Math 403 Exam 3 is Wed. Nov. 29. You are allowed 15 sheets of notes and a calculator. The exam covers HW7–10, and Q7–10. Numbers refer to types of problems on exam. Bring Exam1 1 review pages 1–2 to all exams.

79) For the **individual risk model**, the aggregate loss = total loss = $S = \sum_{i=1}^{n} X_i$ Assume the X_i are iid unless told otherwise: then E(S) = nE(X) and V(S) = nV(X). Sometimes $S = \sum_{i=1}^{n} X_i$ has a nice distribution. See 21).

80) For the **collective risk model**, $S = \sum_{i=1}^{N} X_i$. The distribution of S is called a compound distribution with N the primary distribution and X the secondary distribution. Assume the X_i are iid and $X_i \perp N$ unless told otherwise: then E(S) = E(N)E(X) and $V(S) = E(N)V(X) + [E(X)]^2V(N)$. Note that S = 0 if N = 0.

81) For both 79) and 80), often $S \sim AN(\mu = E(S), \sigma^2 = V(S))$. Then use the normal approximation to find i) $P(a < S < b) \approx P\left(\frac{a-\mu}{\sigma} < Z < \frac{a-\mu}{\sigma}\right)$ where < can be replaced by \leq unless S is discrete and a continuity correction is desired. ii) $\pi_p(S) = VaR_P(S) \approx \mu + \sigma z_p$. Often $f_S(x)$ will be used for a pdf when S is continuous and for a pmf $f_S(x) = P(S = x)$ when S is discrete. Let $S_S(x)$ and $F_S(x)$ be the survival function and cdf of S.

82) **Reinsurance** is insurance for aggregate losses that occur for an insurance company and guards against a bad year. (Reinsurance or) insurance on aggregate losses, subject to an aggregate deductible d, is called **stop-loss insurance**. The expected cost of this insurance is the **net stop-loss premium** = $E[(S - d)_+] = E(S) - E[S \wedge d]$. Get E(S) from 79) or 80).

83) If S is continuous, then $E[(S-d)_+] = \int_d^\infty S_S(x)dx = \int_d^\infty (x-d)f_S(x)dx$, and $E[(S \wedge d)_+] = \int_0^d S_S(x)dx = \int_0^d xf_S(x)dx = dS_S(d)$.

84) If S is discrete, then $E[(S-d)_+] = \sum_{x>d} (x-d) f_S(x)$.

85) **Know** Suppose $X_1 \perp X_2 \perp \ldots \perp X_n$ where n = 3 is common and the pmf $f_i(x) = P(X_i = x)$ is given for a few values of x. Find the pmf of $S = \sum_{i=1}^n X_i$ by using a tree diagram. The numbers on the branches of the tree add to s_i . Multiply the probabilities corresponding to the numbers on the branches to get $P(X_1 = x_1, \ldots, X_n = x_n)$ for that branch. Then accumulate probabilities from all branches that have $S = s_i = k$ to get P(S = k). Alternatively, list the n values from left to right, change the rightmost values quickest. See the example below where X_i takes on the values 0 and 1, and n = 3.

X_1	X_2	X_3	$S = s_i$	$P(X_1 = x_1, X_2 = x_2, X_3 = x_3)$
0	0	0	0	$f_1(0)f_2(0)f_3(0) = a_1$
0	0	1	1	$f_1(0)f_2(0)f_3(1) = a_2$
0	1	0	1	$f_1(0)f_2(1)f_3(0) = a_3$
0	1	1	2	$f_1(0)f_2(1)f_3(1) = a_4$
1	0	0	1	$f_1(1)f_2(0)f_3(0) = a_5$
1	0	1	2	$f_1(1)f_2(0)f_3(1) = a_6$
1	1	0	2	$f_1(1)f_2(1)f_3(0) = a_7$
1	1	1	3	$f_1(1)f_2(1)f_3(1) = a_8$
	k	0	1	2 3
P(S	S = k) a_1	$a_2 + a_3$	$+ a_5 a_4 + a_6 + a_7 a_8$

86) Sometimes S is discrete and want $E[(S-d)_+] = E(S) - E[S \wedge d]$. Suppose S

takes on values $s_0, s_1, s_2, ...$, where often $s_i = hi$ for some positive integer h and $d = s_i$ where i is small, often 1 or 2. Then $E(S \land s_i) = \sum_{k=0}^{\infty} \min(s_k, s_i)P(S = s_k) =$ $s_0P(S = s_0) + s_1P(S = s_1) + \dots + s_{i-1}P(S = s_{i-1}) + \sum_{k=i}^{\infty} s_iP(S = s_k) =$ $s_0P(S = s_0) + s_1P(S = s_1) + \dots + s_{i-1}P(S = s_{i-1}) + s_iP(S \ge s_i) =$ $s_0P(S = s_0) + s_1P(S = s_1) + \dots + s_{i-1}P(S = s_{i-1}) +$ $s_i[1 - P(S = s_0) - P(S = s_1) - \dots - P(S = s_{i-1})]$. In particular, if $d = s_1$ then $E(S \land s_1) = s_0P(S = s_0) + s_1[1 - P(S = s_0)]$, and if $d = s_2$, then $E(S \land s_2) = s_0P(S = s_0) + s_1P(S = s_1) + s_2[1 - P(S = s_0) - P(S = s_1)]$. This technique is called a **convolution method.** Could start the numbering at

This technique is called a **convolution method.** Could start the numbering at $s_1, s_2, ...$ (at s_1 instead of s_0). Assume the X_i are iid and take on values $x_0, x_1, ..., x_m$ where m is small. Then find E(X). Many variants are possible, and sometimes several combinations of $N, X_1, ..., X_N$ will result in $S = s_k$. See HW7 2, 3.

