
Math 584 Exam 1 is on Tuesday, Feb. 23. You are allowed 8 sheets of notes and
a calculator. CHECK FORMULAS: YOU ARE RESPONSIBLE FOR ANY ERRORS
ON THIS HANDOUT!

Types of problems likely to appear on Exam 1 are numbered:

Let M be a nonempty subset of a vector space V . If i) αx ∈ M ∀x ∈ M and for any
scalar α, and ii) x + y ∈ M ∀x, y ∈ M , then M is a vector space known as a subspace.

The set of all linear combinations of x1, ..., xn is the vector space known as span(x1, ..., xn).
Let x1, ..., xk ∈ V . If ∃ scalars α1, ..., αk not all zero such that

∑k
i=1

αixi = 0, then

x1, ..., xk are linearly dependent. If
∑k

i=1
αixi = 0 only if αi = 0 ∀ i = 1, ..., k, then

x1, ..., xk are linearly independent.
Suppose {x1, ..., xk} is a linearly independent set and V = span(x1, ..., xk). Then

{x1, ..., xk} is a linearly independent spanning set for V , known as a basis.

Let A = [a1 a2 ... am] =




rT

1

...
rT

n



 be an n × m matrix. The space spanned by the

columns of A = column space of A = C(A).

Let X = [v1 v2 ... vp] =




xT

1

...
xT

n



 be an n × p matrix. Note that

C(X) = {y ∈ R
n : y = Xβ for some β ∈ R

p}. (If the function Xf (β) = Xβ where the
f indicates that the operation Xf : R

p → R
n is being treated as a function, then C(X)

is the range of Xf .)
The dimension of a vector space V = dim(V ) = the number of vectors in a basis

of V . The rank of a matrix A = rank(A) = dim(C(A)), the dimension of the column
space of A.

Let A be m × n. Then rank(A) = rank(AT ) ≤ min(m, n). If rank(A) = min(m, n),
then A has full rank, or A is a full rank matrix.

The row space of A = C(AT ), the span of the rows of A.
The null space of A = N(A) = {x : Ax = 0} = kernel of A. The nullity of A =

dim[N(A)].
V ⊥

M = {y ∈ M : y ⊥ V } is the orthogonal complement of V with respect to M where
y ⊥ V means yTx = 0 ∀ x ∈ V. If M = R

k, then the subspace V ⊥ = {y ∈ R
k : y ⊥ V }

is the orthogonal complement of V .
N(AT ) = [C(A)]⊥, so N(A) = [C(AT )]⊥.
Rank Nullity Theorem: Let A be m × n. Then rank(A)+ dim(N(A)) = n.
A generalized inverse of an m × n matrix A is any n × m matrix A− satisfying

AA−A = A. Other names are conditional inverse, pseudo inverse, g-inverse, and p-
inverse. Usually a generalized inverse is not unique, but if A−1 exists, then A− = A−1

is unique. Notation: G := A− means G is a generalized inverse of A.
1) Know: Be able to show that G := A−.
A is idempotent if A2 = A.
2) Know: Be able to show whether A is idempotent.

1



Let V be a subspace of R
k. Then every y ∈ R

k can be expressed uniquely as y = w+z

where w ∈ V and z ∈ V ⊥.
Let X = [v1 v2 ... vp] be n×p, and let V = C(X) = span(v1, ..., vp). Then the n×n

matrix P V = PX is a projection matrix on C(X) if PX y = w ∀ y ∈ R
n. (Here

y = w + z = wy + zy, so w depends on y.)
Theorem: a) PX is unique.

b) PX = X(XT X)−XT where (XTX)− is any generalized inverse of XTX.
c) A is a projection matrix on C(A) iff A is symmetric and idempotent. Hence PX is
a projection matrix on C(PX ) = C(X).
d) In − PX is the projection matrix on [C(X)]⊥.
e) A = PX iff i) y ∈ C(X) implies Ay = y and ii) y ⊥ C(X) implies Ay = 0.

