
Math 484 Exam 2 is on Wednesday, Oct. 26 and covers ch. 2, 3.1, 3.2, 3.3, 3.4,
homeworks 1-7 and quizzes 1-7. You are allowed 10 sheets of notes and a calculator.
Any needed tables will be provided. CHECK FORMULAS: YOU ARE RESPONSIBLE
FOR ANY ERRORS ON THIS HANDOUT!

Everything from Exam 1 is fair game.
Types of problems likely to appear on Exam 2:

1) – 13) on Exam 1 review.

Given a new or future vector of predictors xf = (1, xf,2, ..., xf,p)
T , let a new or future

observation Yf be independent of Y1, ..., Yn.

14) Be able to find Ŷf = xT
f β̂, the point estimator of i) Yf given xf and of ii) E(Yf |xf).

iii) The 100 (1− δ)% CI for E(Yf ) = xT
f β = E(Ŷf ) is Ŷf ± tn−p,1−δ/2se(Ŷf). Generally

se(Ŷf ) will come from output.

iv) The 100 (1− δ)% prediction interval (PI) for Yf is Ŷf ± tn−p,1−δ/2se(pred). Gener-
ally se(pred) will come from output. Note that Yf is a random variable not a parameter.

See Q4 2, HW4 A, B. Use z1−δ/2 for tn−p,1−δ/2 if df = n − p > 30.

The simple linear regression (SLR) model is Y = β1 + β2x + e is a special case of the
MLR model with p = 2.

15) From a story problem be able to determine which variable is the response variable
and which variable is the explanatory variable. Given two sample means x and y, two
sample standard deviations sx and sy and the sample correlation ρ̂ ≡ ρ̂(x, y), be able to

find the LS line Ŷ = β̂1 + β̂2x where β̂2 = ρ̂sy/sx and β̂1 = y− β̂2x. See Q4 1, and HW4
C).

16) Given
∑n

i=1(xi − x)(yi − y),
∑n

i=1(xi − x)2, x, and y, find the least squares line
Ŷ = β̂1 + β̂2x where the slope

β̂2 =

∑n
i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2

and the intercept β̂1 = y − β̂2x. See HW4 D). Note that β̂2 = Ĉov(x, y)/s2
x.

17) Given a small data set, find the least squares line by finding the sums needed in
16). You need the xi, yi and a table with headers xi, yi, xi − x, yi − y, (xi − x)(yi − y),
and (xi − x)2. See Q4 3, HW4 E).

18) Given β̂1 and β̂2, be able to add the LS line to a scatterplot of x vs Y . Simply
find Ŷ for 2 values of x, plot the 2 points and draw the line determined by the 2 points.

19) Suppose the least squares criterion is Q(η) =
∑

i=1(Yi − ai − ηxi)
2 where the

constants ai are known.
i) Then the MLR model is Yi = ai + βxi + ei and E(Yi) = ai + βxi.
See HW4 F), HW5 Aa), Q5.
ii) Then find the least squares estimator β̂ of β by differentiating Q(η) with respect

to η, setting the derivative to zero, solving for η, and calling the solution β̂. To show that
β̂ is actually the LS estimator, show that the 2nd derivative of Q wrt η is greater than
zero for all values of η.
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By the chain rule,

dQ

dη
=

n∑

i=1

2(Yi − ai − ηxi)(−xi) = −2
n∑

i=1

xi(Yi − ai − ηxi)

= −2[
n∑

i=1

xi(Yi − ai) − η
n∑

i=1

x2
i ] = 2η

n∑

i=1

x2
i − 2

n∑

i=1

xi(Yi − ai)
set
= 0.

Or

η [2
n∑

i=1

x2
i ] = 2

n∑

i=1

xi(Yi − ai)

or

η̂ = β̂ =

∑n
i=1 xi(Yi − ai)∑n

i=1 x2
i

.

Now
d2Q

dη2
= 2

n∑

i=1

x2
i > 0.

