
Math 403 Exam 3 is Wed. Nov. 29. You are allowed 15 sheets of notes and a

calculator. The exam covers HW7–10, and Q7–10. Numbers refer to types of problems
on exam. Bring Exam1 1 review pages 1–2 to all exams.

79) For the individual risk model, the aggregate loss = total loss = S =
∑n

i=1 Xi

Assume the Xi are iid unless told otherwise: then E(S) = nE(X) and V (S) = nV (X).
Sometimes S =

∑n
i=1 Xi has a nice distribution. See 21).

80) For the collective risk model, S =
∑N

i=1 Xi. The distribution of S is called a
compound distribution with N the primary distribution and X the secondary distribu-
tion. Assume the Xi are iid and Xi N unless told otherwise: then E(S) = E(N)E(X)
and V (S) = E(N)V (X) + [E(X)]2V (N). Note that S = 0 if N = 0.

81) For both 79) and 80), often S ∼ AN(µ = E(S), σ2 = V (S)). Then use the

normal approximation to find i) P (a < S < b) ≈ P
(

a − µ

σ
< Z <

a − µ

σ

)
where <

can be replaced by ≤ unless S is discrete and a continuity correction is desired. ii)
πp(S) = V aRP (S) ≈ µ + σzp. Often fS(x) will be used for a pdf when S is continuous
and for a pmf fS(x) = P (S = x) when S is discrete. Let SS(x) and FS(x) be the survival
function and cdf of S.

82) Reinsurance is insurance for aggregate losses that occur for an insurance com-
pany and guards against a bad year. (Reinsurance or) insurance on aggregate losses,
subject to an aggregate deductible d, is called stop–loss insurance. The expected cost
of this insurance is the net stop-loss premium = E[(S − d)+] = E(S)−E[S ∧ d]. Get
E(S) from 79) or 80).

83) If S is continuous, then E[(S − d)+] =
∫∞
d SS(x)dx =

∫∞
d (x − d)fS(x)dx, and

E[(S ∧ d)+] =
∫ d
0 SS(x)dx =

∫ d
0 xfS(x)dx = dSS(d).

84) If S is discrete, then E[(S − d)+] =
∑

x>d(x− d)fS(x).
85) Know Suppose X1 X2 ... Xn where n = 3 is common and the pmf fi(x) =

P (Xi = x) is given for a few values of x. Find the pmf of S =
∑n

i=1 Xi by using a tree
diagram. The numbers on the branches of the tree add to si. Multiply the probabilities
corresponding to the numbers on the branches to get P (X1 = x1, ..., Xn = xn) for that
branch. Then accumulate probabilities from all branches that have S = si = k to get
P (S = k). Alternatively, list the n values from left to right, change the rightmost values
quickest. See the example below where Xi takes on the values 0 and 1, and n = 3.

X1 X2 X3 S = si P (X1 = x1, X2 = x2, X3 = x3)
0 0 0 0 f1(0)f2(0)f3(0) = a1

0 0 1 1 f1(0)f2(0)f3(1) = a2

0 1 0 1 f1(0)f2(1)f3(0) = a3

0 1 1 2 f1(0)f2(1)f3(1) = a4

1 0 0 1 f1(1)f2(0)f3(0) = a5

1 0 1 2 f1(1)f2(0)f3(1) = a6

1 1 0 2 f1(1)f2(1)f3(0) = a7

1 1 1 3 f1(1)f2(1)f3(1) = a8

k 0 1 2 3
P (S = k) a1 a2 + a3 + a5 a4 + a6 + a7 a8

86) Sometimes S is discrete and want E[(S − d)+] = E(S) − E[S ∧ d]. Suppose S
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takes on values s0, s1, s2, ..., where often si = hi for some positive integer h and d = si

where i is small, often 1 or 2. Then E(S ∧ si) =
∑∞

k=0 min(sk, si)P (S = sk) =
s0P (S = s0) + s1P (S = s1) + · · · + si−1P (S = si−1) +

∑∞
k=i siP (S = sk) =

s0P (S = s0) + s1P (S = s1) + · · · + si−1P (S = si−1) + siP (S ≥ si) =
s0P (S = s0) + s1P (S = s1) + · · · + si−1P (S = si−1) +
si[1 − P (S = s0) − P (S = s1) − · · · − P (S = si−1)]. In particular, if d = s1 then
E(S ∧ s1) = s0P (S = s0) + s1[1 − P (S = s0)], and if d = s2, then
E(S ∧ s2) = s0P (S = s0) + s1P (S = s1) + s2[1 − P (S = s0) − P (S = s1)].

