
Exam 2 is Wednesday, March 25. 7 sheets of notes

The material for categorical data follows Agresti closely.

A categorical variable is one for which the measurement scale consists of a set of
categories.

Categorical variables having an ordered scales are called ordinal variables while cat-
egorical variables having unordered scales are called nominal variables.

A response variable y is the variable of interest. Explanatory variables x1, ..., xp are
used to predict (or explain) y.

Agresti is concerned with categorical response variables. The explanatory variable
may be categorical or quantitative (quantitative variables take values on a numerical
scale).

The following topic is not in Agresti but is in (p. 682 5th ed.) the Math 483 text.

20) χ2 goodness of fit test. Suppose that there is a single categorical variable Y that
has k categories A1, ..., Ak. Let pi = P (Ai) = probability that Y falls in category Ai. Let
the experiment be performed n times (ie randomly selected from some population, or the
outcome of n independent identical experiments). Let yi be the observed counts that n
trials resulted in category i for i = 1, ..., k. Let n =

∑k
i=1 yi and let Ei = nπi.

a) If the πi are chosen before collecting data, then the four step test is
i) Ho : pi = πi for i = 1, ..., k, HA : not Ho

ii) test statistic

X2 =
k∑

i=1

(yi − nπi)
2

nπi

=
k∑

i=1

(Oi − Ei)
2

Ei

iii) The p–value = P (W > X2) where W ∼ χ2
k−1 has a chi–square distribution with

k − 1 degrees of freedom.
iv) Reject Ho if the p–value < δ, otherwise fail to reject Ho and give a nontechnical

conclusion.

b) If the πi are computed after estimating r parameters from the data with the MLE,
then steps i) and ii) are the same but iii) and iv) change slightly: if X2 > χ2

δ,k−1 then
the p–value < δ so reject Ho. If X2 < χ2

δ,k−1−r then the p–value > δ so fail to reject Ho.
If χ2

δ,k−1−r < X2 < χ2
δ,k−1, the test is inconclusive. Here P (W > χ2

δ,d) = δ if W has a
chi–square distribution with d degrees of freedom. Still give a nontechnical conclusion in
step iv).

The p–value is either given in output or approximated using a table. If δ is not given,
use δ = 0.05. If Ho is rejected, then conclude that there is strong evidence that the model
pi = πi, i = 1, ..., k does not hold. If Ho is not rejected, then there is not enough evidence
to conclude that the model pi = πi, i = 1, ..., k does not hold.
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21) The chi–square test for independence or homogeneity: Suppose that there are two
categorical variables: the row variable with I categories and the column variable with J
categories. Know how to perform the 4 step test:
i) Ho: there is no relationship between the two categorical variables
Ha: there is a relationship.
ii) test statistic =

X2 =
∑ (nij − µ̂ij)

2

µ̂ij
=

∑ (Oij − Eij)
2

Eij
.

iii) p-value = P (W > X2) where W ∼ χ2
(I−1)(J−1),

(the degrees of freedom = (I − 1)(J − 1)).
iv) Reject Ho if the p–value ≤ δ, and conclude that there is a relationship between the
two categorical variables. If the p-value > δ, fail to reject Ho and conclude that there is
no relationship between the two variables.

See HW4 1,2, HW5 1, Q4.

Sometimes X2 is given by output but sometimes you need to compute the expected
count and the chi-square contribution. Recall that the expected cell count E = (row
total)(column total)/(table total). The chi-square cell contribution = (O−E)2/E where
O and E are the observed and expected cell counts. The expected cell count and the cell
chi-square contribution need to be computed for each of the IJ cells. Finally, X2 is the
sum of all IJ cell chi-square contributions.