If xi ≡ 1, then
dQ

dη
= 2η

n∑

i=1

1 − 2
n∑

i=1

(Yi − ai)
set
= 0.

Or

η [2n] = 2
n∑

i=1

(Yi − ai)

or

η̂ = β̂ =

∑n
i=1(Yi − ai)

n

and
d2Q

dη2
= 2n > 0.

In particular, if the model is Yi = β1+β2xi +ei then Q(η1, η2) =
∑n

i=1(Yi−η1−η2xi)
2.

If the unknown parameter is β1, then η2 = β2 and by the chain rule,

dQ

dη1
= −2

n∑

i=1

(Yi − η1 − β2xi), nβ̂1 =
n∑

i=1

(Yi − β2xi)

and
d2Q

dη2
1

= 2n > 0.

If the unknown parameter is β2, then η1 = β1, and by the chain rule,

dQ

dη2
= −2

n∑

i=1

xi(Yi − β1 − η2xi), β̂2

n∑

i=1

x2
i =

n∑

i=1

xi(Yi − β1)

and
d2Q

dη2
2

= 2
n∑

i=1

x2
i > 0.
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See HW4 Fb), HW5 Aa) and Q5.

20) An added variable plot is used to give information about the test Ho : βi = 0.
The points in the plot cluster about a line with slope = β̂i. If there is strong trend then
xi is needed in the MLR for Y given that the other predictors x2, ..., xi−1, xi+1, ..., xp are
in the model. If there is almost no trend, then xi may not be needed in the MLR for
Y given that the other predictors x2, ..., xi−1, xi+1, ..., xp are in the model. If the zero
line with 0 slope and 0 intercept and the OLS line are added to the plot, the variable is
probably needed if it is clear that the two lines intersect at the origin. The variable is
probably not needed if the two lines nearly coincide near the origin in that you can not
clearly tell that they intersect at the origin. Know how to use the plot. See HW4 G.

21) Given a least squares estimator β̂j =
∑n

i=1 kiYi and the least squares model
Yi = β1 + β2xi + ei where the ei are iid with E(ei) = 0 and V(ei) = σ2, and possibly one
of β1 or β2 is known, be able to find
i) E(β̂j) =

∑n
i=1 kiE(Yi) =

∑n
i=1 ki(β1 + β2xi). Typically the LS estimator β̂j will be an

unbiased estimator for the parameter βj that it is estimating.

ii) V(β̂j) =
∑n

i=1 k2
i V (Yi) = σ2 ∑n

i=1 k2
i .

Be able to simplify
∑n

i=1 ki(β1 + β2xi) and
∑n

i=1 k2
i . See HW5 Abc.

22) Other residual plots are also useful. Plot xj vs r for each predictor variable j
in the model and for any potential predictors wj not in the model. Plot the time order
versus ri if the time order is known. Again, trends and outliers suggest that the model
could be improved. An ellipsoidal plot with no trend suggests that the MLR model is
good. A parabolic plot suggests adding x2

j or wj and w2
j to the MLR model.

23) The FF plot of Ŷi,I vs. Ŷi and the RR plot of ri,I vs. ri can be used to check
whether a candidate submodel or reduced model I is good. The submodel is good if the
plotted points in the FF and RR plots cluster tightly about the identity line. In the RR
plot, the OLS line and identity line can be added to the plot as visual aids. It should
be difficult to see that the OLS and identity lines intersect at the origin (the OLS line
is the identity line in the FF plot). If the FF plot looks good but the RR plot does
not, the submodel may be good if the main goal of the analysis is to predict Y. The two
plots are also useful for examining the reduced model in the partial F test. Note that if
the candidate model seems to be good, the usual MLR checks should still be made. In
particular, the response plot and residual plot (of Ŷi,I vs. ri,I) need to be made for the
submodel.

24) The plot of the residuals Yi − Y vs. ri is useful for the Anova F test of Ho : β2 =
· · · = βp = 0 vs. Ha: not Ho. If Ho is true, then the plotted points in this special case of
the RR plot should cluster tightly about the identity line.

