
Final Review: the Final is on Friday, May 8 12:45-4:45 (here).
The final is cumulative but there is more emphasis on the material in Exam 3 and on

quizzes 9 and 10 than on earlier material. 8 sheets of notes.
Material since Exam 3.
Below are the population and observed 2 × 2 tables.

Y = 1 = S Y = 2 = F
X = 1 π11 π12

X = 2 π21 π22

Y = 1 = S Y = 2 = F
X = 1 n11 n12

X = 2 n21 n22

Let π1 = π11 = P (Y = S|X = 1) and let π2 = π21 = P (Y = S|X = 2).
Then in row 1 the odds of a success is Ω1 = π1/(1 − π1) = π11/π12,
and in row 2 the odds of a success is Ω2 = π2/(1 − π2) = π21/π22.

If the odds

Ω =
π

1 − π
, then π =

Ω

Ω + 1
.

The odds ratio is

θ =
Ω1

Ω2
.

The relative risk equals

P (Y = 1|X = 1)

P (Y = 1|X = 2)
=

π1

π2

=
π11

π21

.

63) The estimated odds ratio is

θ̂ =
Ω̂1

Ω̂2

=
n11n22

n21n12
.

64) Unless you are told that the 2×2 table comes from a case–control study,
then the estimated relative risk is

π̂1

π̂2
=

π̂11

π̂21
=

n11/(n11 + n12)

n21/(n21 + n22)
.

65) If the table is from a case–control study, then you can estimate P (X =
1|Y = 1) and P (X = 1|Y = 2) but you can not estimate π1 and π2. Hence the relative
risk can not be estimated directly. However, if π1 < 0.05 and π2 < 0.05 (which is usually
true in case control studies), then the estimated odds ratio is used as the estimated
relative risk.

66) A 95% CI for log(θ) is log(θ̂) ± 1.96SE(log(θ̂)) = (L, U) where

SE(log(θ̂)) =

√

1

n11
+

1

n12
+

1

n21
+

1

n22
.

67) A 95% CI for θ is (eL, eU) where L and U are given in point 66).
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68) odds ratio = relative risk

(

1 − p̂2

1 − p̂1

)

.

Z Y = 1 = S Y = 2 = F summary statistic

1 X = 1 n111 n121 θ̂XY (1)

1 X = 2 n211 n221

2 X = 1 n112 n122 θ̂XY (2)

2 X = 2 n212 n222
...

...
...

...
...

k X = 1 n11k n12k θ̂XY (k)

k X = 2 n21k n22k

A three way table has variables X, Y and Z. Often Y is the response variable, X is
an explanatory variable, and Z is a (latent) confounding variable, in that the relationship
between X and Y is of interest but Z is thought to affect the X–Y relationship. 2×2×k
tables such as the one shown above are of special interest.

The 2 × 2 × k table has k partial tables. The big table can be collapsed into a 2 × 2
XY marginal table. The associations between X and Y in the partial tables are called
conditional associations.

69) Simpson’s paradox: the marginal X-Y association can have a different direction
than the direction of the conditional X-Y associations (e.g. all θXY (i) > 1 while θXY < 1).

70) The conditional odds ratio for the jth partial table is

θ̂XY (j) =
n11jn22j

n12jn21j

.

71) 4 step CMH test for conditional independence
i) Ho: θXY (1) = · · · = θXY (k) = 1 Ha: not Ho
ii) CMH test statistic (from output)
iii) p-value = P (χ2

1 > CMH).
iv) If p-value < α, reject Ho, X and Y are not conditionally independent given Z
otherwise fail to reject Ho, X and Y are conditionally independent given Z.

72) 4 step Breslow-Day test for homogeneity for a 2 × 2 × k table.
i) Ho: θXY (1) = · · · = θXY (k) Ha: not Ho
ii) BD test statistic (from output)
iii) df = k − 1 and p-value = P (χ2

k−1 > BD).
iv) If p-value < α, reject Ho, the X-Y association is not homogeneous given Z
otherwise fail to reject Ho, there is homogeneous X-Y association given Z.
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Consider loglinear models in X, Y and Z. Then the full model is the saturated model
(XY Z) is

log µijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk + λXY Z
ijk .

The symbol form of the model lists the highest order terms of the model. For example
the saturated model is (XY Z).

73) Given the symbol form of the model, write the model in terms of µ and the λ’s.

74) Given the model in terms of µ and the λ’s, write the model in symbol form.

Now consider loglinear models in i) X and Y or ii) X, Y and Z or iii)W , X, Y and
Z. The full = saturated model has G2(F ) = 0 and tends to be good if all of the cell
counts are large. The independence model (W,X,Y,Z) is usually to simple to fit well. If
a model only contains two factor interactions, then a model containing λXY means that
there is an X-Y association, otherwise X and Y are conditionally independent given the
remaining variables. 3 way or higher order interactions are hard to interpret.

