
Math 484 Exam 1 is on Wednesday, Sept. 21 and covers sections 2.1, 2.2, 2.4, 2.6,
2.7, homeworks 1-3 and quizzes 1-3. You are allowed 7 sheets of notes and a calculator.
Any needed tables will be provided. CHECK FORMULAS: YOU ARE RESPONSIBLE
FOR ANY ERRORS ON THIS HANDOUT!

For the exam and final know the meaning of the least squares regression output.

The MLR model is Y = xT β + e or

Yi = xi,1β1 + xi,2β2 + · · · + xi,pβp + ei = xT
i β + ei

for i = 1, . . . , n. Here n is the sample size and the random variable ei is the ith error.
Assume that the errors are iid with E(ei) = 0 and V (ei) = σ2 < ∞. In matrix notation,
these n equations become

Y = Xβ + e,

where Y is an n × 1 vector of dependent variables, X is an n × p matrix of predictors,
β is a p × 1 vector of unknown coefficients, and e is an n × 1 vector of unknown errors.

Assume that the errors are independent of the predictor variables xi. (If x2, ..., xp

are random variables, then the model is conditional on the x′

js. Hence the x′

js are still
treated as constants.) Sometimes it is also assumed that the errors are symmetric. If the
errors are iid N(0, σ2), then Y |xTβ ∼ N(xT β, σ2).

The OLS estimators are β̂ = (XT X)−1XT Y and σ̂2 = MSE =
∑n

i=1
r2

i /(n − p).
Thus σ̂ =

√
MSE. The vector of predicted or fitted values Ŷ = Xβ̂ = HY where

the hat matrix H = X(XTX)−1XT . The ith fitted value Ŷi = xT
i β̂. The ith residual

ri = Yi − Ŷi and the vector of residuals r = Y − Ŷ = (I − H)Y . The least squares
regression equation for a model containing a constant is Ŷ = β̂1 + β̂2x2 + · · · + β̂pxp.

The response variable is the variable that you want to predict. The predictor (or
explanatory or independent) variables are used to predict the response variable.

Always make the response plot of Ŷ versus Y and residual plot of Ŷ versus r for
any MLR analysis. The response plot is used to visualize the MLR model, that is, to
visualize the conditional distribution of Y |xTβ. Suppose n ≥ 5p and that the errors are
roughly symmetric (so not highly skewed). If the iid constant variance MLR model is
useful, then i) the plotted points in the response plot should scatter about the identity
line with no other pattern, and ii) the plotted points in the residual plot should scatter
about the r = 0 line with no other pattern. If either i) or ii) is violated, then the iid
constant variance MLR model is not sustained. In other words, if the plotted points
in the residual plot show some type of dependency, eg increasing variance (right or left
opening megaphone) or a curved pattern, then the MLR model may be inadequate.

Response = Y, Label or predictor, Estimate or coef, Std. Error or SE, pvalue or Pr > t

Label Estimate Std. Error t-value p-value

Constant β̂1 se(β̂1) to,1 for Ho: β1 = 0

x2 β̂2 se(β̂2) to,2 = β̂2/se(β̂2) for Ho: β2 = 0
...

xp β̂p se(β̂p) to,p = β̂p/se(β̂p) for Ho: βp = 0
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R Squared: R^2

Sigma hat: sqrt{MSE}

Number of cases: n

Degrees of freedom: n-p

Analysis of Variance Table, Regression or Model, Residual or Error, pvalue or Pr > F

Source df SS MS F p-value
Regression p-1 SSR MSR Fo=MSR/MSE for Ho:
Residual n-p SSE MSE β2 = · · · = βp = 0

Response = brnweight

Coefficient Estimates

Label Estimate Std. Error t-value p-value

Constant 99.8495 171.619 0.582 0.5612

size 0.220942 0.0357902 6.173 0.0000

sex 22.5491 11.2372 2.007 0.0458

breadth -1.24638 1.51386 -0.823 0.4111

circum 1.02552 0.471868 2.173 0.0307

R Squared: 0.749755

Sigma hat: 82.9175

Number of cases: 267

Degrees of freedom: 262

Summary Analysis of Variance Table

Source df SS MS F p-value

Regression 4 5396942. 1349235. 196.24 0.0000

Residual 262 1801333. 6875.32

The above output is in symbols and from Arc.
Assume that the MLR model contains a constant xi1 ≡ 1 unless told otherwise. Types

of problems likely to appear on Exam 1:

1) Know for final: The least squares (OLS) regression equation for a model
containing a constant is Ŷ = β̂1 + β̂2x2 + · · ·+ β̂pxp. See HW1 Ba, Cb, Dc, Q1 1a?, 2a?.

2) Know for final: Given x2, ..., xp find Ŷ = β̂1 + β̂2x2 + · · · + β̂pxp.
See HW1 Bb, Cc, Ee, HW3 Aa, Cb, Q1 1b?, 2b?, Q2 2?.

3) Know for final: The 4 step ANOVA F test of hypotheses:
i) State the hypotheses Ho: β2 = · · · = βp = 0 Ha: not Ho.
ii) Find the test statistic Fo = MSR/MSE or obtain it from output.
iii) Find the p–value from output or use the F–table: p–value =

P (Fp−1,n−p > Fo).

iv) State whether you reject Ho or fail to reject Ho. If Ho is rejected, conclude that there
is an MLR relationship between Y and the predictors x2, ..., xp. If you fail to reject Ho,
conclude that there is a not a MLR relationship between Y and the predictors x2, ..., xp.
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See HW2 Ab, Ec, HW3 Cc, Q2 1?, 3?.