Sometimes the p–value is given by output but sometimes it needs to be obtained
from χ2 table. The df = (I − 1)(J − 1). Find the two values in the df row of χ2 table
that are closest to X2. Then the p–value is between the values on the top row of the
table. For example, if df = 5 and X2 = 13.00 then 12.83 and 15.09 bracket X2 and
0.010 < p − value < 0.025. If X2 is big and way off the χ2 table , then p-value < 0.001.
For example, if df = 5 and X2 = 57, then p–value = 0. If X2 is small and way off the χ2

table , then p-value > 0.25. For example, if df = 5 and X2 = 4.33, then p–value > 0.25.

22) The likelihood ratio test for independence or homogeneity: This test is exactly the
same as 21) except the test statistic in step ii) replaces X2 with

G2 = 2
∑

nij log(nij/µ̂ij) = 2
∑

Oij log(Oij/Eij).

The simple logistic regression (SLR) model is Y |X = x ∼ independent Bernoulli(π(x))
random variables where

π(x) =
exp(α + βx)

1 + exp(α + βx)
.

The Yi are random variables while the Xi are treated as known constants. The
parameters α and β are unknown constants that need to be estimated.

(If the Xi are random variables, then the model is conditional on the X ′

is. Hence the
X ′

is are still treated as constants.)

The response variable Y is the variable that you want to predict while the independent
(or predictor or explanatory) variable X is the variable used to predict the response.
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For the exam and final know the meaning of the simple logistic regression output.
Shown next are an actual ARC output and an output only using symbols.
Response = Y
Coefficient Estimates

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) z for Ho: α = 0

x β̂ se(β̂) zo = β̂/se(β̂) for Ho: β = 0

Number of cases: N

Degrees of freedom: N-2

-----------------------------------------------------------------

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -21.5922 2.93038 -7.368 0.0000

Bottom 2.33378 0.319705 7.300 0.0000

Number of cases: 200

Degrees of freedom: 198

Know: A scatter plot is a plot of W vs Z is a plot with W on the horizontal axis
and Z on the vertical axis and is used to display the conditional distribution of Z given
W .

For SLR the scatterplot of X vs Y is often used.

The following problems are important for both exam 2 and the final. Sup-
pose computer output is given.

23) Given a value X = x of the explanatory variable, and given computer output,
find

π̂(x) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)
.

See HW5 2b.

24) The large sample 100 (1 − δ) % CI for β is β̂ ± zδ/2 se(β̂). See HW5 2c.

Note that a 90% CI uses zδ/2 = 1.645, a 95% CI uses zδ/2 = 1.96, and a 99% CI uses
zδ/2 = 2.576,
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25) Be able to perform the 4 step Wald test of hypotheses:
i) State the hypotheses Ho: β = 0 Ha: β 6= 0.
ii) Find the test statistic zo = β̂/se(β̂) or obtain it from output.
iii) p–value = 2P (Z < −|zo|) = 2P (Z > |zo|). Find the p–value from output or use the
standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical sentence
restating your conclusion in terms of the story problem.

Recall that Ho is rejected if the p–value < δ, and use δ = 0.05 if δ is not given. If Ho
is rejected, then conclude that X is a useful SLR predictor for Y . If you fail to reject Ho,
then conclude that X is not a useful SLR predictor for Y . Note that “SLR” is crucial.
It could be that X is a very useful predictor for Y , but not a good SLR predictor.

The Wald test is good if the SLR model holds and if the sample size is large. It is
better to use the output to get the test statistic and p–value than to use formulas and
the tables, but I may not give the relevant output. Expect to get at least two testing
of hypotheses problems, one where Ho is rejected and one where Ho is not rejected. See
Q5, HW5 2d.

Logistic regression can also be used for binomial data with predictors X i = (Xi1, ..., Xik)
T .

Suppose that X i = x = (x1, ..., xk)
T is observed. Then Yi|X i = xi ∼ independent

Binomial(ni, π(xi)) for i = 1, ..., N where

π(x) =
exp(α + βTx)

1 + exp(α + βTx)
.

Here βTx = β1x1+ · · ·+βkxk. Binary regression is a special case if ni = 1 for i = 1, ..., N.