This technique is called a convolution method. Could start the numbering at
s1, s2, ... (at s1 instead of s0). Assume the Xi are iid and take on values x0, x1, ..., xm

where m is small. Then find E(X). Many variants are possible, and sometimes several
combinations of N, X1, ..., XN will result in S = sk. See HW7 2, 3.

I) Suppose S =
∑N

i=1 Xi. Then E(S) = E(N)E(X). Usually N will be Poisson,

binomial, negative binomial or geometric. Then s0 = 0.
Assume x0 > 0. Then P (S = 0) = P (N = 0), and P (S = s1) = P (N = 1, X = s1) =

P (N = 1)P (X = s1) where s1 = x0. Note that s2 = min(2x0, x1).
Use these facts to find E[(S ∧ s2)]. Often xi will be a multiple of s1 = x0 if x0 > 0: S

takes on values si = (i)s1 for i = 1, 2, ..., but you only need to find s0, s1, and s2. Often
si = i for i = 0, 1, 2, ....

II) Suppose S =
∑n

i=1 Xi where n is small, often 3. Then E(S) = nE(X). Then the
smallest value of S is s0 = nx0. Then P (S = s0) = [P (X = x0)]

n.
Often xi = i and si = i for i = 0, 1, ....

87)

j x FS(x) E[(S − jh)+]
0 0 FS(0) = 0 E(S)
1 h FS(h) E(S − h)+ = E(S) − h(1 − FS(0))
2 2h FS(2h) E(S − 2h)+ = E(S − h)+ − h(1 − FS(h))
3 3h FS(3h) E(S − 3h)+ = E(S − 2h)+ − h(1 − FS(2h))
4 4h FS(4h) E(S − 4h)+ = E(S − 3h)+ − h(1 − FS(3h))
...

...
...

...
...

Suppose E(S) is given where S is discrete and P (S = kh) > 0 for some integer h > 0
and k = 0, 1, 2, .... Assume P (S = x) = 0 for all other values of x. If d = jh where j
is a nonnegative integer, then E[(S − d)+] = h

∑∞
m=1(1 − FS[(m + j)h]), and there is a

recursion E([S − (j + 1)h]+] = E[(S − jh)+] − h[1 − FS(jh)]. The above table replaces
j by j − 1. Given a partially filled table similar to the one above, you should be able to
find the missing value or next value of E[(S− jh)+]. Also, if P (S = a) > 0, P (S = b) > 0
and P (a < S < b) = 0, for a < d < b use linear interpolation to find E[(S − d)+] =
b − d

b − a
E[(S − a)+] +

d − a

b − a
E[(S − b)+].

88) Suppose Sj =
∑Nj

i=1 Xij has a compound Poisson distribution with Nj ∼ Poisson(λj )
and Xij has cdf Fj(x) for j = 1, ..., n where S1 S2 ... Sn. Then S =

∑n
i=1 Si =∑N

k=1 Wk has a compound Poisson distribution where N ∼ Poisson(λ =
∑n

i=1 λi) and Wk

has cdf FW (x) =
n∑

j=1

λj

λ
Fj(x), an n–point mixture of the Xij distributions, j = 1, ..., n.
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89) Suppose X has a mixture distribution or mixed distribution where parameter Λ
is a RV. Hence X|Λ = λ has a conditional pdf or pmf fX |Λ(x|λ) where Λ has marginal
or unconditional pdf or pmf fΛ(λ). Then the marginal or unconditional pdf or pmf of X
is fX(x) =

∫∞
−∞ fX |Λ(x|λ)fΛ(λ)dλ if Λ is continuous, and fX(x) =

∑
λ fX |Λ(x|λ)fΛ(λ) if

Λ is discrete. Note the value x is fixed.
90) Suppose fX(x) is defined on 0, 1, 2, ..., m where m = ∞ is possible. Then

S =
∑N

i=1 Xi is discrete. Let f0 = P (X = 0). Then P (S = 0) is tabled below.
distribution of N fS(0) = P (S = 0)

Pois(λ) exp[λ(f0 − 1)]
bin(q, m) [1 + q(f0 − 1)]m

NB(β, r) [1 + β(1 − f0)]
−r

Geom(β) [1 + β(1− f0)]
−1

91) There is a recursion. Under the conditions of 90), fS(x) = P (S = x) =
∑x∧m

y=1

(
a + by

x

)
fX(y)fS(x− y)

1 − afX(0)
for x = 1, 2, ..., where N is from an (a, b, 0) distribution.

