
Exam 3 is Wed. Nov. 20. You are allowed 11 sheets of notes and a calculator.

Emphasis on Exam 3 is HW7-10 and Q7-9. Numbers refer to types of problems on exam.
From Exam 1 review, know pages 2-4. Know all of Exam 2 review.

62) If the data Y1, ..., Yn is arranged in ascending order from smallest to largest and
written as Y(1) ≤ · · · ≤ Y(n), then the Y(i)’s are called the order statistics.

63) Let dxe denote the smallest integer greater than or equal to x (eg, d7.7e = 8).
64) Consider intervals that contain c cases (Y(1), Y(c)), (Y(2), Y(c+1)), ..., (Y(n−c+1), Y(n)).

Compute Y(c) − Y(1), Y(c+1) − Y(2), ..., Y(n) − Y(n−c+1). Then the estimator shorth(c) =
(Y(d), Y(d+c−1)) is the interval with the shortest length. A large sample 100(1 − α)%
prediction interval (PI) (Ln, Un) is such that P (Yf ∈ (Ln, Un)) → 1 − α as n → ∞. The
shorth(c) interval is a large sample 100(1 −α)% PI if c/n → 1− α as n → ∞ that often
has the asymptotically shortest length. Be able to compute the shorth(c) interval given
c and a small data set. See HW7 A).

65) If the data are iid and c = dn(1−α)e, then for large n the coverage of the shorth(c)
PI is about 1 − α − 1.12

√

α/n.
66) Suppose there is data Y1, ..., Yt. Want to predict Yt+l for l = 1, ..., L. Consider

ARIMA(p,d,q) models where Yt, Wt or Zt follows a stationary, invertible ARMA(p,q)
model. The l step ahead forecast for Yt+l is Ŷt(l). To find Ŷt(l), suppose the model for Yt

is Yt = mt + et. Then Ŷt+l = m̂t+l. Write Ŷt(l) = m̂t+1 but add asterisks to the terms in
m̂t+1. Using R notation, for d = 0,

Ŷt(l) = τ̂ + φ̂1Y
∗

t+l−1 + · · · + φ̂pY
∗

t+l−p + θ̂1ê
∗

t+l−1 + · · · + θ̂1ê
∗

t+l−q. For d = 1,

Ŷt(l) = τ̂ + (1 + φ1)Y
∗

t+l−1 + (φ2 − φ1)Y
∗

t+l−2 + · · · + (φp − φp−1)Y
∗

t+l−p − φpY
∗

t+l−p−1 +

θ̂1ê
∗

t+l−1 + · · · + θ̂1ê
∗

t+l−q. For d = 2,

Ŷt(l) = τ̂ + (2 + φ̂1)Y
∗

t+l−1 + (φ̂2 − 2φ̂1 − 1)Y ∗

t+l−2 + (φ̂1 − 2φ̂2 + φ̂3)Y
∗

t+l−3 + · · · +

(φ̂p−2 − 2φ̂p−1 + φ̂p)Y
∗

t+l−p + (φ̂p−1 − 2φ̂p)Y
∗

t+l−p−1 + φ̂pY
∗

t+l−p−2 + θ̂1ê
∗

t+l−1 + · · ·+ θ̂1ê
∗

t+l−q.

For d = 1, 2, usually τ̂ = 0. Here Y ∗

t+l−j = Yt+l−j if l ≤ j and Y ∗

t+l−j = Ŷt(l − j) if

l > j. Need to find Ŷt(1), Ŷt(2), ..., Ŷt(L) recursively. Also ê∗t+l−j = êt+l−j if l ≤ j and
ê∗t+l−j = 0 if l > j. If the index t + l − j > t, then Yt+l−j and êt+l−j are not available and
are replaced by their “best” estimates.

67) The l step ahead forecast residual êt(l) = Yt+l − Ŷt(l).
68) The residuals êt and the fitted or predicted values Ŷt for the ARIMA(p,d,q) model

are êt = êt−1(1) and Ŷt = Ŷt−1(1) computed using τ̂ , φ̂1, ..., θ̂q computed from Y1, ..., Yn

and Ŷt = Ŷt−1(1) computed from Y1, .., Yt−1, êj, ..., êt−1 where often j = 1. So the residuals
and fitted values are the 1 step ahead residuals and forecasts.