I) Suppose $S = \sum_{i=1}^{N} X_i$. Then E(S) = E(N)E(X). Usually N will be Poisson, binomial, negative binomial or geometric. Then $s_0 = 0$.

Assume $x_0 > 0$. Then P(S = 0) = P(N = 0), and $P(S = s_1) = P(N = 1, X = s_1) = P(N = 1)P(X = s_1)$ where $s_1 = x_0$. Note that $s_2 = \min(2x_0, x_1)$.

Use these facts to find $E[(S \land s_2)]$. Often x_i will be a multiple of $s_1 = x_0$ if $x_0 > 0$: S takes on values $s_i = (i)s_1$ for i = 1, 2, ..., but you only need to find s_0, s_1 , and s_2 . Often $s_i = i$ for i = 0, 1, 2, ...

II) Suppose $S = \sum_{i=1}^{n} X_i$ where *n* is small, often 3. Then E(S) = nE(X). Then the smallest value of S is $s_0 = nx_0$. Then $P(S = s_0) = [P(X = x_0)]^n$.

Often $x_i = i$ and $s_i = i$ for $i = 0, 1, \dots$

	j	x	$F_S(x)$	$E[(S-jh)_+]$	
	0	0	$F_S(0) = 0$	E(S)	
	1	h	$F_S(h)$	$E(S-h)_{+} =$	$E(S) - h(1 - F_S(0))$
87)	2	2h	$F_S(2h)$	$E(S-2h)_{+} =$	$E(S-h)_{+} - h(1 - F_{S}(h))$
	3	3h	$F_S(3h)$	$E(S-3h)_+ =$	$E(S-2h)_{+} - h(1 - F_{S}(2h))$
	4	4h	$F_S(4h)$	$E(S-4h)_+ =$	$E(S-3h)_{+} - h(1-F_{S}(3h))$
	÷	÷	:	÷	: :

Suppose E(S) is given where S is discrete and P(S = kh) > 0 for some integer h > 0and k = 0, 1, 2, ... Assume P(S = x) = 0 for all other values of x. If d = jh where j is a nonnegative integer, then $E[(S - d)_+] = h \sum_{m=1}^{\infty} (1 - F_S[(m + j)h])$, and there is a recursion $E([S - (j + 1)h]_+] = E[(S - jh)_+] - h[1 - F_S(jh)]$. The above table replaces j by j - 1. Given a partially filled table similar to the one above, you should be able to find the missing value or next value of $E[(S - jh)_+]$. Also, if P(S = a) > 0, P(S = b) > 0and P(a < S < b) = 0, for a < d < b use linear interpolation to find $E[(S - d)_+] = \frac{b - d}{b - a}E[(S - a)_+] + \frac{d - a}{b - a}E[(S - b)_+]$.

88) Suppose $S_j = \sum_{i=1}^{N_j} X_{ij}$ has a compound Poisson distribution with $N_j \sim \text{Poisson}(\lambda_j)$ and X_{ij} has cdf $F_j(x)$ for j = 1, ..., n where $S_1 \perp S_2 \perp ... \perp S_n$. Then $S = \sum_{i=1}^n S_i = \sum_{k=1}^N W_k$ has a compound Poisson distribution where $N \sim \text{Poisson}(\lambda = \sum_{i=1}^n \lambda_i)$ and W_k has cdf $F_W(x) = \sum_{j=1}^n \frac{\lambda_j}{\lambda} F_j(x)$, an *n*-point mixture of the X_{ij} distributions, j = 1, ..., n.

89) Suppose X has a mixture distribution or mixed distribution where parameter Λ is a RV. Hence $X|\Lambda = \lambda$ has a conditional pdf or pmf $f_{X|\Lambda}(x|\lambda)$ where Λ has marginal or unconditional pdf or pmf $f_{\Lambda}(\lambda)$. Then the marginal or unconditional pdf or pmf of X is $f_X(x) = \int_{-\infty}^{\infty} f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda) d\lambda$ if Λ is continuous, and $f_X(x) = \sum_{\lambda} f_{X|\Lambda}(x|\lambda) f_{\Lambda}(\lambda)$ if Λ is discrete. Note the value x is fixed.

90) Suppose $f_X(x)$ is defined on 0, 1, 2, ..., m where $m = \infty$ is possible. Then $S = \sum_{i=1}^{N} X_i$ is discrete. Let $f_0 = P(X = 0)$. Then P(S = 0) is tabled below.

$f_S(0) = P(S=0)$
$\exp[\lambda(f_0-1)]$
$[1+q(f_0-1)]^m$
$[1+\beta(1-f_0)]^{-r}$
$[1 + \beta (1 - f_0)]^{-1}$

91) There is a recursion. Under the conditions of 90), $f_S(x) = P(S = x) =$ $\frac{\sum_{y=1}^{x \wedge m} \left(a + \frac{by}{x}\right) f_X(y) f_S(x-y)}{1 - a f_X(0)}$ for x = 1, 2, ..., where N is from an (a, b, 0) distribution.

Typically x is small, so $x \wedge m = x$.

