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Introduction A Little Detour Theory and Methods New Tests

Two Sample Hotelling’s 𝑇 2 Test

Suppose there are two independent random samples 𝑥1,1, ..., 𝑥𝑛1,1 and 𝑥1,2, ..., 𝑥𝑛2,2 from two

populations or groups, and that it is desired to test

𝐻0 ∶ 𝜇1 = 𝜇2 vs. 𝐻1 ∶ 𝜇1 ≠ 𝜇2

where the 𝜇𝑖 are 𝑝 × 1 vectors.

Assume that 𝑇𝑖 satisfies a central limit type theorem

√
𝑛(𝑇𝑖 − 𝜇𝑖)

𝐷
→ 𝑁𝑝(0, 𝛴𝑖) for 𝑖 = 1, 2

where the 𝛴𝑖 are positive definite.
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Two Sample Hotelling’s 𝑇 2 Test...

To simplify large sample theory, assume 𝑛1 = 𝑘𝑛2 for some positive real number 𝑘. Let 𝛴̂𝑖 be a

consistent nonsingular estimator of 𝛴𝑖. Then

(
√𝑛1 (𝑇1 − 𝜇1)
√𝑛2 (𝑇2 − 𝜇2) )

𝐷
→ 𝑁2𝑝 [( 0

0 ) , ( 𝛴1 0
0 𝛴2

)] ,

or

(
√𝑛2 (𝑇1 − 𝜇1)
√𝑛2 (𝑇2 − 𝜇2) )

𝐷
→ 𝑁2𝑝 [( 0

0 ) , (
𝛴1

𝑘 0
0 𝛴2

)] .

Hence
√𝑛2 [(𝑇1 − 𝑇2) − (𝜇1 − 𝜇2)]

𝐷
→ 𝑁𝑝(0, 𝛴1

𝑘
+ 𝛴2).
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Two Sample Hotelling’s 𝑇 2 Test...

Using 𝑛𝐵−1 = (𝐵
𝑛

)
−1

and 𝑛2𝑘 = 𝑛1, if 𝜇1 = 𝜇2, then

𝑛2(𝑇1 − 𝑇2)𝑇 (𝛴1
𝑘

+ 𝛴2)
−1

(𝑇1 − 𝑇2) =

(𝑇1 − 𝑇2)𝑇 (𝛴1
𝑛1

+ 𝛴2
𝑛2

)
−1

(𝑇1 − 𝑇2)
𝐷
→ 𝜒2

𝑝.

Hence

𝑇 2
0 = (𝑇1 − 𝑇2)𝑇 (𝛴̂1

𝑛1
+ 𝛴̂2

𝑛2
)

−1

(𝑇1 − 𝑇2)
𝐷
→ 𝜒2

𝑝.

Note that 𝑘 drops out of the above result.
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Two Sample Hotelling’s 𝑇 2 Test...

If the sequence of positive integers 𝑑𝑛 → ∞ and 𝑌𝑛 ∼ 𝐹𝑝,𝑑𝑛
, then 𝑌𝑛

𝐷
→ 𝜒2

𝑝/𝑝.
Instead of rejecting 𝐻0 when 𝑇 2

0 > 𝜒2
𝑝,1−𝛼, reject 𝐻0 when

𝑇 2
0 > 𝑝𝐹𝑝,𝑑𝑛,1−𝛼 =

𝑝𝐹𝑝,𝑑𝑛,1−𝛼

𝜒2
𝑝,1−𝛼

𝜒2
𝑝,1−𝛼.

The term
𝑝𝐹𝑝,𝑑𝑛,1−𝛼

𝜒2
𝑝,1−𝛼

can be regarded as a small sample correction factor that improves the

test’s performance for small samples.
For example, use 𝑑𝑛 = (𝑛1 − 𝑝, 𝑛2 − 𝑝). Here 𝑃(𝑌𝑛 ≤ 𝜒2

𝑝,𝛼) = 𝛼 if 𝑌𝑛 has a 𝜒2
𝑝 distribution,

and 𝑃(𝑌𝑛 ≤ 𝐹𝑝,𝑑𝑛,𝛼) = 𝛼 if 𝑌𝑛 has an 𝐹𝑝,𝑑𝑛
distribution.

6 Hasthika S. Rupasinghe | Department of Mathematics 2017-04-26



Introduction A Little Detour Theory and Methods New Tests

One Way MANOVA test

The one way MANOVA is used to test

𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑝 Vs. 𝐻𝑎 ∶ 𝑛𝑜𝑡𝐻0.

Note that if 𝑚 = 1 the one way MANOVA model becomes the one way ANOVA model. One

might think that performing 𝑚 ANOVA tests is sufficient to test the above hypotheses. But the

separate ANOVA tests would not take the correlation between the 𝑚 variables into account.

On the other hand the MANOVA test will take the correlation into account.

7 Hasthika S. Rupasinghe | Department of Mathematics 2017-04-26



Introduction A Little Detour Theory and Methods New Tests

One Way MANOVA test...

The one way MANOVA model is 𝑦𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 where the 𝜖𝑖𝑗 are iid with 𝐸(𝜖𝑖𝑗) = 0 and

𝐶𝑜𝑣(𝜖𝑖𝑗) = 𝛴𝜖. The summary One Way MANOVA table is shown bellow.

