
Math 584 Exam 2 is on Tuesday, March. 23. You are allowed 9 sheets of notes and a
calculator. CHECK FORMULAS!

37) Know: If Zn
D→ Z, then Z is the limiting distribution of Zn and does not depend

on n (since Z is found by taking a limit as n → ∞).

Often Zn
D→ Nk(µ,Σ) and Zn ∼ Nk(µ,Σ) behave similarly (compare 7) and 36)).

A big difference is that the distribution on the RHS (right hand side) can depend on n

for ∼ but not for
D→.

38) Know: Often want a normal approximation where the RHS can depend on n.
Write Zn ∼ ANk(µ,Σ) for an approximate multivariate normal distribution where the
RHS may depend on n. For the model in 35), if ε ∼ Nn(0, σ2I), then
β̂ ∼ Np(β, σ2(XTX)−1). If the εi are iid with E(εi) = 0 and V (εi) = σ2, use the multivari-

ate normal approximation β̂ ∼ ANp(β, σ2(XTX)−1) or β̂ ∼ ANp(β, MSE(XTX)−1).
The RHS depends on n since the number of rows of X is n.

39) Suppose Σ̂n is positive definite and symmetric. If W n
D→ Nk(µ,Σ) and Σ̂n

P→ Σ,

then Zn = Σ̂
−1/2

n (W n − µ)
D→ Nk(0, I), and ZT

nZn = (W n − µ)T Σ̂
−1

n (W n − µ)
D→ χ2

k.
40) Let x = (1 uT )T where u is the vector of nontrivial predictors. Let the sample

mean and sample covariance matrix of the nontrivial predictors be u =
1

n

n
∑

i=1

ui and

Cu =
1

n − 1

n
∑

i=1

(ui − u)(ui − u)T . Let the ith squared Mahalanobis distance MD2
i =

(ui − u)TC−1
u (ui − u). Then hi = 1

n−1
MD2

i + 1
n
. Then MD2

i = d2 is the equation

of a hyperellipsoid. Points that lie on the hyperellipsoid all have MD2
i = d2. The

MD2
i tend to be bounded in probability (MD2

i ≈ χ2
p−1 if the ui are iid MVN). Hence

max(h1, ..., hn)
P→ 0 as n → ∞ is considered to be a mild assumption.

41) Let f(y|θ) be the joint pdf of Y1, ..., Yn. If Y = y is observed, then the likelihood
function L(θ) = f(y|θ). Note: it is crucial to observe that the likelihood function is a
function of θ (and that y1, ..., yn act as fixed constants).

42) For each sample point y = (y1, ..., yn), let θ̂(y) be a parameter value at which
L(θ|y) attains its maximum as a function of θ with y held fixed. Then a maximum
likelihood estimator (MLE) of the parameter θ based on the sample Y is θ̂(Y ).

Note: If the MLE θ̂ exists, then θ̂ ∈ Θ, the parameter space.
43) Know how to find the max and min of a function h that is continuous on an

interval [a,b] and differentiable on (a, b). Solve h′(x) ≡ 0 and find the places where h′(x)
does not exist. These values are the critical points. Evaluate h at a, b, and the critical
points. One of these values will be the min and one the max.

Assume h is continuous. Then a critical point θo is a local max of h(θ) if h is increasing
for θ < θo in a neighborhood of θo and if h is decreasing for θ > θo in a neighborhood of
θo. The first derivative test is often used.

If h is strictly concave (
d2

dθ2
h(θ) < 0 for all θ), then any local max of h is a global

max.

Suppose h′(θo) = 0. The 2nd derivative test states that if
d2

dθ2
h(θo) < 0, then θo is a
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local max.
If h(θ) is a continuous function on an interval with endpoints a < b (not necessarily

finite), and differentiable on (a, b) and if the critical point is unique, then the critical
point is a global maximum if it is a local maximum (because otherwise there would
be a local minimum and the critical point would not be unique). To show that θ̂ is
the MLE (the global maximizer of log L(θ)), show that log L(θ) is differentiable on (a, b)
where Θ may contain the endpoints a and b. Then show that θ̂ is the unique solution
to the equation d

dθ
log L(θ) = 0 and that the 2nd derivative evaluated at θ̂ is negative:

d2

dθ2
log L(θ)|θ̂ < 0.