92) Suppose P(X > 0) = 1 and $v = P(X > d) = S_X(d)$. Let N = number of claims when there is no deductible and let N_{new} be the number of claims when there is a deductible d. Often $N = N^L$ and $N_{new} = N^P$.

distribution of Nof N_{new}

$\operatorname{Pois}(\lambda)$	$\operatorname{Pois}(v\lambda)$
bin(q,m)	bin(vq, m)
$NB(\beta, r)$	$NB(v\beta, r)$
$\operatorname{Geom}(\beta)$	Geom $v\beta$)

93) Under the conditions of 92) suppose insurance with deductible d_1 is changed to insurance with deductible d_2 . Let γ be the parameter that is revised $(\lambda, q \text{ or } \beta)$. Then $\gamma_{new} = \frac{S_X(d_2)}{S_X(d_1)}\gamma$. Note that γ_{new} decreases if $d_2 > d_1$ and increases if $d_2 < d_1$. When γ_{new}

decreases, there are more payments of 0 and fewer positive payments.

94) Under the conditions of 92), let $N = N^L$ and $N_{new} = N^P$. Then $S = \sum_{i=1}^{N^L} Y_i^L =$ $\sum_{i=1}^{N^P} Y_i^P$. Then using the per loss basis, $E(S) = E(N^L)E(Y^L)$ and $V(S) = E(N^L)V(Y^L) + E(N^L)V(Y^L)$ $[E(Y^L)]^2 V(N^L)$. It is assumed that N^L does not change under a coverage modification (usually a change in deductible), but N^P does. Using the per payment basis, $E(S) = E(N^P)E(Y^P)$, can be useful if $E(Y^P) = e_X(d)$ has a useful formula. See 60).

STATISTICS 95) Suppose that a RV W has a parametric distribution that has a vector of parameters $\boldsymbol{\theta}$ that can take on values in the *parameter space* Θ . Often $\Theta = \{ \boldsymbol{\theta} | f(w|\boldsymbol{\theta}) \text{ is a pdf or pmf} \}.$

96) Let $E(\hat{\theta}) = E(\hat{\theta}|\theta) = E_{\theta}(\hat{\theta})$ be the expected value of the estimator $\hat{\theta}$ when the true parameter is θ .

97) The estimator $\hat{\theta}$ is an **unbiased estimator** of θ if $E(\hat{\theta}) = \theta$ for all θ (often for all $\theta \in \Theta$).

98) The **bias** of an estimator $\hat{\theta}$ of θ is $\operatorname{bias}_{\hat{\theta}}(\theta) = \operatorname{E}(\hat{\theta}) - \theta = \operatorname{E}(\hat{\theta} - \theta)$. Note that an unbiased estimator has $bias_{\hat{\theta}}(\theta) \equiv 0$ (the bias is 0 for all θ).

99) Let $\hat{\theta}_n$ be an estimator of θ based on a sample of size n (often n is suppressed).

Then $\hat{\theta}_n$ is an **asymptotically unbiased** estimator of θ if $\lim_{n \to \infty} E(\hat{\theta}_n) = \theta$ for all θ . Note that unbiased estimators are asymptotically unbiased.

100) An estimator $\hat{\theta}$ is a **consistent estimator** of θ if for all $\delta > 0$ and for any $\theta \in \Theta$, $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| > \delta) = 0.$ Equivalently, $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \delta) = 1.$

101) The **mean square error** of an estimator $\hat{\theta}_n$ of θ is $MSE_{\hat{\theta}_n}(\theta) = E[(\hat{\theta}_n - \theta)^2] =$ $V(\theta_n) + [\operatorname{bias}_{\hat{\theta}_n}(\theta)]^2.$

102) The estimator $\hat{\theta}_n$ is a consistent estimator of θ if i) $MSE_{\hat{\theta}_n}(\theta) \to 0$ as $n \to \infty$, or if ii) $E(\hat{\theta}_n) \to \theta$ (so the bias $\to 0$) and $V(\hat{\theta}_n) \to 0$ as $n \to \infty$.

103) Let $\hat{\theta}_1 = \hat{\theta}_{1,n}$ and $\hat{\theta}_2 = \hat{\theta}_{2,n}$ be two estimators of θ . If $MSE_{\hat{\theta}_1}(\theta) \leq MSE_{\hat{\theta}_2}(\theta)$ for all $\theta \in \Theta$, then $\hat{\theta}_1$ is a "better" estimator than $\hat{\theta}_2$, according to the MSE criterion.

104) The unbiased sample variance $S_U^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. If $X_1, ..., X_n$ are iid with $V(X_i) = \sigma^2$, then $E(S_U^2) = \sigma^2$.

105) A biased estimator of $V(X_i) = \sigma^2$ is $S_E^2 = \frac{n-1}{n}S_U^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2$. S_E^2 is the variance of the empirical distribution, and $E(S_E^2) = \frac{n-1}{n} \sigma^2$.

106) A point estimator $\hat{\theta}_n$ gives a single value (point) as an estimate. An interval estimator gives an interval of reasonable values.

107) A 100(1- α)% confidence interval (CI) (L, U) for θ satisfies $P(L < \theta < U) \ge 1-\alpha$ for all θ .

A large sample $100(1-\alpha)\%$ CI (L_n, U_n) for θ satisfies $P(L_n < \theta < U_n) \rightarrow 1-\delta \ge 1-\alpha$ for all θ .

