Math 584 Exam 1 is on Tuesday, Feb. 23. You are allowed 8 sheets of notes and a calculator. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS **ON THIS HANDOUT!**

Types of problems likely to appear on Exam 1 are numbered:

Let M be a nonempty subset of a vector space V. If i) $\alpha x \in M \forall x \in M$ and for any scalar α , and ii) $\boldsymbol{x} + \boldsymbol{y} \in M \ \forall \boldsymbol{x}, \boldsymbol{y} \in M$, then M is a vector space known as a subspace.

The set of all linear combinations of $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ is the vector space known as $\operatorname{span}(\boldsymbol{x}_1, ..., \boldsymbol{x}_n)$.

Let $\boldsymbol{x}_1, ..., \boldsymbol{x}_k \in V$. If \exists scalars $\alpha_1, ..., \alpha_k$ not all zero such that $\sum_{i=1}^k \alpha_i \boldsymbol{x}_i = \boldsymbol{0}$, then $\boldsymbol{x}_1, ..., \boldsymbol{x}_k$ are *linearly dependent*. If $\sum_{i=1}^k \alpha_i \boldsymbol{x}_i = \boldsymbol{0}$ only if $\alpha_i = 0 \forall i = 1, ..., k$, then $\boldsymbol{x}_1, ..., \boldsymbol{x}_k$ are linearly independent.

Suppose $\{x_1, ..., x_k\}$ is a linearly independent set and $V = span(x_1, ..., x_k)$. Then $\{x_1, ..., x_k\}$ is a linearly independent spanning set for V, known as a *basis*.

Let $\boldsymbol{A} = [\boldsymbol{a}_1 \ \boldsymbol{a}_2 \ \dots \ \boldsymbol{a}_m] = \begin{bmatrix} \boldsymbol{r}_1^T \\ \vdots \\ \boldsymbol{r}_n^T \end{bmatrix}$ be an $n \times m$ matrix. The space spanned by the

columns of $\mathbf{A} =$ column space of $\mathbf{A} = C(\mathbf{A})$.

Let
$$\boldsymbol{X} = [\boldsymbol{v}_1 \ \boldsymbol{v}_2 \ \dots \ \boldsymbol{v}_p] = \begin{bmatrix} \boldsymbol{x}_1^T \\ \vdots \\ \boldsymbol{x}_n^T \end{bmatrix}$$
 be an $n \times p$ matrix. Note that

 $C(\mathbf{X}) = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{y} = \mathbf{X}\boldsymbol{\beta} \text{ for some } \boldsymbol{\beta} \in \mathbb{R}^p \}.$ (If the function $\mathbf{X}_f(\boldsymbol{\beta}) = \mathbf{X}\boldsymbol{\beta}$ where the f indicates that the operation $X_f : \mathbb{R}^p \to \mathbb{R}^n$ is being treated as a function, then C(X)is the range of X_{f} .)

The dimension of a vector space V = dim(V) = the number of vectors in a basis of V. The rank of a matrix $\mathbf{A} = rank(\mathbf{A}) = dim(C(\mathbf{A}))$, the dimension of the column space of A.

Let **A** be $m \times n$. Then rank $(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T) \leq \min(m, n)$. If rank $(\mathbf{A}) = \min(m, n)$, then \boldsymbol{A} has *full rank*, or \boldsymbol{A} is a full rank matrix.

The row space of $\mathbf{A} = C(\mathbf{A}^T)$, the span of the rows of \mathbf{A} .

The null space of $\mathbf{A} = N(\mathbf{A}) = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\} = \text{kernel of } \mathbf{A}$. The nullity of $\mathbf{A} = \mathbf{A}$ $\dim[N(\mathbf{A})].$

 $V_M^{\perp} = \{ \boldsymbol{y} \in M : \boldsymbol{y} \perp V \}$ is the orthogonal complement of V with respect to M where $\boldsymbol{y} \perp \boldsymbol{V}$ means $\boldsymbol{y}^T \boldsymbol{x} = \boldsymbol{0} \ \forall \ \boldsymbol{x} \in V$. If $M = \mathbb{R}^k$, then the subspace $V^{\perp} = \{\boldsymbol{y} \in \mathbb{R}^k : \boldsymbol{y} \perp V\}$ is the orthogonal complement of V.