25) The no intercept MLR model, also known as regression through the origin, is still
Y = xTβ + e, but there is no intercept in the model (no constant x1 ≡ 1). The residual
and response plots, Ŷ = xT β̂, the t tests for Ho βi = 0, the CI for βi, and the partial F
test are nearly the same as the usual MLR model. See HW5 Bdef.
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26) The 4 step no intercept Anova F test is i) Ho β = 0 Ha β 6= 0
ii) Fo = MSM/MSE is usually given in output
iii) pval = P (Fp,n−p > Fo) is usually given in output
iv) If pval < δ, reject Ho and conclude that there is an MLR relationship between Y and
the predictors x1, ..., xp. If pval ≥ δ, fail to reject Ho, and conclude that there is a not a
MLR relationship between Y and the predictors x1, ..., xp. See HW5 Bc.

27) A scatterplot of x vs. y is used to visualize the conditional distribution of y|x.
A scatterplot matrix is an array of scatterplots. It is used to examine the marginal
relationships of the predictors and response. Variable names are on the diagonal. Plots
above and below the variable W have W on the horizontal axis. Plots to the left and
right of the variable W have W on the vertical axis. It is often useful to transform
predictors if strong nonlinearities are apparent in the scatterplot matrix. Be able to tell
if the marginal relationships are linear or nonlinear. See HW5 Cbd.

28) Suppose you have a scatterplot of two variables xλ1

1 versus xλ2

2 , x1, x2 > 0 and
that the plotted points follow a nonlinear one to one function. If λ = 0 use the log
transformation log(xi). Consider the ladder of powers −1,−0.5,−1/3, 0, 1/3, 0.5, and
1. Ladder rule: To spread small values of the variable, make λi smaller. To spread
large values of the variable, make λi larger. Be able to use the Ladder Rule. See HW5
Ce.

29) A power transformation is z = tλ(w) where z=Y or z = xj and tλ(w) = wλ for
λ 6= 0 while t0(w) = log(w).

i) Suppose that all values of the variable w to be transformed are positive. The log
rule says use log(w) if max(wi)/min(wi) > 10. This rule often works wonders on the
data and the log transformation is the most used (modified) power transformation. If
the variable w can take on the value of 0, use log(w + c) where c is a small constant like
1, 1/2, or 3/8. Be able to tell which variables in a scatterplot matrix satisfy the log rule.
See HW5 Cd, Db.

ii) The unit rule says that if xi and y have the same units, then use the same
transformation of xi and y.

iii) The cube root rule says that if w is a volume measurement, then cube root
transformation w1/3 may be useful.

Consider the ladder of powers given in point 28). No transformation (λ = 1) is best,
then the log transformation, then the square root transformation. Theory, if available,
should be used to select a transformation. Frequently more than one transformation will
work. For example if y = weight, X1 = volume = X2 ∗X3 ∗X4, then y vs. X

1/3
1 or log(y)

vs. log(X1) = log(X2) + log(X3) + log(X4) may both work. Also if y is linearly related
with X2, X3, X4 and these three variables all have length units mm, say, then the units
of X1 are (mm)3. Hence the units of X

1/3
1 are mm.

30) There are also several guidelines for building a MLR model. Suppose that variable
Z is of interest and variables W1, ..., Wr have been collected along with Z. Make a
scatterplot matrix of W1, ..., Wr and Z. (If r is large, several matrices may need to be
made. Each one should include Z.) Remove or correct any gross outliers. It is often
a good idea to transform the Wi to remove any strong nonlinearities from the
predictors.
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31) Given a scatterplot matrix, be able to tell whether no transformation or the log
rule applies. See Q6 1, HW 5 Cd, Da.

32) Given a plot of x versus Y , be able to use the ladder rule to decide between two
transformations, one decreasing λ, eg log(Y ), and one increasing λ, eg Y 2. A variant
might have a plot of

√
x versus

√
Y . Then choose between Y and log(Y ) or between x

and log(x). See Q7.