44) Know: In addition to differentiating the log likelihood, the MLE can sometime
be found by directly maximization of the likelihood L(θ). For regression, θ = (β, σ) or
(β, σ2). Can often fix σ and then show β̂ is the MLE by direct maximization. The the
MLE σ̂ or σ̂2 can be found by maximizing the log profile likelihood function log[Lp(σ, β̂)]

or log[Lp(σ
2, β̂)] where Lp(σ, β̂) = L(σ, β = β̂). See HW5 1 and Q4 1.

45) Orthogonal regression: let Y = Xβ + ε where X is full rank p and X =
[v0 v1 ... vp−1]. Suppose the columns of X are orthogonal so vT

i vj = 0 for i 6= j.

Then XTX = diag(vT
i vi) and (XT X)−1 = diag(1/(vT

i vi)). Then β̂j =
vT

j y

vT
j vj

for j =

0, 1, ..., p− 1. Also, the β̂j remain unchanged if columns of X other than vj are deleted.
46)-51) are for the nonfull rank linear model.
46) Know: The nonfull rank linear model: suppose Y = Xβ + ε where X has

rank r < p and X is an n × p matrix.
i) PX = X(XTX)−XT is the unique projection matrix on C(X) and does not

depend on the generalized inverse (XTX)−. (Recall that projection matrices are sym-
metric and idempotent but singular unless PX = I . Also recall that PXX = X, so

XT PX = XT .)

ii) β̂ = (XTX)−XTY does depend on (XT X)− and is not unique.
iii) Ŷ = Xβ̂ = PXY , e = Y − Ŷ = Y − Xβ̂ = (I − PX )Y and RSS = eTe are

unique and so do not depend on (XTX)−.
iv) β̂ is a solution to the normal equations: XTXβ̂ = XTY .
v) It can be shown that rank(P X ) = r and rank(I − PX ) = n − r.

vi) Let θ̂ = Xβ̂ and θ = Xθ. Suppose there exists a constant vector c such that
E(cT θ̂) = cT θ. Then among the class of linear unbiased estimators of cT θ, the least
squares estimator cT θ̂ is BLUE.

vii) If Cov(Y ) = Cov(ε) = σ2I, then MSE =
RSS

n − r
=

eT e

n − r
is an unbiased estimator

of σ2.
viii) Let the columns of X1 form a basis for C(X). For example, take r linearly

independent columns of X to form X1. Then PX = X1(X
T
1 X1)

−1XT
1 .

47) Know: Let a and b be constant vectors. Then aT β is estimable if there exists
a linear unbiased estimator bT Y so E(bT Y ) = aT β.

48) Know: The quantity aT β is estimable iff aT = bTX iff a = XTb (for some
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constant vector b) iff a ∈ C(XT ).
49) If aTβ is estimable and a least squares estimator β̂ is any solution to the normal

equations XT Xβ̂ = XT Y . Then aT β is unique and aT β̂ is the BLUE of aTβ.
50) The term “estimable” is misleading since there are nonestimable quantities aTβ

that can be estimated with biased or nonlinear estimators.
51) Estimable quantities tend to go with the nonfull rank linear model. Can avoid

nonestimable functions by using a full rank model instead of a nonfull rank model (delete
columns of X until it is full rank).

Back to the full rank linear model.
52) The Gauss Markov theorem: Let Y = Xβ + ε where X is full rank p,

E(ε) = 0 and Cov(ε) = σ2I . Then aT β̂ is the BLUE for aT β for any constant p × 1
vector a.

(Also see 32 b).)
53) The generalized least squares (GLS) model is Y = Xβ + ε where Y is an n × 1

vector of dependent variables, X has full rank p, E(ε) = 0, and Cov(ε) = σ2V where V

is a known n×n symmetric positive definite matrix. The least squares (LS) or ordinary
least squares (OLS) model is the special case where V = I .

54) The weighted least squares (WLS) model with weights w1, ..., wn is the special case
of the GLS model where V is diagonal: V = diag(v1, ..., vn) and wi = 1/vi.

55) The feasible generalized least squares (FGLS) model is the same as the GLS
estimator except that V = V (θ) is a function of an unknown q × 1 vector of parameters
θ. Let the estimator of V be V̂ = V (θ̂). The feasible weighted least squares (FWLS)
estimator is the special case of the FGLS estimator where V = V (θ) is diagonal. Hence
the estimated weights ŵi = 1/v̂i = 1/vi(θ̂).

56) The GLS estimator β̂GLS = (XT V −1X)−1XTV −1Y . The fitted values are
Ŷ GLS = Xβ̂GLS .