 $N(\mathbf{A}^T) = [C(\mathbf{A})]^{\perp}$, so $N(\mathbf{A}) = [C(\mathbf{A}^T)]^{\perp}$.

Rank Nullity Theorem: Let A be $m \times n$. Then $\operatorname{rank}(A) + \dim(N(A)) = n$.

A generalized inverse of an $m \times n$ matrix A is any $n \times m$ matrix A^- satisfying $AA^{-}A = A$. Other names are conditional inverse, pseudo inverse, g-inverse, and pinverse. Usually a generalized inverse is not unique, but if A^{-1} exists, then $A^{-} = A^{-1}$ is unique. Notation: $G := A^-$ means G is a generalized inverse of A.

1) Know: Be able to show that $G := A^{-}$.

A is idempotent if $A^2 = A$.

2) Know: Be able to show whether **A** is idempotent.

Let V be a subspace of \mathbb{R}^k . Then every $\boldsymbol{y} \in \mathbb{R}^k$ can be expressed uniquely as $\boldsymbol{y} = \boldsymbol{w} + \boldsymbol{z}$ where $\boldsymbol{w} \in V$ and $\boldsymbol{z} \in V^{\perp}$.

Let $\mathbf{X} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_p]$ be $n \times p$, and let $V = C(\mathbf{X}) = \operatorname{span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$. Then the $n \times n$ matrix $\mathbf{P}_V = \mathbf{P}_{\mathbf{X}}$ is a **projection matrix** on $C(\mathbf{X})$ if $\mathbf{P}_{\mathbf{X}} \ \mathbf{y} = \mathbf{w} \ \forall \ \mathbf{y} \in \mathbb{R}^n$. (Here $\mathbf{y} = \mathbf{w} + \mathbf{z} = \mathbf{w}_{\mathbf{y}} + \mathbf{z}_{\mathbf{y}}$, so \mathbf{w} depends on \mathbf{y} .)

Theorem: a) $\boldsymbol{P}_{\boldsymbol{X}}$ is unique.

- b) $\boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-}\boldsymbol{X}^T$ where $(\boldsymbol{X}^T\boldsymbol{X})^{-}$ is any generalized inverse of $\boldsymbol{X}^T\boldsymbol{X}$.
- c) \mathbf{A} is a projection matrix on $C(\mathbf{A})$ iff \mathbf{A} is symmetric and idempotent. Hence $\mathbf{P}_{\mathbf{X}}$ is a projection matrix on $C(\mathbf{P}_{\mathbf{X}}) = C(\mathbf{X})$.
- d) $\boldsymbol{I}_n \boldsymbol{P}_{\boldsymbol{X}}$ is the projection matrix on $[C(\boldsymbol{X})]^{\perp}$.
- e) $A = P_X$ iff i) $y \in C(X)$ implies Ay = y and ii) $y \perp C(X)$ implies Ay = 0. Theorem a) B = X - X and B = W - W if each column of $W \in C(X)$.
- Theorem: a) $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{X} = \boldsymbol{X}$, and $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{W} = \boldsymbol{W}$ if each column of $\boldsymbol{W} \in C(\boldsymbol{X})$. b) $\boldsymbol{P}_{\boldsymbol{X}} \boldsymbol{v}_i = \boldsymbol{v}_i$.

c) If $\overline{C}(\mathbf{X}_R)$ is a subspace of $C(\mathbf{X})$, then $\mathbf{P}_{\mathbf{X}}\mathbf{P}_{\mathbf{X}_R} = \mathbf{P}_{\mathbf{X}_R}\mathbf{P}_{\mathbf{X}} = \mathbf{P}_{\mathbf{X}_R}$. d) Let $\mathbf{X} = [\mathbf{Z} \ \mathbf{X}_r]$ where rank $(\mathbf{X}) = \operatorname{rank}(\mathbf{X}_r) = r$ so the columns of \mathbf{X}_r form a basis for $C(\mathbf{X})$. Then

$$\left[egin{array}{ccc} m{0} & m{0} \ m{0} & (m{X}_r^Tm{X}_r)^{-1} \end{array}
ight]$$

is a generalized inverse of $\boldsymbol{X}^T \boldsymbol{X}$, and $\boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{X}_r (\boldsymbol{X}_r^T \boldsymbol{X}_r)^{-1} \boldsymbol{X}_r^T$.