Assume that all of the values of the “response” Zi are positive. A power transfor-

mation has the form Y = tλ(Z) = Zλ for λ 6= 0 and Y = t0(Z) = log(Z) for λ = 0
where

λ ∈ ΛL = {−1,−1/2,−1/3, 0, 1/3, 1/2, 1}.
The modified power transformation family

tλ(Zi) ≡ Z
(λ)
i =

Zλ
i − 1

λ
(1)

for λ 6= 0 and Z
(0)
i = log(Zi) where λ ∈ ΛL.

A graphical method for response transformations computes the “fitted values” Ŵi =
xT

i β̂λ from the multiple linear regression model using Wi = tλ(Zi) as the “response.” A
transformation plot is a plot of Ŵ versus W with the identity line added as a visual aid.
and is made for each of the seven values of λ ∈ ΛL. The plotted points follow the identity
line in a (roughly) evenly populated band if the iid error MLR model is reasonable for
Y = W and x. Often TZHAT or YHAT is on the horizontal axis and Y = t(Z) on the
vertical axis.

33) Given several transformation plots or several response plots (with Y = t(Z)
or t(Z) on the vertical axis), be able to find the response transformation Y = t(Z)
corresponding to a plot that looks like a good MLR response plot. Q6, HW6 B, C.

Suppose that the explanatory variables have the form x1, ..., xk, xjj = x2
j , xij = xixj,

x123 = x1x2x3, et cetera. Then the variables x1, ..., xk are main effects. A product of two
or more different main effects is an interaction. A variable such as x2

1 or x3
7 is a power.

An x1x2 interaction will sometimes also be denoted as x1 : x2 or x1 ∗ x2.
A factor (with c levels a1, ..., ac) is incorporated into the MLR model by using c − 1

indicator variables xWi = 1 if W = ai and xWi = 0 otherwise, where one of the levels ai

is omitted, eg, use i = 1, ..., c− 1. The degrees of freedom of the c− 1 indicator variables
is c − 1.

For variable selection, the model Y = xTβ + e that uses all of the predictors is
called the full model. A model Y = xT

I βI + e that only uses a subset xI of the predictors
is called a submodel. The full model is always a submodel. The full model has
SP = xTβ and the submodel has SP = xT

I βI .
Either include all of the indicator variables for a factor in the model or exclude all of

them. If the model contains powers or interactions, also include all main effects in the
model.

After selecting a submodel I , make the response and residual plots for the full model
and the submodel. Make the RR plot of rI,i versus ri and the FF plot of ŶI,i versus Yi.
The submodel is good if the plotted points in the FF and RR plots cluster tightly about
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the identity line. In the RR plot, the OLS line and identity line can be added to the plot
as visual aids. It should be difficult to see that the OLS and identity lines intersect at
the origin, so the two lines should nearly coincide at the origin. If the FF plot looks good
but the RR plot does not, the submodel may be good if the main goal of the analysis is
for prediction.

Let Imin correspond to the submodel with the smallest Cp. Find the submodel II

with the fewest number of predictors such that Cp(II) ≤ Cp(Imin) + 1. Then II is the
initial submodel that should be examined. It is possible that II = Imin or that II is
the full model. Models I with fewer predictors than II such that Cp(I) ≤ Cp(Imin) + 4
are interesting and should also be examined. Models I with k predictors, including a
constant and with fewer predictors than II such that Cp(Imin) + 4 < Cp(I) ≤ min(2k, p)
should be checked.