The WLS estimator β̂WLS = (XTV −1X)−1XT V −1Y . The fitted values are Ŷ WLS =
Xβ̂WLS.

Then the FGLS estimator β̂FGLS = (XT V̂
−1

X)−1XT V̂
−1

Y . The fitted values are
Ŷ FGLS = Xβ̂FGLS . The FWLS estimator and fitted values will be denoted by β̂FWLS

and Ŷ FWLS , respectively.
57) It can be shown that the GLS estimator minimizes the GLS criterion

QGLS(η) = (Y − Xη)TV −1(Y − Xη).

Notice that the FGLS and FWLS estimators have p + q +1 unknown parameters. These
estimators can perform very poorly if n < 10(p + q + 1).

58) There is a symmetric, nonsingular n×n matrix R = V 1/2 (the square root matrix
of V ) such that V = RR. Let Z = R−1Y , U = R−1X and a = R−1ε. This method
uses the spectral theorem (singular value decomposition).

59) GLS as OLS Theorem: a) Z = Uβ+a follows the OLS model since E(a) = 0
and Cov(a) = σ2In.

b) The GLS estimator β̂GLS can be obtained from the OLS regression (without an
intercept) of Z on U .
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c) For WLS, Yi = xT
i β + εi. The corresponding OLS model Z = Uβ +a is equivalent

to Zi = uT
i β + ai for i = 1, ..., n where uT

i is the ith row of U . Then Zi =
√

wi Yi

and ui =
√

wi xi. Hence β̂WLS can be obtained from the OLS regression (without an
intercept) of Zi =

√
wi Yi on ui =

√
wi xi.

60) The FGLS estimator can also be found from the OLS regression (without an
intercept) of Z on U where V (θ̂) = RR. Similarly the FWLS estimator can be found
from the OLS regression (without an intercept) of Zi =

√
ŵiYi on ui =

√
ŵixi. But now

U is a random matrix instead of a constant matrix. Hence these estimators are highly
nonlinear.

61) Under regularity conditions, the OLS estimator β̂OLS is a consistent estimator
of β when the GLS model holds (Cov(ε) = σ2V ), but β̂GLS should be used because it
generally has higher efficiency.

Ch. 4 Hypothesis Testing
62) Let A be a q × p constant matrix with rank(A) = q, let c be a q × 1 constant

vector, and consider testing H0 : Aβ = c. If Y = Xβ + ε where rank(X) = p,
E(ε) = 0 and Cov(ε) = σ2I , then β̂ ∼ Np(β, σ2(XT X)−1), and Aβ̂ − c ∼ Nq(Aβ −
c, σ2A(XT X)−1AT ). If H0 is true then Aβ̂ − c ∼ Nq(0, σ2A(XT X)−1AT ), and

qF =
1

σ2
(Aβ̂ − c)T [A(XTX)−1AT ]−1(Aβ̂ − c) ∼ χ2

q.

63) If H0 is true, then by the LS CLT, qF
D→ χ2

q for a large class of zero mean error
distributions.

64) Know: The partial F test, and its special cases the Anova F test and the Wald
t test, use c = 0. Let the full model use Y , x0 ≡ 1, x1, ..., xp−1, and let the reduced
model use Y , x0, xj1 , ..., xjk

where {j1, ..., jk} ⊂ {1, ..., p− 1}. Here 0 ≤ k < p − 1, and
if k = 0, then the model is Yi = β0 + εi. Hence the full model is Yi = β0 + β1xi,1 + · · · +
βp−1xi,p−1 + εi, while the reduced model is Yi = β0 +βj1xi,j1 + · · ·+βjk

xi,jk
+ εi. In matrix

form, the full model is Y = Xβ + ε and the reduced model is Y = XRβR + ε where
the columns of XR are a proper subset of the columns of X. i) The partial F test
has H0 : βjk+1

= · · · = βjp−1
= 0, or H0 : the reduced model is good, or H0 : Aβ = 0

where A is a p − k − 1 × p matrix where the ith row of A has a 1 in the jk+ith position
and zeroes elsewhere. In particular, if β0, ..., βk are the only βi in the reduced model,
then A = [0 Ip−k−1] and 0 is a (p − k − 1) × (k + 1) matrix. Hence q = p − k + 1 =
number of predictors in the full model but not in the reduced model. ii) The Anova F
test is the special case of the partial F test where the reduced model is Yi = β0 + εi.
Hence H0 : β1 = · · · = βp−1 = 0, or H0 : none of the nontrivial predictors x1, ..., xp−1 are
needed in the linear model, or H0 : Aβ = 0 where A = [0 Ip−1] and 0 is a (p − 1) × 1
vector. Hence q = p − 1. iii) The Wald t test uses the reduced model that deletes
the jth predictor from the full model. Hence H0 : βj = 0, or H0 : the jth predictor xj

is not needed in the linear model given that the other predictors are in the model, or
H0 : Ajβ = 0 where Aj = [0, ..., 0, 1, 0, ..., 0] is a 1 × p row vector with a 1 in the j + 1
position for j = 0, ..., p− 1. Hence q = 1.