108) Often for CIs, $t_{\alpha/2,n-1}$ of $z_{\alpha/2}$ is an upper cutoff or upper percentile: P(T > T) $t_{\alpha/2,n-1} = \alpha/2$ if $T \sim t_{n-1}$ and $P(Z > z_{\alpha/2}) = \alpha/2$ if $Z \sim N(0,1)$.

The same notation was used for a percentile: $P(T \leq t_{\alpha/2,n-1}) = \alpha/2$ and $P(Z \leq t_{\alpha/2,n-1}) = \alpha/2$ $z_{\alpha/2}$ = $\alpha/2$. Hence context must be used to determine whether $t_{\alpha/2,n-1}$ and $z_{\alpha/2}$ are upper cutoffs or percentiles.

109) If RV X comes from a parametric distribution with parameter θ , then say $X \sim PD(\boldsymbol{\theta})$. If $\boldsymbol{\theta}$ is the estimate of $\boldsymbol{\theta}$, use $X \approx PD(\boldsymbol{\theta})$ to estimate quantities in point 0) of exam 1 review such as $F(x), E(X), V(X), S(x), e_X(d) = E(Y^P), \pi_p(X) =$ $VaR_P(X), E(X \wedge d), \text{ and } TVaR_P(X).$

110) In a test of hypotheses, $H_0: \theta \in \Theta_0$ is the null hypothesis and $H_1: \theta \in \Theta_1$ is the alternative hypothesis. Reject H_0 if the test statistic is in a critical region (often $(-\infty, a]$ or $[a, \infty)$). Finite boundaries of a critical region are called *critical values* (eg a).

111) The p-value is the probability that a test statistic takes on a value that is less in agreement (more extreme) with the null hypothesis than the observed value of the test statistic. For an α level test, reject H_0 if p-value $< \alpha$. Fail to reject H_0 if p-value $> \alpha$.

112) A type I error occurs if the test rejects H_0 when H_0 is true. The significance **level** of the test is $\alpha = \max_{\theta \in \Theta_0} P(\text{reject } H_0 | H_0 \text{ is true})$. Typically $\alpha = \max_{\theta \text{ a critical point}} P(\text{reject } H_0 | H_0 \text{ is true}).$

113) Let $X_1, ..., X_n$ be iid random variables from a distribution with cdf F, mean μ and variance σ^2 . Let x_1, \ldots, x_n be the observed values of the X_i . The distribution of the RV D is the *empirical distribution* if D is a discrete RV with the following pmf.

$$\frac{x}{P(D=x)} \frac{x_1}{1/n} \frac{x_2}{1/n} \frac{\cdots}{1/n} \frac{x_n}{1/n}$$
Then $E(D) = \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $V(D) = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$. Note that $E(D) = \overline{x}$ is

the observed sample mean, and V(D) is the observed empirical sample variance. Often "observed" is omitted. If the x_i are not distinct, then let k_j = number of $x_i = x_j$, then $P(D = x_j) = k/n$, but this just combines columns in the above table that have $x_i = x_j$.

114) Let the unbiased sample variance $S_U^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Let the empirical

sample variance $S_E^2 = \frac{n-1}{n} S_U^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$. Then under the conditions of (113), $E(S_U^2) = \sigma^2$ and $E(S_E^2) = \frac{n-1}{n} \sigma^2$.

115) The empirical estimators of quantities like F(x), S(x), H(x), and f(x) will be denoted by $F_n(x)$, $S_n(x)$, $H_n(x)$, and $f_n(x)$. Other estimators will be denoted as $\hat{F}(x)$, $\hat{S}(x)$, $\hat{H}(x)$, and $\hat{f}(x)$. When the RVs X_i are used, the estimators are statistics (RVs). The observed values use the x_i . Hence as a statistic (random variable), the empirical cdf $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x) = \frac{\text{number of } X_i \le x}{n}$. The observed value of the statistic (empirical cdf) is $F_n(x) = \frac{1}{n} \sum_{i=1}^n I(x_i \le x) = \frac{\text{number of } x_i \le x}{n}$, a nondecreasing step function that can be plotted. Here the indicator random variable $W_i = I(X_i \le x) = 1$ if $X_i \le x$ and $W_i = I(X_i \le x) = 0$ if $X_i > x$. Hence under the conditions of 113), the W_i are iid Bernoulli(q = F(x)) RVs. Fix x. By the CLT, $\sqrt{n}(F_n(x) - F(x)) \stackrel{D}{\longrightarrow} N(0, F(x)(1 - F(x))) = N(0, S(x)(1 - S(x)))$. So for fixed x, $F_n(x) \sim AN(F(x), S(x)(1 - S(x)))$.

116) The empirical survival function $S_n(x) = 1 - F_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i > x) =$ number of $X_i > x$ and $X_i > x$ a

 $\frac{\text{number of } X_i > x}{\text{Get the observed values by replacing } X_i \text{ by } x_i. \text{ Hence the observed value of } S_n(x) = \frac{1}{n} \sum_{i=1}^n I(x_i > x) = \frac{\text{number of } x_i > x}{n}. \text{ The (observed) empirical pdf or pmf is the } pmf f_n(x) = \frac{\text{number of } x_i = x}{n}, \text{ and is best when the underlying distribution of the } X_i$

is discrete. 117) Let $y_1 < y_2 < \cdots < y_k$ be the k distinct values of x_1, \dots, x_n that appear in a sample of size $n \ge k$. Let s_j = number of times y_j appears in the sample with $\sum_{j=1}^k s_j = n$. Let $r_j = \sum_{i=j}^k s_j$ = number of observations $\ge y_j$. So $r_1 = n$ and $r_k = s_k$.