75) Given a goodness of fit table, as a rule of thumb choose the simplest model that
fails to reject Ho. This rule of thumb is not very good. Let

D =
∑ |ni − µi|

2n
=
∑ |p̂i − π̂i|

n

where the ni are the observed cell counts and the µi are the expected counts under
the model M . If D = D(M) < 0.03 then the expected counts from the model fit the
observed counts well. Hence a better rule of thumb is choose the simplest model M with
D(M) < 0.03.

76) The 4 step change in deviance test for a reduced model R versus the saturated =
full model F is

i) Ho the reduced model is good Ha use the full model
ii) G2(R|F ) = G2(R)
iii) df = number of parameters in full model - number of parameters in reduced model

and p–value =
P (χ2

df > G2(R|F )).

iv) If p–value < α, reject Ho and use the full model.
If p–value ≥ α, fail to reject Ho and use the reduced model.

Suppose the CMH test fails to reject Ho. Then X does not affect Y given Z: θXY (i) = 1
for i = 1, ..., k. If the CMH test is rejected, perform the BD test. If the BD test fails
to reject Ho then there is X-Y dependence (association) given Z and this dependence is
the same in all k partial tables (the θXY (i) ≡ θ for i = 1, ..., k). If the BD test reject Ho,
then there is X-Y dependence given Z, but the dependence depends on the level i of Z.

77) Fit a Poisson regression. Suppose i) the response plot looks good, ii) the residual
plot looks like a right opening megaphone so that the variability of the residuals increases
with the fitted values, and iii) G2 > df + 3

√
df . Then there may be overdispersion:

V (Y |x) > eSP , the model conditional variance function.

3



78) If there is overdispersion in the PR model, the negative binomial regression (NBR)
model is often used. For NBR, Yi|xi ∼ independent negative binomial random variables
for i = 1, ..., N where E(Yi|xi) = µ̂(x) = eSP and V (Yi|bxi) = eSP (1 + τeSP ) = eSP +

τe2 SP where τ = 1/θ > 0. Then Ŷ = µ̂(x) = eESP = exp(α̂ + β̂
T
x). The response

plot is a plot of ESP = α̂+ β̂
T
x versus Yi with the exponential curve eESP added to the

plot along with a lowess curve. As τ → 0, the NBR model converges to the PR model.
79) The NBR model may be good if the response plot looks good in that the lowess

curve tracks the exponential curve (similar to the response plot for PR), and if the residual
plot of eESP versus the deviance residuals r is roughly ellipsoidal about the r = 0 line.

80) NBR output and inference is similar to that of PR, but the deviance is replaced
by −2 log likelihood.

81) Know how to perform the 4 step Wald test. This test is the same as 28) except
replace LR by NBR. Know that a (Wald) 95% CI for βi is β̂i ± 1.96SE(β̂i).

82) Know how to perform the 4 step likelihood ratio test (LRT), which is similar
to the deviance test. Output from R will be used for steps ii) and iii).

outf<-glm.nb(Y~x1 + x2 + ... + xk);outn <- glm(Y~1);anova(outn,outf)

2 x log-lik. Test df LR Stat Pr(Chi)

1 2 log L(null)

2 2 log L(full) 1 vs 2 k X^2(0|F) pvalue

i) Ho : β = 0 HA : β 6= 0
ii) test statistic X2(o|F ) = [−2logL(null)]− [−2logL(FULL)]
iii) The p–value = P (W > X2(o|F )) where W ∼ χ2

k has a chi–square distribution
with k degrees of freedom where k is the number of predictors in the full model.

iv) Reject Ho if the p–value < δ and conclude that there is an NBR relationship
between Y and the predictors x1, ..., xk. If p–value ≥ δ, then fail to reject Ho and
conclude that there is not an NBR relationship between Y and the predictors x1, ..., xk.

83) The 4 step change in LR test is like the change in deviance test and will use R

output for steps ii) and iii).

outf <- glm.nb(Y~x1 + x2 + ... + xk)

outr <- glm(Y~x3 + x5 + x7 ); anova(outf,outr)

2 x log-lik. Test df LR Stat Pr(Chi)

1 2 log L(red)

2 2 log L(full) 1 vs 2 k-m X^2(R|F) pvalue

i) Ho : the reduced model is good HA : use the full model
ii) test statistic X2(R|F ) = X2(0|F )−X2(0|R) = [−2logL(RED)]−[−2logL(FULL)]
iii) The p–value = P (W > X2(R|F )) where W ∼ χ2

k−m has a chi–square distribution
with k − m degrees of freedom. Note that k is the number of predictors in the full
model while m is the number of predictors in the reduced model. Also notice that
k − m = dfRED − dfFULL.

iv) Reject Ho if the p–value < δ and conclude that the full model is better than the
reduced model. If p–value ≥ δ, then fail to reject Ho and conclude that the reduced
model is good.

4