Theorem: a) PXX = X, and PXW = W if each column of W ∈ C(X).
b) PXvi = vi.
c) If C(XR) is a subspace of C(X), then PXPXR

= PXR
PX = PXR

.
d) Let X = [Z Xr] where rank(X) = rank(X r) = r so the columns of Xr form a basis
for C(X). Then [

0 0
0 (XT

r Xr)
−1

]

is a generalized inverse of XTX, and PX = Xr(X
T
r Xr)

−1XT
r .

3) Know: Be able to find PX for small X, perhaps by finding a basis for C(X).
Notation: The matrix A in a quadratic form xTAx is symmetric. A is positive

definite (A > 0) if xTAx > 0 ∀ x 6= 0. A is positive semidefinite (A ≥ 0) if
xTAx ≥ 0 ∀ x. If A ≥ 0 then the eigenvalues of A are real and nonnegative. If A ≥ 0,
let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If A > 0, then λn > 0.

Theorem: Let A be a n × n symmetric matrix with eigenvector eigenvalue pairs
(λ1, t1), (λ2, t2), ..., (λn, tn) where tT

i ti = 1 and tT
i tj = 0 for i = 1, ..., n. Hence Ati = λiti.

Then the spectral decomposition of A is

A =

n∑

i=1

λitit
T
i = λ1t1t

T
1

+ · · · + λntnt
T
n .

Let T = [t1 t2 · · · tn] be the n × n orthogonal matrix with ith column ti. Then
TT T = T T T = I. Let Λ = diag(λ1, ..., λn) and let Λ1/2 = diag(

√
λ1, ...,

√
λn). If A is a

positive definite n × n symmetric matrix with spectral decomposition A =
∑n

i=1
λitit

T
i ,

then A = TΛT T and

A−1 = TΛ−1T T =
n∑

i=1

1

λi
tit

T
i .

The square root matrix A1/2 = TΛ1/2T T is a positive definite symmetric matrix such
that A1/2A1/2 = A.

ch. 1
The response variable Y is the variable you want to predict. The explanatory

variables X1, ..., Xk are used to predict Y .
Use regression models for description, prediction, and hypothesis testing.
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For the response variable, conditioning is suppressed. So E(Y ) = E(Y |X = x) or
E(Y ) = E(Y |X). So E(Y ) = E(Y |X1 = x1, ..., Xk = xk) = β0 + β1x1 + · · · + βkxk.

Let X = (Xij) be a random matrix. Then E(X) = (E(Xij)).
Notation: Unless told otherwise, assume expectations exist and that conformable

matrices and vectors are used.
The population mean of a random n × 1 vector x = (x1, ..., xn)

T is E(x) = µ =
(E(x1), ..., E(xn))

T and the n × n population covariance matrix

Cov(x) = Σx = E(x − E(x))(x − E(x))T = (σi,j) where Cov(xi, xj) = σi,j. The
population covariance matrix of x with y is

Cov(x, y) = Σx,y = E[(x− E(x))(y − E(y))T ].

4) Know: If X and Y are n × 1 random vectors, a a conformable constant vector,
and A and B are conformable constant matrices, then

E(X + Y ) = E(X) + E(Y ), E(a + Y ) = a + E(Y ), & E(AXB) = AE(X)B.

Also
Cov(a + AX) = Cov(AX) = ACov(X)AT .

Note that E(AY ) = AE(Y ) and Cov(AY ) = ACov(Y )AT .
5) If X (m × 1) and Y (n × 1) are random vectors, and A and B are conformable

constant matrices, then

Cov(AX, BY ) = ACov(X, Y )BT .

6) Theorem 1.5, expected value of a quadratic form: Let X be a random
vector with E(X) = µ and Cov(X) = Σ. Then

E(XTAX) = tr(AΣ) + µT Aµ.

Ch. 3

If X ∼ Np(µ,Σ), then E(X) = µ, Cov(X) = Σ, and mX (t) = exp(tT µ +
1

2
tTΣt).