4) Know for final: The 100 (1 − δ) % CI for βk is β̂k ± tn−p,1−δ/2 se(β̂k). If the
degrees of freedom d = n − p > 30, use the N(0,1) cutoff z1−δ/2 (then the 90% CI uses
1.645, the 95% CI uses 1.96 and the 99% CI uses 2.576).

See HW3cd, Q3.

5) Know for final: The corresponding 4 step (Wald) t–test of hypotheses has the
following steps:
i) State the hypotheses Ho: βk = 0 Ha: βk 6= 0.
ii) Find the test statistic to,k = β̂k/se(β̂k) or obtain it from output.
iii) Find the p–value from output or use the t–table: p–value =

2P (tn−p < −|to,k|).

Use the normal table or ν = ∞ in the t–table if the degrees of freedom ν = n − p > 30.
iv) State whether you reject Ho or fail to reject Ho and give a nontechnical sentence
restating your conclusion in terms of the story problem. If Ho is rejected, then conclude
that xk is needed in the MLR model for Y given that the other predictors are in the
model. If you fail to reject Ho, then conclude that xk is not needed in the MLR model
for Y given that the other predictors are in the model.

See HW3 B, Cfgh, Q3.

Full model

Source df SS MS Fo p-value
Regression p − 1 SSR MSR Fo=MSR/MSE for Ho:

Residual dfF = n − p SSE(F) MSE(F) β2 = · · · = βp = 0

Reduced model

Source df SS MS Fo p-value
Regression q − 1 SSR MSR Fo=MSR/MSE for Ho:

Residual dfR = n − q SSE(R) MSE(R) β2 = · · · = βq = 0

6) Know for final: The 4 step partial F test (= change in SS F test) of hypotheses:
i) State the hypotheses Ho: the reduced model is good Ha: use the full model.
ii) Find the test statistic FR =

[
SSE(R) − SSE(F )

dfR − dfF

]
/MSE(F )

iii) Find the p–value = P(FdfR−dfF ,dfF
> FR). (On exams typically an F table is used.

Here dfR − dfF = p − q = number of parameters set to 0, and dfF = n − p).
iv) State whether you reject Ho or fail to reject Ho. Reject Ho if the p–value < δ and
conclude that the full model should be used. Otherwise, fail to reject Ho and conclude
that the reduced model is good.

Variant: Use R output anova(Red,Full) to get ii) and iii) where Red corresponds
to the reduced model and Full to the full model.

See HW3 Ab, Dc, Dg, Q3.
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7) Given data or given Yi, find the residual ri = Yi − Ŷi where Ŷi is found using 2).
See HW1 Ef.

8) Know for final: Be able to recognize whether a response plot is near its ideal
shape of scatter about the identity line with no other pattern.

Gaps, curvature, nonconstant variance and outliers (cases far from the bulk of the
data) are cause for concern.

Given several response plots, you should be able to pick out the worst one (if all but
one are good) or the best one (if all but one are bad).

See HW2 Acd, HW3Clm, Dd, Dj.

9) Know for final: Be able to recognize whether a residual plot is near its ideal
shape of scatter about the r = 0 line with no other pattern.

Gaps, curvature, nonconstant variance and outliers (cases far from the bulk of the
data) are cause for concern.

Given several residual plots, you should be able to pick out the worst one (if all but
one are good) or the best one (if all but one are bad).

See HW2 Aef, HW3 Clm, De, Dj.

10) A gap is usually bad, but if the fitted values from the MLR fit only to the bulk of
the data fit the small cluster of data fairly well, then the small cluster of data are called
good leverage points. This happened with the brainweight data cbrain.lsp in HW1.

11) If the MLR model contains a constant, then given two of SSTO, SSR and SSE,
be able to find the third using SSTO = SSE + SSR where SSTO =

∑n
i=1

(Yi − Y )2, the
regression sum of squares SSR =

∑n
i=1

(Ŷi − Y )2 and error (or residual) sum of squares
SSE =

∑n
i=1

(Yi − Ŷi)
2 =

∑n
i=1

r2

i .

12) If the MLR model contains a constant, then be able to find R2 = [corr(Yi, Ŷi)]
2 =

SSR

SSTO
= 1 − SSE

SSTO
.

13) From a story problem be able to determine which variable is the response variable
and which variables are the predictor = explanatory variables.

Know: For testing, use δ = 0.05 if δ is not given.
t–table for CIs: For t CIs find the df = ν = n− p. If n− p > 30 use the ν = ∞ row

and 1.645, 1.96 or 2.576 depending on whether a 90, 95 or 99% CI is wanted. Otherwise
intersect the appropriate column (90%, 95% or 99%) with the ν = n−p row. So n−p = 14
and a 90% CI uses t14,0.95 = 1.761.

F–table for pval: If Den df = n − p > 60 use Den df = ∞. Otherwise take the
table Den df closest to n − p. Intersect the Num df column with the Den df row to find
the 0.50, ..., 0.999 percentiles. If the statistic FR is close to 0 and less than the 0.50
percentile, then pval > 0.5 = 1− 0.5. If the test statistic FR > the 0.999 percentile, then
pval = 0.000 < 0.001 = 1 − 0.999. If the test statistic FR is between to percentiles then
1− largest percentile area< pval < 1− smallest percentile area. So if Den df = 20, Num
df = 7, and FR = 4.00, then 1 − 0.995 = 0.005 < pval < 0.01 = 1 − 0.99.

Know: For MLR, the MSE = SSE/(n − p) is an unbiased estimator of the error
variance σ2.
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