3) Know: Be able to find P_X for small X, perhaps by finding a basis for C(X).

Notation: The matrix A in a quadratic form $x^T A x$ is symmetric. A is positive definite (A > 0) if $x^T A x > 0 \ \forall \ x \neq 0$. A is positive semidefinite $(A \ge 0)$ if $x^T A x \ge 0 \ \forall \ x$. If $A \ge 0$ then the eigenvalues of A are real and nonnegative. If $A \ge 0$, let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$. If A > 0, then $\lambda_n > 0$.

Theorem: Let \boldsymbol{A} be a $n \times n$ symmetric matrix with eigenvector eigenvalue pairs $(\lambda_1, \boldsymbol{t}_1), (\lambda_2, \boldsymbol{t}_2), ..., (\lambda_n, \boldsymbol{t}_n)$ where $\boldsymbol{t}_i^T \boldsymbol{t}_i = 1$ and $\boldsymbol{t}_i^T \boldsymbol{t}_j = 0$ for i = 1, ..., n. Hence $\boldsymbol{A} \boldsymbol{t}_i = \lambda_i \boldsymbol{t}_i$. Then the spectral decomposition of \boldsymbol{A} is

$$oldsymbol{A} = \sum_{i=1}^n \lambda_i oldsymbol{t}_i oldsymbol{t}_i^T = \lambda_1 oldsymbol{t}_1 oldsymbol{t}_1^T + \dots + \lambda_n oldsymbol{t}_n oldsymbol{t}_n^T.$$

Let $T = [t_1 \ t_2 \ \cdots \ t_n]$ be the $n \times n$ orthogonal matrix with *i*th column t_i . Then $TT^T = T^TT = I$. Let $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$ and let $\Lambda^{1/2} = \text{diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$. If A is a positive definite $n \times n$ symmetric matrix with spectral decomposition $A = \sum_{i=1}^n \lambda_i t_i t_i^T$, then $A = T\Lambda T^T$ and

$$oldsymbol{A}^{-1} = oldsymbol{T}oldsymbol{\Lambda}^{-1}oldsymbol{T}^T = \sum_{i=1}^n rac{1}{\lambda_i}oldsymbol{t}_ioldsymbol{t}_i^T.$$

The square root matrix $A^{1/2} = T \Lambda^{1/2} T^T$ is a positive definite symmetric matrix such that $A^{1/2} A^{1/2} = A$.

ch. 1

The **response variable** Y is the variable you want to predict. The *explanatory* variables $X_1, ..., X_k$ are used to predict Y.

Use regression models for description, prediction, and hypothesis testing.

For the response variable, conditioning is suppressed. So $E(Y) = E(Y|\mathbf{X} = \mathbf{x})$ or $E(Y) = E(Y|\mathbf{X})$. So $E(Y) = E(Y|X_1 = x_1, ..., X_k = x_k) = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k$. Let $\mathbf{X} = (X_{ij})$ be a random matrix. Then $E(\mathbf{X}) = (E(X_{ij}))$.

Notation: Unless told otherwise, assume expectations exist and that conformable matrices and vectors are used.

The population mean of a random $n \times 1$ vector $\boldsymbol{x} = (x_1, ..., x_n)^T$ is $E(\boldsymbol{x}) = \boldsymbol{\mu} = (E(x_1), ..., E(x_n))^T$ and the $n \times n$ population covariance matrix $\operatorname{Cov}(\boldsymbol{x}) = \boldsymbol{\Sigma}_{\boldsymbol{x}} = E(\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{x} - E(\boldsymbol{x}))^T = (\sigma_{i,j})$ where $\operatorname{Cov}(x_i, x_j) = \sigma_{i,j}$. The population covariance matrix of \boldsymbol{x} with \boldsymbol{y} is

$$\operatorname{Cov}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\Sigma}_{\boldsymbol{x}, \boldsymbol{y}} = E[(\boldsymbol{x} - E(\boldsymbol{x}))(\boldsymbol{y} - E(\boldsymbol{y}))^T].$$

4) Know: If X and Y are $n \times 1$ random vectors, a a conformable constant vector, and A and B are conformable constant matrices, then

$$E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y}), \ E(\mathbf{a} + \mathbf{Y}) = \mathbf{a} + E(\mathbf{Y}), \ \& \ E(\mathbf{A}\mathbf{X}\mathbf{B}) = \mathbf{A}E(\mathbf{X})\mathbf{B}.$$

Also

$$\operatorname{Cov}(\boldsymbol{a} + \boldsymbol{A}\boldsymbol{X}) = \operatorname{Cov}(\boldsymbol{A}\boldsymbol{X}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X})\boldsymbol{A}^{T}.$$

Note that E(AY) = AE(Y) and $Cov(AY) = ACov(Y)A^{T}$.