Typically x is small, so x ∧ m = x.
92) Suppose P (X > 0) = 1 and v = P (X > d) = SX(d). Let N = number of

claims when there is no deductible and let Nnew be the number of claims when there is
a deductible d. Often N = NL and Nnew = NP .

distribution of N of Nnew

Pois(λ) Pois(vλ)
bin(q, m) bin(vq, m)
NB(β, r) NB(vβ, r)
Geom(β) Geom vβ)

93) Under the conditions of 92) suppose insurance with deductible d1 is changed to
insurance with deductible d2. Let γ be the parameter that is revised (λ, q or β). Then

γnew =
SX(d2)

SX(d1)
γ. Note that γnew decreases if d2 > d1 and increases if d2 < d1. When γnew

decreases, there are more payments of 0 and fewer positive payments.
94) Under the conditions of 92), let N = NL and Nnew = NP . Then S =

∑NL

i=1 Y L
i =

∑NP

i=1 Y P
i . Then using the per loss basis, E(S) = E(NL)E(Y L) and V (S) = E(NL)V (Y L)+

[E(Y L)]2V (NL). It is assumed that NL does not change under a coverage modifica-
tion (usually a change in deductible), but NP does. Using the per payment basis,
E(S) = E(NP )E(Y P ), can be useful if E(Y P ) = eX(d) has a useful formula. See 60).

STATISTICS 95) Suppose that a RV W has a parametric distribution that has
a vector of parameters θ that can take on values in the parameter space Θ. Often
Θ = {θ|f(w|θ) is a pdf or pmf}.

96) Let E(θ̂) = E(θ̂|θ) = Eθ(θ̂) be the expected value of the estimator θ̂ when the
true parameter is θ.

97) The estimator θ̂ is an unbiased estimator of θ if E(θ̂) = θ for all θ (often for
all θ ∈ Θ).

98) The bias of an estimator θ̂ of θ is biasθ̂(θ) = E(θ̂) − θ = E(θ̂ − θ). Note that an
unbiased estimator has biasθ̂(θ) ≡ 0 (the bias is 0 for all θ).

99) Let θ̂n be an estimator of θ based on a sample of size n (often n is suppressed).
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Then θ̂n is an asymptotically unbiased estimator of θ if lim
n→∞

E(θ̂n) = θ for all θ. Note

that unbiased estimators are asymptotically unbiased.
100) An estimator θ̂ is a consistent estimator of θ if for all δ > 0 and for any θ ∈ Θ,

lim
n→∞

P (|θ̂n − θ| > δ) = 0. Equivalently, lim
n→∞

P (|θ̂n − θ| < δ) = 1.

101) The mean square error of an estimator θ̂n of θ is MSEθ̂n
(θ) = E[(θ̂n − θ)2] =

V (θ̂n) + [biasθ̂n
(θ)]2.

102) The estimator θ̂n is a consistent estimator of θ if i) MSEθ̂n
(θ) → 0 as n → ∞,

or if ii) E(θ̂n) → θ (so the bias → 0) and V (θ̂n) → 0 as n → ∞.
103) Let θ̂1 = θ̂1,n and θ̂2 = θ̂2,n be two estimators of θ. If MSEθ̂1

(θ) ≤ MSEθ̂2
(θ)

for all θ ∈ Θ, then θ̂1 is a “better” estimator than θ̂2, according to the MSE criterion.

104) The unbiased sample variance S2
U =

1

n − 1

n∑

i=1

(Xi − X)2. If X1, ..., Xn are iid

with V (Xi) = σ2, then E(S2
U) = σ2.

105) A biased estimator of V (Xi) = σ2 is S2
E =

n − 1

n
S2

U =
1

n

n∑

i=1

(Xi −X)2. S2
E is the

variance of the empirical distribution, and E(S2
E) =

n − 1

n
σ2.