65) A way to get the test statistic FR for the partial F test is to fit the full model
and the reduced model. Let RSS(F ) be the RSS of the full model, and let RSS(R) be
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the RSS of the reduced model. Similarly, let MSE(F ) be the MSE of the full model.
Let dfR = n − k − 1 and dfF = n − p be the degrees of freedom for the reduced and full

models. Then FR =
RSS(R) −RSS(F )

qMSE(F )
where q = dfR − dfF = p − k − 1 = number of

predictors in the full model but not in the reduced model.

66) If Xn ∼ Fq,dn where the positive integer dn → ∞ as n → ∞, then qXn
D→ χ2

q .
67) A test with test statistic Tn is a large sample right tail δ test if the test rejects

H0 if Tn > an and P (Tn > an) = δn → δ as n → ∞ when H0 is true. Typically want
δ ≤ 0.1 and the values δ = 0.05 or δ = 0.01 are common. (An analogy is a large sample
100(1 − δ)% confidence interval or prediction interval.)

Suppose when H0 is true, Tn
D→ χ2

q. Suppose P (W ≤ χ2
q(1 − δ)) = 1 − δ and

P (W > χ2
q(1 − δ)) = δ where W ∼ χ2

q. Suppose P (W ≤ Fq,dn(1 − δ)) = 1 − δ when
W ∼ Fq,dn. Also write χ2

q(1 − δ) = χ2
q,1−δ and Fq,dn(1 − δ) = Fq,dn,1−δ. Then a test that

rejects H0 if Tn > χ2
q(1 − δ) is a large sample right tail δ test. Also, a test that rejects

H0 if Tn/q > Fq,dn(1− δ) is a large sample right tail δ test if the positive integer dn → ∞
as n → ∞.

Suppose when H0 is true, Tn
D→ N(0, 1). Suppose P (W > Z(1 − δ)) = δ when

W ∼ N(0, 1), and P (W > tdn(1 − δ)) = δ when W ∼ tdn. Then a test that rejects
H0 if Tn > Z(1 − δ) is a large sample right tail δ test. Also, a test that rejects H0 if
Tn > tdn(1 − δ) is a large sample right tail δ test if the positive integer dn → ∞ as
n → ∞.

68) Large sample t tests and intervals are used instead of Z tests and intervals since
the t tests and intervals are more accurate for moderate n. Large sample F tests and
intervals are used instead of χ2 tests and intervals since the F tests and intervals are
more accurate for moderate n.

69) Partial F Test Theorem: Suppose H0 : Aβ = 0 is true for the partial F test.
Under the OLS full rank model, a)

FR =
1

qMSE
(Aβ̂)T [A(XTX)−1AT ]−1(Aβ̂).

b) If ε ∼ Nn(0, σ2I), then FR ∼ Fq,n−p.

c) For a large class of zero mean error distributions qFR
D→ χ2

q.
d) The partial F test that rejects H0 : Aβ = 0 if FR > Fq,n−p(1 − δ) is a large sample
right tail δ test for the OLS model for a large class of zero mean error distributions.

70) Let X ∼ tn−p. Then X2 ∼ F1,n−p. The two tail Wald t test for H0 : βj = 0 versus
H1 : βj 6= 0 is equivalent to the corresponding right tailed F test since rejecting H0 if
|X| > tn−p(1 − δ) is equivalent to rejecting H0 if X2 > F1,n−p(1 − δ).

71) The pvalue of a test is the probability, assuming H0 is true, of observing a test
statistic as extreme as the test statistic Tn actually observed. For a right tail test, pvalue
= PH0

(of observing a test statistic ≥ Tn). Under the OLS model where FR ∼ Fq,n−p

when H0 is true (so the εi are iid N(0, σ2)), the pvalue = P (W > FR) where W ∼ Fq,n−p.
In general can only estimate the pvalue. Let pval be the estimated pvalue. Then pval

= P (W > FR) where W ∼ Fq,n−p, and pval
P→ pvalue an n → ∞ for the large sample

partial F test. The pvalues in output are usually actually pvals (estimated pvalues).
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72) Often n > 10p starts to give good results for the OLS output for error distributions
not too far from N(0, 1).