5) If $X (m \times 1)$ and $Y (n \times 1)$ are random vectors, and A and B are conformable constant matrices, then

$$\operatorname{Cov}(\boldsymbol{A}\boldsymbol{X},\boldsymbol{B}\boldsymbol{Y}) = \boldsymbol{A}\operatorname{Cov}(\boldsymbol{X},\boldsymbol{Y})\boldsymbol{B}^T.$$

6) Theorem 1.5, expected value of a quadratic form: Let X be a random vector with $E(X) = \mu$ and $Cov(X) = \Sigma$. Then

$$E(\mathbf{X}^T \mathbf{A} \mathbf{X}) = tr(\mathbf{A} \mathbf{\Sigma}) + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu}.$$

Ch. 3

If
$$\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
, then $E(\boldsymbol{X}) = \boldsymbol{\mu}$, $Cov(\boldsymbol{X}) = \boldsymbol{\Sigma}$, and $m_{\boldsymbol{X}}(\boldsymbol{t}) = exp(\boldsymbol{t}^T \boldsymbol{\mu} + \frac{1}{2} \boldsymbol{t}^T \boldsymbol{\Sigma} \boldsymbol{t})$.

7) If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and if \mathbf{A} is a $q \times p$ matrix, then $\mathbf{A}\mathbf{X} \sim N_q(\mathbf{A}\boldsymbol{\mu}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$. If $\mathbf{a} \ (p \times 1)$ and $\mathbf{b} \ (q \times 1)$ are constant vectors, then $\mathbf{X} + \mathbf{a} \sim N_p(\boldsymbol{\mu} + \mathbf{a}, \boldsymbol{\Sigma})$ and $\mathbf{A}\mathbf{X} + \mathbf{b} \sim N_q(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$.

Let
$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix}$$
, $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}$, and $\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}$.

8) All subsets of a MVN are MVN: $(X_{k_1}, ..., X_{k_q})^T \sim N_q(\tilde{\boldsymbol{\mu}}, \tilde{\boldsymbol{\Sigma}})$ where $\tilde{\boldsymbol{\mu}}_i = E(X_{k_i})$ and $\tilde{\boldsymbol{\Sigma}}_{ij} = \text{Cov}(X_{k_i}, X_{k_j})$. In particular, $\boldsymbol{X}_1 \sim N_q(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$ and $\boldsymbol{X}_2 \sim N_{p-q}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$. If $\boldsymbol{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then \boldsymbol{X}_1 and \boldsymbol{X}_2 are independent iff $\boldsymbol{\Sigma}_{12} = \boldsymbol{0}$.

Let
$$\begin{pmatrix} Y \\ X \end{pmatrix} \sim N_2 \left(\begin{pmatrix} \mu_Y \\ \mu_X \end{pmatrix}, \begin{pmatrix} \sigma_Y^2 & \operatorname{Cov}(Y, X) \\ \operatorname{Cov}(X, Y) & \sigma_X^2 \end{pmatrix} \right).$$

Also recall that the *population correlation* between X and Y is given by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{VAR}(X)}\sqrt{\operatorname{VAR}(Y)}} = \frac{\sigma_{X,Y}}{\sigma_X\sigma_Y}$$

if $\sigma_X > 0$ and $\sigma_Y > 0$.

9) **Know:** The conditional distribution of a MVN is MVN. If $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the conditional distribution of \mathbf{X}_1 given that $\mathbf{X}_2 = \mathbf{x}_2$ is multivariate normal with mean $\boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{x}_2 - \boldsymbol{\mu}_2)$ and covariance matrix $\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$. That is,

$$X_1 | X_2 = x_2 \sim N_q (\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$

Notation:

$$X_1 | X_2 \sim N_q (\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (X_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}).$$

10) **Know:** Be able to compute the above quantities if X_1 and X_2 are scalars.