7) If X ∼ Np(µ,Σ) and if A is a q × p matrix, then AX ∼ Nq(Aµ, AΣAT ).
If a (p × 1) and b (q × 1) are constant vectors, then X + a ∼ Np(µ + a,Σ) and
AX + b ∼ Nq(Aµ + b, AΣAT ).

Let X =

(
X1

X2

)
, µ =

(
µ

1

µ
2

)
, and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

8) All subsets of a MVN are MVN: (Xk1
, ..., Xkq)

T ∼ Nq(µ̃, Σ̃) where µ̃i =

E(Xki
) and Σ̃ij = Cov(Xki

, Xkj
). In particular, X1 ∼ Nq(µ1

,Σ11) and X2 ∼ Np−q(µ2
,Σ22).

If X ∼ Np(µ,Σ), then X1 and X2 are independent iff Σ12 = 0.

Let

(
Y
X

)
∼ N2

( (
µY

µX

)
,

(
σ2

Y Cov(Y, X)
Cov(X, Y ) σ2

X

) )
.
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Also recall that the population correlation between X and Y is given by

ρ(X, Y ) =
Cov(X, Y )√

VAR(X)
√

VAR(Y )
=

σX,Y

σXσY

if σX > 0 and σY > 0.
9) Know: The conditional distribution of a MVN is MVN. If X ∼ Np(µ,Σ), then

the conditional distribution of X1 given that X2 = x2 is multivariate normal with mean
µ

1
+ Σ12Σ

−1

22
(x2 − µ

2
) and covariance matrix Σ11 − Σ12Σ

−1

22
Σ21. That is,

X1|X2 = x2 ∼ Nq(µ1
+ Σ12Σ

−1

22
(x2 − µ

2
),Σ11 − Σ12Σ

−1

22
Σ21).

Notation:

X1|X2 ∼ Nq(µ1
+ Σ12Σ

−1

22
(X2 −µ

2
),Σ11 − Σ12Σ

−1

22
Σ21).

10) Know: Be able to compute the above quantities if X1 and X2 are scalars.
11) Theorem 2.5. Let Y ∼ Nn(µ,Σ). Let U = AY and W = BY . Then AY BY

iff Cov(U , W ) = AΣBT = 0 iff BΣAT = 0. Note that if Σ = σ2In, then AY BY

iff ABT = 0 iff BAT = 0.
12) Theorem 2.7. Let Y ∼ Nn(0, In), and let A = AT be symmetric. Then

Y T AY ∼ χ2

r iff A is idempotent of rank r.
13) If X Y , then g(X) h(Y ) where g is a vector valued function of X alone and

h is a vector valued function of Y alone.
14) Theorem: Let Y ∼ Nn(0, In), with A and B symmetric. If Y T AY ∼ χ2

r and
Y T BY ∼ χ2

d, then Y T AY Y T BY iff AB = 0.
15) Cor. of Th 2.8. If Y ∼ Nn(0,Σ), Σ > 0, and A is symmetric, then Y T AY ∼ χ2

r

iff AΣ is idempotent of rank r.
16) Th. 2.9. If Y ∼ Nn(µ,Σ), then the population squared Mahalanobis distance

(Y − µ)T Σ−1(Y − µ) ∼ χ2

n.
17) Suppose Y1, ..., Yn are independent N(µi, 1) random variables so that Y = (Y1, ..., Yn)

T

∼ Nn(µ, In). Then Y T Y =
∑n

i=1
Y 2

i ∼ χ2(n, µTµ/2), a noncentral χ2 distribution,
(χ2(n, γ)), with n degrees of freedom and noncentrality parameter γ = µT µ/2 = 1

2

∑n
i=1

µ2

i

≥ 0. The noncentrality parameter δ = µTµ = 2γ is also used. Note that if Y ∼ N(µ, 1)
then Y 2 ∼ χ2(n = 1, γ = µ2/2), and if Y ∼ N(

√
2γ, 1), then Y 2 ∼ χ2(n = 1, γ).