106) A point estimator θ̂n gives a single value (point) as an estimate. An interval

estimator gives an interval of reasonable values.
107) A 100(1−α)% confidence interval (CI) (L, U) for θ satisfies P (L < θ < U) ≥ 1−α

for all θ.
A large sample 100(1−α)% CI (Ln, Un) for θ satisfies P (Ln < θ < Un) → 1−δ ≥ 1−α

for all θ.
108) Often for CIs, tα/2,n−1 of zα/2 is an upper cutoff or upper percentile: P (T >

tα/2,n−1) = α/2 if T ∼ tn−1 and P (Z > zα/2) = α/2 if Z ∼ N(0, 1).
The same notation was used for a percentile: P (T ≤ tα/2,n−1) = α/2 and P (Z ≤

zα/2) = α/2. Hence context must be used to determine whether tα/2,n−1 and zα/2 are
upper cutoffs or percentiles.

109) If RV X comes from a parametric distribution with parameter θ, then say
X ∼ PD(θ). If θ̂ is the estimate of θ, use X ≈ PD(θ̂) to estimate quantities in
point 0) of exam 1 review such as F (x), E(X), V (X), S(x), eX(d) = E(Y P ), πp(X) =
V aRP (X), E(X ∧ d), and TV aRP (X).

110) In a test of hypotheses, H0 : θ ∈ Θ0 is the null hypothesis and H1 : θ ∈ Θ1 is the
alternative hypothesis. Reject H0 if the test statistic is in a critical region (often (−∞, a]
or [a,∞)). Finite boundaries of a critical region are called critical values (eg a).

111) The p–value is the probability that a test statistic takes on a value that is less in
agreement (more extreme) with the null hypothesis than the observed value of the test
statistic. For an α level test, reject H0 if p–value < α. Fail to reject H0 if p–value > α.

112) A type I error occurs if the test rejects H0 when H0 is true. The significance
level of the test is α = max

θ∈Θ0

P (reject H0|H0 is true). Typically

α = max
θ a critical point

P (reject H0|H0 is true).

113) Let X1, ..., Xn be iid random variables from a distribution with cdf F , mean µ
and variance σ2. Let x1, ..., xn be the observed values of the Xi. The distribution of the
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RV D is the empirical distribution if D is a discrete RV with the following pmf.
x x1 x2 · · · xn

P (D = x) 1/n 1/n · · · 1/n

Then E(D) = x =
1

n

n∑

i=1

xi and V (D) =
1

n

n∑

i=1

(xi − x)2. Note that E(D) = x is

the observed sample mean, and V (D) is the observed empirical sample variance. Often

“observed” is omitted. If the xi are not distinct, then let kj = number of xi = xj, then
P (D = xj) = k/n, but this just combines columns in the above table that have xi = xj.

114) Let the unbiased sample variance S2
U =

1

n − 1

n∑

i=1

(Xi − X)2. Let the empirical

sample variance S2
E =

n − 1

n
S2

U =
1

n

n∑

i=1

(Xi − X)2. Then under the conditions of (113),

E(S2
U) = σ2 and E(S2

E) =
n − 1

n
σ2.

115) The empirical estimators of quantities like F (x), S(x), H(x), and f(x) will be de-
noted by Fn(x), Sn(x), Hn(x), and fn(x). Other estimators will be denoted as F̂ (x), Ŝ(x),
Ĥ(x), and f̂(x). When the RVs Xi are used, the estimators are statistics (RVs). The
observed values use the xi. Hence as a statistic (random variable), the empirical cdf

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x) =
number of Xi ≤ x

n
. The observed value of the statistic (empir-

ical cdf) is Fn(x) =
1

n

n∑

i=1

I(xi ≤ x) =
number of xi ≤ x

n
, a nondecreasing step function

that can be plotted. Here the indicator random variable Wi = I(Xi ≤ x) = 1 if Xi ≤ x
and Wi = I(Xi ≤ x) = 0 if Xi > x. Hence under the conditions of 113), the Wi are

iid Bernoulli(q = F (x)) RVs. Fix x. By the CLT,
√

n(Fn(x) − F (x))
D→ N(0, F (x)(1 −

F (x)) = N(0, S(x)(1 − S(x)). So for fixed x, Fn(x) ∼ AN(F (x), S(x)(1− S(x)).

116) The empirical survival function Sn(x) = 1 − Fn(x) =
1

n

n∑

i=1

I(Xi > x) =

number of Xi > x

n
. The empirical cumulative hazard function Hn(x) = − ln(Sn(x)).