Source matrix df

Treatment or Between 𝐵𝑇 𝑝 − 1
Residual or Error or Within 𝑊 𝑛 − 𝑝

Total (Corrected) 𝑇 𝑛 − 1
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One Way MANOVA test...

There are three commonly used test statistics to test above hypotheses. Namely,

1 Hotelling Lawley trace statistic: 𝑈 = 𝑡𝑟(𝐵𝑇𝑊−1) = 𝑡𝑟(𝑊−1𝐵𝑇)

2 Wilks’ lambda: 𝛬 = ∣𝑊∣
∣𝐵𝑇+𝑊∣

3 Pillai’s trace statistic: V = 𝑡𝑟(𝐵𝑇T
−1) = 𝑡𝑟(T−1𝐵𝑇)
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One Way MANOVA test...

If the 𝑦𝑖𝑗 − 𝜇𝑗 are iid with common covariance matrix 𝛴𝜖, and if 𝐻0 is true, then under

regularity conditions Fujikoshi (2002) showed

1 (𝑛 − 𝑚 − 𝑝 − 1)𝑈
𝐷
→ 𝜒2

𝑚(𝑝−1),

2 −[𝑛 − 0.5(𝑚 + 𝑝 − 2)]𝑙𝑜𝑔(𝛬)
𝐷
→ 𝜒2

𝑚(𝑝−1), and

3 (𝑛 − 1)𝑉
𝐷
→ 𝜒2

𝑚(𝑝−1).
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Brief introduction to bootstrapping.

Use the information of a number of resamples from the sample to estimate the population

distribution.

Given a sample of size n:

1 Treat the sample as population.

2 Draw B samples of size n with replacement from your sample - the bootstrap samples.

3 Compute for each bootstrap sample the statistic of interest - for examples: the mean,
the median.

4 Estimate the sample distribution of the statistic by the bootstrap sample distribution.

12 Hasthika S. Rupasinghe | Department of Mathematics 2017-04-26



Introduction A Little Detour Theory and Methods New Tests

Bootstrap 𝑅 Example

Suppose the data is 1, 2, 3, 4, 5, 6, 7, 8, 9 ,10. Then 𝑛 = 10 and the sample median 𝑇𝑛 = 5.5. 𝑅
was used to draw 𝐵 = 2 bootstrap samples (Samples of size 𝑛 drawn with replacement from
the original data) and computed the sample median 𝑇 ∗

1,𝑛 = 6.5, 𝑇 ∗
2,𝑛 = 5.5.

b1 <- sample(1:10, replace = T)
b1
[1] 3 8 7 4 1 7 6 10 9 3
median(b1)
[1] 6.5

b2 <- sample(1:10, replace = T)
b2
[1] 6 3 9 5 8 8 4 2 1 9
median(b2)
[1] 5.5
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Some Notation

Suppose 𝑤1, ..., 𝑤𝑛 are iid 𝑟 × 1 random vectors with mean 𝜇 and nonsingular covariance

matrix 𝛴𝑤. Let a future test observation 𝑤𝑓 be independent of the 𝑤𝑖 but from the same

distribution. Let (𝑤, 𝑆) be the sample mean and sample covariance matrix where

𝑤 = 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖 and S = Sw = 1

n − 1

n

∑
i=1

(wi − w)(wi − w)T. (1)

Then the 𝑖th squared sample Mahalanobis distance is the scalar

𝐷2𝑤𝑖
= 𝐷2𝑤𝑖

(𝑤, 𝑆) = (𝑤𝑖 − 𝑤)𝑇𝑆−1(𝑤𝑖 − 𝑤). (2)
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Bootstrapping a hypothesis test

Let 𝐷2
𝑖 = 𝐷2𝑤𝑖

for each observation 𝑤𝑖. Let 𝐷(𝑐) be the 𝑐th order statistic of 𝐷1, ..., 𝐷𝑛.

Consider the hyperellipsoid

𝒜𝑛 = {𝑤 ∶ 𝐷2𝑤(𝑤, 𝑆) ≤ 𝐷2
(𝑐)}. (3)
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Bootstrapping a hypothesis test...

Olive (2013) showed that;

{𝑤 ∶ 𝐷2𝑤(𝑤, 𝑆) ≤ 𝐷2
(𝑈𝑛)} (4)

is a large sample 100(1 − 𝛿)% non parametric prediction region for a future value 𝑤𝑓 given iid

data 𝑤1, ..., , 𝑤𝑛. Let 𝐷(𝑈𝑛) be the 100𝑞𝑛th percentile of the 𝐷𝑖;

where 𝑞𝑛 = (1 − 𝛿 + 0.05, 1 − 𝛿 + 𝑝/𝑛) for 𝛿 > 0.1 and

𝑞𝑛 = (1 − 𝛿/2, 1 − 𝛿 + 10𝛿𝑝/𝑛), otherwise. (5)

If 1 − 𝛿 < 0.999 and 𝑞𝑛 < 1 − 𝛿 + 0.001, set 𝑞𝑛 = 1 − 𝛿.
while the classical large sample 100(1 − 𝛿)% prediction region is

{𝑤 ∶ 𝐷2𝑤(𝑤, 𝑆) ≤ 𝜒2
𝑝,1−𝛿}. (6)
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Bootstrapping a hypothesis test...