73) Let P and P 1 be the projection matrices on X and X1 where X = [X1 X2],
βT = (βT

1 , βT
2 ), the full model is Y = Xβ + ε, H0 : β2 = 0, X has full rank p, and

ε ∼ Nn(0, σ2I). Assume H0 holds. Then the reduced model is Y = X1β1 + ε. Also, i)
Y T (P − P 1)Y

σ2
∼ χ2

q

Y T (I − P )Y

σ2
∼ χ2

n−p where rank(I−P ) = trace(I−P ) = n−p

and q = rank(P − P 1) = trace(P − P 1) = p − d if X1 is n × d. Note that q is the
number of predictors in the full model that are not in the reduced model. Also, ii)

FR =
n − p

q

Y T (P − P 1)Y

Y T (I − P )Y
∼ Fq,n−p. Also W =

X1/d1

X2/d2

∼ Fd1,d2
if X1 ∼ χ2

d1
X2 ∼ χ2

d2
.

74) (Population OLS Coefficients): Let xT
i = (1 uT

i ) where ui is the vector of

nontrivial predictors. Let
1

n

n
∑

j=1

Xjk = Xok = uok for k = 1, ..., p − 1. The subscript

“ok” means sum over the first subscript j. Let u = (uo,1, ..., uo,p−1)
T be the sample

mean of the ui. Let βT = (β0 βT
S) where the slopes vector βS = (β1, ..., βp−1)

T . Let
the population covariance matrices Cov(u) = E[(u − E(u))(u − E(u))T ] = Σu and
Cov(u, Y ) = E[(u − E(u))(Y − E(Y ))] = ΣuY . Then the population coefficients from
an OLS regression of Y on u (even if a linear model does not hold) are

β0 = E(Y ) − βT
SE(u) and βS = Σ−1

u ΣuY.

75) (2nd way to compute β̂): Let the sample covariance matrices be Σ̂u =

1

n − 1

n
∑

i=1

(ui − u)(ui − u)T and Σ̂uY =
1

n − 1

n
∑

i=1

(ui − u)(Yi − Y ). Let the method

of moments or maximum likelihood estimators be Σ̃u =
1

n

n
∑

i=1

(ui − u)(ui − u)T and

Σ̃xY =
1

n

n
∑

i=1

(ui − x)(Yi − Y ) =
1

n

n
∑

i=1

uiYi − u Y . Suppose that wi = (Yi, u
T
i )T are iid

random vectors such that σ2
Y , Σ−1

u and ΣuY exist. Then β̂0 = Y − β̂
T

Su
P→ β0 and

β̂S =
n

n − 1
Σ̂

−1

u Σ̃uY = Σ̃
−1

u Σ̃uY
P→ βS as n → ∞.

It is important to note that this result is for iid wi with second moments. Do not need
a linear model Y = Xβ + ε to hold.

76) Result 75) can be shown, after algebra, using XTY =

(

nY
XT

1 Y

)

=

(

nY
∑n

i=1 uiYi

)

(XT X)−1 =

(

1
n

+ uT D−1u −uT D−1

−D−1u D−1

)

where the (p − 1) × (p − 1) matrix D−1 = [(n − 1)Σ̂u]−1 = Σ̂
−1

u /(n − 1).
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77) Generalized Cochran’s Theorem: Let Y ∼ Nn(µ,Σ). Let Ai = AT
i have

rank ri for i = 1, ..., k, and let A =
∑k

i=1
Ai = AT have rank r. Then Y TAiY ∼

χ2(ri,
1

2
µTAiµ), and the Y TAiY are independent, and Y TAY ∼ χ2(r, 1

2
µTAµ), iff

I) any 2 of a) AiΣ are idempotent ∀i,
b) AiΣAj = 0 ∀i < j,
c) AΣ is idempotent
are true; or II) c) is true and d) r =

∑k
i=1 ri;

or III) c) is true and e) A1Σ, .., Ak−1Σ are idempotent and AkΣ ≥ 0 is singular.
78) Distribution of FR under normality when H0 may not hold: Assume

Y = Xβ +ε where ε ∼ Nn(0, σ2I). Let X = [X1 X2] be full rank, and let the reduced
model Y = X1β1 + ε. Then

FR =
Y T (P − P 1)Y /q

Y T (I − P )Y /(n − p)
∼ F

(

q, n − p,
βTXT (P −P 1)Xβ

2σ2

)

where F (d1, d2, γ) is a noncentral F distribution with d1 and d2 numerator and denom-
inator degrees of freedom and noncentrality parameter γ. If H0 : β2 = 0 is true, then
γ = 0.

