underfits goes to 0 as the sample size n → ∞, then overfitting may not be too serious if
n ≥ Jd. Underfitting can cause the model to fail to hold.

4) There are several important Statistical Learning principles.
i) There is more interest in prediction or classification, e.g. producing Ŷf , than in other
types of inference.
ii) Often the focus is on extracting useful information when n/p is not large, e.g. p > n.
If d is a crude estimator of the fitted model degrees of freedom, we want n/d large. A
sparse model has few nonzero coefficients. We can have sparse population models and
sparse fitted models. Sometimes sparse fitted models are useful even if the population
model is dense (not sparse). Often the number of nonzero coefficients of a sparse fitted

model = d.
iii) Interest is in how well the method performs on test data. Performance on training
data is overly optimistic for estimating performance on test data.
iv) Some methods are flexible while others are unflexible. For unflexible methods, the
sufficient predictor is often a hyperplane SP = xT β and often the mean function
E(Y |x) = M(xT β) where the function M is known but the p × 1 vector of parame-
ters β is unknown and must be estimated (GLMs). Flexible methods tend to be useful
for more complicated regression methods where E(Y |x) = m(x) for an unknown function
m or SP 6= xT β (GAMs).

5) Regression investigates how the response variable Y changes with the value of a
p× 1 vector x of predictors. Often this conditional distribution Y |x is described by a 1D

regression model, where Y is conditionally independent of x given the sufficient predictor

SP = h(x), written
Y x|SP or Y x|h(x),

where the real valued function h : R
p → R. The estimated sufficient predictor ESP

= ĥ(x). An important special case is a model with a linear predictor h(x) = α + βTx
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where ESP = α̂+β̂
T
x. This class of models includes the generalized linear model (GLM).

Another important special case is a generalized additive model (GAM), where Y is in-
dependent of x = (x1, ..., xp)

T given the additive predictor AP = α +
∑p

j=1 Sj(xj) for
some (usually unknown) functions Sj. The estimated additive predictor EAP = ESP =

α̂ +
∑p

j=1 Ŝj(xj). The response variable is the variable that you want to predict. The
predictor variables (or features) are used to predict the response variable.

6) Given a model know how to find the SP h(x). Tip: if the model depends on x

only through the real valued function h(x), then SP = h(x).
7) The additive error regression model is Y = m(x) + e, suppressing subscripts.

The model could be written Yi = m(xi)+ei for i = 1, ..., n. The multiple linear regression
(MLR) model Y = xT β + e is a special case. The MLR model is

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the ith error.
8) A response plot is a plot of ESP vs Y and a residual plot is a plot of ESP vs. r.

For the models in 7), the ith residual ri = Yi − m̂(x), and the ESP = m̂(x) = Ŷ . If the
errors are unimodal without much skew, then for models in 7) the plotted points should
cluster about the identity line with unit slope and 0 intercept and the r = 0 line in the
response and residual plots.

9) A plot of w vs. z puts w on the horizontal axis and z on the vertical axis.
10) A transformation model is Y = t(Z) = m(x)+e. Assume that all of the values of

the “response” Zi are positive. A power transformation has the form Y = tλ(Z) = Zλ

for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0 where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1},

the ladder of powers. A graphical method for response transformations computes the
“fitted values” Ŵi = xT

i β̂λ from the multiple linear regression model using Wi = tλ(Zi)
as the “response.” A transformation plot is a plot of Ŵ versus W with the identity line
added as a visual aid. and is made for each of the seven values of λ ∈ ΛL. The plotted
points follow the identity line in a (roughly) evenly populated band if the iid error MLR
model is reasonable for Y = W and x. Often TZHAT or YHAT is on the horizontal axis
and Y = t(Z) on the vertical axis.

11) Given several transformation plots or several response plots (with Y = t(Z)
or t(Z) on the vertical axis), be able to find the response transformation Y = t(Z)
corresponding to a plot that looks like a good MLR response plot. Q1, HW1 C.

12) Suppose you have a scatterplot of two variables xλ1

1 versus xλ2

2 , x1, x2 > 0 and
that the plotted points follow a nonlinear one to one function. If λ = 0 use the log
transformation log(xi). Consider the ladder of powers. Ladder rule: To spread small
values of the variable, make λi smaller. To spread large values of the variable, make λi

larger. Be able to use the Ladder Rule.
13) Suppose that all values of the variable w to be transformed are positive. The log

rule says use log(w) if max(wi)/min(wi) > 10. Be able to use the log rule.
14) Consider the ladder of powers given in point 10). No transformation (λ = 1) is

best, then the log transformation, then the square root transformation.
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15) Given a plot of x versus Y , be able to use the ladder rule to decide between two
transformations, one decreasing λ, eg log(Y ), and one increasing λ, eg Y 2. A variant
might have a plot of

√
x versus

√
Y . Then choose between Y and log(Y ) or between x

and log(x).