18) If W ∼ χ2

n, then W ∼ χ2(n, 0) so γ = 0. The χ2

n distribution is also called the
central χ2 distribution.

19) a) If Y ∼ χ2(n, γ), then the mgf of Y is mY (t) = (1−2t)−n/2 exp(−γ[1−(1−2t)−1])
for t < 0.5.

b) If Yi ∼ χ2(ni, γi) are independent for i = 1, ..., k, then
k∑

i=1

Yi ∼ χ2

(
k∑

i=1

ni,
k∑

i=1

γi

)
.

c) If Y ∼ χ2(n, γ), then E(Y ) = n + 2γ and V (Y ) = 2n + 8γ.
20) If Y1, ..., Yk are independent with mgf’s mYi

(t) then the mgf of
∑k

i=1
Yi is

mPk
i=1

Yi
(t) =

k∏

i=1

mYi
(t).

21) Theorem: If Y ∼ Nn(µ,Σ) with Σ > 0, then Y TAY ∼ χ2(rank(A), µTAµ/2)
iff AΣ is idempotent. If Σ = In, the result holds iff A is idempotent. Note A = AT .
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22) Craig’s Theorem: Let Y ∼ Nn(µ,Σ).
a) If Σ > 0, then Y T AY Y T BY iff AΣB = 0 iff BΣA = 0.
b) If Σ ≥ 0, then Y TAY Y TBY if AΣB = 0 (or if BΣA = 0).
c) If Σ ≥ 0, then Y T AY Y T BY iff

(∗) ΣAΣBΣ = 0,ΣAΣBµ = 0,ΣBΣAµ = 0, and µT AΣBµ = 0.
Note that if AΣB = 0, then (∗) holds.
23) One way to show C(A) = C(B) is to show that i) Ax = By ∈ C(B) and ii)

By = Ax ∈ C(A).
ch. 3
24) Then the (full rank) multiple linear regression (MLR) model is

Yi = xi,0β0 + xi,1β1 + xi,2β2 + · · · + xi,p−1βp−1 + εi = xT
i β + εi for i = 1, . . . , n. For

the (ordinary) least squares (OLS) model, the εi are uncorrelated and usually iid with
E(εi) = 0 and V (εi) = σ2, an unknown positive parameter. Usually xi,0 = 1 for i =
1, ..., n. In matrix form the model is Y = Xβ + ε where the n× p design matrix X has
full rank p ≤ n. Also, X is treated as a constant matrix and β as an unknown constant
vector. If X is a random matrix, condition on X.

25) Given an estimate b of β, the corresponding vector of predicted or fitted values is

Ŷ ≡ Ŷ (b) = Xb. Thus the ith fitted value

Ŷi ≡ Ŷi(b) = xT
i b = xi,0b0 + · · · + xi,p−1bp−1.

The vector of residuals is e(b) = Y − Ŷ (b). Thus ith residual ei(b) = Yi − Ŷi(b) =
Yi − xi,0b0 − · · · − xi,p−1bp−1. Note Y = Xb + e(b). Let ei = ei(β̂). So Y = Xβ̂ + e.

26) The least squares (OLS) estimator β̂ minimizes QOLS(b) =
∑n

i=1
e2

i (b) and β̂ =

(XT X)−1XTY . The vector of predicted or fitted values Ŷ = Xβ̂ = HY where the hat

matrix H = X(XT X)−1XT = PX = P since X has full rank. The least squares

regression equation is Ŷ = β̂0x0 + β̂2x2 + · · · + β̂p−1xp−1 where x0 ≡ 1 if the model

contains a constant. The least squares vector of residuals is e = Y − Ŷ . Thus ith
residual ei = Yi − Ŷi = Yi − xi,0β̂0 − · · · − xi,p−1β̂p−1.

