
Exam 1 is Wed. Sept. 18. You are allowed 4 sheets of notes and a calculator.

The exam covers HW1-3 and Q1-3. Numbers refer to types of problems on exam.

A time series Y1, ..., Yn consists of observations Yt collected sequentially in time.
A stochastic process {Yt, t ∈ τ} is a collection of random variables where we will

usually use τ = {0,±1,±2, ..., } = Z, the set of integers.
The mean function µt = E(Yt) for t ∈ Z.
The autocovariance function γt,s = Cov(Yt, Ys) = E[(Yt − µt)(Ys − µs)] =

E(YtYs) − µtµs for t, s ∈ Z.

The autocorrelation function ρt,s = Corr(Yt, Ys) =
Cov(Yt, Ys)

√

V ar(Tt)V ar(Ys)
=

γt,s

γt,tγs,s

for

t, s ∈ Z.
Know that γt,s = γs,t, ρt,s = ρs,t, Cauchy Schwarz inequality γt,s ≤ √

γt,tγs,s and
|ρt,s| ≤ 1.

Know that Cov(
∑m

i=1
ciYti,

∑n

j=1
djYtj) =

∑m

i=1

∑n

j=1
cidjCov(Yti, Ytj).

Know that V ar(
∑n

i=1
ciYti) =

∑n

i=1
c2iV ar(Yti) + 2

∑n

i=2

∑i−1

j=1
cicjCov(Yti, Ytj).

1) Be able to compute Cov(k + aX + bY + cZ, h+ dX + eY + fZ) =
Cov(aX + bY + cZ, dX + eY + fZ) = adCov(X,X) + aeCov(X, Y ) + afCov(X,Z) +
bdCov(Y,X)+ beCov(Y, Y )+ bfCov(Y, Z)+ cdCov(Z,X)+ ceCov(Z, Y )+ cfCov(Z,Z).
Simplify using Cov(W,W ) = V (W ) and Cov(U,W ) = Cov(W,U). See HW1 F. Here the
additive constants k and h could depend on time, eg k = 4 + 5t.

2) Be able to compute E(Yt) = µt, V ar(Yt) = γt,t, Cov(Yt, Ys) = γt,s and
Corr(Yt, Ys) = ρt,s for simple stochastic processes.

A process {Yt} is strictly stationary if the joint distribution of Yt1, ..., Ytn is the same
as the joint distributions of Yt1−k, ..., Ytn−k for all choices of time points t1, ..., tn and for
all choices of time lag k.

A process {Yt} is stationary if a) E(Yt) = µt ≡ µ is constant over time, and b)
γt,t−k = γ0,k for all times t and lags k. Hence the covariance function γt,s depends only
on the absolute difference |t− s|.

Know: For a stationary process {Yt}, write the autocovariance function as
γk = Cov(Yt, Yt−k) and the autocorrelation function as ρk = corr(Yt, Yt−k). Note that the
mean function E(Yt) = µ and the variance function V (Yt) = V ar(Yt) = γ0 are constant
and do not depend on t. The autocovariance function γk and the autocorrelation function
ρk depend on the lag k but not on the time t.

3) Be able to show that a simple process {Yt} is stationary: show that µt = E(Yt) = µ
is constant for all t and that γt,t−k = Cov(Yt, Yt−k) depends only on the lag k, not on
time t. Note that γt,t−k ≡ σ2 is allowed, as a constant function of k. See HW1 D,G.

4) For a simple stationary process, be able to compute E(Yt) = µ, V (Yt) = γ0,
γk = Cov(Yt, Yt−k) and ρk = corr(Yt , Yt−k). See HW1 Gb.

5) Be able to show that a simple process {Yt} is not stationary: try to show that
E(Yt) depends on t. If this fails, try to show that V ar(Yt) depends on t. If this fails,
show that γt,t−k = Cov(Yt, Yt−k) depends on t. Stop as soon as one of these functions
depends on t. See HW1 E.
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Know that for a stationary process {Yt}, γk = γ−k, ρk = ρ−k, γ0 = V ar(Yt), ρ0 = 1,
|γk| ≤ γ0 and |ρk| ≤ 1.

For a white noise process {et}, the et are iid (independent and identically distributed).
If E(et) = µ and V (et) = σ2 exist, then the white noise process is stationary (and strictly
stationary) with γ0 = σ2 and γk = 0 for k 6= 0. After chapter 3, assume that for a
white noise, E(et) = 0 and V (et) = σ2, unless told otherwise.

6) Be able to plot a simple time series, possibly defined from computer output. See
HW1 C.

The plot of a stationary time series should oscillate about the mean and the variability
of sequences of similar length should be similar.

A deterministic trend has µt = g(t) where a linear trend is µt = a+bt and a quadratic
trend is µt = a + bt + ct2. With a stochastic trend, there appears to be a nonconstant
mean pattern, often linear or quadratic, when in fact there is no deterministic trend.

Know: Y = 1

n

∑n

i=1
Yi estimates µ = E(Yt) and the sample autocorrelation function

rk estimates ρk for a stationary time series. Usually “sample” will be omitted.
Know: the plot of k vs rk for k = 1, ..., J , where usually 10 ≤ J ≤ n/4 with horizontal

lines at ±2/
√
n added to the plot, is called the autocorrelation function, ACF.