69) For an MA(q) model, Ŷt(l) = τ̂ = µ̂Y and êt(l) = Yt+l − µ̂Y for l > q.
70) For a stationary invertible ARMA(p,q) model, Ŷt(l) → µ̂Y and V (êt(l)) →

V (Yt) = γ0 as l → ∞ and n → ∞.
71) The shorth(c) PI is good for a stationary invertible ARMA(p,q) model when l is

large or for l > q for MA(q) models.
72) When each future value becomes available, update your ARIMA(p,d,q) model

and then update your remaining prediction intervals.
73) Typically there is more than 1 reasonable ARIMA (p,d,q) model. For each model,

keep track of its prediction interval performance. Discard models with poor performance
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and keep models that perform well (short PIs with coverage near the nominal value, eg
95%).

74) Normal PIs are made assuming the {et} are a normal white noise. Check this
assumption with QQ plots and histograms of the residuals. There are also tests with Ho:
the white noise {et} is a normal vs Ha: the white noise {et} is not a normal.

75) For stationary invertible ARMA(p,q) models and for large lead times l or for an
MA(q) model with l > q, if t = n is large then the normal 100(1 − α)% PI for Yt+l is
approximately Y ± z1−α/2S where S = σ̂Y =

√

n
n−1

γ̂0 is the sample standard deviation
of Y1, ..., Yt.

76) For ARIMA(p,d,q) models, a normal 100(1 − α)% PI for Yt+l is

Ŷt(l) ± t1−α/2,n−p−q

√

V̂ (Ŷt(l)) = Ŷt(l) ± t1−α/2,n−p−qSE(Ŷt(l)) = (Ln, Un). Suppose that

as n → ∞, Ŷt(l) → E(Yt+l) = µt+l and SE(Ŷt(l)) → SD(Yt+l) = σt+l. Then
P [Yt+l ∈ (Ln, Un)] ≈ P [Yt+l ∈ (µt+l − z1−α/2σt+l, µt+l + z1−α/2σt+l)] =
P [|Yt+l − µt+l| < z1−α/2σt+l] “ ≥ ” 1 − 1

z2

1−α/2

assuming Chebyshev’s inequality holds to

a good approximation. Hence a 95% PI could have coverage as low as 75% and a 99.7%
PI could have coverage as low as 89%.

R may not compute SE(Ŷt(l)) correctly if d > 0 and an intercept τ̂ is in the model.
77) The large sample shorth(c1) 100(1 − α)% PI (Ln, Un) takes et = Yt − Y . Then

let shorth(dn(1 − α)e) = (L̃n, Ũn) be computed from the et. Then Ln = Y + dnL̃n and

Un = Y +dnŨn where dn = (1+
15

n
)

√

n − 1

n + 1
. For ARMA(p,q) models, this PI is too long

for l near 1, but should be good for large l and if l > q for an MA(q) model.
78) For ARIMA(p,d,q) models, let c2 = dn(1 − αn)e and compute shorth(c2) =

(L̃n, Ũn) of the l-step ahead forecast residuals êt(l). Then a large sample 100(1−α)% PI for
Yt+l is (Ln, Un) = (Ŷn(l)+L̃n, Ŷn(l)+Ũn) where 1−αn = min(1−α+0.05, 1−α+(p+q)/n)
for α > 0.1 and 1 − αn = min(1 − α/2, 1 − α + 10(p + q)α/n) for α ≤ 0.1.