Notice that E(Yi/ni|xi) = π(xi).

The following two questions are important for the exam and final.

26) Given the values x of the k explanatory variables, and given computer output,
find

π̂(x) =
exp(α̂ + β̂

T
x)

1 + exp(α̂ + β̂
T
x)

.

See HW5 3f.

27) The large sample 100 (1 − δ) % CI for βi is β̂i ± zδ/2 se(β̂i). See HW5 3gh.

For the exam and final know the meaning of the (multiple) logistic regression
output. Next are shown an actual ARC output and an output only using symbols.
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Response = Y
Coefficient Estimates

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xk β̂k se(β̂k) zo,k = β̂k/se(β̂k) for Ho: βk = 0

Scale factor: 1.

Number of cases: N

Degrees of freedom: N - k - 1

Pearson X2:

Deviance: D = G^2

-------------------------------------

Binomial Regression

Kernel mean function = Logistic

Response = Status

Terms = (Bottom Left)

Trials = Ones

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant -389.806 104.224 -3.740 0.0002

Bottom 2.26423 0.333233 6.795 0.0000

Left 2.83356 0.795601 3.562 0.0004

Scale factor: 1.

Number of cases: 200

Degrees of freedom: 197

Pearson X2: 179.809

Deviance: 99.169

28) Be able to perform the 4 step Wald test of hypotheses:
i) State the hypotheses Ho: βj = 0 Ha: βj 6= 0.

ii) Find the test statistic zo,j = β̂j/se(β̂j) or obtain it from output.
iii) p–value = 2P (Z < −|zoj|) = 2P (Z > |zoj|). Find the p–value from output or use the
standard normal table.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical sentence
restating your conclusion in terms of the story problem.

Recall that Ho is rejected if the p–value < δ, and use δ = 0.05 if δ is not given. If
Ho is rejected, then conclude that Xj is needed in the LR model for Y given that the
other p − 1 predictors are in the model. If you fail to reject Ho, then conclude that Xj

is not needed in the LR model for Y given that the other p − 1 predictors are in the
model. Note that Xj could be a very useful SLR predictor, but may not be needed if
other predictors are added to the model. See HW5 3ij.
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Suppose that x = (x1, ..., xk)
T is observed and that Yi|xi ∼ independent Binomial(ni, π(xi))

for i = 1, ..., N where

π̂(x) =
exp(α̂ + β̂

T
x)

1 + exp(α̂ + β̂
T
x)

.

This is called the full model for logistic regression and the (k + 1) parameters
α, β1, ..., βk are estimated.

For the saturated model, the Yi|xi ∼ independent Binomial(ni, πi) for i = 1, ..., N
where

π̂i = Yi/ni.

This model estimates the N parameters πi.

Let lSAT (π1, ..., πn) be the likelihood function for the saturated model and let lFULL(α, β)
be the likelihood function for the full model. Let LSAT = log lSAT (π̂1, ..., π̂N) be the log
likelihood function for the saturated model evaluated at the MLE (π̂1, ..., π̂N) and let
LFULL = log lFULL(α̂, β̂) be the log likelihood function for the full model evaluated at
the MLE (α̂, β̂).

Then the deviance D = G2 = −2(LFULL − LSAT ).

The degrees of freedom for the deviance = dfFULL = N −k−1 where N is the number
of parameters for the saturated model and k + 1 is the number of parameters for the full
model.

The saturated model is usually not very good for binary data (all ni = 1) or if the ni

are small. The saturated model can be good if all of the ni are large or if πi is very close
to 0 or 1 whenever ni is small.

If X ∼ χ2
d then E(X) = d and V (X) = 2d. An observed value of x > d + 3

√
d is

unusually large and an observed value of x < d − 3
√

d is unusually small.

When the saturated model is good, a rule of thumb is that the logistic regression
model is ok if G2 ≤ N − k − 1 (or if G2 ≤ N − k − 1 + 3

√
N − k − 1).