Get the observed values by replacing Xi by xi. Hence the observed value of Sn(x) is

Sn(x) =
1

n

n∑

i=1

I(xi > x) =
number of xi > x

n
. The (observed) empirical pdf or pmf is the

pmf fn(x) =
number of xi = x

n
, and is best when the underlying distribution of the Xi

is discrete.
117) Let y1 < y2 < · · · < yk be the k distinct values of x1, ..., xn that appear in a

sample of size n ≥ k. Let sj = number of times yj appears in the sample with
∑k

j=1 sj = n.

Let rj =
∑k

i=j sj = number of observations ≥ yj. So r1 = n and rk = sk.
118) The order statistics are X(1) ≤ X(2) ≤ · · · ≤ X(n). The observed order statistics

are x(1) ≤ x(2) ≤ · · · ≤ x(n). Given a small data set, order the data from smallest to
largest and make the following table. It is often useful to get the column of yj first. For
complete data, rj = rj−1 − sj−1 =

∑k
i=j sj with r1 = n.
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j yj sj rj

1 y1 s1 r1 = n =
∑k

i=1 sj

2 y2 s2 r2 = r1 − s1 =
∑k

i=2 sj

3 y3 s3 r3 = r2 − s2 =
∑k

i=3 sj

4 y4 s4 r4 = r3 − s3 =
∑k

i=4 sj
...

...
...

...
k − 1 yk−1 sk−1 rk−1 = rk−2 − sk−2 =

∑k
i=k−1 sj

k yk sk rk = rk−1 − sk−1 = sk

119) Given a table as in 118), be able to find Fn(yj) =

∑j
i=1 si

n
= 1 − rj+1

n
where

rk+1 = 0.

Fn(x) =





0, x < y1

1 − rj

n
, yj−1 ≤ x < yj, j = 2, ..., k

1, yk ≤ x

Fn(x) =





0 = 1 − n
n
, x < y1

1 − r2

n
, y1 ≤ x < y2

1 − r3

n
, y2 ≤ x < y3

...
...

1 − rk−1

n
, yk−2 ≤ x < yk−1

1 − rk

n
, yk−1 ≤ x < yk

1 = 1 − 0
n
, yk ≤ x

120) Given a table as in 118), be able to find the Nelson Aalen estimator Ĥ(x)
of the cumulative hazard rate function H(x). This estimate is a step function with

Ĥ(yj) =
j∑

i=1

si

ri
=

j−1∑

i=1

si

ri
+

sj

rj
= Ĥ(yj−1) +

sj

rj
with Ĥ(y1) =

s1

r1
.

Ĥ(x) =





0, x < y1

Ĥ(y1) = 0 + s1

r1

, y1 ≤ x < y2

Ĥ(y2) = Ĥ(y1) + s2

r2

, y2 ≤ x < y3

...
...

Ĥ(yk−2) = Ĥ(yk−3) + sk−2

rk−2

, yk−2 ≤ x < yk−1

Ĥ(yk−1) = Ĥ(yk−2) + sk−1

rk−1

, yk−1 ≤ x < yk

Ĥ(yk) = Ĥ(yk−1) + sk

rk
, yk ≤ x

121) An alternative to Fn(x) is F̂ (x) = 1 − exp(−Ĥ(x)).
122) For grouped data, the complete data x1, ..., xn are not known but is known how

many observations xi fall in groups (c0, c1], (c1, c2], (c2, c3], ..., (ck−2, ck−1], (ck−1, ck] where
use [c0 if x = c0 is possible and ∞) if ck = ∞. Let nj = number of observations

falling in (cj−1, cj] where
∑k

i=1 ni = n. Then Fn(cj) =
1

n

j∑

i=1

ni =
number of xi ≤ cj

n
for

j = 1, ..., k. Often only the middle two columns of the table below are given.
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j interval nj Fn(cj) = 1
n

∑j
i=1 ni

1 [0 = c0, c1] n1 Fn(c1) = n1/n
2 (c1, c2] n2 Fn(c2) = (n1 + n2)/n
3 (c2, c3] n3 Fn(c3) = (n1 + n2 + n3)/n
4 (c3, c4] n4 Fn(c4) = (n1 + · · · + n4)/n
...

...
...