79) PIs 77) and 78) attempt to compensate for the undercoverage of the shorth(c)
interval in 65). The distribution of the white noise is assumed to be unknown, rather
than a normal white noise. The PIs 77), 78) for l = 1 and 76) are compared for MA(2)
data for four white noise distributions in HW7b. Expect PI 76) to be short with good
coverage for a normal white noise. The coverage of PI 76) may not be near the nominal
values when the white noise is not normal. Sometimes the length may be short and
sometimes long. For l > 2 and large n, PI 77) should have good coverage and short
length. Expect the 1-step ahead PI 78) to be shorter than the 1-step ahead PI 77). The
endpoints of PI 77) do not depend on l so the length is the same for l = 1, ..., L. The
coverage does vary some with l. Expect the 1-step ahead PI 78) to have coverage near
the nominal value and to often be shorter than PI 76) for a nonnormal white noise, at
least if n is large.

80) Suppose the coverage of a nominal 100(1−α)% PI is 1− δn. If (1− δn) < (1−α),
then the PI is liberal, while if (1 − δn) > (1 − α), then the PI is conservative. In
a simulation with m runs, the standard error of the coverage of a 100(1 − α)% PI is
SE =

√

α(1 − α)/m. So a CI for the coverage is [(1 − α) − cSE, (1 − α) + cSE)] with
c ∈ (2, 3). An observed coverage below the lower CI limit suggests that the PI is liberal
while an observed coverage above the upper CI limit suggests that the PI is conservative.
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81) Seasonal patterns often occur in time series. Let s be the seasonal period. Then
s = 12 for monthly data and s = 4 for quarterly data are common. Plotting a letter for
the month or A, B, C, D for the quarter in the plot of the time series can help show the
seasonal pattern.

82) Yt ∼ ARIMA(p,d,q)×(P, D, Q)s is the multiplicative seasonal ARIMA model.
Output in symbols and for a data set are shown below.

Label coef SE LCI UCI Z p-value

ar1 φ̂1 se(φ̂1) 95% CI for φ1 Zar,1 = φ̂1/se(φ̂1) for Ho: φ1 = 0
...

arp φ̂p se(φ̂p) 95% CI for φp Zar,p = φ̂p/se(φ̂p) for Ho: φp = 0

ma1 θ̂1 se(θ̂1) 95% CI for θ1 Zma,1 = θ̂1/se(θ̂1) for Ho: θ1 = 0
...

maq θ̂q se(θ̂q) 95% CI for θq Zma,q = θ̂q/se(θ̂q) for Ho: θq = 0

sar1 Φ̂1 se(Φ̂1) 95% CI for Φ1 Zsar,1 = Φ̂1/se(Φ̂1) for Ho: Φ1 = 0
...

sarP Φ̂P se(Φ̂P ) 95% CI for ΦP Zsar,P = Φ̂P /se(Φ̂P ) for Ho: ΦP = 0

sma1 Θ̂1 se(Θ̂1) 95% CI for Θ1 Zsma,1 = Θ̂1/se(Θ̂1) for Ho: Θ1 = 0
...

smaQ Θ̂Q se(Θ̂Q) 95% CI for ΘQ Zsma,Q = Θ̂Q/se(Θ̂Q) for Ho: ΘQ = 0
intercept µ̂Y se(µ̂Y ) 95% CI for µY Zo = µ̂Y /se(µ̂Y ) for Ho: µY = 0

The intercept is actually the mean µY and the θ̂ and Θ̂ are negatives of those in the book.

Y <- log(AirPassengers) #ARIMA(p=2,d=1,q=3)x(P=1,D=0,Q=1)_{s=12} model

out<-arima(Y,c(2,1,3),seasonal=list(order=c(1,0,1), period=12),method="ML")

resplots(Y,out)

coef se LCI UCI Z pval

ar1 0.2160718 0.049836860 0.1163981 0.3157455 4.335582 1.453752e-05

ar2 -0.8823111 0.046145658 -0.9746024 -0.7900198 -19.120133 0.000000e+00

ma1 -0.5815285 0.088658705 -0.7588459 -0.4042110 -6.559181 5.410428e-11

ma2 1.0484197 0.044655669 0.9591083 1.1377310 23.477863 0.000000e+00

ma3 -0.4803567 0.090599145 -0.6615550 -0.2991584 -5.302000 1.145406e-07

sar1 0.9914837 0.004656271 0.9821712 1.0007962 212.935126 0.000000e+00

sma1 -0.5276964 0.080199086 -0.6880946 -0.3672983 -6.579831 4.709833e-11

83) The model in 82) has parameters φ1, ..., φp, θ1, ..., θq, Φ1, ..., ΦP , Θ1, ..., ΘQ with
intercept τ and mean E(Yt) = µY . The default is τ = 0 and µY = 0 if d > 0 or D > 0.
The 95% confidence intervals for a parameter τk are given by (LCI,UCI).