An estimated sufficient summary plot or response plot is a plot of the estimated

sufficient predictor ESPi = α̂+β̂
T
xi versus Yi with the logistic curve of fitted proportions

π̂(ESPi) =
eESPi

1 + eESPi

added to the plot along with a step function of observed proportions.

29) Suppose that ESPi takes many values (eg the LR model has a continuous predic-
tor) and that k + 1 << N . Know that the LR model is good if the step function tracks
the logistic curve of fitted proportions in the response plot. Also know that you should
check that the LR model is good before doing inference with the LR model. See HW6
3,4.
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Response = Y Terms = (X1, ..., Xk) Sequential Analysis of Deviance

Total Change
Predictor df Deviance df Deviance

Ones N − 1 = dfo G2
o

X1 N − 2 1
X2 N − 3 1
...

...
...

...
Xk N − k − 1 = dfFULL G2

FULL 1

-----------------------------------------

Data set = cbrain, Name of Fit = B1

Response = sex

Terms = (cephalic size log[size])

Sequential Analysis of Deviance

Total Change

Predictor df Deviance | df Deviance

Ones 266 363.820 |

cephalic 265 363.605 | 1 0.214643

size 264 315.793 | 1 47.8121

log[size] 263 305.045 | 1 10.7484

Know how to use the above output for the following test. Assume that the response
plot has been made and that the observed proportions track the logistic curve. If the
logistic curve looks like a line with small positive slope, then the predictors may not be
useful. The following test asks whether π̂(xi) from the logistic regression should be used
to estimate P (Yi = 1|xi) or if none of the predictors should be used and

P (Yi = 1) ≡ π ≈
N∑

i=1

Yi/
N∑

i=1

ni for all i = 1, ..., N.

30) The 4 step deviance test is
i) Ho : β = 0 HA : β 6= 0
ii) test statistic G2(o|F ) = G2

o − G2
FULL

iii) The p–value = P (W > G2(o|F )) where W ∼ χ2
k has a chi–square distribution

with k degrees of freedom. Note that k = k+1−1 = dfo−dfFULL = N −1− (N −k−1).
iv) Reject Ho if the p–value < δ and conclude that there is a LR relationship between

Y and the predictors x1, ..., xk. If p–value ≥ δ, then fail to reject Ho and conclude that
there is not a LR relationship between Y and the predictors x1, ..., xk.

Also use R output from the full model and the null model. See HW6 5b 6a.

outf <- glm(Y~x1 + x2 + ... + xk, family = binomial)

outn <- glm(Y~1,family = binomial); anova(outn,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****

2 *** **** k G^2(0|F) pvalue
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The sufficient predictor SP = α + βT x. After obtaining an acceptable full model
where

SP = SP (Full) = α + β1xi1 + · · · + βkxik = α + βTx,

try to obtain a reduced model Yi|XRi = xRi ∼ independent Binomial(ni, π(xRi)) where

SP (Red) = α + βR1xRi1 + · · · + βRmxRim = αR + βT
RxRi

and {xRi1, ..., xRim} ⊂ {x1, ..., xk}.
Let xR,m+1, ..., xRk denote the k − m predictors that are in the full model but not

in the reduced model. We want to test Ho : βR,m+1 = · · · = βRk = 0. For notational
ease, we will often assume that the predictors have been sorted and partitioned so that
xi = xRi for i = 1, ..., k. Then the reduced model uses predictors x1, ..., xm and we test
Ho : βm+1 = · · · = βk = 0. However, in practice this sorting is usually not done.

Assume that the response plot looks good. Then we want to test Ho: the reduced
model can be used instead of the full model versus HA: the full model is (significantly)
better than the reduced model. Fit the full model and the reduced model to get the
deviances G2

FULL and G2
RED.