Following Olive (2015);

Theorem 1. Let the (1 − 𝛿)th percentile 𝐷2
1−𝛿 be a continuity point of the distribution of 𝐷2.

Assume that 𝐷2𝜇(𝑇𝑛, 𝛴𝑇)
𝐷
→ 𝐷2, 𝐷2𝜇(𝑇𝑛, 𝛴̂𝑇)

𝐷
→ 𝐷2, and 𝐷̂2

1−𝛿
𝑃
→ 𝐷2

1−𝛿 where

𝑃(𝐷2 ≤ 𝐷2
1−𝛿) = 1 − 𝛿.

1 Then 𝑅𝑐 = {𝑤 ∶ 𝐷2𝑤(𝑇𝑛, 𝛴̂𝑇) ≤ 𝐷̂2
1−𝛿} is a large sample 100(1 − 𝛿)% confidence region

for 𝜇.
2 If 𝜇 is known, 𝑅𝑝 = {𝑤 ∶ 𝐷2𝑤(𝜇, 𝛴̂𝑇) ≤ 𝐷̂2

1−𝛿} is a large sample 100(1 − 𝛿)% prediction

region for a future value of the statistic 𝑇𝑓,𝑛.

3 Region 𝑅𝑐 contains 𝜇 iff region 𝑅𝑝 contains 𝑇𝑛.
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Bootstrapping a Hypothesis Test...

Hence if there was an iid sample 𝑇1,𝑛, ..., 𝑇𝐵,𝑛 of the statistic, the prediction region (4) for 𝑇𝑓,𝑛
contains 𝐸(𝑇𝑛) = 𝜇 with asymptotic coverage ≥ 1 − 𝛿.

The Olive (2015) prediction region method bootstraps this procedure by using a bootstrap

sample of the statistic 𝑇 ∗
1,𝑛, ..., 𝑇 ∗

𝐵,𝑛.
The prediction region method for testing 𝐻0 ∶ 𝜇 = 𝑐 versus 𝐻1 ∶ 𝜇 ≠ 𝑐 is simple. Let 𝜇̂ be a

consistent estimator of 𝜇 and make a bootstrap sample 𝑤𝑖 = 𝜇̂∗
𝑖 − 𝑐 for 𝑖 = 1, ..., 𝐵. Make the

nonparametric prediction region (4) for the 𝑤𝑖 and fail to reject 𝐻0 if 0 is in the prediction
region, reject 𝐻0 otherwise.
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Why new Tests?

1 The two sample Hotelling’s 𝑇 2 test is the classical method. If it is not assumed that the
population covariance matrices are equal, then this test uses the sample mean and

sample covariance matrix 𝑇𝑖 = 𝑥𝑖 and 𝛴̂𝑖 = 𝑆𝑖 applied to each sample. This test is
robust to assumptions;

Both populations are multivariate normally distributed.
The populations have a common population covariance matrix.

But the test can be very poor if outliers are present.

2 The classical one way MANOVA model assumes that the covariance matrix of each group
is the same. This test is also not an outlier resistant test.
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Bootstrapping Analogs of the Hotelling’s 𝑇 2 Test

Recall:

𝐻0 ∶ 𝜇1 = 𝜇2 versus 𝐻1 ∶ 𝜇1 ≠ 𝜇2

For illustrative purposes, the simulation study will take 𝑇𝑖 to be the coordinatewise median,

sample mean, 25% trimmed mean or the Olive and Hawkins (2010) RMVN estimator 𝑇𝑅𝑀𝑉 𝑁.

Let the TEST 1, 2, 3 and 4 use,

1 𝑇1 - Coordinatewise median applied to the 𝑖𝑡ℎ sample.

2 𝑇2 - Sample mean applied to the 𝑖𝑡ℎ sample.

3 𝑇3 - 25% trimmed mean applied to the 𝑖𝑡ℎ sample.

4 𝑇4 - RMVN location estimator applied to the 𝑖𝑡ℎ sample.

respectively.
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Bootstrapping Analogs of the Hotelling’s 𝑇 2 Test...

TEST 1:

Definition 1: Coordinatewise Median is defined as 𝑀𝐸𝐷(𝑋) = (𝑀𝑒𝑑(𝑋1), ..., 𝑀𝑒𝑑(𝑋𝑝))′

Steps to perform Test 1:

1 Make a bootstrap sample of 𝑤𝑗 = 𝑀𝐸𝐷(𝑋𝑗) − 𝑀𝐸𝐷(𝑌𝑗) for 𝑗 = 1, ..., 𝐵.

2 Makes the prediction region described above for the 𝑤𝑗.

3 Determine whether 0 is in the prediction region.

4 Make the decision,

If 0 is in the prediction region, the test 1 fails to reject 𝐻0.
Reject 𝐻0 if 0 is not in the prediction region.