Let the “past” Ψt−1 = {Yt−1, Yt−2, ...} ∪ {et−1, et−2, ...}. Let the time series model be
Yt = mt + et = E(Yt|Ψt−1) + et. Then the tth fitted value Ŷt = m̂t = Ê(Yt|Ψt−1), and the
tth residual êt = Yt − Ŷt. For a good model, Ŷt+k should predict Yt+k better than Y for
small lags k, and the residuals {êt} should behave a lot like the white noise {et} that the
residuals from a good model estimate.

A response plot of Ŷt vs Yt should scatter about the identity line with unit slope and
zero intercept with no other pattern if the model is adequate. The vertical deviation of
Yt from the identity line is the residual Yt − Ŷt = êt. A residual plot of Ŷt vs êt or of t vs
êt should scatter about the êt = 0 line, with no other pattern if the model is adequate.
The evenly spaced t tends to make the residual plot of t vs êt to look “spikey.”

In this class, a plot of a vs b means a is on the horizontal axis and b is on the vertical
axis.

7) Be able to sketch a “good” response plot and residual plot.

Know: a moving averageMA(q) times series is Yt = µ−θ1et−1−θ2et−2−· · ·−θqet−q+et

where θq 6= 0. Often µ = 0.
Know: an autoregressive AR(p) times series is Yt = φ0 + φ1Yt−1 + φ2Yt−2 + · · · +

φpYt−p + et where φp 6= 0. Often φ0 = 0.
Know: an autoregressive moving average ARMA(p, q) times series is

Yt = τ + φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p − θ1et−1 − θ2et−2 − · · · − θqet−q + et where θq 6= 0
and φp 6= 0. Often τ = 0.

Want the ARMA(p, q) model to be stationary and invertible. Let Zt = Yt − µ where
µ = E(Yt) if {Yt} is stationary and µ is some origin otherwise. Then stationarity implies
that Zt =

∑

∞

j=1
ψjet−j + et, which is an MA(∞) representation, where the ψj → 0

rapidly as j → ∞. Invertibility implies that Zt =
∑

∞

j=1
πjZt−j + et, which is an AR(∞)

representation, where the πj → 0 rapidly as j → ∞. Thus if the ARMA(p, q) model is
stationary and invertible, then Yt depends almost entirely on nearby lags of Yt and et,
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not on the distant past.
Let the complex number W = W1 +W2 i have modulus |W | = W 2

1 +W 2
2 .

The backshift operator or lag operator B satisfies BWt = Wt−1 and BjWt = Wt−j.
Then the MA(q) model is Zt = et−θ1et−1−θ2et−2−· · ·−θqet−q = (1−θ1B−· · ·−θqB

q)et =
θ(B)et. The AR(p) model is et = Zt −φ1Zt−1 −φ2Zt−2 − · · ·−φpZt−p = (1−φ1B− · · ·−
φpB

p)Zt, or φ(B)Zt = et. The ARMA(p, q) model is Zt−φ1Zt−1−φ2Zt−2−· · ·−φpZt−p =
et − θ1et−1 − θ2et−2 − · · · − θqet−q, or φ(B)Zt = θ(B)et. Consider θ(B) and φ(B) as
polynomials in B.

An ARMA(p, q) model is invertible if all of the roots of the polynomial θ(B) = 0 have
modulus > 1, and stationary if all of the roots of the polynomial φ(B) = 0 have modulus
> 1. Hence the roots of both polynomials lie outside the unit circle. An AR(p) model
is always invertible and an MA(q) model is always stationary. For the AR(1) model,
need |φ1| < 1. For the MA(1) model, need |θ1| < 1. For the ARMA(1, 1) model, need
|φ1| < 1 and |θ1| < 1.

For an AR(2) model, want φ2 ± φ1 < 1 and |φ2| < 1. For an MA(2) model, want
θ2 ± θ1 < 1 and |θ2| < 1. For an ARMA(2,2) model want the conditions for the AR(2)
and MA(2) model to both hold. For an ARMA(1, 2) model, want |φ1| < 1 and the
conditions for the MA(2) model to hold. For an ARMA(2, 1) model, want |θ1| < 1 and
the conditions for the AR(2) model to hold.

Let τi stand for θi or φi. Let k stand for q or p, and let ψ(B) = 1 − τ1B − τ2B
2 −

· · · − τkB
k stand for φ(B) or θ(B). A necessary but not sufficient condition for the roots

of ψ(B) = 0 to all be greater than 1 in modulus is τ1 + · · · + τk < 1 and |τk| < 1.
Consider the sequence of AR models

AR(1) : Yt = φ01 + φ11Yt−1 + et,
AR(2) : Yt = φ02 + φ12Yt−1 + φ22Yt−2 + et,

...
AR(k) : Yt = φ0k + φ1kYt−1 + · · · + φkkYt−k + et.