16) The modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(1)

for λ 6= 0 and Z
(0)
i = log(Zi) where λ ∈ ΛL.

17) For the location model, the sample mean Y =

∑n
i=1 Yi

n
, the sample variance

S2
n =

∑n
i=1(Yi − Y )2

n − 1
, and the sample standard deviation Sn =

√

S2
n. If the data Y1, ..., Yn

is arranged in ascending order from smallest to largest and written as Y(1) ≤ · · · ≤ Y(n),
then Y(i) is the ith order statistic and the Y(i)’s are called the order statistics. The sample

median

MED(n) = Y((n+1)/2) if n is odd,

MED(n) =
Y(n/2) + Y((n/2)+1)

2
if n is even.

The notation MED(n) = MED(Y1, ..., Yn) will also be used. The sample median absolute

deviation is MAD(n) = MED(|Yi − MED(n)|, i = 1, . . . , n).
18) Suppose the multivariate data has been collected into an n × p matrix

W = X =







xT
1
...

xT
n







.

The coordinatewise median MED(W ) = (MED(X1), ..., MED(Xp))
T where MED(Xi) is

the sample median of the data in column i corresponding to variable Xi. The sample

mean x =
1

n

n
∑

i=1

xi = (X1, ..., Xp)
T where Xi is the sample mean of the data in column

i corresponding to variable Xi. The sample covariance matrix

S =
1

n − 1

n
∑

i=1

(xi − x)(xi − x)T = (Sij).

That is, the ij entry of S is the sample covariance Sij . The classical estimator of multi-

variate location and dispersion is (T, C) = (x, S).
19) Let (T, C) = (T (W ), C(W )) be an estimator of multivariate location and dis-

persion. The ith Mahalanobis distance Di =
√

D2
i where the ith squared Mahalanobis

distance is D2
i = D2

i (T (W ), C(W )) = (xi − T (W ))T C−1(W )(xi − T (W )).
20) The squared Euclidean distances of the xi from the coordinatewise median is D2

i =
D2

i (MED(W ), Ip). Concentration type steps compute the weighted median MEDj : the
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coordinatewise median computed from the cases xi with D2
i ≤ MED(D2

i (MEDj−1, Ip))
where MED0 = MED(W ). Often used j = 0 (no concentration type steps) or j = 9. Let
Di = Di(MEDj, Ip). Let Wi = 1 if Di ≤ MED(D1, ..., Dn) + kMAD(D1, ..., Dn) where
k ≥ 0 and k = 5 is the default choice. Let Wi = 0, otherwise.

21) Let the covmb2 set B of at least n/2 cases correspond to the cases with weight
Wi = 1. Then the covmb2 estimator (T, C) is the sample mean and sample covariance
matrix applied to the cases in set B. Hence

T =

∑n
i=1 Wixi

∑n
i=1 Wi

and C =

∑n
i=1 Wi(xi − T )(xi − T )T

∑n
i=1 Wi − 1

.

The function ddplot5 plots the Euclidean distances from the coordinatewise median
versus the Euclidean distances from the covmb2 location estimator. Typically the plotted
points in this DD plot cluster about the identity line, and outliers appear in the upper
right corner of the plot with a gap between the bulk of the data and the outliers.

22) If X and Y are p × 1 random vectors, a a conformable constant vector, and A

and B are conformable constant matrices, then

E(X + Y ) = E(X) + E(Y ), E(a + Y ) = a + E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
23) If X ∼ Np(µ,Σ), then E(X) = µ and Cov(X) = Σ.
24) If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ). If a

is a p × 1 vector of constants, then X + a ∼ Np(µ + a,Σ).
25) Let Xn be a sequence of random vectors with joint cdfs Fn(x) and let X be a

random vector with joint cdf F (x).

a) Xn converges in distribution to X, written Xn
D→ X, if Fn(x) → F (x) as

n → ∞ for all points x at which F (x) is continuous. The distribution of X is the
limiting distribution or asymptotic distribution of Xn.

b) Xn converges in probability to X, written Xn
P→ X, if for every ε > 0,

P (‖Xn − X‖ > ε) → 0 as n → ∞.
26) Multivariate Central Limit Theorem (MCLT): If X1, ..., Xn are iid k× 1 random

vectors with E(X) = µ and Cov(X) = Σx, then

√
n(Xn −µ)

D→ Nk(0,Σx)

where the sample mean

Xn =
1

n

n
∑

i=1

X i.