To get the steps for the test 2 and test 3, simply replace 𝑤𝑗 above by difference of 𝑋̄𝑠′ or 25%
trimmed 𝑋̄𝑠′
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Bootstrapping Analogs of the Hotelling’s 𝑇 2 Test...

TEST 4:

Steps to perform Test 4:

1 Make a bootstrap sample 𝑤𝑗 ∶ the difference of the RMVN location estimators of the two

groups for 𝑗 = 1, ..., 𝐵.

2 Makes the prediction region described above for the 𝑤𝑗.

3 Determine whether 0 is in the prediction region.

4 Make the decision,

If 0 is in the prediction region, the test 1 fails to reject 𝐻0.
Reject 𝐻0 if 0 is not in the prediction region.
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Simulation: Distributions

Simulation uses 5000 runs with 1000 bootstrap samples. Four types of data distribution have

considered.

Distributions

Use 𝐴𝑋 where 𝐴 = 𝑑𝑖𝑎𝑔(1,
√

2, ..., √𝑝) and 𝑋 from;
Multivariate normal: 𝑁𝑝(𝜇, 𝐼).
Multivariate 𝑡4.
Mixture distribution: (0.6)𝑁𝑝(0, 𝐼) + 0.4𝑁𝑝(0, 25𝐼).
Multivariate lognormal dist. shifted to have nonzero mean 𝜇 = 0.6491, but a population
coordinatewise median of 0.

Note that Cov(𝑥2) = 𝜎2 Cov(𝑥1), and for the first three distributions, 𝐸(𝑥𝑖) = 𝐸(𝑤𝑖) = 0 if

𝛿 = 0.
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Simulation: Outliers

Five outlier types have considered. 100𝛾% of the data;

Outliers

1 A tight cluster at major axis: (0, ..., 0, 𝑝𝑚)′

2 A tight cluster at minor axis: (𝑝𝑚, 0, ..., 0)′

3 Point mass: 𝑁((𝑝𝑚, ..., 𝑝𝑚)′, 𝑑𝑖𝑎𝑔(1, ..., 𝑝))
4 𝑥1𝑝 replaced by 𝑝𝑚
5 𝑥11 replaced by 𝑝𝑚

Let the coverage be the proportion of times that 𝐻0 is rejected. We want the coverage near 5%

when 𝐻0 is true and the coverage close to 100% for good power when 𝐻0 is false. A coverage

outside of (4%, 6%) suggests that the true coverage is not 5%.
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Simulation: Outputs

Type I error rates for clean multivariate normal data

𝑝 𝑛1 𝑛2 𝜎 𝐵 Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0470 0.0554 0.0568 0.0402 0.0560

1000 0.0440 0.0606 0.0540 0.0414

2 250 0.0472 0.0550 0.0574 0.0422 0.0498

1000 0.0420 0.0568 0.0538 0.0392

5 250 500 1 250 0.0490 0.0524 0.0496 0.0394 0.0552

1000 0.0462 0.0588 0.0584 0.0448

2 250 0.0460 0.0540 0.0524 0.0436 0.0070

1000 0.0470 0.0500 0.0534 0.0386

15 750 750 1 750 0.0462 0.0626 0.0622 0.0466 0.0450

1000 0.0390 0.0514 0.0470 0.0378

2 750 0.0492 0.0598 0.0608 0.0464 0.0516

1000 0.0474 0.0556 0.0568 0.0446

15 750 1500 1 750 0.0466 0.0538 0.0550 0.0466 0.0480

1000 0.0492 0.0556 0.0548 0.0444

2 750 0.0424 0.0538 0.0520 0.0454 0.0014

1000 0.0514 0.0532 0.0542 0.0426
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Simulation: Outputs

Type I error rates for clean 0.6𝑁𝑝(0, 𝐼) + 0.4𝑁𝑝(0, 25𝐼)
𝑝 𝑛1 𝑛2 𝜎 𝐵 Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0420 0.0560 0.0480 0.0394 0.0462

1000 0.0386 0.0532 0.0464 0.0336

2 250 0.0454 0.0550 0.0476 0.0416 0.0476

1000 0.0370 0.0484 0.0400 0.0368

5 250 500 1 250 0.0460 0.0542 0.0538 0.0416 0.0470

1000 0.0368 0.0502 0.0416 0.0404

2 250 0.0480 0.0600 0.0474 0.0390 0.0060

1000 0.0416 0.0598 0.0498 0.0416

15 750 750 1 750 0.0434 0.0536 0.0540 0.0448 0.0496

1000 0.0406 0.0598 0.0474 0.0396

2 750 0.0468 0.0626 0.0518 0.0456 0.0464

1000 0.0456 0.0566 0.0490 0.0454

15 750 1500 1 750 0.0456 0.0584 0.0568 0.0488 0.0502

1000 0.0426 0.0550 0.0478 0.0438

2 750 0.0456 0.0576 0.0508 0.0442 0.0004

1000 0.0416 0.0572 0.0488 0.0510
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Simulation: Outputs

Type I error rates for clean multivariate 𝑡4 data

𝑝 𝑛1 𝑛2 𝜎 𝐵 Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0442 0.0574 0.0570 0.0266 0.0456