Assume that the full model has good response and residual plots and than n > 5p.
Let subset I have k predictors, including a constant. The following rules of thumb may
be useful, but may not all hold simultaneously. Do not use more predictors than model
II to avoid overfitting. Then the submodel I is good if
i) the response and residual plots for the submodel looks like the response and residual
plots for the full model.
ii) corr(ESP,ESP(I)) = corr(Ŷ, ŶI) ≥ 0.95.
iii) The plotted points in the FF plot cluster tightly about the identity line.
iv) Want the p-value ≥ 0.01 for the partial F test that uses I as the reduced model.
v) Want k ≤ n/10.
vi) The plotted points in the RR plot cluster tightly about the identity line.
vii) Want R2(I) close to R2(full) (recall that R2(I) ≤ R2(full) since adding predictors
to I does not decrease R2(I)).
viii) Want Cp(Imin) ≤ Cp(I) ≤ min(2k, p) with no big jumps in Cp (the increase should
be less than four) as variables are deleted.
ix) Want hardly any predictors with p-values > 0.05.
x) Want few predictors with p-values between 0.01 and 0.05.

34) Suppose you are A) given output from forward selection or backward elimination,
or B) given a table with several models L1, L2, ..., Lk where L1 is the full model and
model Imin and perhaps II are included. Then be able to find Imin, II and models
with fewer predictors than II such that Cp(I) ≤ Cp(Imin) + 4. Know that models with
more predictors than II and with Cp(I) > 2k should not be used. Q7, HW6 Ebc, HW7
A (min AIC model instead of min Cp model), B, C, D.

Forward selection Step 1) k = 1: Start with a constant w1 = x1. Step 2) k = 2:
Compute Cp for all models with k = 2 containing a constant and a single predictor xi.
Keep the predictor w2 = xj, say, that minimizes Cp.
Step 3) k = 3: Fit all models with k = 3 that contain w1 and w2. Keep the predictor w3

that minimizes Cp. ...
Step j) k = j: Fit all models with k = j that contains w1, w2, ..., wj−1. Keep the predictor
wj that minimizes Cp. ...
Step p): Fit the full model.

Backward elimination: All models contain a constant = u1. Step 0) k = p: Start
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with the full model that contains x1, ..., xp. We will also say that the full model contains
u1, ..., up where u1 = x1 but ui need not equal xi for i > 1.
Step 1) k = p − 1: Fit each model with k = p − 1 predictors including a constant.
Delete the predictor up, say, that corresponds to the model with the smallest Cp. Keep
u1, ..., up−1.
Step 2) k = p− 2: Fit each model with p− 2 predictors including a constant. Delete the
predictor up−1 corresponding to the smallest Cp. Keep u1, ..., up−2. ...
Step j) k = p − j: fit each model with p − j predictors including a constant. Delete the
predictor up−j+1 corresponding to the smallest Cp. Keep u1, ..., up−j. ...
Step p − 2) k = 2. The current model contains u1, u2 and u3. Fit the model u1, u2 and
the model u1, u3. Assume that model u1, u2 minimizes Cp. Then delete u3 and keep u1

and u2.

35) Consider intervals that contain c cases (Y(1), Y(c)), (Y(2), Y(c+1)), ..., (Y(n−c+1), Y(n)).
Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator shorth(c) =
(Y(d), Y(d+c−1)) is the interval with the shortest length. A large sample 100(1 − δ)%
prediction interval (PI) [Ln, Un] is such that P (Yf ∈ [Ln, Un]) → 1 − δ as n → ∞. The
shorth(c) interval is a large sample 100(1 − δ)% PI if c/n → 1 − δ as n → ∞ that often
has the asymptotically shortest length.

Most of the rest of the material, 36)–41), will not be tested on Exam 2.
36) Let W1, ..., Wn be iid random variables from a distribution with cdf F , mean µ

and variance σ2. Let w1, ..., wn be the observed values of the Xi. The distribution of the
RV D is the empirical distribution if D is a discrete RV with the following pmf.

w w1 w2 · · · wn

P (D = w) 1/n 1/n · · · 1/n

Then E(D) = w =
1

n

n∑

i=1

wi and V (D) = σ̂2
E =

1

n

n∑

i=1

(wi − w)2. If the wi are not

distinct, then let kj = number of wi = wj, then P (D = wj) = k/n, but this just
combines columns in the above table that have wi = wj. The cdf of D is the empirical
cdf Fn. As a statistic (random variable), the empirical cdf