...
k − 1 (ck−2, ck−1] nk−1 Fn(ck−1) =

∑k−1
i=1 ni/n

k (ck−1, ck] nk Fn(ck) = 1 =
∑k

i=1 ni/n
123) For grouped data, an ogive Fn(x) is obtained by connecting the values of Fn(cj)

in 122) with straight lines where Fn(0) = 0 for a nonnegative RV X. Since linear interpo-

lation is used, the ogive is continuous with Fn(x) =
cj − x

cj − cj−1

Fn(cj−1) +
x − cj−1

cj − cj−1

Fn(cj)

for cj−1 ≤ x ≤ cj .
124) For the grouped data table of 122), the empirical density function (pdf for

continuous data, histogram of pmf for discrete data) is the right continuous histogram

or relative frequency histogram fn(x) =
nj

n(cj − cj−1)
for cj−1 ≤ x < cj.

125) For the ogive and histogram using grouped data of 122), a different uniform

distribution is assumed for each interval, where the height of the uniform distribution
is given by fn(x) of 124). Take fn(x) to be the pdf for each interval if told to assume a
uniform distribution on each interval.

126) If given intervals c0 − −c1, c1 − −c2, ..., ck−1 − −ck (without the open or closed
parentheses or brackets,) assume Fn(cj) = 1

n

∑j
i=1 ni as in 122).

Estimation for Modified Data

127) An observation xi is truncated at d, or left truncated at d, or truncated below
at d, if xi is not recorded if xi ≤ d, but is recorded if xi > d. For example, if there is a
deductible d, and the loss xi ≤ d, the insured policy holder will not report the loss since
no benefit will be paid. Assume the loss xi is reported if xi > d to get the benefit.

128) An observation xi is censored at u, or censored above at u, or right censored
at u, if xi is recorded as u for xi ≥ u and recorded as xi for xi ≤ u. For example, if there
is a maximum payment u, then wi = xi ∨ u = max(xi, u) is the censored value of xi.

129) Suppose X ≥ 0, x = time, and [0,∞) = I1∪I2∪· · ·∪Ik = [x0, x1)∪[x1, x2)∪· · ·∪
[xk−1, xk) where Ii = [xi−1, xi), x0 = 0 and xk = ∞. Let pi = P (surviving through Ii|
survived at the start of Ii) = P (X > xi|X > xi−1) =

SX(xi)

SX(xi−1)
. Then SX(xj) =

∏j
i=1 pi

where SX(0) = SX(x0) = 1. Often use p̂i = 1 − number with an event in Ii
number with potential for an event in Ii

. Often

the event is “dying” or “failing”. If x is not time, the event could be an xj (such as a
loss) in the interval Ii = [xi−1, xi).

130) The jth observation needs a truncation point dj . Use dj = 0 if the observation
is not truncated. If the observation is truncated, then dj > 0. The jth observation

=

{
xj, xj not censored
uj, xj censored at uj.

Hence the jth observation could be truncated (dj > 0) or not truncated (dj = 0). Suppose
that there are m observations xi or ui where L is the number of xi. Let y1 < y2 < · · · < yk
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be the k unique values of the xi where k ≤ L. Let sj be the number of times the
uncensored observation yj appears in the sample = number of xi = yj. The number of
di’s is equal to m.

131) Let rj be the size of the risk set (number at risk or under observation) at value
yj. Often the value is time or age. The risk set includes observations with truncation
values di < yj and either xi ≥ yj or censored at values ui ≥ yj. Hence
rj = number of xi’s ≥ yj + number of ui’s ≥ yj − number of di’s ≥ yj

= number with xi or ui values ≥ yj ignoring truncation − number not in risk set because
truncation value di ≥ yj, and
rj = number of di’s < yj − number of xi’s < yj − number of ui’s < yj

= number who entered study before (value) yj − number who have left study (eg due to
death or censoring) by (value) yj.
Also rj = rj−1 + number of di ∈ [yj−1, yj) −sj−1 − number of ui ∈ [yj−1, yj) with r0 = 0,
s0 = 0 and y0 = 0.

132) Know:
j yj sj rj

1 y1 s1 r1

2 y2 s2 r2
...

...
...