1000 0.0426 0.0570 0.0530 0.0282

2 250 0.0496 0.0618 0.0614 0.0328 0.0542

1000 0.0480 0.0558 0.0578 0.0292

5 250 500 1 250 0.0484 0.0512 0.0540 0.0346 0.0504

1000 0.0420 0.0488 0.0494 0.0310

2 250 0.0408 0.0580 0.0526 0.0348 0.0058

1000 0.0410 0.0492 0.0510 0.0348

15 750 750 1 750 0.0470 0.0550 0.0562 0.0232 0.0414

1000 0.0382 0.0526 0.0476 0.0228

2 750 0.0472 0.0572 0.0542 0.0248 0.0442

1000 0.0502 0.0496 0.0556 0.0258

15 750 1500 1 750 0.0482 0.0556 0.0528 0.0224 0.0446

1000 0.0464 0.0496 0.0528 0.0254

2 750 0.0442 0.0534 0.0502 0.0314 0.0016

1000 0.0452 0.0508 0.0554 0.0262
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Simulation: Outputs

Type I error rates for clean lognormal data

𝑝 𝑛1 𝑛2 𝜎 𝐵 Median Mean Tr.Me RMVN Class

5 250 250 1 250 0.0408 0.0460 0.0514 0.0274 0.0470

1000 0.0388 0.0494 0.0474 0.0254

2 250 0.0436 0.9816 0.0858 0.1108 0.9968

1000 0.0398 0.9846 0.0788 0.1168

5 250 500 1 250 0.0398 0.0540 0.0496 0.0316 0.0472

1000 0.0368 0.0588 0.0446 0.0292

2 250 0.0418 0.9998 0.1192 0.2492 0.9964

1000 0.0424 0.9994 0.1158 0.2520

15 750 750 1 750 0.0402 0.0506 0.0480 0.0216 0.0502

1000 0.0410 0.0444 0.0490 0.0238

2 750 0.0506 1.0000 0.3670 1.0000 1.0000

1000 0.0510 1.0000 0.3748 1.0000

15 750 1500 1 750 0.0420 0.0580 0.0514 0.0258 0.0514

1000 0.0478 0.0558 0.0608 0.0284

2 750 0.0446 1.0000 0.6110 1.0000 1.0000

1000 0.0464 1.0000 0.6256 1.0000
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Simulation: Outputs

Type I error rates and cutoffs with outliers for 𝑝 = 4
Dist. Otype 𝛾 𝑝𝑚 Med Mean Tr.Me RMVN Class

MVN 1 0.4 10 Cov 0.6946 1.0000 1.0000 0.0330 1.0000

cut 10.158 9.769 9.798 10.701

2 0.4 20 Cov 0.5232 1.0000 1.0000 0.0382 1.0000

cut 9.836 9.776 9.809 9.268

3 0.4 20 Cov 0.8578 1.0000 1.0000 0.0402 1.0000

cut 10.214 9.761 9.760 9.288

4 0.1 10 Cov 0.0980 0.8654 0.1450 0.0382 0.8684

cut 9.898 9.771 9.777 9.851

Mix 2 0.4 20 Cov 0.0828 1.0000 1.0000 0.0144 1.0000

cut 10.542 9.788 9.878 11.300

5 0.1 10 Cov 0.0820 0.5306 0.1228 0.0184 0.5276

cut 9.933 9.779 9.881 11.056

MVT 1 0.4 10 Cov 0.0854 0.6700 0.1548 0.0204 1.0000

cut 10.232 9.799 9.787 10.200

5 0.1 20 Cov 0.0864 1.0000 0.1418 0.0304 1.0000

cut 9.924 9.795 9.795 9.830

Log 3 0.4 20 Cov 0.0778 1.0000 1.0000 0.0162 1.0000

cut 13.689 9.822 9.827 12.607

4 0.1 10 Cov 0.0842 0.3158 0.1482 0.0234 0.3044

cut 10.013 9.875 9.872 10.416

31 Hasthika S. Rupasinghe | Department of Mathematics 2017-04-26



Introduction A Little Detour Theory and Methods New Tests

Simulation: Power

In the power simulation, 𝛿 > 0 was used.

Hence for the first three distributions 𝜇2 = 0 and 𝜇1 = 𝛿(1, ..., 1)𝑇.
Then the Euclidean distance between the two means was

√𝑝, where 𝑝 is the number of
parameters.

Therefore the distance increases as 𝑝 increase.

The value of 𝛿 had to be fairly small so that the simulated power was not always 1.
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Power Simulation Results

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠 when 𝐻0 is false for MVN data.

𝑝 𝑛1 = 𝑛2 𝜎 𝐵 𝛿 Med Mean Tr.Me RMVN Class

5 250 1 250 0.35 0.9598 0.9990 0.9928 0.9942 0.9988

1000 0.35 0.9684 0.9994 0.9970 0.9978

2 250 0.35 0.5958 0.8442 0.7672 0.7604 0.8402

1000 0.35 0.5832 0.8346 0.7438 0.7470

15 750 1 750 0.15 0.7394 0.9552 0.9012 0.9268 0.9556

1000 0.15 0.7474 0.9522 0.8984 0.9178

2 750 0.15 0.3078 0.5318 0.4550 0.4468 0.5156

1000 0.15 0.3118 0.5218 0.4430 0.4464
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Power Simulation Results

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠 when 𝐻0 is false for mixture data.