11) Theorem 2.5. Let $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Let $\boldsymbol{U} = \boldsymbol{A}\boldsymbol{Y}$ and $\boldsymbol{W} = \boldsymbol{B}\boldsymbol{Y}$. Then $\boldsymbol{A}\boldsymbol{Y} \perp \boldsymbol{B}\boldsymbol{Y}$ iff $\operatorname{Cov}(\boldsymbol{U}, \boldsymbol{W}) = \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{B}^T = \boldsymbol{0}$ iff $\boldsymbol{B}\boldsymbol{\Sigma}\boldsymbol{A}^T = \boldsymbol{0}$. Note that if $\boldsymbol{\Sigma} = \sigma^2 \boldsymbol{I}_n$, then $\boldsymbol{A}\boldsymbol{Y} \perp \boldsymbol{B}\boldsymbol{Y}$ iff $\boldsymbol{A}\boldsymbol{B}^T = \boldsymbol{0}$ iff $\boldsymbol{B}\boldsymbol{A}^T = \boldsymbol{0}$.

12) **Theorem 2.7**. Let $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{I}_n)$, and let $\mathbf{A} = \mathbf{A}^T$ be symmetric. Then $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \sim \chi_r^2$ iff \mathbf{A} is idempotent of rank r.

13) If $X \perp Y$, then $g(X) \perp h(Y)$ where g is a vector valued function of X alone and h is a vector valued function of Y alone.

14) Theorem: Let $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \boldsymbol{I}_n)$, with \boldsymbol{A} and \boldsymbol{B} symmetric. If $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \sim \chi_r^2$ and $\boldsymbol{Y}^T \boldsymbol{B} \boldsymbol{Y} \sim \chi_d^2$, then $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \perp \boldsymbol{Y}^T \boldsymbol{B} \boldsymbol{Y}$ iff $\boldsymbol{A} \boldsymbol{B} = \boldsymbol{0}$.

15) Cor. of Th 2.8. If $\boldsymbol{Y} \sim N_n(\boldsymbol{0}, \boldsymbol{\Sigma}), \boldsymbol{\Sigma} > 0$, and \boldsymbol{A} is symmetric, then $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \sim \chi_r^2$ iff $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent of rank r.

16) Th. 2.9. If $\mathbf{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then the population squared Mahalanobis distance $(\mathbf{Y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{Y} - \boldsymbol{\mu}) \sim \chi_n^2$.

17) Suppose $Y_1, ..., Y_n$ are independent $N(\mu_i, 1)$ random variables so that $\mathbf{Y} = (Y_1, ..., Y_n)^T \sim N_n(\boldsymbol{\mu}, \boldsymbol{I}_n)$. Then $\mathbf{Y}^T \mathbf{Y} = \sum_{i=1}^n Y_i^2 \sim \chi^2(n, \boldsymbol{\mu}^T \boldsymbol{\mu}/2)$, a noncentral χ^2 distribution, $(\chi^2(n, \gamma))$, with *n* degrees of freedom and noncentrality parameter $\gamma = \boldsymbol{\mu}^T \boldsymbol{\mu}/2 = \frac{1}{2} \sum_{i=1}^n \mu_i^2 \geq 0$. The noncentrality parameter $\delta = \boldsymbol{\mu}^T \boldsymbol{\mu} = 2\gamma$ is also used. Note that if $Y \sim N(\boldsymbol{\mu}, 1)$ then $Y^2 \sim \chi^2(n = 1, \gamma = \mu^2/2)$, and if $Y \sim N(\sqrt{2\gamma}, 1)$, then $Y^2 \sim \chi^2(n = 1, \gamma)$.

18) If $W \sim \chi_n^2$, then $W \sim \chi^2(n,0)$ so $\gamma = 0$. The χ_n^2 distribution is also called the *central* χ^2 distribution.