31) The 4 step change in deviance test is
i) Ho : the reduced model is good HA : use the full model
ii) test statistic G2(R|F ) = G2

RED − G2
FULL

iii) The p–value = P (W > G2(R|F )) where W ∼ χ2
k−m has a chi–square distribution

with k − m degrees of freedom. Note that k is the number of predictors in the full
model while m is the number of predictors in the reduced model. Also notice that
k − m = (k + 1) − (m + 1) = dfRED − dfFULL = N − m− 1 − (N − k − 1).

iv) Reject Ho if the p–value < δ and conclude that the full model is (significantly)
better than the reduced model.

If p–value ≥ δ, then fail to reject Ho and conclude that the reduced model is good.

See HW 5c, 6b. Also use R output

outf <- glm(Y~x1 + x2 + ... + xk, family = binomial)

outr <- glm(Y~ x3 + x5 + x7,family = binomial); anova(outr,outf,test="Chi")

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 *** ****

2 *** **** k-m G^2(R|F) pvalue

32) If the reduced model leaves out a single variable Xi, then the change in deviance
test becomes Ho : βi = 0 versus HA : βi 6= 0. This likelihood ratio is a competitor of
the Wald test (see 28)). The likelihood ratio test is usually better than the Wald test if
the sample size N is not large, but the Wald test is often easier for software to produce.
For large N the test statistics from the two test tend to be very similar (asymptotically
equivalent tests). The “drop1(outf,test=”Chi”)” command works in R. In Arc, select
“Examine Submodels” from the B1 menu, then click on the circle for Change in deviance

for fitting each term last.
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Know how to use the following output to test the reduced model versus the full model.
Response = Y Terms = (X1, ..., Xk) (Full Model)

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xk β̂k se(β̂k) zo,k = β̂k/se(β̂k) for Ho: βk = 0
Degrees of freedom: N - k - 1 = dfFULL

Deviance: D = G2
FULL

Response = Y Terms = (X1, ..., Xm) (Reduced Model)

Label Estimate Std. Error Est/SE p-value
Constant α̂ se(α̂) zo,0 for Ho: α = 0

x1 β̂1 se(β̂1) zo,1 = β̂1/se(β̂1) for Ho: β1 = 0
...

...
...

...
...

xm β̂m se(β̂m) zo,m = β̂k/se(β̂m) for Ho: βm = 0
Degrees of freedom: N - m - 1 = dfRED

Deviance: D = G2
RED

-----------------------------------------------------------------

Data set = Banknotes, Name of Fit = B1 (Full Model)

Response = Status

Terms = (Diagonal Bottom Top)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 2360.49 5064.42 0.466 0.6411

Diagonal -19.8874 37.2830 -0.533 0.5937

Bottom 23.6950 45.5271 0.520 0.6027

Top 19.6464 60.6512 0.324 0.7460

Degrees of freedom: 196

Deviance: 0.009

Data set = Banknotes, Name of Fit = B2 (Reduced Model)

Response = Status

Terms = (Diagonal)

Coefficient Estimates

Label Estimate Std. Error Est/SE p-value

Constant 989.545 219.032 4.518 0.0000

Diagonal -7.04376 1.55940 -4.517 0.0000

Degrees of freedom: 198

Deviance: 21.109
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33) If the reduced model is good, then the EE plot of ESP (R) = α̂R + β̂
T

RxRi versus

ESP = α̂ + β̂
T
xi should be highly correlated with the identity line with unit slope and

zero intercept.

34) Let π(x) = P (success|x) = 1−P(failure|x) where a “success” is what is counted
and a “failure” is what is not counted (so if the Yi are binary, π(x) = P (Yi = 1|x)).
Then the estimated odds of success is

Ω̂(x) =
π̂(x)

1 − π̂(x)
= exp(ESP ).

35) In logistic regression, increasing a predictor xi by 1 unit (while holding all other
predictors fixed) multiplies the estimated odds of success by a factor of exp(β̂i).
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