𝑝 𝑛1 = 𝑛2 𝜎 𝐵 𝛿 Med Mean Tr.Me RMVN Class

5 250 1 250 0.45 0.8826 0.4062 0.9304 0.9938 0.4032

1000 0.45 0.8858 0.4058 0.9338 0.9948

2 250 0.45 0.4458 0.1910 0.5222 0.7454 0.1642

1000 0.45 0.4656 0.1890 0.5386 0.7626

15 750 1 750 0.20 0.6204 0.2274 0.7148 0.9492 0.2114

1000 0.20 0.6316 0.2228 0.7190 0.9494

2 750 0.20 0.2318 0.1154 0.2894 0.5034 0.1042

1000 0.20 0.2438 0.1092 0.2916 0.4980
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Power Simulation Results

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠 when 𝐻0 is false for multivariate 𝑡4 data.

𝑝 𝑛1 = 𝑛2 𝜎 𝐵 𝛿 Med Mean Tr.Me RMVN Class

5 250 1 250 0.38 0.9642 0.9562 0.9916 0.9878 0.9548

1000 0.38 0.9728 0.9572 0.9944 0.9880

2 250 0.38 0.5958 0.5960 0.7198 0.6488 0.6074

1000 0.38 0.6188 0.6152 0.7490 0.6636

15 750 1 750 0.20 0.9418 0.9270 0.9868 0.9714 0.9232

1000 0.20 0.9422 0.9304 0.9860 0.9724

2 750 0.20 0.4934 0.4932 0.6422 0.5384 0.4754

1000 0.20 0.4842 0.4916 0.6362 0.5252
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Power Simulation Results

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑠 when 𝐻0 is false for lognormal data.

𝑝 𝑛1 = 𝑛2 𝜎 𝐵 𝛿 Median Mean Tr.Me RMVN Class

5 250 1 250 0.45 0.9982 0.8256 0.9994 0.8790 0.8208

1000 0.45 0.9980 0.8324 0.9996 0.8830

2 250 0.45 0.8210 0.4704 0.6488 0.0914 0.4630

1000 0.45 0.8378 0.4646 0.6624 0.1038

15 750 1 750 0.30 1.0000 0.9186 1.0000 0.8514 0.9120

1000 0.30 1.0000 0.9178 1.0000 0.8544

2 750 0.30 0.9436 1.0000 0.5042 0.9438 1.0000

1000 0.30 0.9484 1.0000 0.5022 0.9424
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Real data example

Data description:

The Johnson (1996) STATLIB bodyfat data consists of 252 observations on 15 variables
including the density determined from underwater weighing and the percent body fat
measurement.

Consider these two variables with two age groups: age ≤ 50 and age > 50.

Classical test results vs. new test(s) results:

The test with the RMVN estimator had 𝐷0 = 1.78 while the test with the
coordinatewise median had 𝐷0 = 1.35.
Both tests had cutoffs near 2.37 and fail to reject 𝐻0.

The classical two sample Hotelling’s 𝑇 2 test rejects 𝐻0 with a test statistic of 4.74 and a
p-value of 0.001.
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Real data example

Data description:

The Johnson (1996) STATLIB bodyfat data consists of 252 observations on 15 variables
including the density determined from underwater weighing and the percent body fat
measurement.

Consider these two variables with two age groups: age ≤ 50 and age > 50.

Classical test results vs. new test(s) results:

The test with the RMVN estimator had 𝐷0 = 1.78 while the test with the
coordinatewise median had 𝐷0 = 1.35.
Both tests had cutoffs near 2.37 and fail to reject 𝐻0.

The classical two sample Hotelling’s 𝑇 2 test rejects 𝐻0 with a test statistic of 4.74 and a
p-value of 0.001.
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Real data example

The DD plots, shown in Figures 1 and 2, reveal five outliers.
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DD plot for the age ≤ 50 group.
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Figure:

DD plot for the age > 50 group.
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Real data example

After deleting the outliers, all three tests fail to reject 𝐻0.

The RMVN test had 𝐷0 = 1.63 with cutoff 2.25, the coordinatewise median test had
𝐷0 = 1.22 with cutoff 2.38.

Classical test had test statistic 2.39 with a p-value of 0.09.
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Alternative tests for the classical MANOVA