Fn(x) =
1

n

n∑

i=1

I(Wi ≤ x) =
number of Wi ≤ x

n
. The observed value of the statistic

(empirical cdf) is Fn(x) =
1

n

n∑

i=1

I(wi ≤ x) =
number of wi ≤ x

n
, a nondecreasing step

function that can be plotted. Here the indicator random variable Zi = I(Wi ≤ x) = 1 if
Wi ≤ x and Zi = I(Wi ≤ x) = 0 if Wi > x. Hence the Zi are iid Bernoulli(q = F (x))

RVs. Fix x. By the CLT,
√

n(Fn(x)− F (x))
D→ N(0, F (x)(1 − F (x)).

37) The residual bootstrap computes the least squares estimator and obtains the n
residuals and fitted values r1, ..., rn and Ŷ1, ..., Ŷn. Then a sample of size n is selected with
replacement from the residuals resulting in r∗11, ..., r

∗

n1. Hence the empirical distribution
of the residuals is used. Then a vector Y ∗

1 = (Y ∗

11, ..., Y
∗

n1)
T is formed where Y ∗

i1 = Ŷi +r∗i1.

Then Y ∗

1 is regressed on X resulting in the estimator β̂
∗

1. This process is repeated B

times resulting in the estimators β̂
∗

1, ..., β̂
∗

B . This method should have n ≥ 10p so that
the residuals ri are close to the errors ei.

38) If the xi = (Yi, x
T
i )T are iid observations from some population, then a sample of
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size n can be drawn with replacement from x1, ..., xn. Then the response and predictor
variables can be formed into vector Y ∗

1 and design matrix X∗

1. Then Y ∗

1 is regressed

on X∗

1 resulting in the estimator β̂
∗

1. This process is repeated B times resulting in the

estimators β̂
∗

1, ..., β̂
∗

B . If the xi are the rows of a matrix X, then this nonparametric

bootstrap uses the empirical distribution of the xi.
39) Suppose w1, ..., wn are iid p × 1 random vectors with mean µ and nonsingular

covariance matrix Σw. Let a future test observation wf be independent of the wi but
from the same distribution. Let (w, S) be the sample mean and sample covariance matrix
where

w =
1

n

n∑

i=1

wi and S = Sw =
1

n − 1

n∑

i=1

(wi − w)(wi − w)T. (2)

Then the ith squared sample Mahalanobis distance is the scalar

D2
w = D2

w(w, S) = (w − w)TS−1(w − w). (3)

Let D2
i = D2

wi
for each observation wi. Let D(c) be the cth order statistic of D1, ..., Dn.

Consider the hyperellipsoid

An = {w : D2
w(w, S) ≤ D2

(c)} = {w : Dw(w, S) ≤ D(c)}. (4)

If n is large, we can use c = kn = dn(1 − δ)e. If n is not large, using c = Un where
Un decreases to kn, can improve small sample performance. Then (4) is a large sample
100(1 − δ)% prediction region for a large class of distributions, although regions with
smaller volumes may exist.

40) Applying (4) to a bootstrap sample of T ∗

1 , ..., T ∗

B results in a large sample 100(1−
δ)% confidence region for µ, where one sufficient condition is

√
n(Tn −µ)

D→ Nr(0,ΣT ).
If r = 1, applying the shorth(c) interval to T ∗

1 , ..., T ∗

B results in a large sample 100(1−δ)%
confidence interval for µ

41) We can also apply a shorth(cn) estimator to the residuals, getting an interval
[r(d), r(d+cn−1)] where cn decreases to dn(1−δ)e. Then a large sample 100(1−δ)% prediction

interval (PI) for YF is [ŶF + anr(d), ŶF + anr(d+cn−1)] where an ≥ 1 and an → 1. This PI
can work if the iid errors e1, ..., en are from an unknown distribution, and after variable
selection if n ≥ 10d where β̂I is d × 1.

8