118) The order statistics are $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$. The observed order statistics are $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$. Given a small data set, order the data from smallest to largest and make the following table. It is often useful to get the column of y_j first. For complete data, $r_j = r_{j-1} - s_{j-1} = \sum_{i=j}^k s_j$ with $r_1 = n$.

j	y_j	s_j	r_j
1	y_1	s_1	$r_1 = n = \sum_{i=1}^k s_j$
2	y_2	s_2	$r_2 = r_1 - s_1 = \sum_{i=2}^k s_j$
3	y_3	s_3	$r_3 = r_2 - s_2 = \sum_{i=3}^k s_j$
4	y_4	s_4	$r_4 = r_3 - s_3 = \sum_{i=4}^k s_j$
	÷	:	÷
k-1	y_{k-1}	s_{k-1}	$r_{k-1} = r_{k-2} - s_{k-2} = \sum_{i=k-1}^{k} s_i$
k	y_k	s_k	$r_k = r_{k-1} - s_{k-1} = s_k$

119) Given a table as in 118), be able to find $F_n(y_j) = \frac{\sum_{i=1}^j s_i}{n} = 1 - \frac{r_{j+1}}{n}$ where $r_{k+1} = 0$.

$$F_n(x) = \begin{cases} 0, & x < y_1 \\ 1 - \frac{r_j}{n}, & y_{j-1} \le x < y_j, \ j = 2, ..., k \\ 1, & y_k \le x \end{cases}$$

$$F_n(x) = \begin{cases} 0 = 1 - \frac{n}{n}, & x < y_1 \\ 1 - \frac{r_2}{n}, & y_1 \le x < y_2 \\ 1 - \frac{r_3}{n}, & y_2 \le x < y_3 \\ \vdots & \vdots \\ 1 - \frac{r_{k-1}}{n}, & y_{k-2} \le x < y_{k-1} \\ 1 - \frac{r_k}{n}, & y_{k-1} \le x < y_k \\ 1 = 1 - \frac{0}{n}, & y_k \le x \end{cases}$$

120) Given a table as in 118), be able to find the **Nelson Aalen** estimator $\hat{H}(x)$ of the cumulative hazard rate function H(x). This estimate is a step function with $\hat{H}(y_j) = \sum_{i=1}^{j} \frac{s_i}{r_i} = \sum_{i=1}^{j-1} \frac{s_i}{r_i} + \frac{s_j}{r_j} = \hat{H}(y_{j-1}) + \frac{s_j}{r_j}$ with $\hat{H}(y_1) = \frac{s_1}{r_1}$. $\hat{H}(y_j) = \begin{cases} 0, & x < y_1 \\ \hat{H}(y_1) = 0 + \frac{s_1}{r_1}, & y_1 \le x < y_2 \\ \hat{H}(y_2) = \hat{H}(y_1) + \frac{s_2}{r_2}, & y_2 \le x < y_3 \\ \vdots & \vdots \\ \hat{H}(y_{k-2}) = \hat{H}(y_{k-3}) + \frac{s_{k-2}}{r_{k-2}}, & y_{k-2} \le x < y_{k-1} \\ \hat{H}(y_{k-1}) = \hat{H}(y_{k-2}) + \frac{s_{k-1}}{r_{k-1}}, & y_k \le x \end{cases}$

121) An alternative to $F_n(x)$ is $\hat{F}(x) = 1 - \exp(-\hat{H}(x))$.

122) For **grouped data**, the complete data $x_1, ..., x_n$ are not known but is known how many observations x_i fall in groups $(c_0, c_1], (c_1, c_2], (c_2, c_3], ..., (c_{k-2}, c_{k-1}], (c_{k-1}, c_k]$ where use $[c_0 \text{ if } x = c_0 \text{ is possible and } \infty)$ if $c_k = \infty$. Let $n_j =$ number of observations falling in $(c_{j-1}, c_j]$ where $\sum_{i=1}^k n_i = n$. Then $F_n(c_j) = \frac{1}{n} \sum_{i=1}^j n_i = \frac{\text{number of } x_i \leq c_j}{n}$ for j = 1, ..., k. Often only the middle two columns of the table below are given.

j	interval	n_{j}	$F_n(c_j) = \frac{1}{n} \sum_{i=1}^j n_i$
1	$[0=c_0,c_1]$	n_1	$F_n(c_1) = n_1/n$
2	$(c_1, c_2]$	n_2	$F_n(c_2) = (n_1 + n_2)/n$
3	$(c_2, c_3]$	n_3	$F_n(c_3) = (n_1 + n_2 + n_3)/n$
4	$(c_3, c_4]$	n_4	$F_n(c_4) = (n_1 + \dots + n_4)/n$
÷	:	÷	÷
k-1	$(c_{k-2}, c_{k-1}]$	n_{k-1}	$F_n(c_{k-1}) = \sum_{i=1}^{k-1} n_i / n$
k	$(c_{k-1}, c_k]$	n_k	$F_n(c_k) = 1 = \sum_{i=1}^k n_i / n$
192) F or	r groupod dat	o on o	\mathbf{r}

123) For grouped data, an **ogive** $F_n(x)$ is obtained by connecting the values of $F_n(c_j)$ in 122) with straight lines where $F_n(0) = 0$ for a nonnegative RV X. Since linear interpolation is used, the ogive is continuous with $F_n(x) = \frac{c_j - x}{c_j - c_{j-1}} F_n(c_{j-1}) + \frac{x - c_{j-1}}{c_j - c_{j-1}} F_n(c_j)$ for $c_{j-1} \leq x \leq c_j$.