Theorem
If

⎛⎜⎜
⎝

√𝑛1 (𝑇1 − 𝜇1)
⋮

√𝑛𝑝 (𝑇𝑝 − 𝜇𝑝)
⎞⎟⎟
⎠

𝐷
→ 𝑁𝑚𝑝

⎡
⎢
⎣

⎛⎜
⎝

0
⋮
0

⎞⎟
⎠

, ⎛⎜
⎝

𝛴1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛴𝑝

⎞⎟
⎠

⎤
⎥
⎦

,

then under 𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑝

√
𝑛 ⎛⎜

⎝

𝑇1 − 𝑇𝑝
⋮

𝑇𝑝−1 − 𝑇𝑝

⎞⎟
⎠

𝐷
→ 𝑁(𝑚−1)𝑝

⎡
⎢
⎢
⎢
⎢
⎣

⎛⎜⎜⎜⎜
⎝

0
⋮
⋮
0

⎞⎟⎟⎟⎟
⎠

,

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛴1
𝑘1

+ 𝛴𝑝
𝑘𝑝

𝛴𝑝
𝑘𝑝

𝛴𝑝
𝑘𝑝

⋯ 𝛴𝑝
𝑘𝑝

𝛴𝑝
𝑘𝑝

𝛴2
𝑘2

+ 𝛴𝑝
𝑘𝑝

𝛴𝑝
𝑘𝑝

⋯ 𝛴𝑝
𝑘𝑝

⋮ ⋱ ⋮
𝛴𝑝
𝑘𝑝

𝛴𝑝
𝑘𝑝

𝛴𝑚
𝑘𝑝

⋯ 𝛴𝑝−1
𝑘𝑝−1

+ 𝛴𝑝
𝑘𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Proof.
See Rupasinghe Arachchige Don (2017) for the proof.

�
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Deriving a better test.

Large sample theory can be used to derive a better test that does not need the equal

population covariance matrix assumption 𝛴𝑖 ≡ 𝛴𝜖.
To simplify the large sample theory, assume 𝑛𝑖 = 𝜋𝑖𝑛 where 0 < 𝜋𝑖 < 1 and ∑𝑝

𝑖=1 𝜋𝑖 = 1.
Assume 𝐻0 is true, and let 𝜇𝑖 = 𝜇 for 𝑖 = 1, ..., 𝑝. Suppose the 𝜇𝑖 = 𝜇 and

√𝑛𝑖(𝑇𝑖 − 𝜇)
𝐷
→ 𝑁𝑚(0, 𝛴𝑖), and

√
𝑛(𝑇𝑖 − 𝜇)

𝐷
→ 𝑁𝑚 (0, 𝛴𝑖

𝜋𝑖
) . Let

𝑤 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑇1 − 𝑇𝑝
𝑇2 − 𝑇𝑝

⋮
𝑇𝑝−2 − 𝑇𝑝
𝑇𝑝−1 − 𝑇𝑝

⎤
⎥
⎥
⎥
⎥
⎦

. (7)
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Deriving a better test...

Then
√

𝑛𝑤
𝐷
→ 𝑁𝑚(𝑝−1)(0, 𝛴𝑤) with 𝛴𝑤 = (𝛴𝑖𝑗) where 𝛴𝑖𝑗 =

𝛴𝑝

𝜋𝑝
for 𝑖 ≠ 𝑗, and

𝛴𝑖𝑖 = 𝛴𝑖
𝜋𝑖

+
𝛴𝑝

𝜋𝑝
for 𝑖 = 𝑗.

Hence

𝑡0 = 𝑛𝑤𝑇𝛴̂
−1
𝑤 𝑤 = 𝑤𝑇 (𝛴̂𝑤

𝑛
)

−1

𝑤
𝐷
→ 𝜒2

𝑚(𝑝−1)

as the 𝑛𝑖 → ∞ if 𝐻0 is true.
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Deriving a better test...

Here

𝛴̂𝑤
𝑛

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛴̂1
𝑛1

+ 𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

… 𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

𝛴̂2
𝑛2

+ 𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

… 𝛴̂𝑝
𝑛𝑝

⋮ ⋮ ⋮ ⋮
𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

𝛴̂𝑝
𝑛𝑝

… 𝛴̂𝑝−1
𝑛𝑝−1

+ 𝛴̂𝑝
𝑛𝑝

⎤
⎥
⎥
⎥
⎥
⎥
⎦

is a block matrix where the off diagonal block entries equal 𝛴̂𝑝/𝑛𝑝 and the 𝑖th diagonal block

entry is
𝛴̂𝑖
𝑛𝑖

+
𝛴̂𝑝

𝑛𝑝
for 𝑖 = 1, ..., (𝑝 − 1).
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Deriving a better test...

Reject 𝐻0 if 𝑡0 > 𝑚(𝑝 − 1)𝐹𝑚(𝑝−1),𝑑𝑛
(1 − 𝛼) where 𝑑𝑛 = 𝑚𝑖𝑛(𝑛1, ..., 𝑛𝑝).

This test may start to outperform the one way MANOVA test if 𝑛 ≥ (𝑚 + 𝑝)2 and 𝑛𝑖 ≥ 20𝑚 for

𝑖 = 1, ..., 𝑝.
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A useful one way MANOVA model

A useful one way MANOVA model is 𝑍 = 𝑋𝐵 + 𝐸.

where 𝑋 is the full rank matrix where the first column of 𝑋 is 𝑣1 = 1
𝑖th column 𝑣𝑖 of 𝑋 is an indicator for group 𝑖 − 1 for 𝑖 = 2, ..., 𝑝.
For example, 𝑣3 = (0𝑇, 1𝑇, 0𝑇, ..., 0𝑇)𝑇

where the 𝑝 vectors in 𝑣3 have lengths 𝑛1, 𝑛2, ..., 𝑛𝑝, respectively.