19) a) If $Y \sim \chi^2(n, \gamma)$, then the mgf of Y is $m_Y(t) = (1-2t)^{-n/2} \exp(-\gamma [1-(1-2t)^{-1}])$ for t < 0.5.

b) If
$$Y_i \sim \chi^2(n_i, \gamma_i)$$
 are independent for $i = 1, ..., k$, then $\sum_{i=1}^{\kappa} Y_i \sim \chi^2 \left(\sum_{i=1}^{\kappa} n_i, \sum_{i=1}^{\kappa} \gamma_i\right)$.
c) If $Y \sim \chi^2(n, \gamma)$, then $E(Y) = n + 2\gamma$ and $V(Y) = 2n + 8\gamma$.
20) If $Y_1, ..., Y_k$ are independent with mgf's $m_{Y_i}(t)$ then the mgf of $\sum_{i=1}^{k} Y_i$ is $m_{\sum_{i=1}^{k} Y_i}(t) = \prod_{i=1}^{k} m_{Y_i}(t)$.

21) Theorem: If $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma} > 0$, then $\boldsymbol{Y}^T \boldsymbol{A} \boldsymbol{Y} \sim \chi^2(\operatorname{rank}(\boldsymbol{A}), \boldsymbol{\mu}^T \boldsymbol{A} \boldsymbol{\mu}/2)$ iff $\boldsymbol{A} \boldsymbol{\Sigma}$ is idempotent. If $\boldsymbol{\Sigma} = \boldsymbol{I}_n$, the result holds iff \boldsymbol{A} is idempotent. Note $\boldsymbol{A} = \boldsymbol{A}^T$.

22) Craig's Theorem: Let $\boldsymbol{Y} \sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

a) If $\Sigma > 0$, then $Y^T A Y \perp Y^T B Y$ iff $A \Sigma B = 0$ iff $B \Sigma A = 0$.

b) If $\Sigma > 0$, then $Y^T A Y \perp Y^T B Y$ if $A \Sigma B = 0$ (or if $B \Sigma A = 0$).

c) If $\Sigma \ge 0$, then $\mathbf{Y}^T \mathbf{A} \mathbf{Y} \perp \mathbf{Y}^T \mathbf{B} \mathbf{Y}$ iff

(*) $\Sigma A \Sigma B \Sigma = 0$, $\Sigma A \Sigma B \mu = 0$, $\Sigma B \Sigma A \mu = 0$, and $\mu^T A \Sigma B \mu = 0$. Note that if $A \Sigma B = 0$, then (*) holds.

23) One way to show $C(\mathbf{A}) = C(\mathbf{B})$ is to show that i) $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{y} \in C(\mathbf{B})$ and ii) $\mathbf{B}\mathbf{y} = \mathbf{A}\mathbf{x} \in C(\mathbf{A})$.

ch. 3

24) Then the (full rank) multiple linear regression (MLR) model is

 $Y_i = x_{i,0}\beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + x_{i,p-1}\beta_{p-1} + \epsilon_i = \boldsymbol{x}_i^T\boldsymbol{\beta} + \epsilon_i$ for $i = 1, \ldots, n$. For the (ordinary) least squares (OLS) model, the ϵ_i are uncorrelated and usually iid with $E(\epsilon_i) = 0$ and $V(\epsilon_i) = \sigma^2$, an unknown positive parameter. Usually $x_{i,0} = 1$ for $i = 1, \ldots, n$. In matrix form the model is $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where the $n \times p$ design matrix \boldsymbol{X} has full rank $p \leq n$. Also, \boldsymbol{X} is treated as a constant matrix and $\boldsymbol{\beta}$ as an unknown constant vector. If \boldsymbol{X} is a random matrix, condition on \boldsymbol{X} .

25) Given an estimate **b** of β , the corresponding vector of *predicted* or *fitted values* is $\widehat{Y} \equiv \widehat{Y}(b) = Xb$. Thus the *i*th fitted value

$$\hat{Y}_i \equiv \hat{Y}_i(\boldsymbol{b}) = \boldsymbol{x}_i^T \boldsymbol{b} = x_{i,0} b_0 + \dots + x_{i,p-1} b_{p-1}.$$

The vector of residuals is $\boldsymbol{e}(\boldsymbol{b}) = \boldsymbol{Y} - \hat{\boldsymbol{Y}}(\boldsymbol{b})$. Thus ith residual $e_i(\boldsymbol{b}) = Y_i - \hat{Y}_i(\boldsymbol{b}) = Y_i - x_{i,0}b_0 - \cdots - x_{i,p-1}b_{p-1}$. Note $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{b} + \boldsymbol{e}(\boldsymbol{b})$. Let $e_i = e_i(\hat{\boldsymbol{\beta}})$. So $\boldsymbol{Y} = \boldsymbol{X}\hat{\boldsymbol{\beta}} + \boldsymbol{e}$.