79) Y ∼ F (d1, d2) ∼ F (d1, d2, 0). Let X1 ∼ χ2(d1, γ) X2 ∼ χ2(d2, 0). Then

W =
X1/d1

X2/d2

∼ F (d1, d2, γ).

80) Suppose Y u|uTβU , e.g. Yi = β0 +uT
i βU + εi, or Yi = m(uT

i βU )+ εi, or a GLM
(generalized linear model). If the ui are iid from an elliptically contoured distribution,

then often the OLS estimator β̂S
P→ cβU for some constant c 6= 0.

81) Let βT = (β0 βT
U ) and suppose the full model is Y u|(β0 + uT βU ). Consider

testing CβU = 0. Let the full model be Y u|(β0 +uT
RβR +uT

OβO), and let the reduced
model be Y u|(β0 + uT

RβR) where uT = (uT
R uT

O) and uO denotes the terms outside
of the reduced model. Notice that OLS ANOVA F test corresponds to Ho: βU = 0 and
uses L = Ip−1. The tests for Ho: βi = 0 use L = (0, ..., 0, 1, 0, ..., 0) where the 1 is in the
ith position and are equivalent to the OLS t tests. The test Ho: βO = 0 uses L = [0 Ij]
if βO is a j × 1 vector.

82) Assume Y u|(β0 +βT
Uu), which is equivalent to Y u|βT

Uu. Let the population
OLS residual

v = Y − β0 − βT
Su

with
τ 2 = E[(Y − β0 − βT

Su)2] = E(v2),

and let the OLS residual be
r = Y − β̂0 − β̂

T

Su. (1)

Then under regularity conditions, results i) – iv) below hold.

i) Li and Duan (1989): The OLS slopes estimator βS = cβU for some constant c.
ii) Li and Duan (1989) and Chen and Li (1998):

√
n(β̂S − cβU)

D→ Np−1(0, COLS)

7



where
COLS = Σ−1

u E[(Y − β0 − βT
Su)2(u − E(u))(u − E(u))T ]Σ−1

u .

iii) Chen and Li (1998): Let L be a known full rank constant k × (p − 1) matrix. If
the null hypothesis Ho: LβU = 0 is true, then

√
n(Lβ̂S − cLβU ) =

√
nLβ̂S

D→ Nk(0, LCOLSLT )

and
LCOLSLT = τ 2LΣ−1

u LT .

To create test statistics, the estimator

τ̂ 2 = MSE =
1

n − p

n
∑

i=1

r2
i =

1

n − p

n
∑

i=1

(Yi − β̂0 − β̂
T

S ui)
2

will be useful. The estimator ĈOLS =

Σ̂
−1

u

[

1

n

n
∑

i=1

[(Yi − β̂0 − β̂
T

Sui)
2(ui − u)(ui − u)T ]

]

Σ̂
−1

u

can also be useful. Notice that for general 1D regression models, the OLS MSE estimates
τ 2 rather than the error variance σ2.

iv) Result iii) suggests that a test statistic for Ho : LβU = 0 is

WOLS = nβ̂
T

SLT [LΣ̂
−1

u LT ]−1Lβ̂S/τ̂ 2 D→ χ2
k.

83) Under the conditions of 82), if Ho : LβU = 0 is true, then the test statistic

FR =
n − 1

kn
WOLS

D→ χ2
k/k

as n → ∞. This result means that the OLS partial F tests are large sample tests for a
large class of nonlinear models where Y u|uTβU .

84) The AR(p) time series model is Yt = φ0 + φ1Yt−1 + · · · + φpYt−p + εt. In matrix
form, this model is Y = Xβ + ε or











Yp+1

Yp+2

...
Yn











=











1 Yp Yp−1 . . . Y1

1 Yp+1 Yp . . . Y2

...
...

...
. . .

...
1 Yn−1 Yn−2 . . . Yn−p





















φ0

φ1

...
φp











+











εp+1

εp+2

...
εn











.

If the AR(p) model is stationary, then under regularity conditions, OLS partial F
tests are large sample tests for this model.
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