124) For the grouped data table of 122), the empirical density function (pdf for continuous data, histogram of pmf for discrete data) is the right continuous **histogram** or relative frequency histogram $f_n(x) = \frac{n_j}{n(c_j - c_{j-1})}$ for $c_{j-1} \leq x < c_j$.

125) For the ogive and histogram using grouped data of 122), a different **uniform distribution** is assumed for each interval, where the height of the uniform distribution is given by $f_n(x)$ of 124). Take $f_n(x)$ to be the pdf for each interval if told to assume a uniform distribution on each interval.

126) If given intervals $c_0 - -c_1, c_1 - -c_2, ..., c_{k-1} - -c_k$ (without the open or closed parentheses or brackets,) assume $F_n(c_j) = \frac{1}{n} \sum_{i=1}^j n_i$ as in 122).

Estimation for Modified Data

127) An observation x_i is **truncated** at d, or left truncated at d, or truncated below at d, if x_i is not recorded if $x_i \leq d$, but is recorded if $x_i > d$. For example, if there is a deductible d, and the loss $x_i \leq d$, the insured policy holder will not report the loss since no benefit will be paid. Assume the loss x_i is reported if $x_i > d$ to get the benefit.

128) An observation x_i is **censored** at u, or censored above at u, or right censored at u, if x_i is recorded as u for $x_i \ge u$ and recorded as x_i for $x_i \le u$. For example, if there is a maximum payment u, then $w_i = x_i \lor u = \max(x_i, u)$ is the censored value of x_i .

129) Suppose $X \ge 0$, $x = \text{time, and } [0, \infty) = I_1 \cup I_2 \cup \cdots \cup I_k = [x_0, x_1) \cup [x_1, x_2) \cup \cdots \cup [x_{k-1}, x_k)$ where $I_i = [x_{i-1}, x_i)$, $x_0 = 0$ and $x_k = \infty$. Let $p_i = P(\text{surviving through } I_i|$ survived at the start of I_i) = $P(X > x_i|X > x_{i-1}) = \frac{S_X(x_i)}{S_X(x_{i-1})}$. Then $S_X(x_j) = \prod_{i=1}^j p_i$ where $S_X(0) = S_X(x_0) = 1$. Often use $\hat{p}_i = 1 - \frac{\text{number with an event in } I_i}{\text{number with potential for an event in } I_i}$. Often the event is "dying" or "failing". If x is not time, the event could be an x_j (such as a loss) in the interval $I_i = [x_{i-1}, x_i)$.

130) The *j*th observation needs a truncation point d_j . Use $d_j = 0$ if the observation is not truncated. If the observation is truncated, then $d_j > 0$. The *j*th observation

$$= \begin{cases} x_j, & x_j \text{ not censored} \\ u_j, & x_j \text{ censored at } u_j. \end{cases}$$

Hence the *j*th observation could be truncated $(d_j > 0)$ or not truncated $(d_j = 0)$. Suppose that there are *m* observations x_i or u_i where *L* is the number of x_i . Let $y_1 < y_2 < \cdots < y_k$

be the k unique values of the x_i where $k \leq L$. Let s_j be the number of times the uncensored observation y_j appears in the sample = number of $x_i = y_j$. The number of d_i 's is equal to m.

131) Let r_j be the size of the risk set (number at risk or under observation) at value y_j . Often the value is time or age. The risk set includes observations with truncation values $d_i < y_j$ and either $x_i \ge y_j$ or censored at values $u_i \ge y_j$. Hence

 r_j = number of x_i 's $\geq y_j$ + number of u_i 's $\geq y_j$ - number of d_i 's $\geq y_j$

= number with x_i or u_i values $\geq y_j$ ignoring truncation – number not in risk set because truncation value $d_i \geq y_j$, and

 r_j = number of d_i 's $< y_j$ – number of x_i 's $< y_j$ – number of u_i 's $< y_j$

= number who entered study before (value) y_j – number who have left study (eg due to death or censoring) by (value) y_j .

Also $r_j = r_{j-1} + \text{number of } d_i \in [y_{j-1}, y_j) - s_{j-1} - \text{number of } u_i \in [y_{j-1}, y_j) \text{ with } r_0 = 0,$ $s_0 = 0 \text{ and } y_0 = 0.$

132) Know:

/			
j	y_j	s_j	r_{j}
1	y_1	s_1	r_1
2	y_2	s_2	r_2
:	÷	÷	÷
k-1	y_{k-1}	s_{k-1}	r_{k-1}
k	y_k	s_k	r_k

Given the above table, as in 120),

a) the **Nelson Aalen** estimator $\hat{H}(x) = \hat{H}(y_{j-1}) = \sum_{i=1}^{j-1} \frac{s_i}{r_i}$ for $y_{j-1} \leq x < y_j$ with $\hat{H}(y_1) = \frac{s_1}{r}$. This estimator is a nondecreasing step function. Note that

 $\hat{H}(y_j) = \sum_{i=1}^{r_1} \frac{s_i}{r_i} = \hat{H}(y_{j-1}) + \frac{s_j}{r_i}.$

b) The **Kaplan Meier product limit estimator**, or Kaplan Meier (KM) estimator, or product limit (PL) estimator $S_n(x) = S_n(y_{j-1}) = \prod_{i=1}^{j-1} \left(1 - \frac{s_i}{r_i}\right)$ for $y_{j-1} \le x < y_j$ where $S_n(0) = 1$ and $S_n(x) = 1$ for $0 \le x < y_1$. This estimator is a nonincreasing step function. Note that $S_n(y_j) = \prod_{i=1}^{j} \left(1 - \frac{s_i}{r_i}\right) = S_n(y_{j-1}) \left(1 - \frac{s_j}{r_j}\right)$. $H_n(x) = -\ln(S_n(x))$.