27) Suppose
√

n(Tn − µ)
D→ Np(θ,Σ). Let A be a q × p constant matrix. Then

A
√

n(Tn − µ) =
√

n(ATn − Aµ)
D→ Nq(Aθ, AΣAT ).

28) Suppose A is a conformable constant matrix and Xn
D→ X. Then AXn

D→ AX.
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29) For h > 0, the hyperellipsoid {z : (z − T )TC−1(z − T ) ≤ h2} =
{z : D2

z ≤ h2} = {z : Dz ≤ h}. A future observation (random vector) xf is in this
region if Dxf

≤ h. A large sample 100(1 − δ)% prediction region is a set An such that

P (xf ∈ An)
P→ 1 − δ where 0 < δ < 1. A large sample 100(1 − δ)% confidence region is

a set An such that P (µ ∈ An)
P→ 1 − δ. A prediction interval (PI) [Ln, Un] is a special

case of a prediction region and a confidence interval (CI) [Ln, Un] is a special case of a
confidence region.

30) Consider intervals that contain c cases [Y(1), Y(c)], [Y(2), Y(c+1)], ..., [Y(n−c+1), Y(n)].
Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator shorth(c) =
[Y(s), Y(s+c−1)] is the interval with the shortest length. A large sample 100(1 − δ)% pre-
diction interval (PI) (Ln, Un) is such that P (Yf ∈ (Ln, Un)) → 1 − δ as n → ∞. The
shorth(c) interval is a large sample 100(1 − δ)% PI if c/n → 1 − δ as n → ∞ that often
has the asymptotically shortest length.

31) Let qn = min(1 − δ + 0.05, 1 − δ + p/n) for δ > 0.1 and qn =
min(1−δ/2, 1−δ+10δp/n), otherwise. If qn < 1−δ+0.001, set qn = 1−δ. If (T, C) is a
consistent estimator of (µ, dΣ), then {z : Dz(T, C) ≤ h} is a large sample 100(1 − δ)%
prediction regions if h = D(Un) where D(Un) is the 100qnth sample quantile of the Di.
The nonparametric prediction region uses (T, C) = (x, S). See 35).

32) Suppose m independent large sample 100(1 − δ)% prediction regions are made
where x1, ..., xn, xf are iid from the same distribution for each of the m runs. Let Y
count the number of times xf is in the prediction region. Then Y ∼ binomial (m, 1− δn)
where 1 − δn is the true coverage and 1 − δn → 1 − δ as n → ∞. Simulation can be
used to see if the true or actual coverage 1 − δn is close to the nominal coverage 1 − δ.
A prediction region with 1 − δn < 1 − δ is liberal and a region with 1 − δn > 1 − δ
is conservative. It is better to be conservative by 5% than liberal by 5%. Parametric
prediction regions tend to have large undercoverage and so are too liberal.

33) For the nonparametric prediction region, we want n ≥ 10p for good coverage and
n ≥ 50p for good volume.

34) Let qn and c be given by 31) with p replaced by d, a crude estimator of the model
degrees of freedom. Let

bn =

(

1 +
15

n

)

√

n + 2d

n − d
if d ≤ 8n/9, and bn = 5

(

1 +
15

n

)

,

otherwise. Compute the shorth(c) of the residuals = [r(s), r(s+c−1)] = [ξ̃δ1
, ξ̃1−δ2

]. Let

Ŷf = m̂(xf ). Then a 100 (1 − δ)% large sample PI for Yf is

[m̂(xf ) + bnξ̃δ1
, m̂(xf) + bnξ̃1−δ2

].

Note that this PI roughly uses the shorth of the pseudodata Ŷf + ri for i = 1, ..., n.
35) Consider testing H0 : µ = c versus H1 : µ 6= c where c is a known r × 1 vector.

The prediction region method makes a bootstrap sample wi = µ̂
∗

i −c for i = 1, ..., B.
Make the nonparametric prediction region {z : D2

z(x, S) ≤ D2
(Un)} for the wi, and reject

H0 if 0 is not in the prediction region. See 31).
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