26) The least squares (OLS) estimator $\hat{\boldsymbol{\beta}}$ minimizes $Q_{OLS}(\boldsymbol{b}) = \sum_{i=1}^{n} e_i^2(\boldsymbol{b})$ and $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$. The vector of predicted or fitted values $\hat{\boldsymbol{Y}} = \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{H}\boldsymbol{Y}$ where the hat matrix $\boldsymbol{H} = \boldsymbol{X}(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T = \boldsymbol{P}_{\boldsymbol{X}} = \boldsymbol{P}$ since \boldsymbol{X} has full rank. The least squares regression equation is $\hat{\boldsymbol{Y}} = \hat{\beta}_0 x_0 + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_{p-1} x_{p-1}$ where $x_0 \equiv 1$ if the model contains a constant. The least squares vector of residuals is $\boldsymbol{e} = \boldsymbol{Y} - \hat{\boldsymbol{Y}}$. Thus *i*th residual $e_i = Y_i - \hat{Y}_i = Y_i - x_{i,0}\hat{\beta}_0 - \cdots - x_{i,p-1}\hat{\beta}_{p-1}$.

27) Know: Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X} is full rank, $E(\boldsymbol{\epsilon}) = \mathbf{0}$, $\operatorname{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$ and $\mathbf{P} = \mathbf{P}_{\mathbf{X}}$ is the projection matrix on $C(\mathbf{X})$. Then $\hat{\mathbf{Y}} = \mathbf{P}\mathbf{Y}$, $\mathbf{e} = (\mathbf{I} - \mathbf{P})\mathbf{Y}$, and $\mathbf{P}\mathbf{X} = \mathbf{X}$ so $\mathbf{X}^T \mathbf{P} = \mathbf{X}^T$. Recall that $\mathbf{X}\boldsymbol{\beta}$ is treated as a constant vector. Then i) $\mathbf{X}^T \mathbf{e} = \mathbf{X}^T (\mathbf{I} - \mathbf{P})\mathbf{Y} = \mathbf{0}$. Hence the columns of \mathbf{X} , which correspond to the predictor variables, and the residual vector are orthogonal. This result is useful for the residual plot of the *i*th predictor variable versus the residuals.

ii)
$$E(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}.$$

iii) $\operatorname{Cov}(\boldsymbol{Y}) = \operatorname{Cov}(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}.$

iv) $\operatorname{Cov}(\boldsymbol{e}, \hat{\boldsymbol{Y}}) = \boldsymbol{0}$, an $n \times n$ matrix. Hence the fitted values are uncorrelated with the residuals. This result is useful for the residual plot of the fitted values versus the residuals.

28) Know: You should be able to show results such as those in 27).

29) Know: The least squares estimator $\hat{\boldsymbol{\beta}}$ satisfies the normal equations $\boldsymbol{X}^T \boldsymbol{X} \hat{\boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{Y}$.

30) Know: Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X} is full rank and $E(\boldsymbol{\epsilon}) = \mathbf{0}$. Then a)

 $E(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$. Hence $\hat{\boldsymbol{\beta}}$ is an unbiased estimator of $\boldsymbol{\beta}$. b) If $Cov(\boldsymbol{Y}) = Cov(\boldsymbol{\epsilon}) = \sigma^2 \boldsymbol{I}$, then $Cov(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^T \boldsymbol{X})^{-1}$.

31) The linear estimator $\boldsymbol{a}^T \boldsymbol{Y}$ of $\boldsymbol{c}^T \boldsymbol{\theta}$ is the best linear unbiased estimator (BLUE) of $\boldsymbol{c}^T \boldsymbol{\theta}$ if $E(\boldsymbol{a}^T \boldsymbol{Y}) = \boldsymbol{c}^T \boldsymbol{\theta}$, and if for any other unbiased linear estimator $\boldsymbol{b}^T \boldsymbol{Y}$ of $\boldsymbol{c}^T \boldsymbol{\theta}$, $V(\boldsymbol{a}^T \boldsymbol{Y}) \leq V(\boldsymbol{b}^T \boldsymbol{Y})$. Note that $E(\boldsymbol{b}^T \boldsymbol{Y}) = \boldsymbol{c}^T \boldsymbol{\theta}$.