Know: the population partial autocorrelation function (PACF) is a plot of k vs φkk

and the sample PACF is a plot of k vs φ̂kk for k = 1, 2, ..., J where 10 ≤ J ≤ n/4 with
horizontal lines at ±2/

√
n added to the plot.

8) Know for final: Given the ACF and PACF for several time series, be able to
identifyAR(p) andMA(q) models. If only one of the several time series is anARMA(p, q)
model, be able to pick it out. See HW2 E) and Q2.

Tips: Assume the model is stationary and invertible. Then the AR(p) model is an
MA(∞) model, the MA(q) model is an AR(∞) model, and the ARMA(p, q) model is
an MA(∞) model and an AR(∞) model.

a) For an AR(p) time series, the population ACF decays exponentially or like a
damped sinusoidal to 0 rapidly. The population PACF has a spike at lag p and usually
at lags 1 to p− 1. The φkk are 0 for k > p, so the PACF cuts off to 0 after lag p.

b) For an MA(q) time series, the population ACF has a spike at lag q and usually
at lags 1 to q − 1. The ρk are 0 for k > q, so the ACF cuts off to 0 after lag q. The
population PACF decays exponentially or like a damped sinusoidal to 0 rapidly.

c) For an ARMA(p, q) time series, the ACF and PACF decay exponentially or like
a damped sinusoidal to 0 rapidly. For the ACF there may be spikes at lags up to
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min(0, q − p) and the quick decay starts for k > min(0, q − p). For the PACF there may
be spikes at lags up to min(0, p− q) and the quick decay starts for k > min(0, p− q).

For a white noise, se(rk) = se(φ̂kk) = 1/
√
n for k ≥ 1, so the horizontal lines at

±2/
√
n are at ±2se and act like pointwise 95% confidence intervals (CIs) if the time

series is a white noise. If the time series is a white noise, about 95% of the values will be
between the horizontal lines, but about 5% will be outside.

Warning: R starts the ACF at lag 0 where ρ̂0 = ρ0 = 1. Ignore this 0 lag when
identifying a model for the time series.

Output in symbols and for a data set are shown below.

Label coef SE LCI UCI Z p-value

ar1 φ̂1 se(φ̂1) 95% CI for φ1 Zar,1 = φ̂1/se(φ̂1) for Ho: φ1 = 0
...

arp φ̂p se(φ̂p) 95% CI for φp Zar,p = φ̂p/se(φ̂p) for Ho: φp = 0

ma1 θ̂1 se(θ̂1) 95% CI for θ1 Zma,1 = θ̂1/se(θ̂1) for Ho: θ1 = 0
...

maq θ̂q se(θ̂q) 95% CI for θq Zma,q = θ̂q/se(θ̂q) for Ho: θq = 0
intercept µ̂Y se(µ̂Y ) 95% CI for µY Zo = µ̂Y /se(µ̂Y ) for Ho: µY = 0

coef se LCI UCI Z pval

ar1 0.8912619 0.1929058 0.50545023 1.2770735 4.6201918 3.833855e-06

ar2 -0.4617117 0.1192590 -0.70022956 -0.2231938 -3.8715053 1.081653e-04

ma1 -0.1006720 0.2020894 -0.50485084 0.3035068 -0.4981559 6.183742e-01

ma2 0.1817279 0.1152152 -0.04870248 0.4121583 1.5772912 1.147285e-01

intercept 0.1786932 0.1242312 -0.06976925 0.4271556 1.4383920 1.503229e-01

9) Know for final: Let τk be µY , φk or θk. The large sample 95% CI for τ is given
by (LCI, UCI). Know how to get the 95% CI from output. The coef for ark is φ̂k and the
coef for mak is θ̂k, where for R the model is Yt = τ +φ1Yt−1 + · · ·+φpYt−p +θ1et−1 + · · ·+
θqet−q + et. For an AR(p) model, τ = φ0 and for an MA(q) model, τ = µ. Warning: the

θ̂k in R is −θ̂k in the book. Want the 95% CI for θq and for φp to be inside of (−1, 1).
The above output is for an ARMA(2, 2) model, the 95% CI for φ2 is (−0.700,−0.223)
and the 95% CI for θ2 is (−0.049, 0.412). See HW3 Ag) and Q3.

10) Know for final: Let τk be µY , φk or θk. See HW3 Ah) and Q3. The 4 step test
of hypotheses for Ho : τk = 0 is i) State the hypotheses Ho: τk = 0 Ha: τk 6= 0.
ii) Find the test statistic Z = τ̂k/se(τ̂k) from output.
iii) Find pval = the estimated p–value from output.
iv) State whether you reject Ho or fail to reject Ho and give a conclusion. Reject Ho if
pval ≤ α and fail to reject Ho if pval > α. Use α = 0.05 if α is not given. For τk = φk

(θk), conclude Yt−k (et−k) is needed in the model if Ho is rejected. Conclude Yt−k (et−k)
is not needed in the model given the other terms are in the model if you fail to reject
Ho. If τk = µY , the constant is needed in the model if Ho is rejected. The constant is
not needed in the model if you fail to reject Ho. Note: |Z| ≥ 2 will have pval < 0.05.
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