133) Given a table of i, d_i , x_i , and u_i , be able to make a table of j, y_j , s_j , and r_j as in 132). Often $d_1 \leq d_2 \leq \cdots \leq d_m$, and for the $L \ d_i = 0$, x_1 or $u_1 \leq x_2$ or $u_2 \leq \cdots \leq x_L$ or u_L .

134) Let $S^* = S_n(y_k) = \prod_{i=1}^k \left(1 - \frac{s_i}{r_i}\right)$. Can define $S_n(x) = S^*$ for $x > y_k$, or $S_n(x) = 0$

for $x > y_k$ (especially if $s_k = r_k$ so $S^* = 0$). Alternatively, the text uses $S_n(x) = S^*$ for $y_k \le x < w$ and $S_n(x) = 0$ or $S_n(x) = S^*$ or $S_n(x) = (S^*)^{x/w}$ for $x \ge w$ where w is the largest of the x_i and u_i (the largest observed censored or uncensored survival value (time) from the data).

135) An alternative to $S_n(x)$ is $\hat{S}(x) = e^{-\hat{H}(x)} = \exp(-\hat{H}(x))$. Let $S^* = \hat{S}(y_k)$. Can define $\hat{S}(x) = S^*$ for $x > y_k$, or $\hat{S}(x) = 0$ for $x > y_k$. Alternatively, the text uses $\hat{S}(x) = S^*$ for $y_k \le x < w$ and $\hat{S}(x) = 0$ or $\hat{S}(x) = S^*$ or $\hat{S}(x) = (S^*)^{x/w}$ for $x \ge w$ where w is the largest of the x_i and u_i (the largest observed censored or uncensored survival value (time) from the data).

136) Suppose $d_{(1)} = \min(d_1, ..., d_m) > 0$. Then $\hat{S}(0) = S_n(0) = 1$, but there is not enough information to define $S_n(x)$ or $\hat{S}(x)$ for $x \in (0, d_{(1)})$. So $S_n(x)$ and $\hat{S}(x)$ are defined for $x > d_{(1)}$.

137) For the empirical estimators $F_n(x)$ and $S_n(x)$ with complete data, $\hat{V}(F_n(x)) = \hat{V}(S_n(x)) = \frac{S_n(x)F_n(x)}{n} = \frac{S_n(x)(1-S_n(x))}{n}$, and $\widehat{Cov}(F_n(x), F_n(y)) = \frac{F_n(x)(F_n(y)-F_n(x))}{n}$ where x < y. Since x and y are fixed, it might be useful to use t or z as the dummy variable, eg $F_n(z)$.

138) The empirical distributions are discrete.

a) $P(a < X \le b) = F(b) - F(a) = S(a) - S(b) = P(X \le b) - P(X \le a).$ b) $P(a \le X \le b) = F(b) - F(a-) = S(a-) - S(b) = P(X \le b) - P(X < a).$ c) $P(a \le X < b) = F(b-) - F(a-) = S(a-) - S(b-) = P(X < b) - P(X < a).$ d) P(a < X < b) = F(b-) - F(a) = S(a) - S(b-) = P(X < b) - P(X < a).So, for example, $P(a < X \le b) \approx F_n(b) - F_n(a) = S_n(a) - S_n(b).$

139) Recall that $E(X) = \int_0^\infty S(x)dx$, and $E(X \wedge d) = \int_0^d S(x)dx$. Hence $E(X) \approx$ area under the step function $S_n(x)$ or $\hat{S}(x)$, while $E(X \wedge d) \approx$ area under the step function $S_n(x)$ or $\hat{S}(x)$ on the interval [0, d].

140) **Know: Greenwood's approx.** for $V(S_n(x))$ where $S_n(x)$ is the KMPL estimator is $\hat{V}(S_n(y_j)) = \hat{V}(S_n(x)) = [S_n(y_j)]^2 \sum_{i=1}^j \frac{s_i}{r_i(r_i - s_i)}$ where $y_j \le x < y_{j+1}$.

(Also $\hat{V}(S_n(x)) = [S_n(x)]^2 \sum_{i:y_i \le x} \frac{s_i}{r_i(r_i - s_i)}$.) (Using 137) for complete data is

easier.)

The KMPL estimator is **unbiased**: $E(S_n(x)) = S(x)$.

141) Let $_tp_x = P(X > x + t | X > x)$, and let $_tq_x = 1 - _tp_x = P(x < X \le x + t | X > x)$. Let $p_x = _1p_x$, and $q_x = _1q_x$. For a mortality study, $_tp_x = P($ someone age x survives at least another t years), while $_tq_x = P($ someone age x survives dies in the next t years).