32) Let $\hat{\boldsymbol{\theta}} = \boldsymbol{X}\hat{\boldsymbol{\beta}}$ be the least squares estimator of $\boldsymbol{X}\boldsymbol{\beta}$ where \boldsymbol{X} has full rank p. a) $\boldsymbol{c}^T\hat{\boldsymbol{\theta}}$ is the unique BLUE of $\boldsymbol{c}^T\boldsymbol{\theta}$. b) $\boldsymbol{a}^T\hat{\boldsymbol{\beta}}$ is the BLUE of $\boldsymbol{a}^T\boldsymbol{\beta}$ for every vector \boldsymbol{a} .

33) Let $Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where \mathbf{X} has full rank p and the ϵ_i are iid with mean 0 and variance σ^2 . Let the residual sum of squares (RSS) be RSS = $(\mathbf{Y} - \hat{\mathbf{Y}})^T (\mathbf{Y} - \hat{\mathbf{Y}}) = \sum_{i=1}^n e_i^2$. Let the $MSE = RSS/(n-p) = S^2$. a) Then MSE is an unbiased estimator of σ^2 . b) Let $h_i = \mathbf{H}_{ii}$ where $\mathbf{H} = \mathbf{P}_{\mathbf{X}}$ is an $n \times n$ matrix. Then h_i is the *i*th leverage. If max $h_i \to 0$ as $n \to \infty$ and if $E(\epsilon_i^4) = \gamma < \infty$, then MSE is a \sqrt{n} consistent estimator of σ^2 : $\sqrt{n}(MSE - \sigma^2) = O_P(1)$, implying $n^{\delta}(MSE - \sigma^2) \stackrel{P}{\to} 0$ if $0 < \delta < 0.5$.

34) Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, \mathbf{X} full rank, $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$, and $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$. Then a)

$$\hat{\boldsymbol{\beta}} \sim N_p(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T \boldsymbol{X})^{-1}).$$

b)

$$\frac{(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{X} (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})}{\sigma^2} \sim \chi_p^2.$$

c) β ⊥ MSE. d)

$$\frac{RSS}{\sigma^2} = \frac{(n-p)MSE}{\sigma^2} \sim \chi^2_{n-p}.$$

35) Consider the MLR model $Y_i = \boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_i$, and assume that the errors are independent with zero mean and the same variance: $E(\epsilon_i) = 0$ and $V(\epsilon_i) = \sigma^2$. Also assume that $\max_i(h_1, ..., h_n) \xrightarrow{P} 0$ as $n \to \infty$. Then

a) $\hat{Y}_i = \boldsymbol{x}_i^T \hat{\boldsymbol{\beta}} \xrightarrow{P} E(Y_i | \boldsymbol{x}_i) = \boldsymbol{x}_i^T \boldsymbol{\beta}$ in probability for i = 1, ..., n as $n \to \infty$.

b) All of the least squares estimators $\boldsymbol{a}^T \hat{\boldsymbol{\beta}}$ are asymptotically normal where \boldsymbol{a} is any fixed constant $p \times 1$ vector.

c) (Least squares CLT:) Suppose that the ϵ_i are iid and

$$\frac{\boldsymbol{X}^T\boldsymbol{X}}{n} \to \boldsymbol{W}^{-1}$$

Then the least squares (OLS) estimator $\hat{\boldsymbol{\beta}}$ satisfies

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \xrightarrow{D} N_p(\boldsymbol{0}, \sigma^2 \boldsymbol{W})$$

Also,

$$(\boldsymbol{X}^T\boldsymbol{X})^{1/2}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \xrightarrow{D} N_p(\boldsymbol{0},\sigma^2 \boldsymbol{I}_p).$$

36) Know: If $\mathbf{Z}_n \xrightarrow{D} N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{A}\mathbf{Z}_n + \mathbf{b} \xrightarrow{D} N_m(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^T)$ where \mathbf{A} is an $m \times k$ constant matrix and \mathbf{b} is an $m \times 1$ constant vector.

Problems from Quiz 1-3 and HW 1-4 are fair game. Appendices A,B, ch. 1, 2, and sections 3.1–3.4.