...
k − 1 yk−1 sk−1 rk−1

k yk sk rk

Given the above table, as in 120),

a) the Nelson Aalen estimator Ĥ(x) = Ĥ(yj−1) =
j−1∑

i=1

si

ri
for yj−1 ≤ x < yj with

Ĥ(y1) =
s1

r1
. This estimator is a nondecreasing step function. Note that

Ĥ(yj) =
j∑

i=1

si

ri

= Ĥ(yj−1) +
sj

rj

.

b) The Kaplan Meier product limit estimator, or Kaplan Meier (KM) estimator,

or product limit (PL) estimator Sn(x) = Sn(yj−1) =
j−1∏

i=1

(
1 − si

ri

)
for yj−1 ≤ x < yj where

Sn(0) = 1 and Sn(x) = 1 for 0 ≤ x < y1. This estimator is a nonincreasing step function.

Note that Sn(yj) =
j∏

i=1

(
1 − si

ri

)
= Sn(yj−1)

(
1 − sj

rj

)
. Hn(x) = − ln(Sn(x)).

133) Given a table of i, di, xi, and ui, be able to make a table of j, yj, sj, and rj as
in 132). Often d1 ≤ d2 ≤ · · · ≤ dm, and for the L di = 0,
x1 or u1 ≤ x2 or u2 ≤ · · · ≤ xL or uL.

134) Let S∗ = Sn(yk) =
k∏

i=1

(
1 − si

ri

)
. Can define Sn(x) = S∗ for x > yk, or Sn(x) = 0

for x > yk (especially if sk = rk so S∗ = 0). Alternatively, the text uses Sn(x) = S∗ for
yk ≤ x < w and Sn(x) = 0 or Sn(x) = S∗ or Sn(x) = (S∗)x/w for x ≥ w where w is
the largest of the xi and ui (the largest observed censored or uncensored survival value
(time) from the data).
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135) An alternative to Sn(x) is Ŝ(x) = e−Ĥ(x) = exp(−Ĥ(x)). Let S∗ = Ŝ(yk). Can
define Ŝ(x) = S∗ for x > yk, or Ŝ(x) = 0 for x > yk. Alternatively, the text uses
Ŝ(x) = S∗ for yk ≤ x < w and Ŝ(x) = 0 or Ŝ(x) = S∗ or Ŝ(x) = (S∗)x/w for x ≥ w where
w is the largest of the xi and ui (the largest observed censored or uncensored survival
value (time) from the data).

136) Suppose d(1) = min(d1, ..., dm) > 0. Then Ŝ(0) = Sn(0) = 1, but there is not

enough information to define Sn(x) or Ŝ(x) for x ∈ (0, d(1)). So Sn(x) and Ŝ(x) are
defined for x > d(1).

137) For the empirical estimators Fn(x) and Sn(x) with complete data, V̂ (Fn(x)) =

V̂ (Sn(x)) =
Sn(x)Fn(x)

n
=

Sn(x)(1 − Sn(x))

n
, and Ĉov(Fn(x), Fn(y)) =

Fn(x)(Fn(y) − Fn(x))

n
where x < y. Since x and y are fixed, it might be useful to use t or z as the dummy
variable, eg Fn(z).

138) The empirical distributions are discrete.
a) P (a < X ≤ b) = F (b)− F (a) = S(a)− S(b) = P (X ≤ b) − P (X ≤ a).
b) P (a ≤ X ≤ b) = F (b)− F (a−) = S(a−)− S(b) = P (X ≤ b) − P (X < a).
c) P (a ≤ X < b) = F (b−)− F (a−) = S(a−) − S(b−) = P (X < b)− P (X < a).
d) P (a < X < b) = F (b−)− F (a) = S(a) − S(b−) = P (X < b) − P (X ≤ a).
So, for example, P (a < X ≤ b) ≈ Fn(b) − Fn(a) = Sn(a) − Sn(b).

139) Recall that E(X) =
∫ ∞

0
S(x)dx, and E(X ∧ d) =

∫ d

0
S(x)dx. Hence E(X) ≈

area under the step function Sn(x) or Ŝ(x), while E(X∧d) ≈ area under the step function
Sn(x) or Ŝ(x) on the interval [0, d].

140) Know: Greenwood’s approx. for V (Sn(x)) where Sn(x) is the KMPL esti-

mator is V̂ (Sn(yj)) = V̂ (Sn(x)) = [Sn(yj)]
2

j∑

i=1

si

ri(ri − si)
where yj ≤ x < yj+1.

(Also V̂ (Sn(x)) = [Sn(x)]2
∑

i:yi≤x

si

ri(ri − si)
.) (Using 137) for complete data is

easier.)
The KMPL estimator is unbiased: E(Sn(x)) = S(x).
141) Let tpx = P (X > x+t|X > x), and let tqx = 1−tpx = P (x < X ≤ x+t|X > x).