84) The 4 step test of hypotheses is i) Ho: τk = 0 Ha: τk 6= 0. ii) Get the test statistic
Z from output. iii) Get the pval from output. iv) State whether you reject Ho or fail to
reject Ho and give a conclusion. Reject Ho if pval ≤ α and fail to reject Ho if pval > α.
Use α = 0.05 if α is not given. For τk = φk (θk), conclude Yt−k (et−k) is needed in
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the model if Ho is rejected. Conclude Yt−k (et−k) is not needed in the model given the
other terms are in the model if you fail to reject Ho. (Could use Wt−k if d = 1 or Zt−k if
d = 2.)

The conclusion is modified for seasonal parameters because often the model will have
additional terms near Yt−ks or near et−ks. For τk = Φk conclude Φk and Yt−ks are needed
in the model if Ho is rejected. Conclude Φk and Yt−ks are not needed in the model given
the other terms are in the model if you fail to reject Ho.

For τk = Θk conclude Θk and et−ks are needed in the model if Ho is rejected. Conclude
Θk and et−ks are not needed in the model given the other terms are in the model if you
fail to reject Ho. See HW8 Ckl).

85) Purely seasonal models: MA(Q)s: Yt = τ−Θ1et−s−Θ2et−2s−· · ·−ΘQet−Qs+et =
τ + Θ(B)et where Θ(B) = 1 −Θ1B

s −Θ2B
2s − · · · −ΘQBQs. Recall that BkDt = Dt−k.

AR(P )s: Yt = τ + Φ1Yt−s + Φ2Yt−2s + · · · + ΦP Yt−Ps + et, or Φ(B)Yt = τ + et.
ARMA(P, Q)s : Yt = τ +Φ1Yt−s +Φ2Yt−2s + · · ·+ΦPYt−Ps −Θ1et−s −Θ2et−2s− · · ·−

ΘQet−Qs + et, or Φ(B)Yt = τ + Θ(B)et where Φ(B) = 1−Φ1B
s −Φ2B

2s − · · · −ΦPBPs.
The ARMA(P, Q)s model is an ARMA(p=Ps,q=Qs) model where the AR parameters
are 0 except at lags s, 2s, ..., Ps, and the MA parameters are 0 except at lags s, 2s, ...,
Qs. Purely seasonal models are rare.

86) Let φ(B) = 1−φ1B−φ2B
2−· · ·−φpB

p and θ(B) = 1− θ1B− θ2B
2 −· · ·− θqB

q.
The multiplicative ARMA(p,q)×(P, Q)s model satisfies φ(B)Φ(B)Yt = τ + θ(B)Θ(B)et.
For small p,q,P,Q, be able to solve this equation for Yt to write down the model for Yt. See
HW8 B). This model is an ARMA(p + Ps, q + Qs) model where the nonzero coefficients
are determined only by p + P + q + Q coefficients, the AR characteristic polynomial is
φ(B)Φ(B) and the MA characteristic polynomial is θ(B)Θ(B).
Note: Some texts use the notation Φ(Bs) for Φ(B) and Θ(Bs) for Θ(B).

87) Let 5Yt = (1−B)Yt = Yt−Yt−1, 5
dYt = (1−B)dYt, 5sYt = (1−Bs)Yt = Yt−Yt−s,

5D
s Yt = (1 − Bs)DYt where usually d ≤ 1 and D ≤ 1, d = 2 is rare and D = 2 is very

rare. The differenced time series Xt = 5d 5D
s Yt. Then Yt ∼ ARIMA(p,d,q)×(P, D, Q)s

if Xt ∼ ARMA(p,q)×(P, Q)s. Also, φ(B)Φ(B) 5d 5D
s Yt = τ + θ(B)Θ(B)et where the

default is τ = 0 if d > 0 or D > 0.
88) If there is no differencing so d = 0 and D = 0, then Xt = Yt. Always plot Yt and

Xt. The plot of Yt is useful for determining if there is a seasonal pattern and if the time
series is stationary or nonstationary. Then the ACF and PACF of Yt helps determine d
and D while the ACF and PACF of Xt helps determine p, q, P, and Q.