27) Know: Let Y = Xβ + ε where X is full rank, E(ε) = 0, Cov(ε) = σ2I and

P = PX is the projection matrix on C(X). Then Ŷ = PY , e = (I − P )Y , and

PX = X so XTP = XT . Recall that Xβ is treated as a constant vector. Then
i) XT e = XT (I−P )Y = 0. Hence the columns of X, which correspond to the predictor
variables, and the residual vector are orthogonal. This result is useful for the residual
plot of the ith predictor variable versus the residuals.
ii) E(Y ) = Xβ.
iii) Cov(Y ) = Cov(ε) = σ2I.

iv) Cov(e, Ŷ ) = 0, an n × n matrix. Hence the fitted values are uncorrelated with
the residuals. This result is useful for the residual plot of the fitted values versus the
residuals.

28) Know: You should be able to show results such as those in 27).
29) Know: The least squares estimator β̂ satisfies the normal equations XT Xβ̂ =

XT Y .
30) Know: Suppose Y = Xβ + ε where X is full rank and E(ε) = 0. Then a)
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E(β̂) = β. Hence β̂ is an unbiased estimator of β. b) If Cov(Y ) = Cov(ε) = σ2I, then
Cov(β̂) = σ2(XT X)−1.

31) The linear estimator aTY of cTθ is the best linear unbiased estimator (BLUE)
of cT θ if E(aTY ) = cT θ, and if for any other unbiased linear estimator bT Y of cT θ,
V (aTY ) ≤ V (bT Y ). Note that E(bTY ) = cTθ.

32) Let θ̂ = Xβ̂ be the least squares estimator of Xβ where X has full rank p. a)
cT θ̂ is the unique BLUE of cTθ. b) aT β̂ is the BLUE of aT β for every vector a.

33) Let Y = Xβ + ε where X has full rank p and the εi are iid with mean 0 and
variance σ2. Let the residual sum of squares (RSS) be RSS = (Y − Ŷ )T (Y − Ŷ ) =∑n

i=1
e2

i . Let the MSE = RSS/(n − p) = S2. a) Then MSE is an unbiased estimator of
σ2. b) Let hi = H ii where H = PX is an n × n matrix. Then hi is the ith leverage. If
max hi → 0 as n → ∞ and if E(ε4

i ) = γ < ∞, then MSE is a
√

n consistent estimator of

σ2:
√

n(MSE − σ2) = OP (1), implying nδ(MSE − σ2)
P→ 0 if 0 < δ < 0.5.

34) Suppose Y = Xβ + ε, X full rank, ε ∼ Nn(0, σ2In), and Y ∼ Nn(Xβ, σ2In).
Then a)

β̂ ∼ Np(β, σ2(XT X)−1).

b)

(β̂ − β)TXT X(β̂ − β)

σ2
∼ χ2

p.

c) β̂ MSE.
d)

RSS

σ2
=

(n − p)MSE

σ2
∼ χ2

n−p.

35) Consider the MLR model Yi = xT
i β + εi, and assume that the errors are indepen-

dent with zero mean and the same variance: E(εi) = 0 and V(εi) = σ2. Also assume that

maxi(h1, ..., hn)
P→ 0 as n → ∞. Then

a) Ŷi = xT
i β̂

P→ E(Yi|xi) = xT
i β in probability for i = 1, ..., n as n → ∞.

b) All of the least squares estimators aT β̂ are asymptotically normal where a is any
fixed constant p × 1 vector.

c) (Least squares CLT:) Suppose that the εi are iid and

XT X

n
→ W −1.

Then the least squares (OLS) estimator β̂ satisfies

√
n(β̂ − β)

D→ Np(0, σ2 W ).

Also,

(XT X)1/2(β̂ − β)
D→ Np(0, σ2 Ip).

36) Know: If Zn
D→ Nk(µ,Σ), then AZn + b

D→ Nm(Aµ + b, AΣAT ) where A is
an m× k constant matrix and b is an m× 1 constant vector.

Problems from Quiz 1-3 and HW 1-4 are fair game. Appendices A,B, ch. 1, 2, and
sections 3.1–3.4.
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