142) Let y > x. Then $_{y-x}q_x = P(x < X \le y|X > x)$ and $_{y-x}p_x = P(X > y|X > x)$. 143) Let y > x. For complete data $_{y-x}\hat{q}_x = \frac{S_n(x) - S_n(y)}{S_n(x)}$, and $_{y-x}\hat{p}_x = \frac{S_n(y)}{S_n(x)}$. Let n be the number in the initial sample, let n_x be the number alive (with values >) x, and let n_y be the number alive at age y. Then $\hat{V}(|_{y-x}\hat{q}_x|n_x) = \hat{V}(|_{y-x}\hat{p}_x|n_x) = \frac{(n_x - n_y)n_y}{n_x^3}$. Note that n is the number initially at risk (at age 0) and the subscript in $S_n(x)$. Similarly, n_x is the number at risk at age x and n_y is the number at risk at age y.

144) **Know**: The **approx.** for $V(\hat{H}(x))$ where $\hat{H}(x)$ is the Nelson Aalen estimator is $\hat{V}(\hat{H}(y_j)) = \hat{V}(\hat{H}(x)) = \sum_{i=1}^{j} \frac{s_i}{r_i^2} = \hat{V}(\hat{H}(y_{j-1})) + \frac{s_j}{r_i^2}$ where $y_j \le x < y_{j+1}$.

(Also
$$\hat{V}(\hat{H}(x)) = \sum_{i:y_i \le x} \frac{s_i}{r_i^2}$$
.)

145) Let y > x. For modified data, it is still true that $_{y-x}\hat{q}_x = \frac{S_n(x) - S_n(y)}{S_n(x)}$, and $_{y-x}\hat{p}_x = \frac{S_n(y)}{S_n(x)}$. But if $y_{a-1} \le x < y_a$ and $y_{j-1} \le y < y_j$, then $\hat{n}_{i} = \frac{S_n(y)}{S_n(x)} - \prod_{i=1}^{j-1} \left(1 - \frac{s_i}{s_i}\right)$. Then $\hat{V}(x_i = \hat{x}_i) = \hat{V}(x_i = \hat{x}_i)$.

$$\hat{y}_{-x}\hat{p}_{x} = \frac{S_{n}(y)}{S_{n}(x)} = \prod_{i=a} \left(1 - \frac{s_{i}}{r_{i}}\right)$$
. Then $\hat{V}(y_{-x}\hat{q}_{x}) = \hat{V}(y_{-x}\hat{p}_{x}) = [y_{-x}\hat{p}_{x}]^{2} \sum_{i=a} \frac{s_{i}}{r_{i}(r_{i} - s_{i})}$.
From a table like 132) computations are like KMPL 132b) and 140) but start at \hat{r}_{i}

From a table like 132), computations are like KMPL 132b) and 140), but start at y_a instead of y_1 .

146) Let z_p be the $1 - \alpha/2$ percentile $z_{1-\alpha/2}$ = the upper $\alpha/2$ percentile $z_{\alpha/2}$, using bad notation. So $P(Z \le z_p) = 1 - \alpha/2$ and $P(Z > z_p) = \alpha/2$.

CI 90% 95% 99%

 z_p 1.645 1.96 2.576

147) Using Greenwood's approx. 140), a linear $100(1-\alpha)\%$ CI for S(x) is $S_n(x) \pm z_p \sqrt{\hat{V}(S_n(x))}$.

148) Know: The log transformed $100(1-\alpha)\%$ CI for S(x) is

$$([S_n(x)]^{1/U}, [S_n(x)]^U)$$
 where $U = \exp\left(\frac{z_p\sqrt{\hat{V}(S_n(x))}}{S_n(x)\ln(S_n(x))}\right)$.

149) Using the Nelson Aalen estimator and 144), a linear $100(1-\alpha)\%$ CI for H(x) is $\hat{H}(x) \pm z_p \sqrt{\hat{V}(\hat{H}(x))}$.

150) Know: The log transformed $100(1-\alpha)\%$ CI for H(x) is $\left(\frac{\hat{H}(x)}{U}, [\hat{H}(x)]U\right)$ where $U = \exp\left(\frac{z_p\sqrt{\hat{V}(\hat{H}(x))}}{\hat{H}(x)}\right)$.

151) Let $p(y_j) = s_j/n$ be the probability assigned to y_j by the empirical distribution where $s_j = n_j = (\text{number of } x_i = y_j)$ for j = 1, ..., k. A **kernel density estimator** of the pdf (kernel smoothing) is $\hat{f}(x) = \sum_{j=1}^{k} p(y_j)k_{y_j}(x) = \sum_{i=1}^{n} \frac{1}{n}k_{x_i}(x)$. The area under the pdf $k_{y_i}(x)$ is 1.

152) Let b be the bandwidth of the kernel. a) The **uniform kernel** $k_y(x) = \frac{1}{2b}, y-b \le x \le y+b$, and $k_y(x) = 0$, otherwise.

b) For the **triangular kernel** the height of the triangle is 1/b, and the base goes from y - b to y + b: $k_y(x) = \frac{x - y + b}{b^2}, \quad y - b \le x \le y,$ $k_y(x) = \frac{y + b - x}{b^2}, \quad y \le x \le y + b,$

and $k_u(x) = b^2$, $y \leq x \leq b^2$ and $k_u(x) = 0$, otherwise.

153) For the uniform kernel,

$$\hat{f}(x) = \frac{1}{2nb} \sum_{i=1}^{n} I(|x_i - x| \le b) = \frac{1}{2nb} \sum_{i=1}^{n} I(x_i \in [x - b, x + b]) = \frac{1}{2nb} (\# x_i \in [x - b, x + b]).$$