89) The ACF and PACF of purely seasonal AR(P )s and MA(Q)s models are ex-
actly like those of AR(p) and MA(q) models, except the nonzero spikes are at lags
0, s, 2s, 3s, 4s, .... Hence the theoretical ACF of an MA(Q)s model cuts off after lag
Qs while the PACF has exponential or damped exponential sinusoidal decay at lags
0, s, 2s, 3s, 4s, .... The theoretical PACF of an AR(P )s model cuts off after lag Ps while
the ACF has exponential or damped exponential sinusoidal decay at lags 0, s, 2s, 3s, 4s, ....

90) For a purely seasonal ARMA(P,Q)s model, the theoretical ACF can have spikes
at lags 1, ..., Q, and the theoretical PACF can have spikes at lags 1, ..., P. Both plots
have exponential or damped exponential sinusoidal decay at lags 0, s, 2s, 3s, 4s, ....

91) For the purely seasonal ARIMA(P,D=1,Q) model, the ACF or PACF may show
linear decay or the sinusoidal peaks show linear decay at lags 0, s, 2s, 3s, 4s, ....
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92) The sample ACF and PACF will show trends and ripples that are not in the
theoretical ACF and PACF.

93) The ARIMA(p,d,q)×(P, D, Q)s model is common. Suppose d = 0 and D = 0 or
the ACF and PACF of the differenced time series Xt is used. The ACF and PACF will
often have spikes near s, 2s, 3s, ....

Sometimes there are spikes near s/2, s, 3s/2, 2s, 5s/2, .... Fit the model with s and
see if the problems go away in the residual ACF and PACF before fitting a model with
seasonal period s/2.

94) Suppose P = 1 and the CI for Φ1 is short and contains 1, eg (0.98,1.01). Then
Yt = Φ̂1Yt−s+ stuff ≈ Yt = Yt−s+ stuff, or Yt − Yt−s = stuff, but Yt − Yt−s corresponds to
D = 1. Often the D = 1 model will have fewer parameters than the D = 0 model. See
HW 8C).

95) Suppose p = 1 and the CI for φ1 is short and contains 1, eg (0.98,1.01). Then
Yt = φ̂1Yt−1+ stuff ≈ Yt = Yt−1+ stuff, or Yt − Yt−1 = stuff, but Yt − Yt−1 corresponds to
d = 1. Often the d = 1 model will have fewer parameters than the D = 0 model.

96) Much of the fitting and checking an ARIMA(p,d,q)×(P, D, Q)s model is similar
to fitting and checking an ARIMA(p,d,q) model. You should be able to recognize good
and bad plots for both models, and be able to find Imin, II, and good models to look at
for both models, given a table of ∆(I) = II − Imin. The table is made for P, D and Q
fixed. See HW8 Cnop).

97) A good ARIMA(p,d,q)×(P, D, Q)s model should have i) good response and resid-
ual plots, ii) few nonsignificant parameters, iii) φp, θq, ΦP and ΘQ should be significant
and not near 1 in absolute value. iv) The ACF and PACF of the residuals should resem-
ble those of a white noise. v) Xt = 5d 5D

s Yt should be stationary and invertible. vi)
Want roots of φ(B) = 0, Φ(B) = 0, θ(B) = 0 and Θ(B) = 0 to be outside the unit circle.
vii) Want AIC(I) and ∆(I) to be within 7 and preferably 4 of AIC(Imin) and ∆(Imin).
viii) The Ljung Box pvalues should all be above the horizontal 0.05 line. ix) Usually
d, D ≤ 2. Want n > 10(p + q + P + Q) and maybe n > 10(p + Ps + q + Qs).
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