46 Hasthika S. Rupasinghe | Department of Mathematics 2017-04-26



Introduction A Little Detour Theory and Methods New Tests

A useful one way MANOVA model

Let,

𝑌𝑖𝑗 = ⎛⎜⎜
⎝

𝑌𝑖𝑗1
⋮

𝑌𝑖𝑗𝑚

⎞⎟⎟
⎠

= 𝜇𝑖 + 𝑒𝑖𝑗, 𝐸𝑌𝑖𝑗 = 𝜇𝑖 = ⎛⎜⎜
⎝

𝜇𝑖𝑗1
⋮

𝜇𝑖𝑗𝑚

⎞⎟⎟
⎠

for 𝑖 = 1, … , 𝑝 and 𝑗 = 1, … , 𝑛𝑖

𝑍 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑌𝑇
11
⋮

𝑌𝑇
1𝑛1

𝑌𝑇
21
⋮

𝑌𝑇
2𝑛2
⋮

𝑌𝑇
𝑝−1,1
⋮

𝑌𝑇
𝑝−1,𝑛𝑝−1

⋮
𝑌𝑇

𝑝,1
⋮

𝑌𝑇
𝑝,𝑛𝑝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑎𝑛𝑑 𝑋 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 1 0 ⋯ 0
1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 0 0 ⋯ 1
1 0 0 ⋯ 1
⋮ ⋮ ⋮ ⋮
1 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
1 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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A useful one way MANOVA model

𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇𝑇
𝑝

(𝜇1 − 𝜇𝑝)𝑇

(𝜇2 − 𝜇𝑝)𝑇

⋮
(𝜇𝑝−2 − 𝜇𝑝)𝑇

(𝜇𝑝−1 − 𝜇𝑝)𝑇

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus testing 𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑝 is equivalent to testing 𝐻0 ∶ 𝐿𝐵 = 0
where 𝐿 = [0 𝐼𝑝−1]
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Test that is even better?

Test 𝐻0 when 𝛴̂𝑤 is unknown or difficult to estimate.

Since the common covariance matrix assumption in classical
MANOVA test Cov(𝜖𝑘) = 𝛴𝜖 for 𝑘 = 1, ..., 𝑛 is extremely strong,
using the prediction region method to test 𝐻0 ∶ 𝐿𝐵 = 0 may be a
useful alternative.
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Test that is even better?...

Steps

Take a sample of size 𝑛𝑖 with replacement from the 𝑛𝑖 cases for each group for
𝑖 = 1, 2, ..., 𝑝.
Let 𝐵̂

∗
𝑖 be the 𝑖th bootstrap estimator of 𝐵 for 𝑖 = 1, ..., 𝐵.

Let the (𝑝 − 1)𝑚 × 1 vector 𝑤𝑖 = 𝑣𝑒𝑐(𝐿𝐵̂
∗
𝑖 ) = ((𝜇̂∗

1 − 𝜇̂∗
𝑝)𝑇, ..., (𝜇̂∗

𝑝−1 − 𝜇̂∗
𝑝)𝑇)𝑇 for

𝑖 = 1, ..., 𝐵, where 𝑣𝑒𝑐(𝐴) stacks columns of a matrix into a vector.

For a robust test use 𝑤𝑖 = ((𝑇 ∗
1 − 𝑇 ∗

𝑝 )𝑇, ..., (𝑇 ∗
𝑝−1 − 𝑇 ∗

𝑝 )𝑇)𝑇 where 𝑇𝑖 is a robust location
estimator, such as;

The coordinatewise median;
Trimmed mean; applied to the cases in the 𝑖th treatment group.

The prediction region method fails to reject 𝐻0 if 0 is in the resulting confidence region.

We likely need 𝑛 ≥ 20𝑚𝑝, 𝑛 ≥ (𝑚 + 𝑝)2, and 𝑛𝑖 ≥ 20𝑚.
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Test that is even better?...
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Figure: Power Curve for clean MVN Data, 𝑚 = 5 with a balanced design
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Test that is even better?...
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Figure: Power Curve for clean MVN Data, 𝑚 = 5 with an unbalanced design
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Test that is even better?...
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Figure: Power Curve for clean Multivariate 𝑡5 Data, 𝑚 = 5 with an unbalanced design
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Real data example

North Carolina Crime data consists of 𝑛 = 630 observations on 24 variables.

Region is a categorical variable with three categories viz.

1 Central
2 West
3 Other

Number of observations 𝑛1 = 232, 𝑛2 = 146 and 𝑛3 = 245 respectively and has
considered as the three groups.

This example uses;

1 “wsta” - weekly wage of state employees,
2 “avgsen” - average sentence days,
3 “prbarr” - ‘probability’ of arrest,
4 “prbconv” - ‘probability’ of conviction,
5 “taxpc” - tax revenue per capita

as variables.
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Real data example...

The DDplots reveals a few outliers.
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Figure: DDplots for Crime data
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Real data example...

Furthermore the boxplots shows that the data are highly skewed.
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Real data example...

Classical vs. The New Test...
New test: The test with the median had 𝐷0 = 4.086 with the cutoff of 4.32 and failed to
reject 𝐻0.

Classical: The classical one-way MANOVA test had a p-value of 0.001 and rejected the
null hypothesis.
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