Let px = 1px, and qx = 1qx. For a mortality study, tpx = P(someone age x survives at
least another t years), while tqx = P(someone age x survives dies in the next t years).

142) Let y > x. Then y−xqx = P (x < X ≤ y|X > x) and y−xpx = P (X > y|X > x).

143) Let y > x. For complete data y−xq̂x =
Sn(x) − Sn(y)

Sn(x)
, and y−xp̂x =

Sn(y)

Sn(x)
. Let

n be the number in the initial sample, let nx be the number alive (with values >) x, and

let ny be the number alive at age y. Then V̂ ( y−xq̂x|nx) = V̂ ( y−xp̂x|nx) =
(nx − ny)ny

n3
x

.

Note that n is the number initially at risk (at age 0) and the subscript in Sn(x). Similarly,
nx is the number at risk at age x and ny is the number at risk at age y.

144) Know: The approx. for V (Ĥ(x)) where Ĥ(x) is the Nelson Aalen estimator is

V̂ (Ĥ(yj)) = V̂ (Ĥ(x)) =
j∑

i=1

si

r2
i

= V̂ (Ĥ(yj−1)) +
sj

r2
j

where yj ≤ x < yj+1.
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(Also V̂ (Ĥ(x)) =
∑

i:yi≤x

si

r2
i

.)

145) Let y > x. For modified data, it is still true that y−xq̂x =
Sn(x) − Sn(y)

Sn(x)
, and

y−xp̂x =
Sn(y)

Sn(x)
. But if ya−1 ≤ x < ya and yj−1 ≤ y < yj, then

y−xp̂x =
Sn(y)

Sn(x)
=

j−1∏

i=a

(
1 − si

ri

)
. Then V̂ ( y−xq̂x) = V̂ ( y−xp̂x) = [ y−xp̂x]

2
j−1∑

i=a

si

ri(ri − si)
.

From a table like 132), computations are like KMPL 132b) and 140), but start at ya

instead of y1.
146) Let zp be the 1 − α/2 percentile z1−α/2 = the upper α/2 percentile zα/2, using

bad notation. So P (Z ≤ zp) = 1 − α/2 and P (Z > zp) = α/2.
CI 90% 95% 99%
zp 1.645 1.96 2.576

147) Using Greenwood’s approx. 140), a linear 100(1 − α)% CI for S(x) is

Sn(x) ± zp

√
V̂ (Sn(x)).

148) Know: The log transformed 100(1 − α)% CI for S(x) is

([Sn(x)]1/U , [Sn(x)]U) where U = exp


 zp

√
V̂ (Sn(x))

Sn(x) ln(Sn(x))


 .

149) Using the Nelson Aalen estimator and 144), a linear 100(1−α)% CI for H(x) is

Ĥ(x) ± zp

√
V̂ (Ĥ(x)).

150) Know: The log transformed 100(1 − α)% CI for H(x) is
(

Ĥ(x)

U
, [Ĥ(x)]U

)
where U = exp


zp

√
V̂ (Ĥ(x))

Ĥ(x)


 .

151) Let p(yj) = sj/n be the probability assigned to yj by the empirical distribution
where sj = nj = (number of xi = yj) for j = 1, ..., k. A kernel density estimator of

the pdf (kernel smoothing) is f̂(x) =
k∑

j=1

p(yj)kyj
(x) =

n∑

i=1

1

n
kxi

(x). The area under the

pdf kyj
(x) is 1.

152) Let b be the bandwidth of the kernel. a) The uniform kernel

ky(x) =
1

2b
, y − b ≤ x ≤ y + b, and ky(x) = 0, otherwise.

b) For the triangular kernel the height of the triangle is 1/b, and the base goes

from y − b to y + b: ky(x) =
x − y + b

b2
, y − b ≤ x ≤ y,

ky(x) =
y + b − x

b2
, y ≤ x ≤ y + b,

and ky(x) = 0, otherwise.
153) For the uniform kernel,

f̂ (x) =
1

2nb

n∑

i=1

I(|xi − x| ≤ b) =
1

2nb

n∑

i=1

I(xi ∈ [x− b, x + b]) =

1

2nb
(# xi ∈ [x− b, x + b]).
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